灰色关联分析算法步骤

合集下载

灰色关联分析法及其应用案例

灰色关联分析法及其应用案例
在这些因素中哪些是主要的哪些是次要的有待研究和量化分析三应用实例以输沙量为参考数列以年径流量为平均年降雨量为平均汛期降雨量为则相应的关联系数序列如下根据关联系数求关联度得年径流量与输沙量的关联程度年平均降雨量与输沙量的关联程度平均汛期降雨量与输沙量的关联程度相应的关联序为上述关联序表明对输沙量影响最大的是年径流量其次是汛期降雨量再其次是平均年降雨量
例如在社会系统中,人口是一种重要的子系统。影响人口 发展变化的有社会因素,如计划生育、社会治安、社会道德 风尚、社会的生活方式等。影响人口发展变化的因素还有经 济的,如社会福利、社会保险;还有医疗的,如医疗条件、 医疗水平等。总之,人口是多种因素互相关联、互相制约的 子系统。这些因素的分析对于控制人口、发展生产是必要的。
关联度
关联系数的数很多,信息过于分散,不便于比较,为此有 必
要将各个时刻关联系数集中为一个值,求平均值便是做这种

息处理集中处理的一种方法。ri
1 N
N
i (k)
k 1
关联度的一般表达式为:
无量纲化
无量纲化的方法常用的有初值化与均值化,区间相对值化。 初值化是指所有数据均用第1个数据除,然后得到一个新的数 列,这个新的数列即是各个不同时刻的值相对于第一个时刻
影响泥沙输入水库的因素较多,比如降雨量、径流量、植被 覆盖率等。在这些因素中哪些是主要的,哪些是次要的有待研 究和量化分析。
以输沙量为参考数列x 0 ,以年径流量为x 1 ,平均年降雨量为x 2
平均汛期降雨量为x 3 则相应的关联系数序列如下:
1 ( k ) ( 1 , 0 . 4 , 0 . 4 , 0 . 3 2 , 0 . 8 6 , 0 . 2 3 , 0 . 2 9 , 0 . 2 , 0 . 5 3 , 0 . 4 5 , 0 . 1 7 , 0 . 2 9 , 0 . 7 3 , 0 . 3 6 , 0 . 2 7 , 0 . 3 1 , 0 . 3 5

灰色关联分析计算实例

灰色关联分析计算实例

80.52 54.22
0.361
3.7 2.0213
50.974 50.4325 40.8828
.
2.矩阵无量纲化(初值化): X=Xij´/ Xi1´(i=1,2,3,4,5,6; j=2,3,4,5)
1
0.9496 0.8005
1 (X)= 1
0.9249 0.7948 1.0113 0.1006
X0,X1,,Xnxx001 2 x0m
x11 x12
x1m
xxnn1 2
xnm
.
常用的无量纲化方法有均值化法(见(12-3)
式)、初值化法(见(12-4)式)和 x x 变
换等。
s
xi
k
xik
1 m
mk1
xi
k
xi
k
xik xi1
i 0,1,, n;k1, 2,, m.
(123) (124)
表2 灾害直接经济损失及各相关影响因素之间的关联度
影响因素 农作物成灾面积 地震灾害损失 海洋灾害损失 森林火灾损失 地质灾害损失
关联度ri
0.9875
0.9131
0.9668
0.7103
0.9786
.
由表2的结果可以看出,灾害经济损失的各相 关影响因素对灾害直接经济损失影响的关联度 大小的顺序为: 农作物成灾面积>地质灾害损失>海洋灾害损失> 地震灾害损失>森林火灾损失 可以说明对灾害直接经济损失影响最大的是 农作物成灾面积、地质灾害损失和海洋灾害损 失,其次为地震灾害损失,森林火灾损失对灾 害直接经济损失影响程度较小。
5.求最值:
nm
minmin i1 k1
x0

第六章灰色关联度分析

第六章灰色关联度分析

M = max max ∆ i (k )
i k
m = min min ∆ i (k )
Байду номын сангаасi k
第四步, 第四步,求关联系数
m + ρM γ i (k ) = ∆ i (k ) + ρM
1 1 1
0.5010 0.8354 0.6343
0.3694 0.5244 0.4982
0.3333 0.5046 0.3536
1
1.0149
0.8060
0.7015
第二步,求差序列, 第二步,求差序列,记
∆ i (k ) = x ′ (k ) − x ′ (k ) 0 i
0 0 0
0.1163 0.0230 0.0673
0.1992 0.1058 0.1176
0.2335 0.1146 0.2134
第三步,求两级最大差和最小差, 第三步,求两级最大差和最小差,记
第一步, 确定比较序列和参考序列, 第一步 , 确定比较序列和参考序列 , 求 各序列的初值象(或均值象 或均值象), 各序列的初值象 或均值象 ,令
x ′ = x i / x i (1) i
1
0.9476
0.9236
0.9148
1
1.0639
1.1228
1.1483
1
0.9706
1.0294
1.0294
γ 13 > γ 14 > γ 12
作业
请以农业为参考序列,计算工业、 请以农业为参考序列,计算工业、 运输业、商业与农业的关联度大小。 运输业、商业与农业的关联度大小。
X0=(18,20,22,35,41,46) X1=(8,11,12,17,24,29) X2=(3,2,7,4,11,6) X3=(5,7,7,11,5,10)

两因素三水平用灰色关联法

两因素三水平用灰色关联法

灰色关联分析法是一种用于比较多个因素之间关联程度的分析方法,其基本思想是通过比较各因素之间的相似程度来评估它们之间的关联程度。

在两因素三水平的情境下,可以使用灰色关联分析法来比较三个水平之间的关联程度。

具体步骤如下:1.确定参考序列和比较序列。

参考序列是用于比较的基准序列,通常选择一个固定值或者已知的最佳水平作为参考序列。

比较序列是待比较的各个因素在不同水平下的观测值序列。

2.数据预处理。

对参考序列和比较序列进行数据预处理,包括数据清洗、缺失值处理、异常值处理等。

3.计算灰色关联度。

根据灰色关联分析法的原理,计算参考序列与各个比较序列之间的灰色关联度。

灰色关联度的计算公式为:(\gamma(x_0, x_i) = \frac{\min_i |x_0(k) - x_i(k)| + \rho \max_i |x_0(k) -x_i(k)|}{|x_0(k) - x_i(k)| + \rho \max_i |x_0(k) - x_i(k)|})其中,(x_0(k))表示参考序列在时刻k的值,(x_i(k))表示第i个比较序列在时刻k 的值,(\min_i |x_0(k) - x_i(k)|)和(\max_i |x_0(k) - x_i(k)|)分别表示第k时刻所有比较序列与参考序列的差的绝对值的最小值和最大值,(\rho)是一个分辨系数,通常取0.5。

4. 判断关联程度。

根据计算出的灰色关联度,判断各个比较序列与参考序列的关联程度。

灰色关联度越接近于1,表示关联程度越高。

通过以上步骤,可以得出各个水平之间的关联程度,从而为决策提供依据。

需要注意的是,灰色关联分析法只是一种定性的分析方法,其结果具有一定的主观性,因此在具体应用时需要根据实际情况进行合理的解释和判断。

灰色关联分析(算法步骤)

灰色关联分析(算法步骤)

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

第四章 灰色关联度评价法

第四章 灰色关联度评价法

第四章灰色关联度评价法1982年,华中理工大学邓聚龙教授首先提出了灰色系统得概念,并建立了灰色系统理论.之后,灰色系统理论得到了较深入的研究,并在许多方面获得了成功得应用.灰色系统理论认为,人们对客观事物得认识具有广泛得灰色性,即信息的不完全性和不确定性,因而由客观事物所形成得是一种灰色系统,即部分信息已知、部分信息未知得系统.比如社会系统、经济系统、生态系统等都可以看作是灰色系统..人们对综合评价的对象—被评价事物的认识也具有灰色性,因而可以借助于灰色系统的相关理论来研究综合评价问题.下面首先介绍灰色关联分析方法,然后探讨其在综合评价中应用的一些问题.一、灰色关联分析方法灰色关联分析(GRA)是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系得强弱、大小和次序的.如果样本数据列反映出两因素变化的态势(方向、大小、速度等)基本一致,则它们之间得关联度较大;反之,关联度较小.与传统的多因素分析方法(相关、回归等)相比,灰色关联分析对数据要求较低且计算量小,便于广泛应用.GRA分析得核心是计算关联度,下面通过一个例子来说明计算关联度得思路和方法.表5-3是某地区1990~1995年国内生产总值得统计资料.现在提出这样得问题:该地区三次产业中,哪一产业产值得变化与该地区国内生产总值(GDP)的变化态势更一致呢?也就是哪一产业与GDP的关联度最大呢?这样得问题显然是很有实际意义的.一个很自然的想法就是分别将三次产业产值的时间序列与GDP 的时间序列进行比较,为了能够比较,先对各序列进行无量纲化,这里采用均值化法.各序列得均值分别为:2716,461.5,1228.83,1025.67,表5-3中每列数据除以其均值可表5-3 某地区国内生产总值统计资料(百万元)得均值化序列(如表5-4所示).粗略地想一下,两序列变化的态势是表现在其对应点的间距上.如果各对应点间距均较小,则两序列变化态势的一致性强,否则,一致性弱.分别计算各产业产值与GDP在对应期的间距(绝对差值),结果见表5-5.接下来表5-4表5-5似乎应该是对三个绝对差值序列分别求平均再进行比较,就可以解决问题了.但如果仔细观察表5-5中数据就会发现绝对差值数据序列的数据间存在着较大的数量级差异(最大为0.1857,最小的为0.0006,相差300多倍),不能直接进行综合,还需要对其进行一次规范化.设(max)∆分别表示表5-5中绝对差∆和(min)值)(0t i ∆的最大数和最小数,则(m ax ))((m in)00∆≤∆≤∆≤t i因而1(max ))((max )(min)00≤∆∆≤∆∆≤t i显然(max ))(0∆∆t i 越大,说明两序列i x 和0x 变化态势一致性弱,反之,一致性强,因此可考虑将(max ))(0∆∆t i 取倒反向.为了规范化后数据在[0,1]内,可考虑(max ))((max )(min)0∆∆∆∆t i由于在一般情况下(min)∆可能为零(即某个)(0t i ∆为零),故将上式改进为)((max ))((max )(min)00t t i i ερρ∆=+∆∆+∆∆ρ在0和1之间取值.上式可变形为1995,,1990,3,2,1(max))((max)(min))(00 ==∆+∆∆+∆=t i t t i i ρρε (5-6))(0t i ε称为序列i x 和序列0x 在第t 期的灰色关联系数(常简称为关联系数).由(5-6)式可以看出,ρ取值的大小可以控制(max)∆对数据转化的影响, ρ取较小的值,可以提高关联系数间差异的显著性,因而称ρ为分辨系数.利用(5-6)式对表5-5中绝对差值)(0t i ∆进行规范化,取ρ=0.4,结果见表5-6.以)1990(01ε计算为例:4191.01857.04.01044.01857.04.00006.0)1990(1857.0(max),0006.0(min)01=⨯+⨯+==∆=∆ε 同样可计算出表5-6中其余关联系数.表5-6最后分别对各产业与GDP 的关联系数序列求算术平均可得7209.0)4758.000.17338.05213.07257.08687.0(615760.0)3510.06141.08761.04903.05178.06067.0(614571.0)2881.03696.07055.05808.03796.04191.0(61010101=+++++==+++++==+++++=r r ri r 0称为序列0x 和)3,2,1(=i x i 的灰色关联度.由于010203r r r >>,因而第三产业产值与GDP 的关联度最大,其次是第二产业、第一产业.从上例可以看出,灰色关联分析需要经过以下几个步骤:1.确定分析序列在对所研究问题定性分析的基础上,确定一个因变量因素和多个自变量因素.设因变量数据构成参考序列0X ',各自变量数据构成比较序列1),,,2,1(+='n n i X i 个数据序列形成如下矩阵:(5-7)其中n i N x x x X T i i i i ,,2,1,))(,,2(),1(( ='''=' N 为变量序列的长度.)1(110110)()()()2()2()2()1()1()1(),,,(+⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'''''''''='''n N nnnn N x N x N x x x x x x x X X X无论是时间序列数据、指标序列数据还是横向序列数据都可以用来作关联分析。

灰色关联分析方法

灰色关联分析方法

灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。

与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。

它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。

灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。

该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。

灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。

2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。

3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。

4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。

5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。

灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。

2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。

3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。

4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。

然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。

2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。

灰色关联度

灰色关联度

灰色关联度分析灰色关联分析(Grey Correlation Analysis )是一种分析多因素之间关系的方法,由邓聚龙教授创立,通过不同样本之间关联度分析,对各因素进行排序,对各因素之间关系进行描述的一种统计方法。

我们假设以及知道某一个指标可能是与其他的某几个因素相关的,那么我们想知道这个指标与其他哪个因素相对来说更相关,与哪个因素相对关系弱一点,依次类推,把这些因素排个序,得到一个分析结果,我们就可以知道我们关注的这个指标,与因素中的哪些更相关。

1、确定母数列(参考序列)和子数列(比较序列)设参考数列0X ,比较数列12,,,n X X X ,由于各因素之间的单位等各不相同,可能会造成有的数大有的数很小。

但是这并不是由于它们内禀的性质决定的,而只是由于量纲不同导致的,因此我们需要对它们进行无量纲化。

因此,为了使得不同因素能够进行比较,且保证结果的误差,需要对数据进行无量纲化处理。

GRA 常用的方法是初值化,即把这一个序列的数据统一除以最开始的值,由于同一个因素的序列的量级差别不大,所以通0,1,2,,4.2''0()|()()|(1,2,3,4)j j k X k X k j ∆=-= max 0min 0max max |()()|min min |()()|i i k i i k X k X k X k X k ∆=-∆=- 3、求关联度minmax max ()()j j k k ρζρ∆+∆=∆+∆ 其中,一般调节系数ρ的取值区间为()10,,通常取0.5ρ=。

4、作关联度 4、关联度排序,如果21r r <,则参考数列0x 与比较数列1x 更相似,最终的目的也是为了计算变量之间的关联程度。

GRA 算法本质上来讲就是提供了一种度量两个向量之间距离的方法,对于有时间性的因子,向量可以看成一条时间曲线,而GRA 算法就是度量两条曲线的形态和走势是否相近。

为了避免其他干扰,凸出形态特征的影响,GRA 先做了归一化,将所有向量矫正到同一个尺度和位置,然后计算每个点的距离。

灰色关联分析法(灰色综合评价法)

灰色关联分析法(灰色综合评价法)

灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。

设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。

(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。

设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。

(3) 确定各指标值对应的权重。

可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。

(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。

灰色关联分析模型

灰色关联分析模型

模型优化
01
改进灰色关联分析模型的计算方 法,提高模型的准确性和稳定性 。
02
引入人工智能和机器学习技术, 实现灰色关联分析模型的自适应 和智能化。
应用拓展
将灰色关联分析模型应用于更多领域 ,如金融、能源、环境等,挖掘各领 域数据之间的关联关系。
结合其他数据分析方法,形成更为综 合和全面的数据分析体系。
THANKS
感谢观看
通过灰色关联分析,可以挖掘出数据之间的内在联系,为决策提供依据,有助于提 高决策的科学性和准确性。
灰色关联分析模型的基本概念
灰色关联分析
灰色关联分析是一种基于因素之间发 展趋势相似或相异程度的分析方法, 用于衡量因素之间的关联程度。
灰色关联序
灰色关联序是根据灰色关联度的大小 对因素进行排序,从而找出主要影响 因素和次要影响因素。
灰色关联分析模型
• 引言 • 灰色关联分析模型的理论基础 • 灰色关联分析模型的实例应用 • 灰色关联分析模型的优缺点 • 灰色关联分析模型的发展趋势和展望
01
引言
灰色关联分析模型的背景和意义
灰色关联分析模型是一种用于处理不完全信息或不确定信息的数学方法,广泛应用 于经济、社会、工程等领域。
在实际应用中,由于数据的不完全性和不确定性,许多问题难以得到准确的分析和 预测。灰色关联分析模型的出现,为这类问题提供了有效的解决方案。
灰色关联度
灰色关联度是灰色关联分析中的核心 概念,表示因素之间的关联程度。通 过计算灰色关联度,可以判断各因素 之间的相似或相异程度。
灰色关联矩阵
灰色关联矩阵是表示因素之间关联程 度的矩阵,通过矩阵可以直观地看出 各因素之间的关联程度。
02
灰色关联分析模型的理论基础

灰色关联分析均值化公式表示

灰色关联分析均值化公式表示

灰色关联分析均值化公式表示灰色关联分析灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密,曲线越接近,相应序列之间的关联度就越大,反之则越小。

此方法可用于进行系统分析,也可应用于对问题进行综合评价。

一般的抽象系统,如社会系统、经济系统、农业系统、生态系统、教育系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。

人们常常希望知道在众多的因素中,哪些是主要因素,哪些是次要因素;哪些因素对系统发展影响大,哪些因素对系统发展影响小;哪些因素对系统发展起推动作用需强化发展,哪些因素对系统发展起阻碍作用需加以抑制;这些都是系统分析中人们普遍关心的问题。

例如,粮食生产系统,人们希望提高粮食总产量,而影响粮食总产量的因素是多方面的,有播种面积以及水利、化肥、土壤、种子、劳力、气候、耕作技术和政策环境等。

为了实现少投人多产出,并取得良好的经济效益、社会效益和生态效益,就必须进行系统分析。

灰色关联分析步骤实现大致分为以下几个步骤:指标正向化确定分析数列对变量进行预处理计算子序列中各个指标与母序列的关联系数计算灰色关联度,并得出结论在实际建模中,以上步骤不是特别固定,要根据实际的问题进行分析,下面拿两道例题进行说明。

下表为某地区国内生产总值的统计数据(以百万元计),问该地区从 2000 年到 2005 年之间,哪一种产业对 GDP 总量影响最大。

第一步:指标正向化所谓正向化处理,就是将极小型、中间型以及区间型指标统一转化为极大型指标。

具体的正向化方法请查看:TOPSIS 法(优劣解距离法)最终得到正向化处理的矩阵为X:X = [ x 11 x 12 ⋯ x 1 m x 21 x 22 ⋯ x 2 m ⋮⋮⋱⋮ x n 1 x n 2 ⋯ x n m ] X= \begin{bmatrix} x_{11} & x_{12} & \cdots&x_{1m} \\ x_{21}& x_{22} & \cdots &x_{2m} \\ \vdots &\vdots & \ddots & \vdots \\ x_{n1}& x_{n2} & \cdots &x_{nm} \end{bmatrix} X=⎣⎢⎢⎢⎡x11x21⋮xn1x12x22⋮xn2⋯⋯⋱⋯x1m x2m⋮xnm⎦⎥⎥⎥⎤因为指标变量国内产值、第一产业、第二产业、第三产业都是为正向化指标,因此无需正向化。

灰色关联度分析方法模型

灰色关联度分析方法模型

灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。

根据R 的数值,进行排序。

(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。

此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。

选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个期货公司第k 个指标的原始数值。

(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。

设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈i k C 。

i k k k i k i kj j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略) (3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k iC C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。

这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。

灰色关联度分析法

灰色关联度分析法

灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。

它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。

在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。

一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。

灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。

具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。

2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。

3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。

关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。

4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。

二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。

下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。

2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。

通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。

3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。

通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。

4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。

灰色关联分析算法步骤

灰色关联分析算法步骤

灰色关联分析算法步骤 Revised by BLUE on the afternoon of December 12,2020.灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

是由着名学者教授首创的一种系统科学理论(GreyTheory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求可以少到4个,对数据无规律同样适用,不会出现量化结果与结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如各部门投资收益、区域经济优势分析、等方面,都取得较好的应用效果。

关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

灰色关联分析的步骤灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k)|k=1,2,Λ,n};比较数列(又称子序列)X i={X i(k)|k=1,2,Λ,n},i=1,2,Λ,m。

灰色关联度分析

灰色关联度分析

就可求得两级最大差Δ(max)和两级最小差Δ(min) 计算关联系数
计算第i 个被评价对象与最优参考序列间的关联 系数。
计算关联度
对各评价对象分别计算其p个指标与参考序列对应元素的关联系数的
均值,以反映各评价对象与参考序列的关联关系,称其为关联度,
记为 0i
1
P
(k)
P 0i k1
i1,2,..n.,
第六步 排关联序 由关联度数值可看出,r03>r01>r02。这表明,三种工资对工资总 额的关联程度的排列顺序为:承包工资、计时工资、档案工资。即该 公路施工企业的工资发展方向是以承包工资为主导,计时工资和档案 工资对工资总额的影响属于同一水平。
综合评价
基本思路是: 从样本中确定一个理想化的最优样本,以此为参考数列,通过计 算各样本序列与该参考序列的关联度,对被评价对象做出综合比 较和排序。
灰色关联度分析的运用
➢因 素 分 析 ➢综 合 评 价
因素分析
第一步 对数据做均值化处理
第二步 计算各比较数列同参考数列在同一时期的绝对差 再分别计算出其余4年的各绝对差
第三步 找出两极最大差与最小差
第四步 计算关联系数,取分辨系数
,则计算公式为:
第五步 计算关联度。
利用表4,分别求各个数列每个时期的关联系数的平均值即得关联度:
一般地,三种方法不宜混合、重叠作用,在进行系统因素分析时, 可根据实际情况选用其中一个。
若系统 因素 X i 与系统主行为 X
可以将其逆化或倒数化后进行计算。
0
呈负相关关系,我们
逆化
倒数化
关联系数的计算
设经过数据处理后的参考数列为:
比较数列为:
从几何角度看,关联程度实质上是参考数列与比较数列曲线形状的相似程度。凡 比较数列与参考数列的曲线形状接近,则两者间的关联度较大;反之,如果曲线 形状相差较大,则两者间的关联度较小。因此,可用曲线间的差值大小作为关联 度的衡量标准。 则:

灰色关联熵

灰色关联熵

灰色关联熵灰色关联熵(Grey Relational Entropy)是一种用于研究灰色关联性分析的数学方法,广泛应用于多领域的工程与管理决策中。

本文将从灰色关联熵的定义、计算公式、应用案例等方面进行详细介绍。

1. 灰色关联熵的定义:灰色关联熵是针对灰色关联性分析的一种信息度量,用于衡量因素与参考序列之间的关联程度。

灰色关联性分析是通过建立指标序列与评价序列之间的关联度,确定各指标对综合效果的影响程度,从而进行综合排名与决策的方法。

2. 灰色关联熵的计算公式:灰色关联熵的计算公式如下:灰色关联熵 = -∑(xi - yi)ln(xi / yi)其中,xi和yi分别表示参考序列和灰色关联序列的第i个数据。

3. 灰色关联熵的应用案例:(1)工程管理:在工程管理中,常常需要对影响工程进度的各项因素进行分析和评价。

通过灰色关联熵的计算,可以确定各个因素对工程进度的影响程度,有助于制定有效的控制措施,提高工程管理效率。

(2)金融风险评估:金融领域面临着多变的市场风险,灰色关联熵可以帮助分析人员对不同因素对金融风险的影响进行度量。

通过计算灰色关联熵,可以确定不同因素对金融风险的贡献程度,从而制定相应的风险控制策略。

(3)环境评价:在环境评价中,需要考虑各因素对环境影响的程度。

利用灰色关联熵可以对环境因素进行综合评价,确定各因素对环境的贡献程度,为环境保护提供科学依据。

(4)医疗决策:在医疗决策中,常常需要将多个因素进行综合评估,确定最优决策方案。

通过灰色关联熵的计算,可以对各因素对患者治疗效果的影响进行评估,帮助医生做出更科学的决策。

总结:灰色关联熵作为一种用于灰色关联性分析的数学方法,可以用于多领域的工程与管理决策中。

通过灰色关联熵的计算,可以对各因素与参考序列之间的关联程度进行量化,为决策提供科学依据。

在实际应用中,灰色关联熵已经被广泛应用于工程管理、金融风险评估、环境评价和医疗决策等领域,取得了良好的效果。

Matlab学习系列28.-灰色关联分析

Matlab学习系列28.-灰色关联分析

28. 灰色(huīsè)关联分析一、灰色系统理论(lǐlùn)简介若系统的内部信息是完全已知的,称为白色(báisè)系统;若系统的内部信息是一无所知(一团漆黑),只能从它同外部的联系来观测研究,这种系统便是黑色系统;灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。

灰色系统(xìtǒng)理论以“部分信息已知、部分信息未知”的“小样本(yàngběn)”、“贫信息”不确定型系统为研究对象,其特点是:(1)认为不确定量是灰数,用灰色数学来处理不确定量,使之量化,灰色系统理论只需要很少量的数据序列;(2)观测到的数据序列看作随时间变化的灰色量或灰色过程,通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析;(3)通过累加生成和累减生成逐步使灰色量白化,从而建立相应于微分方程解的模型,从而预测事物未来的发展趋势和未来状态。

二、灰色关联度分析1. 要定量地研究两个事物间的关联程度,可以用相关系数和相似系数等,但这需要足够多的样本数或者要求数据服从一定概率分布。

在客观世界中,有许多因素之间的关系是灰色的,分不清哪些因素之间关系密切,哪些不密切,这样就难以找到主要矛盾和主要特性。

灰因素关联分析,目的是定量地表征诸因素之间的关联程度,从而揭示灰色系统的主要特性。

关联分析是灰色系统分析和预测的基础。

关联分析源于几何直观,实质上是一种曲线间几何形状的分析比较,即几何形状越接近,则发展变化趋势越接近,关联程度越大。

如下图所示:xt曲线A与B比较平行,则认为A与B的关联程度大;曲线C与A随时间变化的方向很不一致,则认为A与C的关联程度较小;曲线A与D相差最大,则认为两者的关联程度最小。

2. 关联度分析是分析系统中各因素关联程度的方法步骤:(1) 计算(jì suàn)关联系数设参考(cānkǎo)序列为比较(bǐjiào)序列为比较(bǐjiào)序列X i对参考(cānkǎo)序列X0在k时刻的关联系数定义为:其中,和分别称为两级最小差、两级最大差,称为分辨系数,越大分辨率越大,一般采用对单位不一,初值不同的序列,在计算关联系数之前应首先进行初值化,即将该序列的所有数据分别除以第一数据,将变量化为无单位的相对数值。

灰色关联分析算法步骤

灰色关联分析算法步骤

灰色关联分析算法步骤文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

是由着名学者教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求可以少到4个,对数据无规律同样适用,不会出现量化结果与结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如各部门投资收益、区域经济优势分析、等方面,都取得较好的应用效果。

关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

灰色关联分析的步骤灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色关联分析算法步骤 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
灰色关联分析
灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

是由着名学者教授首创的一种系统科学理论(GreyTheory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求可以少到4个,对数据无规律同样适用,不会出现量化结果与结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如各部门投资收益、区域经济优势分析、等方面,都取得较好的应用效果。

关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

灰色关联分析的步骤
灰色关联分析的具体计算步骤如下:
第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k)|k=1,2,Λ,n};比较数列(又称子序列)
X i={X i(k)|k=1,2,Λ,n},i=1,2,Λ,m。

第二步,变量的无量纲化
由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。

第三步,计算关联系数
x0(k)与x i(k)的关联系数
记,则
,称为分辨系数。

ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。

当时,分辨力最好,通常取ρ=0.5。

第四步,计算关联度
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度r i公式如下:
第五步,关联度排序
关联度按大小排序,如果r1<r2,则参考数列y与比较数列x2更相似。

在算出X i(k)序列与Y(k)序列的关联系数后,计算各类关联系数的平均值,平均值r i就称为Y(k)与X i(k)的关联度。

相关文档
最新文档