高中物理滑块滑板模型
滑块木板模型(学生版)-2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法--滑块木板模型目录【模型归纳】1模型一光滑面上外力拉板模型二光滑面上外力拉块模型三粗糙面上外力拉板模型四粗糙面上外力拉块模型五粗糙面上刹车减速【常见问题分析】问题1.板块模型中的运动学单过程问题问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题3.板块模型中的运动学多过程问题2--抽桌布问题问题4.板块模型中的运动学粗糙水平面减速问题【模型例析】5【模型演练】13【模型归纳】模型一光滑面上外力拉板加速度分离不分离m1最大加速度a1max=μgm2加速度a2=(F-μm1g) /m2条件:a2>a1max即F>μg(m1+m2)条件:a2≤a1max即F≤μg(m1+m2)整体加速度a=F/(m1+m2)内力f=m1F/(m1+m2)模型二光滑面上外力拉块加速度分离不分离m2最大加速度a2max=μm1g/m2 m1加速度a1=(F-μm1g)/m1条件:a1>a2max即F>μm1g(1+m1/m2)条件:a2≤a1max即F≤μm1g(1+m1/m2)整体加速度a=F/(m1+m2)内力f=m2F/(m1+m2)模型三粗糙面上外力拉板不分离(都静止)不分离(一起加速)分离条件:F≤μ2(m1+m2)g 条件:a2≤a1max即μ2(m1+m2)g<F≤(μ1+μ2)g(m1+m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1条件:a2>a1max=μ1g即F>(μ1+μ2)g(m1+m2)+m2)内力f=m1a外力区间范围模型四粗糙面上外力拉块μ1m1g>μ2(m1+m2)g一起静止一起加速分离条件:F≤μ2(m1+m2)g 条件:μ2(m1+m2)g<F≤(μ1-μ2)m1g(1+m1/m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1+m2)内力f1=μ2(m1+m2)g+m2a条件:a1>a2max=[μ1m1g-μ2(m1+m2)g]/m2即F>(μ1-μ2)m1g(1+m1/m2)外力区间范围模型五粗糙面上刹车减速一起减速减速分离m1最大刹车加速度:a1max=μ1g 整体刹车加速度a=μ2g条件:a≤a1max即μ2≤μ1条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2【常见问题分析】问题1.板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 20-½a 1t 20=L 分离,位移关系:x 相对=½a 1t 20-½a 2t 20=L问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:②板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv ·(t 1+t 2)/2=L ;利用相对运动Δv =(a 2-a 1)t 1、Δv =(a 2+a 1')t 2问题3.板块模型中的运动学多过程问题2--抽桌布问题抽桌布问题简化模型过程①:分离过程:②匀减速分离,位移关系:x2-x1=L10v0多过程问题,位移关系:x1+x1'=L2问题4.板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2【模型例析】1一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。
牛顿运动定律巧解滑块-滑板模型
当滑块在滑板上做匀速运动时,滑块受到重力、支持力和摩擦力的作用。由于是匀速运动,合外力为零,因此摩 擦力的大小等于滑块的重力沿斜面向下的分力。通过求解摩擦力和斜面的角度关系,可以得到滑块在滑板上的运 动规律。
例题二:滑块在滑板上的加速运动
总结词
利用牛顿第二定律求解滑块在滑板上的 加速运动问题。
当滑板减速滑动时,滑板受到的摩擦力大于支持力,合力提供滑板减速运动的加速 度。
滑块与滑板的相互作用力
滑块和滑板之间的相互作用力包括滑 块对滑板的压力和滑板对滑块的反作 用力。
这两个力是改变滑块和滑板运动状态 的原因,即产生加速度的合外力。
这两个力大小相等、方向相反,作用 在同一条直线上。
04
CATALOGUE
当滑块加速滑动时,滑块受到 的摩擦力小于支持力,合力提 供滑块加速运动的加速度。
当滑块减速滑动时,滑块受到 的摩擦力大于支持力,合力提 供滑块减速运动的加速度。
滑板与地面的摩擦
滑板与地面接触时,受到地面对它的支持力和摩擦力的作用。
当滑板加速滑动时,滑板受到的摩擦力小于支持力,合力提供滑板加速运动的加速 度。
详细描述
根据惯性定律,如果滑块或滑板 不受外力作用,它将保持原来的 静止状态或匀速直线运动状态。
第二定律(动量定律)
总结词
描述了力对时间的累积效应,即物体 动量的变化率等于作用在物体上的力 。
详细描述
动量定律是解决滑块-滑板问题的关键 ,它可以帮助我们理解力和速度之间 的关系,以及在力的作用下物体的加 速或减恒等基本物理规律
。
在工程学中,滑块-滑板模型 可以用来分析机械系统、车辆
和机器人的运动。
在日常生活中,滑块-滑板模 型可以用来解释交通工具的运
物理模型 “滑板—滑块”模型
物理模型 “滑板—滑块”模型[模型概述] (1)滑板——滑块模型的特点①滑块未必是光滑的.②板的长度可能是有限的,也可能是足够长的.③板的上、下表面可能都存在摩擦,也可能只有一个面存在摩擦,还可能两个面都不存在摩擦.(2)滑板——滑块模型常用的物理规律匀变速直线运动规律、牛顿运动定律、动能定理、机械能守恒定律、能的转化和守恒定律、功能关系等.[模型指导] (1)两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)解题思路处理滑块—木板模型问题的分析方法(1)动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t =Δv 2a 2=Δv 1a 1可求出共同速度v 和所用时间t ,然后由位移公式可分别求出二者的位移.(2)功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律,要注意区分三个位移:①求摩擦力对滑块做功时用滑块对地的位移x 滑;②求摩擦力对木板做功时用木板对地的位移x 板;③求摩擦生热时用相对滑动的位移x 相.1.如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为A .μmgB .2μmgC .3μmgD .4μmg解析 当A 、B 之间恰好不发生相对滑动时力F 最大,此时,对于A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmgm =μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg 。
答案 C2.(2017·广西质检)如图所示,A 、B 两个物体叠放在一起,静止在粗糙水平地面上,物体B 与水平地面间的动摩擦因数μ1=0.1,物体A 与B 之间的动摩擦因数μ2=0.2.已知物体A 的质量m =2 kg ,物体B 的质量M =3 kg ,重力加速度g 取10 m/s 2.现对物体B 施加一个水平向右的恒力F ,为使物体A 与物体B 相对静止,则恒力的最大值是(物体间的最大静摩擦力等于滑动摩擦力)( )A .20 NB .15 NC .10 ND .5 N答案:B 解析:对A 、B 整体,由牛顿第二定律,F max -μ1(m +M )g =(m +M )a ;对物体A ,由牛顿第二定律,μ2mg =ma ;联立解得F max =(m +M )(μ1+μ2)g ,代入相关数据得F max =15 N ,选项B 正确.3.(2017·黄冈质检)如图甲所示,在水平地面上有一长木板B ,其上叠放木块A 。
人教版高中物理必修第1册 第四章 专题3 滑块-滑板模型
a′2=f1-f2=-4 M
m/s2,木板从
1
s
末到停下来的位移
xM=-2av′22=21×24
m=0.125 m,小物块从 1 s 末到停下来
的位移 xm=-2av′12=21×21 m=0.5 m,1 s 末到两者都停下,小物块相对于木板的位移Δx′=xm-xM=0.375 m.故
小物块最终停在距木板右端Δx=Δx1-Δx′=3 m-0.375 m=2.625 m 处.
A.P 在 Q 上时,P、Q 两个物体加速度分别为 6 m/s2、4 m/s2 B.P 在 Q 上时,P、Q 两个物体加速度分别为 6 m/s2、2 m/s2 C.P 滑块在 Q 上运动时间为 1 s D.P 滑块在 Q 上运动时间为 2 s
解析
P 受重力和 Q 对 P 的支持力作用,根据牛顿第二定律有 mPgsin 37°=mPaP,解得 aP=gsin 37°=6 m/s2, Q 受重力、斜面对 Q 的支持力、摩擦力和 P 对 Q 的压力作用,根据牛顿第二定律有 mQgsin 37°-μ(mP+mQ)gcos 37°=mQaQ,解得 aQ=2 m/s2,A 错误,B 正确;设 P 在 Q 上滑动的时间为 t,因 aP=6 m/s2>aQ=2 m/s2,故 P 比 Q 运动得快,根据位移关系有 L=12aPt2-12aQt2,代入数据解得 t=2 s,C 错误,D 正确.
秘籍04 滑块板块模型和传送带模型(教师版)-备战2024年高考物理抢分秘籍
秘籍04滑块木板模型和传送带模型一、滑块木板模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,设板长为L ,滑块(可视为质点)位移大小为x 块,滑板位移大小为x 板。
同向运动时:L =x 块-x 板.反向运动时:L =x 块+x 板.不再有摩擦力(水平面上共同匀速运动).5.分析板块模型的思路二、传送带模型(摩擦力方向一定沿斜面向上)3.划痕问题:滑块与传送带的划痕长度Δx等于滑块与传送带的相对位移的大小,若有两次相对运动且两次相对运动方向相同,Δx=Δx1+Δx2(图甲);若两次相对运动方向相反,Δx等于较长的相对位移大小.(图乙)4.功能关系分析:(1)功能关系分析:W=ΔE k+ΔE p+Q。
(2)对W和Q的理解传送带克服摩擦力做的功:W=fx;传。
产生的内能:Q=fx相对【题型一】滑块木板模型A.地面对木板的摩擦力方向水平向右B.地面对木板的摩擦力大小为9NA.小滑块与长木板之间的动摩擦因数为0.6B.当水平拉力增大时,小滑块比长木板先相对地面发生滑动C.小滑块的质量为2kgF=时,长木板的加速度大小为2m/s D.当水平拉力12N【答案】AC【详解】A.设小滑块质量为m,小滑块与长木板之间的动摩擦数为A.若只增大M,则小滑块能滑离木板B.若只增大v0,则小滑块在木板上运动的时间变长【答案】(1)15 4a g=,方向沿斜面向下,【详解】(1)A第一次碰挡板前,系统相对静止,之间无摩擦。
碰后,对A.木板的长度为2mB.木板的质量为1kgC.木板运动的最大距离为2mD.整个过程中滑块B的位移为0【答案】D【详解】B.对两滑块受力分析,根据牛顿第二定律可得a=A依题意,相遇前木板匀加速,由牛顿第二定律,有μm g由图可知,木板的长度为A.滑块Q与长木板P之间的动摩擦因数是0.5B.长木板C.t=9s时长木板P停下来D.长木板P 【答案】C【详解】A.由乙图可知,力F在5s时撤去,此时长木板PA .122v v =B .弹簧弹性势能的最大值为2118mv C .图甲所示的情况,滑块压缩弹簧被弹回后回到长木板右端时,滑块的速度为D .图甲所示的情况,滑块压缩弹簧被弹回后回到长木板右端时,滑块的速度大小为【答案】BD【详解】CD .如图甲,设滑块被弹簧弹开,运动到长木板右端时的速度为v 3,系统的合外力为零,系统动量守恒,滑块压缩弹簧被弹回后恰好可以到达A 的右端,由动量守恒定律得132mv mv =解得3112v v =故C 错误,D 正确;AB .如图甲,弹簧被压缩到最短时两者速度相同,设为v ,弹簧最大弹性势能为长木板到弹簧被压缩到最短的过程,由动量守恒定律和能量守恒定律12mv mv=()22112p 11222mv mv mg x x E μ=⨯+++A .滑块A 的质量为4kgB .木板B 的质量为1kgC .当10N F =时木板B 加速度为24m/sD .滑块A 与木板B 间动摩擦因数为0.1【答案】BC【详解】ABD .根据题意,由图乙可知,当拉力等于8N ,滑块【答案】(1)1.5m/s;1.5m/s;(2【详解】(1)由于A与B之间的动摩擦因数及均相对斜面静止,小球在由释放到碰【答案】(1)3m/s;(2)2m/s;(3)不能与1A B【典例1】如图所示,某快递公司为提高工作效率,利用传送带传输包裹,水平传送带长为4m ,由电动机驱动以4m/s 的速度顺时针转动。
高中物理滑块木板模型动能定理解
高中物理滑块木板模型动能定理解高中物理滑块木板模型是一种常见的力学模型,用来研究物体在斜面上滑动的问题。
动能定理是描述物体动能变化的定理,它表达了物体的动能变化等于物体所受力的功。
下面我将详细介绍高中物理滑块木板模型及其动能定理的原理和应用。
首先,我们来介绍一下高中物理滑块木板模型的基本概念。
滑块木板模型由一条倾斜的木板和一个放置在木板上的滑块组成。
滑块与木板之间有一定的摩擦力,可以通过改变木板的角度或滑块的质量来研究滑块在木板上滑动的性质。
在滑块木板模型中,我们考虑滑块在斜面上的运动。
当斜坡上无滑动摩擦力时,滑块只受到重力作用,其加速度仅受到斜面角度和重力加速度的影响。
当斜坡上存在摩擦力时,滑块的加速度还会受到摩擦力对滑块的阻碍。
动能定理是描述物体动能变化的定理。
根据动能定理,物体的动能变化等于物体所受力的功。
在高中物理滑块木板模型中,滑块在斜坡上滑动时,通过斜坡上的重力和摩擦力对滑块进行功。
根据动能定理,滑块的动能变化等于这些力的功之和。
具体来说,滑块的动能变化可以用下式表示:△K = Wg + Wf其中,△K表示滑块的动能变化,Wg表示重力对滑块做的功,Wf 表示摩擦力对滑块做的功。
重力对滑块做的功可以用如下公式表示:Wg = mgh其中,m表示滑块的质量,g表示重力加速度,h表示滑块的垂直高度。
摩擦力对滑块做的功可以用如下公式表示:Wf = fdcosθ其中,f表示滑块和斜面之间的摩擦力,d表示滑块在斜面上的位移,θ表示斜面的倾角。
通过将重力功和摩擦力功代入动能定理的公式,可以得到滑块的动能变化的表达式。
动能定理在物理学中有广泛的应用。
首先,动能定理可以用来计算滑块在斜面上的运动速度。
通过将动能定理的公式进行转换,可以得到滑块的末速度的表达式。
其次,动能定理可以用来研究滑块与斜面之间的摩擦力的大小和方向。
通过观察滑块的动能变化和速度的变化,可以确定摩擦力的大小和方向。
此外,动能定理还可以用来分析滑块与斜面之间的能量转换。
高中物理 滑块滑板模型
高中物理滑块滑板模型1. 在水平地面上,有一质量为M=4kg、长为L=3m的木板,在水平向右F=12N的拉力作用下,从静止开始经t=2s速度达到υ=2m/s,此时将质量为m=3kg的铁块(看成质点)轻轻地放在木板的最右端,如图所示.不计铁块与木板间的摩擦.若保持水平拉力不变,请通过计算说明小铁块能否离开木板?若能,进一步求出经过多长时间离开木板?解答:设木板加速运动的加速度大小为a1,由v=a1t得,a1=1m/s2.设木板与地面间的动摩擦因数为μ,由牛顿第二定律得,F-μMg=Ma1代入数据解得μ=0.2.放上铁块后,木板所受的摩擦力f2=μ(M+m)g=14N>F,木板将做匀减速运动.设加速度为a2,此时有:f2-F=Ma2代入数据解得a2=0.5m/s2.设木板匀减速运动的位移为x,由匀变速运动的公式可得,x=v2/2 a2=4m铁块静止不动,x>L,故铁块将从木板上掉下.设经t′时间离开木板,由L=vt′- 1/2a2t′2代入时间解得t′=2s(t′=6s舍去).答:铁块能从木板上离开,经过2s离开木板.2. 如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1m,木板A的质量M A=3kg,小滑块及木板B的质量均为m=1kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解答:解:(1)小滑块对木板A的摩擦力木板A与B整体收到地面的最大静摩擦力,小滑块滑上木板A后,木板A保持静止①设小滑块滑动的加速度为②③解得:④(2)设小滑块滑上B时,小滑块速度,B的加速度,经过时间滑块与B速度脱离,滑块的位移,B的位移,B的最大速度,则:⑤⑥⑦⑧⑨解得:。
高中物理课件-期中复习专题1:滑块模型
在光滑水平面上有一质量为 m1 的
足够长的木板,其上叠放一质量为
图1
m2 的木块.假定木块和木板之间的最大静摩擦力和滑动 摩擦力相等.现给木块施加一随时间 t 增大的水平力 F
=kt(k 是常数),木板和木块加速度的大小分别为 a1 和 a2.
下列反映 a1 和 a2 变化的图线中正确的是 答案( A )
•
• 【练习1】如图所示,光滑水平面上静止放 着长L=4 m,质量为M=3 kg的木板(厚度 不计),一个质量为m=1 kg的小物体放在 木板的最右端,m和M之间的动摩擦因数μ =0.1,今对木板施加一水平向右的拉力F, (g取10 m/s2)
• (1)为使两者保持相对静止,F不能超过 多少?
• (2)如果F=10 N,求小物体离开木板时 的速度?
• 答案 (1)4 N (2)2 m/s
练习2:如图所示,将小砝码置于桌面上的薄纸板上,用 水平向右的拉力将纸板迅速抽出,砝码的移动很小,几 乎观察不到,这就是大家熟悉的惯性演示实验.若砝码 和纸板的质量分别为m1和m2,各接触面间的动摩擦因 数均为μ.重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
图6
解析 (1)设木板和物块的加速度分别为 a 和 a′,在 t 时刻
木板和物块的速度分别为 vt 和 vt′,木板和物块之间滑动摩
擦力的大小为 Ff,根据牛顿第二定律、运动学公式得
Ff=ma′
①
Ff=μmg,当 vt′<vt 时
②
Vt 2′=vt 1′+a′(t2-t1)
③
F-Ff=2ma
④
vt 2=vt 1+a(t2-t1).
(2)要使纸板相对砝码运动,求所需拉力的大小;
4.6滑块-滑板模型
方法指导
2.运动学条件判断法:先求出不受外力F作用的那个物 体的最大临界加速度,再用假设法求出在外力F作用下 滑块和滑板整体的加速度,最后把滑块和滑板的整体加 速度与不受外力F作用的那个物体的最大临界加速度进 行大小比较。若滑块与滑板整体的加速度不大于(小于
或等于)滑块的最大加速度,即 a a,ma二x 者之间就不发
(1)若地面光滑,计算说明铁块与木板间是否会发生相对滑动;
(2)若木板与水平地面间的动摩擦因数 μ2=0.1,求铁块运动到木 板右端所用的时间.
动力学中的滑块—滑板模型
典型例题
(1)A、B 之间的最大静摩擦力为 fm>μ1mg=0.3×1×10 N=3 N(2 分) 假设 A、B 之间不发生相对滑动,则 对 A、B 整体:F=(M+m)a(2 分) 对 A:fAB=Ma(2 分) 解得:fAB=2.5 N(1 分) 因 fAB<fm,故 A、B 之间不发生相对滑动.(1 分) (2)对 B:F-μ1mg=maB(2 分) 对 A:μ1mg-μ2(M+m)g=MaA(2 分) 据题意:xB-xA=L(2 分) xA=12aAt2;xB=12aBt2(2 分)
知识梳理
3.两种位移关系:(相对滑动的位移关系)
滑块由滑板的一端运动到另一端的过程
中,若滑块和滑板同向运动,位移之差等于
板长;反向运动时,位移之和等于板长.
F
x1
L
x2
F
x2
L
x1
同向运动时: L=X1-X2
L
反向运动时: L=X1+X2
方法指导
一、滑块与滑板间是否发生相对滑动的判断方法
方法有两种: 1.动力学条件判断法:即通过分析滑块——滑木板间的摩 擦力是否为滑动摩擦力来进行判断。可先假设滑块与木板 间无相对滑动,然后根据牛顿第二定律对滑块与木板整体 列式求出加速度,再把滑块或木板隔离出来列式求出两者 之间的摩擦力,把求得的摩擦力与滑块和木板之间的滑动 摩擦力进行比较,分析求得的摩擦力是静摩擦力还是滑动 摩擦力,若为静摩擦力,则两者之间无相对滑动;若为滑 动摩擦力,则两者之间有相对滑动。
高中物理三种模型带你解决“滑块滑板”问题
高中物理三种模型带你解决“滑块滑板”问题
滑块滑板问题是高考的热点,也是高一上的一个重难点,在高一上的滑块滑板中它主要涉及到受力分析,运动状况分析,以及牛顿运动定律,综合性较强,所以也成为学生学习感到困难的一部分,滑块滑板看似复杂,掌握好受力分析与运动的分析结合牛顿运动定律,再进行分析就比较轻松了。
类型一.“板—块”模型
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题方法
整体法、隔离法.
4.解题思路
(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.
(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.
类型二.水平传送带问题
滑块在水平传送带上运动常见的三个情景
类型三.倾斜传送带问题
滑块在倾斜传送带上运动常见的四个情景
总结:处理滑块与滑板类问题的基本思路
判断滑块与滑板间是否存在相对滑动是思考问题的着眼点.方法有整体法隔离法、假设法等.即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再讨论滑块与滑板之间的
摩擦力是不是大于最大静摩擦力.。
专题05 滑块木板模型(教师版) 2025年高考物理模型归纳
专题05 滑块木板模型目录【模型归纳】 (1)模型一光滑面上外力拉板 (1)模型二光滑面上外力拉块 (1)模型三粗糙面上外力拉板 (1)模型四粗糙面上外力拉块 (2)模型五粗糙面上刹车减速 (2)【常见问题分析】 (2)问题1.板块模型中的运动学单过程问题 (2)问题2.板块模型中的运动学多过程问题1——至少作用时间问题 (3)问题3.板块模型中的运动学多过程问题2——抽桌布问题 (3)问题4.板块模型中的运动学粗糙水平面减速问题 (4)【模型例析】 (4)【模型演练】 (18)条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2A .小物块在03t t =时刻滑上木板C .小物块与木板的质量比为3︰4【答案】ABD【详解】A .v t -图像的斜率表示加速度,可知时刻滑上木板,故A 正确;【答案】(1)4m/s;1s3;(2)59【详解】(1)物块在薄板上做匀减速运动的加速度大小为(1)施加推力时,物块A的加速度的大小;(2)物块A、B碰撞后的瞬间各自的速度大小;(1)若对A施加水平向右的拉力F,A、(2)若对A施加水平向右的恒力7 F=图(a) 图(b)μ1及小物块与木板间的动摩擦因数μ2;【答案】(1)1m/s;0.125m;(2)0.25m;3m/s2;(3)43【详解】(1)由于地面光滑,则m1、m2组成的系统动量守恒,则有【例7】如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.【审题指导】:如何建立物理情景,构建解题路径①首先分别计算出B与板、A与板、板与地面间的滑动摩擦力大小,判断出A、B及木板的运动情况.②把握好几个运动节点.③由各自加速度大小可以判断出B与木板首先达到共速,此后B与木板共同运动.④A与木板存在相对运动,且A运动过程中加速度始终不变.⑤木板先加速后减速,存在两个过程.【解析】:(1)滑块A和B在木板上滑动时,木板也在地面上滑动。
高中物理滑块木板模型(经典)
高中物理“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.处理“板块”模型中动力学问题的流程1.如图所示,在光滑的水平面上有一足够长的质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,现用F =14 N 的水平恒力向右拉长木板,经时间t =1 s 撤去水平恒力F ,g 取10 m/s 2,则:(1)在F 的作用下,长木板的加速度为多大? (2)刚撤去F 时,小物块离长木板右端多远? (3)最终长木板与小物块一起以多大的速度匀速运动? (4)最终小物块离长木板右端多远?答案 (1)3 m/s 2 (2)0.5 m (3)2.8 m/s (4)0.7 m2.(多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 答案 BC3. (多选)(2021·全国乙卷·21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示.用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小.木板的加速度a 1随时间t 的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g .则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)gC .μ2>m 1+m 2m 2μ1D .在0~t 2时间段物块与木板加速度相等 答案 BCD4.(多选)如图甲所示,水平地面上静止放置一质量为M 的木板,木板的左端有一个可视为质点的、质量m =1 kg 的滑块.现给滑块一向右的初速度v 0=10 m/s ,此后滑块和木板在水平地面上运动的速度图像如图乙所示,滑块最终刚好停在木板的右端,取g =10 m/s 2.下列说法正确的是( )A .滑块与木板间的动摩擦因数μ1=0.4B .木板与地面间的动摩擦因数μ2=0.1C .木板的长度L =4 mD .木板的质量M =1.5 kg 答案 ABD5.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 2 答案 ACD6.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A.小物块与长木板间动摩擦因数μ=0.5B.在整个运动过程中,物块与木板构成的系统所产生的热量70 JC.小物块的初速度为v0=12 m/sD.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1答案ACD7.(2022·山东邹城市模拟)质量为M=1.0 kg的长木板A在光滑水平面上以v1=0.5 m/s的速度向左运动,某时刻质量为m=0.5 kg的小木块B以v2=4 m/s的速度从左端向右滑上长木板,经过时间t=0.6 s小木块B相对A静止,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1 m/s,方向水平向右(2)1.5 kg·m/s(3)0.58.(2021·湖北省1月选考模拟·15)如图a,在光滑水平面上放置一木板A,在A上放置物块B,A和B的质量均为m=1 kg.A与B之间的动摩擦因数μ=0.2.t=0时刻起,对A施加沿水平方向的力,A和B由静止开始运动.取水平向右为正方向,B相对于A的速度用v BA=v B-v A 表示,其中v A和v B分别为A和B相对水平面的速度.在0~2 s时间内,相对速度v BA随时间t变化的关系如图b所示.运动过程中B始终未脱离A,重力加速度取g=10 m/s2.求:(1)0~2 s时间内,B相对水平面的位移大小;(2)t=2 s时刻,A相对水平面的速度.答案(1)3.5 m(2)09.质量M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2)求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后, 物块受到的摩擦力多大?答案:1s 6.28NF。
高中物理滑块滑板模型教案
高中物理滑块滑板模型教案
一、教学目的:
1. 了解滑块滑板的运动原理;
2. 掌握滑块滑板的相关公式和计算方法;
3. 探讨滑块滑板的设计和优化问题。
二、教学内容:
1. 滑块滑板的基本结构和运动原理;
2. 滑块滑板的动能和势能计算;
3. 滑块滑板的速度和加速度计算;
4. 滑块滑板的设计和优化问题。
三、教学步骤:
1. 引入问题:通过展示滑块滑板的实物模型或视频,引导学生思考滑块滑板的运动规律和设计要素;
2. 讲解理论知识:介绍滑块滑板的基本结构、运动原理以及与滑块滑板运动相关的公式;
3. 解答问题:分组讨论解决滑块滑板的相关问题,如速度、加速度、能量转换等;
4. 实验设计:设计一个关于滑块滑板的实验,通过实验探究滑块滑板的运动特性;
5. 总结讨论:总结本节课的内容,讨论滑块滑板的设计和优化问题。
四、教学评估:
1. 学生课堂表现评价:学生在课堂讨论、实验设计和问题解答中的表现;
2. 作业评价:布置与滑块滑板相关的作业,评价学生对理论知识的掌握和应用能力。
五、拓展延伸:
1. 可以结合工程应用,设计一个优化的滑块滑板模型,并进行模拟仿真;
2. 可以探讨滑块滑板在不同表面摩擦系数下的运动规律并进行实验验证。
以上为高中物理滑块滑板模型教案范本,教师可根据实际情况和学生水平进行适当调整和拓展。
动力学之---------“滑板—滑块”模型
高考计算题突破动力学之---------“滑板—滑块”模型(一)[模型概述](1)滑板——滑块模型的特点①滑块未必是光滑的.②板的长度可能是有限的,也可能是足够长的.③板的上、下表面可能都存在摩擦,也可能只有一个面存在摩擦,还可能两个面都不存在摩擦.(2)滑板——滑块模型常用的物理规律匀变速直线运动规律、牛顿运动定律、动能定理、机械能守恒定律、能的转化和守恒定律、功能关系等.[模型指导](1)两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)解题思路[典例](20分)如图所示,可看成质点的小物块放在长木板正中间,已知长木板质量M=4 kg,长度L=2 m,小物块质量m=1 kg,长木板置于光滑水平地面上,两物体皆静止.现在用一大小为F的水平恒力作用于小物块上,发现只有当F超过2.5 N时,才能让两物体间产生相对滑动.设两物体间的最大静摩擦力大小等于滑动摩擦力大小,重力加速度g=10 m/s2,试求:(1)小物块和长木板间的动摩擦因数;(2)若一开始力F就作用在长木板上,且F=12 N,则小物块经过多长时间从长木板上掉下?规范解答(1)设两物体间的最大静摩擦力为F f,当F=2.5 N作用于小物块时,对整体由牛顿第二定律有F=(M+m)a①(2分)对长木板由牛顿第二定律有F f=Ma②(2分)由①②可得F f=2 N(2分)小物块竖直方向上受力平衡,所受支持力F N=mg,摩擦力F f=μmg得μ=0.2(2分)(2)F =12 N 作用于长木板上时,两物体发生相对滑动,设长木板、小物块的加速度分别为a 1、a 2,对长木板,由牛顿第二定律有F -F f =Ma 1(1分) 得a 1=2.5 m/s 2(2分)对小物块,由牛顿第二定律有F f =ma 2(1分) 得a 2=2 m/s 2(2分)由匀变速直线运动规律,两物体在t 时间内的位移分别为 s 1=12a 1t 2(1分)s 2=12a 2t 2(1分)小物块刚滑下长木板时,有s 1-s 2=12L (1分)解得t =2 s(3分) 答案 (1)0.2 (2)2 s[突破训练]1.质量M =9 kg 、长L =1 m 的木板在动摩擦因数μ1=0.1的水平地面上向右滑行,当速度v 0=2 m/s 时,在木板的右端轻放一质量m =1 kg 的小物块如图所示.小物块刚好滑到木板左端时,物块和木板达到共同速度.取g =10 m/s 2,求:(1)从物块放到木板上到它们达到相同速度所用的时间t ; (2)小物块与木板间的动摩擦因数μ2.2.(15分)有一项“快乐向前冲”的游戏可简化如下:如图所示,滑板长L =1 m ,起点A 到终点线B 的距离s=5 m.开始滑板静止,右端与A平齐,滑板左端放一可视为质点的滑块,对滑块施一水平恒力F使滑板前进.板右端到达B处冲线,游戏结束.已知滑块与滑板间动摩擦因数μ=0.5,地面视为光滑,滑块质量m1=2 kg,滑板质量m2=1 kg,重力加速度g=10 m/s2,求:(1)滑板由A滑到B的最短时间可达多少?(2)为使滑板能以最短时间到达,水平恒力F的取值范围如何?3.(15分)如图所示,薄板A长L=5 m,其质量M=5 kg,放在水平桌面上,板右端与桌边相齐.在A上距右端s=3 m处放一物体B(可看成质点),其质量m=2 kg.已知A、B间动摩擦因数μ1=0.1,A与桌面间和B与桌面间的动摩擦因数均为μ2=0.2,原来系统静止.现在在板的右端施加一大小一定的水平力F持续作用在A上直到将A从B下抽出才撤去,且使B最后停于桌的右边缘.求:(1)B运动的时间;(2)力F的大小.4.如下图所示,质量M=4.0 kg的长木板B静止在光滑的水平地面上,在其右端放一质量m=1.0 kg的小滑块A(可视为质点).初始时刻,A、B分别以v0=2.0 m/s向左、向右运动,最后A恰好没有滑离B板.已知A、B之间的动摩擦因数μ=0.40,取g=10 m/s2.求:(1)A、B相对运动时的加速度a A和a B的大小与方向;(2)A相对地面速度为零时,B相对地面运动已发生的位移大小x;(3)木板B的长度l.5.【2013江苏高考】(16 分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出, 砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验. 若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ. 重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,,求需所拉力的大小;(3)本实验中m1 =0. 5 kg m2 =0. 1 kg, μ=0. 2,砝码与纸板左端的距离d =0. 1 m,取g =10 m/ s2. 若砝码移动的距离超过l =0. 002 m,人眼就能感知. 为确保实验成功,纸板所需的拉力至少多大?6. (12分)质量M=3kg的滑板A置于粗糙的水平地面上,A与地面的动摩擦因数µ1=0.3,其上表面右侧光滑段长度L1=2m,左侧粗糙段长度为L2,质量m=2kg、可视为质点的滑块B静止在滑板上的右端,滑块与粗糙段的动摩擦因数µ2=0.15,取g=10m/s2,现用F=18N的水平恒力拉动A向右运动,当A、B分离时,B对地的速度v B=1m/s,求L2的值。
高中物理模型法解题-滑板-木块模型
高中物理模型法解题-滑板-木块模型高中物理模型法解题——滑板木块模型滑块-滑板问题涉及两个物体,常常叠放在一起,有时也被称为“叠放问题”。
两个物体间由某种力联系在一起,存在相对运动,牵涉到摩擦力的分析和突变、极值问题,与运动学、受力分析、动力学、功和能都有密切的联系。
这种问题的分析过程复杂,综合性极强,并且需要较强的数学计算能力,是高中物理教学和研究的难点。
鉴于“滑板-滑块模型”的特点,板块问题能够较好的考查学生对知识的掌握程度和学生对问题的分析综合能力,是增强试卷区分度的有力题目。
因此,板块问题不论在平时的大小模考中,还是在高考试卷中都占据着非常重要的地位。
滑板-滑块模型的解题思路是分析滑块和滑板的受力情况,应用牛顿第二定律分别求出速度,对二者进行运动情况分析,找出位移关系或速度关系建立方程并求解。
滑块从滑板的一端运动到另一端的过程中,若滑块和滑板向同一方向运动,则滑块的位移与滑板的位移之差等于滑板的长度;若滑块和滑板向相反方向运动,则滑块的位移和滑板的位移之差等于滑板的长度。
当滑块和滑板的速度相同,二者距离往往最大或最小。
判断两个接触面间摩擦力的大小关系,根据两接触面间摩擦力的大小判断谁先运动。
二者加速度相同时发生相对运动的转折点,隔离法求出该加速度,然后整体法求解外力。
在叠放的长方体物块A、B在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中,A、B之间无摩擦力作用。
如图所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q摩=f·s相。
运动学相关知识包括匀速直线运动和匀变速直线运动。
匀速直线运动指速度大小和方向均不变的直线运动,涉及的公式是;匀变速直线运动指加速度不为零,且加速度的大小和方向均不变的直线运动。
匀变速直线运动的常用处理方法有一般公式法和平均速度法。
一般公式法指速度公式、位移公式及推论三式。
《滑块、滑板模型》图文课件-人教版高中物理必修1
摩擦力的方向可由其作用效果判断
滑动摩擦力的作用效果:减少乃至消除两物体的速度差 静摩擦力的效果:尽最大力维持两物体速度差为零
•谢 谢
101教育PPT产品介绍
101教育PPT是一款专业服务老师的备授课一体化教学软件,丰富教学 资源、多元教学互动,辅助老师轻松备课、高效授课。 101教育PPT软件内含海量免费PPT课件、学科工具,支持PPT课件制作、 PPT课件下载,帮老师轻松完成课件制作。
滑块、滑板模型
模型特征: 两个相互作用的物体叠放在一起组成的系统
课 件 使 用 1 0 1 教 育 P P T 制 作 ()
情景讨论:
1、无外力作用,A的初速度为v、B静止
若地面光滑,对A、B受力分析: 滑块滑板的运动情景: ①A一直减速、B一直加速,直到A脱离; ②A减速、B加速,最终共速;
更多课件
点击这里
马上安装。
进入官网了解更多详情:源自滑板长mgt/s ②A减速、B不动,最终A停在B上
v /(m / s 1 )
t/s ④A减速、B加速,最终A、B一起减速
v /(m / s 1 )
Mg
t/s
t/s
例题一: 质量为2kg的木板B静止在水平面上,可视为质点的物块A从木板 的左侧沿木板上表面水平冲上木板,如图甲所示。A和B经过1s达到 同一速度,之后共同减速直至静止,A和B的v-t图象如图乙所示,重 力加速度g=10m/s2,求: (1)A与B上表面之间的动摩擦因数μ1; (2)B与水平面间的动摩擦因数μ2; (3)A的质量。
若地面不光滑,对A、B受力分析:
最新高中物理§3-2-7牛顿第二定律应用3--滑板滑块模型
1§3-2-7牛顿第二定律应用3--滑板滑块模型【学习目标】进一步熟练牛顿第二定律的应用,并能灵活使用整体法和隔离法【重难点】整体法和隔离法的灵活使用想一想1.模型特征滑块-木板模型(如图),涉及摩擦力分析、相对运动,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,难度较大。
2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长。
【例1】(多选)如图所示,一足够长的木板静止在粗糙的水平面上,t =0时刻滑块从板的左端以速度v 0水平向右滑行,木板与滑块间存在摩擦,且最大静摩擦力等于滑动摩擦力。
滑块的v -t 图像可能是图中的( )【例2】(多选)如图所示,A 、B 两物块的质量分别为2 m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μg C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg 练一练1.如图所示,A 、B 两物块叠放在一起,放在光滑地面上,已知A 、B 物块的质量分别为M 、m ,物块间粗糙。
现用水平向右的恒力F 1、F 2先后分别作用在A 、B 物块上,物块A 、B 均不发生相对运动,则F 1、F 2的最大值之比为( )A .1∶1B .M ∶mC .m ∶MD .m ∶(m +M )2.如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为( )A .μmgB .2μmgC .3μmgD .4μmg3.如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理滑块滑板模型
1.在水平地面上,有一质量为M=4kg、长为L=3m的木板,在水平向右
F=12N的拉力作用下,从静止开始经t=2s速度达到υ=2m/s,此时将质量为m=3kg的铁块(看成质点)轻轻地放在木板的最右端,如图所示.不计铁块与木板间的摩擦.若保持水平拉力不变,请通过计算说明小铁块能否离开木板若能,进一步求出经过多长时间离开木板
解答:设木板加速运动的加速度大小为a
1
,
由v=a
1t得,a
1
=1m/s2.
设木板与地面间的为μ,由得,
F-μMg=Ma
1
代入数据解得μ=0.2.
放上铁块后,木板所受的摩擦力f
2
=μ(M+m)g=14N>F,木板将做匀减速运动.
设加速度为a
2
,此时有:
f 2-F=Ma
2
代入数据解得a
2
=0.5m/s2.
设木板匀减速运动的位移为x,由匀变速运动的公式可得,
x=v2/2 a
2
=4m
铁块静止不动,x>L,故铁块将从木板上掉下.
设经t′时间离开木板,由
L=vt′- 1/2a
2
t′2
代入时间解得t′=2s(t′=6s舍去).
答:铁块能从木板上离开,经过2s离开木板.
2. 如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1m,=3kg,小滑块及木板B的质量均为m=1kg,小滑块与木板木板A的质量M
A
A、B间的动摩擦因数均为μ
=0.4,木板A、B与地面间的动摩擦因数均为
1
=0.1,重力加速度g=10m/s2.求:
μ
2
(1)小滑块在木板A上运动的时间;
(2)木板B获得的最大速度.
解答:解:(1)小滑块对木板A的摩擦力
木板A与B整体收到地面的最大静摩擦力
,小滑块滑上木板A后,木板A保持静止①
设小滑块滑动的加速度为②
③
解得:④
(2)设小滑块滑上B时,小滑块速度,B的加速度,经过时间滑块与B速度脱离,滑块的位移,B的位移,B的最大速度,则:
⑤
⑥
?⑦
⑧
⑨
解得:。