2020-2020学年南通市如皋市高一上期末数学试卷(含答案解析)
如皋高一期末数学试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. √9D. 0答案:C解析:有理数是可以表示为两个整数之比的数,即分数。
√9=3,是一个整数,因此是有理数。
2. 已知函数f(x) = x^2 - 4x + 4,那么f(2)的值为()A. 0B. 4C. 6D. 8答案:A解析:将x=2代入函数f(x) = x^2 - 4x + 4中,得到f(2) = 2^2 - 42 + 4 = 4 - 8 + 4 = 0。
3. 在△ABC中,∠A=60°,∠B=45°,那么∠C的度数是()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,∠A=60°,∠B=45°,所以∠C=180° - ∠A -∠B = 180° - 60° - 45° = 75°。
4. 下列函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = 1/x答案:C解析:奇函数满足f(-x) = -f(x)。
对于y = x^3,有f(-x) = (-x)^3 = -x^3 = -f(x),因此是奇函数。
5. 已知等差数列{an}的首项a1=3,公差d=2,那么第10项a10的值是()A. 17B. 19C. 21D. 23答案:C解析:等差数列的通项公式为an = a1 + (n-1)d。
代入a1=3,d=2,n=10,得到a10 = 3 + (10-1)2 = 3 + 18 = 21。
二、填空题(每题5分,共50分)6. 若a+b=5,ab=6,那么a^2 + b^2的值为()答案:37解析:利用恒等式(a+b)^2 = a^2 + 2ab + b^2,得到a^2 + b^2 = (a+b)^2 -2ab = 5^2 - 26 = 25 - 12 = 13。
2020-2021学年江苏省南通市如皋城西中学高一数学理上学期期末试卷含解析
2020-2021学年江苏省南通市如皋城西中学高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设全集U是实数集R,M={x|x2>4},N={x|x≥3或x<1}都是U的子集,则图中阴影部分所表示的集合是()A.{x|﹣2≤x<1} B.{x|﹣2≤x≤2}C.{x|1<x≤2}D.{x|x<2}参考答案:A【考点】Venn图表达集合的关系及运算.【分析】用集合M,N表示出阴影部分的集合;通过解二次不等式求出集合M;利用交集、补集的定义求出中阴影部分所表示的集合.【解答】解:图中阴影部分表示N∩(C U M),∵M={|x2>4}={x|x>2或x<﹣2},∴C U M={x|﹣2≤x≤2},∴N∩(C U M)={﹣2≤x<1}.故选A2. 方程x2+y2-2x+4y-4=0表示的圆的圆心、半径分别是A. (-1,2),3B. (1,-2),3C. (1,-2),9D. (-1,2),9参考答案:B略3. 若△ABC的三个内角满足,则△ABC ( )A.一定是锐角三角形. B.一定是直角三角形.C.一定是钝角三角形. D.可能是锐角三角形,也可能是钝角三角形.参考答案:C4. 已知有如图程序,如果程序执行后输出的结果是11880,那么在程序Loop后面的“条件”应为 ( )A.i > 9 B. i >= 9 C. i <= 8 D. i < 8参考答案:B5. 命题“?x∈R,x3﹣x2+1≤0”的否定是()A. ?x∈R,x3﹣x2+1≥0B. ?x∈R,x3﹣x2+1>0C. ?x∈R,x3﹣x2+1≤0D. ?x∈R,x3﹣x2+1>0参考答案:B【分析】直接利用全称命题的否定解答即可.【详解】命题“?x∈R,x3﹣x2+1≤0”的否定是“?x∈R,x3﹣x2+1>0.故选:B【点睛】本题主要考查全称命题的否定,意在考查学生对这些知识的理解掌握水平.6. 三条线段的长分别为5,6,8,则用这三条线段A. 能组成直角三角形B. 能组成锐角三角形C. 能组成钝角三角形D. 不能组成三角形参考答案:C【分析】先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选:C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.7. 下列函数中周期为π且为偶函数的是A. B.C. D.参考答案:A【分析】对于每一个选项化简再判断得解.【详解】对于选项A,周期为且是偶函数,所以选项A正确;对于选项B,,周期为π且是奇函数,所以选项B错误;对于选项C,y=cosx,周期为2π,所以选项C错误;对于选项D,y=-sinx,周期为2π,所以选项D错误.故答案为A【点睛】(1)本题主要考查三角函数的奇偶性和周期性,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 使用周期公式,必须先将解析式化为或的形式;正弦余弦函数的最小正周期是.8. 若0<a<1,则不等式>0的解集是A.(a,) B.(,a)C.(-∞,)∪(,+∞) D.(-∞,)∪(a,+ ∞)参考答案:C9. 如果二次函数y=x2+2x+(m-2)有两个不同的零点,则m的取值范围是()A. B. C. D.参考答案:D10. 已知正实数m,n满足,则mn的最大值为()A.B.2 C. D.3参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量夹角为,且;则参考答案:12. 设等差数列的前n项和为,若,则=__________。
2020-2021江苏省如皋市高一上学期数学期末质量调研模拟试题及答案
∵ A,B,C 三点共线,∴ AB//AC,
∴− (b − 1) − ( − 2) × (a − 3) = 0,∴ b = 2a − 5.
(2) ∵ AC =− 3AB,∴ (a − 3,b − 1) =− 3( − 1, − 2) = (3,6),
∴ a − 3 = 3,解得 a = 6
b−1=6
b=7
∴点 C 的坐标为(6,7).
21. 解:(1) ∵当 0 < x < 80 时,
=− 1 x2 + 60x − 500,
2
∴ y = 100x − ( 1 x2 + 40x) − 500 2
∵当 x ≥ 80 时,
8100 ∴ y = 100x − (101x + − 2180) − 500
令4x = t > 0,即方程t2 − 1 + k t − k = 0 有两个不等的正根,
1+k >0
∴2 Δ>0 , −k>0
∴− 3 + 2 2 < k < 0.
∴存在实数
k,使得函数
f(x)在[m,n]上的取值范围是
题号
9
10
11
12
答案
BD
ABD
BCD
ACD
三、填空题(本大题共 4 小题,每题 5 分,共 20 分)
13.2
14. 15 15. m ≤ 9
10
16. − 3
四、解答题(本大题共 6 小题,满分 70 分)
17. 解:(1) ∵ A = {x| − 1 < x < 5},B = {x| − 1 < x < 1},
对于函数
江苏省南通市如皋市2019_2020学年高一数学上学期期末考试试题含解析
即 ,所以 , 。
所以函数 在 上为减函数。
(2) ,
若 为奇函数,则 ,即 。
所以
,
所以 ,所以 , 或 .
【点睛】本题考查了单调性的证明,根据奇偶性求参数,意在考查学生对于函数性质的灵活运用.
20.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角 和以 为直径的半圆拼接而成,点 为半圈上一点(异于 , ),点 在线段 上,且满足 。已知 , ,设 .
设 , ,
故 ,整理得 ,
又 ,即 ,
所以 。②
联立①②,据平面向量其本定理,得 解得 , ,
所以实数 值为 .
(2)因为 ,所以 ,即 ,
所以
。
【点睛】本题考查了根据向量平行求参数,向量的数量积,意在考查学生对于向量知识的综合应用能力.
22.已知函数 ,其中 。
(1)若 ,求函数 的单调区间;
(2)若关于 的不等式 对任意的实数 恒成立,求实数 的取值范围;
【详解】A. , 正确;
B。 , 正确;
C。 , 错误;
D。 , 正确;
故选: 。
【点睛】本题考查了向量的基本定理的应用,意在考查学生的应用能力.
12。设函数 ,则下列结论正确的是( )
A. 函数 的最小正周期为 B. 函数 在 上是单调增函数
C。 函数 的图象关于直线 对称D。 函数 的值域是
【答案】ACD
【详解】如图所示:当 时,函数 有 个不同的零点,不满足;
当 时,不妨设 ,根据对称性知 ,故 。
,故 ,故 .
故答案为: .
【点睛】本题考查了函数 零点问题,画出函数图像是解题的关键。
2020-2021学年江苏省南通市如皋市高一(下)期末数学试卷(加考)(附答案详解)
2020-2021学年江苏省南通市如皋市高一(下)期末数学试卷(加考)一、单选题(本大题共2小题,共20.0分)1.已知直线ax+by+c=0满足a<b<0<c,那么这条直线的图象一定不经过是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知直线l1:(m2+m−2)x+my−6=0与l2:2x+y−3=0平行,则实数m的值为()A. −1B. 2C. −1或2D. 以上答案均不对二、多选题(本大题共2小题,共30.0分)3.在下列四个命题中,正确的是()A. 若一条直线的斜率为tanα,则此直线的倾斜角为αB. 存在横截距相同、纵截距相同但斜率不相同的两条直线C. 若直线x−my−4=0与直线mx+my+1=0相互垂直,则这两条直线的交点坐标为(32,−52)D. 直线y=kx+b与y轴的交点到原点的距离为b4.下列说法正确的是()A. 函数y=kx的图像表示过原点的所有直线B. 函数y=√(x−1)2+4+√(x−4)2+4的最小值为5C. 经过点(1,3)且在两坐标轴上截距都相等的直线方程为x+y−4=0D. 若将直线l上一点向左平移1个单位长度,再向上平移2个单位长度后,仍在该直线上,则该直线l的斜率为−2三、单空题(本大题共2小题,共30.0分)5.已知A(1,0),B(−1,2),直线l:2x−ay−a=0上存在点P,满足|PA|+|PB|=2√2,则实数a的取值范围是______ .6.若直角三角形ABC三个顶点的坐标分别为A(5,−1),B(1,1),C(2,m),则实数m的取值集合为______ .四、解答题(本大题共1小题,共20.0分)7.在△ABC中,已知点A(3,3),∠C平分线方程为:2x−y+1=0,且边AC上中线方程为:5x+y−6=0.(1)求点C的坐标;(2)求边BC所在的直线方程.答案和解析1.【答案】C【解析】解:由ax+by+c=0得到:y=−ab x−cb.∵a<b<0<c,∴−ab <0,−cb>0,∴直线y=−ab x−cb经过第一、二、四象限,即不经过第三象限.∴直线ax+by+c=0不经过第三象限.故选:C.根据一次函数图象与系数的关系解答.本题主要考查确定直线位置的几何要素,将方程转化为斜截式是解决本题的关键,比较基础.2.【答案】A【解析】解:∵直线l1:(m2+m−2)x+my−6=0与l2:2x+y−3=0平行,∴m2+m−22=m1≠−6−3,解得m=−1,故选:A.由题意利用两条直线平行的性质,求出m的值.本题主要考查两条直线平行的性质,属于基础题.3.【答案】BC【解析】解:对于A:由于直线的倾斜角的范围为[0°,180°),若直线的斜率为1=tan405°,但是405°不是倾斜角,故A不正确;对于B:横截距都为0,纵截距都为0,即过原点的直线,斜率不同,故B正确;对于C:若直线x−my−4=0与直线mx+my+1=0相互垂直,则1×m−m×m=0,解得m=0(舍去)或m=1,所以直线x−y−4=0,x+y+1=0,联立直线方程,解得x =32,y =−52,所以两条直线交点坐标为(32,−52),故C 正确;对于D :直线y =kx +b 与y 轴的交点到原点的距离为|b|,故D 不正确. 故选:BC . 由直线方程的倾斜角,截距,直线与直线的位置关系,逐个判断每个选项.本题考查直线的方程,解题中需要理清思路,属于中档题.4.【答案】BD【解析】解:对于A :函数y =kx(k ∈R)不能表示与y 轴重合的直线,故A 不正确; 对于B :y =√(x −1)2+4+√(x −4)2+4=√(x −1)2+(0−2)2+√(x −4)2+(0+2)2,表示点P(x,0)与A(1,2),B(4,−2)距离之和,如图所示,当三点A ,P ,B 不共线时,y =|PA|+|PB|>|AB|,当三点A ,P ,B 共线时,y =|PA|+|PB|=|AB|,所以y =√(x −1)2+4+√(x −4)2+4的最小值为|AB|=√(1−4)2+(2+2)2=5,故B 正确;对于C :当直线与两坐标轴的截距为0时,即直线过原点时,设直线方程为y =kx , 把点(1,3)代入y =kx ,得k =3,所以直线方程为y =3x .当直线不过原点时,设直线方程为x a +ya =1,即x +y =a ,把点(1,3)代入,得a =4,所以直线方程为x +y −4=0,综上直线方程为y=3x或x+y−4=0,故C不正确;对于D:设直线l的方程为ax+by+c=0,沿着x轴向左平移1个单位长度,再向上平移2个单位长度后,得a(x+1)+b(y−2)+c=0,即ax+by+c+a−2b=0,所以a−2b=0,即k=−ab=−2,故D正确.故选:BD.直接利用直线方程,直线的倾斜角与斜率之间的关系,逐个判断,即可得出答案.本题考查直线的方程,解题中注意理清思路,属于中档题.5.【答案】[−23,2]【解析】解:因为|AB|=√(−1−1)2+(2−0)2=2√2,且|PA|+|PB|=2√2,所以点P的轨迹为线段AB,将点A,B的坐标分别代入直线l的方程,可得a=2,a=−23,由直线l的方程可化为:2x−a(y+1)=0,所以直线l过定点C(0,−1),画出图形,如图所示:因为直线AC的斜率为k AC=1,直线BC的斜率为k BC=2−(−1)−1−0=−3,所以直线l的斜率为k=2a ,令{2a≥12a≤−3,解得−23≤a≤2,所以a的取值范围是[−23,2].故答案为:[−23,2].判断A,B在直线l上,利用|AB|=|PA|+|PB|,得到点P的轨迹为线段AB,把A、B的坐标代入直线l 的方程求出a 的值,再结合题意画出图形,结合图形求出a 的取值范围.本题考查了直线的方程与斜率之间关系的应用问题,也考查了逻辑推理与化简运算能力,是基础题.6.【答案】{−7,−2,2,3}【解析】解:∵直角三角形ABC 三个顶点的坐标分别为A(5,−1),B(1,1),C(2,m),若A 为直角,则AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =(−4,2)⋅(−3,m +1)=12+2(m +1)=0,求得m =−7.若B 为直角,则AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =(−4,2)⋅(1,m −1)=−4+2(m −1)=0,求得m =3.若A 为直角,则AC ⃗⃗⃗⃗⃗ ⊥CB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =(−3,m +1)⋅(−1,1−m)=3+2(m +1)(1−m)=0,求得m =±2.综上可得,实数m 的取值集合为{−7,−2,2,3},故答案为:{−7,−2,2,3}.由题意利用两个向量垂直的性质,两个向量的数量积公式,分类讨论求得实数m 的取值集合.本题主要考查两个向量垂直的性质,两个向量的数量积公式,属于基础题.7.【答案】解:(1)△ABC 中,已知点A(3,3),∠C 平分线方程为:2x −y +1=0, 可设点C(m,2m +1),故线段AC 的中点D(m+32,m +2), ∵边AC 上中线方程为:5x +y −6=0,∴5×m+32+(m +2)−6=0,求得m =−1,故点C(−1,1).(2)设直线BC 的斜率为k ,则由题意可得,直线AC 到∠C 平分线的角,等于∠C 平分线到直线BC 的角,∵直线AC 的斜率为3−13+1=12,∠C 平分线的斜率为2,∴2−121+2×12=k−21+k×2,求得k =−112,故直线BC 的方程为y −1=−112(x +1),即11x +2y +9=0.【解析】(1)设点C(m,2m+1),可得线段AC的中点D的坐标,再把点D的坐标代入边AC上中线方程,求得m的值,可得结论.(2)由题意利用角平分线的性质,以及一条直线到另一条直线的角的公式,求得BC的斜率,用点斜式求出BC的方程.本题主要考查用待定系数法、用点斜式求直线的方程,角平分线的性质,属于中档题.。
江苏省如皋中学 2019~2020 学年度第一学期高一期末数学试题
2
50
【分析】
(1)由题意利用二倍角的正切公式求得 tan 的值,再利用任意角的三角函数的定义求得
m 的值.
(2)利用同角三角函数的基本关系,求得 si(n − )和 co(s − )的值,再利用两角
12
12
和的正弦公式求得
sin2
=
sin( 2
−
6
)+
6
m>0 , m = 5,
BD = 2DC ,
DC = 1 BC =(1,1), BD = 2 BC =(2,2),
3
3
而 AD = AB + BD =(3,4), DA =(− 3,− 4),
DA DC −31− 41 7 2
cosADC =
=
=− .
DA DC
52
10
19.如图,在平面直角坐标系中,角, 的始边均为 x 轴正半轴,终边
江苏省如皋中学 2019~2020 学年度第一学期高一期末
数学模拟练习(二)
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分,在每小题的四个选项中,只有一 项是符合题目要求.
1.已知全集U = 1, 2, 3, 4 ,集合 A = 1, 4 , B = 2, 4 ,则 A∩( ) U B = ( ).
(2)若| BC |= 3 2 ,且 BD = 2DC ,求 cos ADC 的值.
【答案】(1) m = 1 (2) − 7 2
2
10
【分析】 (1)由题意可知 AB BC = 0 ,结合向量的数量积的性质即可求解 m
(2)由 BC = 3 2 ,结合向量数量积的性质可求 m,然后结合 BD = 2DC ,及向量夹角
2019-2020学年江苏省南通市高一上学期期末数学试题及答案解析
2019-2020学年江苏省南通市高一上学期期末数学试题及答案解析一、单选题1.设集合{}|11M x x =-<<,{}02|N x x =≤<,则M N ⋃等于( ) A .{}|12x x -<< B .{}|01x x ≤< C .{}1|0x x << D .{}|10x x -<<【答案】A【解析】根据集合并集运算,即可求解. 【详解】{}|11M x x =-<<,{}02|N x x =≤<∴{}12M N x x ⋃=-<<故选:A 【点睛】本题考查集合的交集运算,属于基础题. 2.cos960︒等于( )A .BC .12-D .12【答案】C【解析】根据三角函数诱导公式,化简求值. 【详解】由题意1cos960cos(720240)cos(18060)cos602=+=+=-=-故选:C 【点睛】本题考查三角函数诱导公式,属于基础题.3.已知点()1,2A ,()3,4B ,则与AB 共线的单位向量为( )A.22⎛ ⎝⎭B.22⎛-- ⎝⎭C.⎝⎭或⎛ ⎝⎭D .()2,2【答案】C【解析】由题意写出()2,2AB =.可设与AB 共线的单位向量(),e m m =,由1e =,即可求解.【详解】 由题意()2,2AB =设与AB 共线的单位向量(),e m m =, 又1e =1=解得212m =,2m =±故2,e ⎛= ⎝⎭或2,e ⎛=- ⎝⎭故选:C 【点睛】本题考查向量共线的坐标运算,属于基础题. 4.已知函数1123,0()log (1),0x x f x x x -⎧≤⎪=⎨+>⎪⎩,则[(3)]f f 等于( )A .27-B .127C .3D .9【答案】B【解析】由分段函数代入即可求解 【详解】 由题意()()11223log 31log 42f =+==-()()21132327f f f --⎡⎤=-==⎣⎦ 故选:B 【点睛】本题考查分段函数求值,属于基础题. 5.在ABC 中,D 为边BC 上的一点,且3BD DC =,则AD =()A .3144AB AC + B .1344AB AC + C .1344AB AC -D .3144AB AC - 【答案】B【解析】D 为边BC 上的一点,且3BD DC =,D 是四等分点,结合AD AB BD =+,最后得到答案. 【详解】∵D 为边BC 上的一点,且3BD DC =,∴D 是四等分点,()33134444AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,故选:B . 【点睛】本题考查了向量的线性运算及平面向量基本定理的应用,属于基础题.6.已知幂函数y =f (x )的图象过点(2),则()2log 2f的值为( )A .12B .1C .12-D .1-【答案】A【解析】先求幂函数的表达式,进而求值即可. 【详解】设幂函数f (x )=x α, 因为幂函数的图象经过点(2,所以2α=α12=,则幂函数的解析式为()f x =∴()2f =,()221log 2log ,2f ==故选:A 【点睛】本题考查幂函数的求法,考查函数值的求法及对数运算,属于基础题.7.已知角α的终边过点()1,1P -,则sin 2cos 2sin cos αααα+-等于( )A .13B .13-C .3D .3-【答案】B【解析】由题意,根据三角函数定义,可知tan 1α=-,再将分式上下同除cos α,即可求解. 【详解】由题意,角α终边过点()1,1P -tan 1α∴=-原式sin cos 2sin cos αααα+=-tan 22tan 1αα+=-121213-+==---故选:B本题考查齐次式求值,属于基础题.8.求值:222sin sin cos 33ππααα⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭( )A .12- B .12C .0D .1-【答案】B【解析】由题意,先根据三角函数两角和与差的正弦公式,化简,即可求值. 【详解】222sin sin cos 33ππααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭22211sin sin cos 22ααααα⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 222132sin cos cos 44ααα⎡⎤=+-⎢⎥⎣⎦22213sin cos cos 22ααα=+- 2211sin cos 22αα=+ 12= 故选:B 【点睛】本题考查两角和与差的正弦公式,三角函数的化简与求值,考察计算能力,属于中等题型.9.函数()y f x =是定义域为R ,周期为2的函数,且当[)1,1x ∈-时,()21f x x =-;已知函数()lg ||g x x =,则函数()()y f x g x =-在区间[]7,10-内的零点个数为( ) A .11B .13C .15D .17【解析】根据函数的周期性,作出函数()f x 和()g x 的图象,观察图像,即可得到两个函数公共点的个数. 【详解】函数()y f x =是定义域为R ,周期为2的函数,且当[)1,1x ∈-时,()21f x x =-;∴作出函数()f x 的图象如图:()lg ||g x x =,定义域()(),00,-∞⋃+∞∴在同一直角坐标系内,作出函数()g x 的图象如图:当910x ≤≤时,1100x -≤-≤ 则()()()210110f x f x x =-=--此时()()101,101f g ==()()90,9lg9f g ==故由图象可知两个图象的交点个数为15个. 故选:C 【点睛】本题考查函数周期性、对数函数运算,考查函数与方程思想、数形结合思想,综合性较强,有一定难度.10.平行四边形ABCD 中,已知4AB =,3AD =,60BAD ∠=︒,点E ,F 分别满足AE ED λ=,DF FC =,若6AF BE ⋅=-,则λ等于( ) A .23B .13C .1D .2【解析】利用平行四边形法则,将AF BE ⋅分别利用平行四边形的相邻两边表示,然后利用已知计算向量的数量积,列出方程求解参数. 【详解】由题意4AB =,3AD =,60BAD ∠=︒216AB ∴=,29AD =,43cos606AB AD ⋅=⨯⋅=由图知12AF AD DF AD AB =+=+AE ED λ=1AE AD λλ∴=+1BE BA AE AB AD λλ∴=+=-++则121AF BE AB AD AB AD λλ⎛⎫⎛⎫⋅=+-+ ⎪⎪+⎝⎭⎝⎭()221262121AB AD AB AD λλλλ--=-++⋅=-++ 代入,得()92866121λλλλ+-+-⋅=-++ 解得2λ= 故选:D 【点睛】考查几何图形中的向量表达,化成同一组基底进行数量积的运算,典型题,考查热点,本题属于中等题型.二、多选题 11.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )A .1-B .113C D【答案】BCD 【解析】由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解. 【详解】若A ∠为直角,则AB AC ⊥即0AC AB ⋅=230k ∴+=解得23k =-若B 为直角,则BC AB ⊥即0BC AB ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--2390k ∴-+-=解得113k =若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--()130k k ∴-+-=解得32k ±=综合可得,k 的值可能为21133,,,3322+- 故选:BCD 【点睛】本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.12.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0πϕ<<的部分图象,则下列结论正确的是( ).A .函数()f x 的图象关于直线π2x =对称 B .函数()f x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称C .函数()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调增D .函数1y =与()π23π1212y f x x ⎛⎫=-≤≤ ⎪⎝⎭的图象的所有交点的横坐标之和为8π3【答案】BCD【解析】根据图像求出函数()f x 的解析式,再求出它的对称轴和对称中心,以及单调区间,即可判断. 【详解】由函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0πϕ<<)的图像可得:2A =,2543124T πππ=-=,因此T π=,22πωπ∴==,所以()()2sin 2f x x ϕ=+,过点2,23π⎛⎫-⎪⎝⎭,因此432,32k k Z ππϕπ+=+∈,又0πϕ<<,所以6π=ϕ,()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,当2x π=时,12f π⎛⎫=- ⎪⎝⎭,故A 错; 当12x π=-时,012f π⎛⎫-= ⎪⎝⎭,故B 正确; 当ππ,36x ⎡⎤∈-⎢⎥⎣⎦,ππ2,226x π⎡⎤+∈-⎢⎥⎣⎦,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在ππ,36x ⎡⎤∈-⎢⎥⎣⎦上单调递增,故C 正确; 当π23π1212x -≤≤时,[]20,46x ππ+∈,所以1y =与函数()y f x =有4的交点的横坐标为1234,,,x x x x ,12347822663x x x x πππ+++=⨯+⨯=,故D 正确. 故选:BCD . 【点睛】本题主要考查的是三角函数图像的应用,正弦函数的性质的应用,考查学生分析问题解决问题的能力,是中档题.三、填空题 13.函数1()ln(1)1f x x x =++-的定义域是________. 【答案】(1,1)(1,)-+∞【解析】由题意分析,使函数成立需满足真数大于0、分母不为0,然后取交集,即可求解.【详解】 要使函数1()ln(1)1f x x x =++-有意义,需满足10x +>且10x -≠, 得1x >-且1x ≠ 故答案为:(1,1)(1,)-+∞【点睛】本题考查函数定义域求法,属于基础题.14.已知函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞上是减函数,则()()2f x f ≤的解集是________.【答案】(][)22-∞-⋃+∞,, 【解析】由题意先确定函数()f x 在(),0-∞上是增函数,再将不等式转化为()()112f f ⨯≤即可求得x 的取值范围. 【详解】函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞上是减函数,∴函数()f x 在区间(),0-∞上是增函数()()2f x f ≤()()2f x f ∴≤2x ∴≥2x ∴≥或2x -≤∴解集为(][),22,-∞-+∞故答案为:(][),22,-∞-+∞ 【点睛】本题考查偶函数与单调性结合解抽象函数不等式问题,直观想象能力,属于中等题型.15.若函数sin()(0)y x ωϕω=+>的部分图象如图所示,则ω的值为_______________.【答案】=4ω.【解析】由所给函数图像 过点05(,)24y π,011(,)24y π-,列式115sin()sin()2424ππωϕωϕ+=-+,利用诱导公式可得.【详解】由函数图像过点05(,)24y π,011(,)24y π-,得05sin()24y πωϕ=+,011sin()24y πωϕ-=+,所以115sin()sin()2424ππωϕωϕ+=-+,又两点在同一周期,所以115()2424ππωϕπωϕ+=++,4ω=.故答案为4. 【点睛】本题考查三角函数的图像与性质,考查简单三角方程的解,考查图形识别与运算求解能力,属于基础题. 16.矩形ABCD 中,2AB =,1AD =,点P 为矩形ABCD 内(包括边界)一点,则||PA PB +的取值范围是________. 【答案】[0,2]【解析】由题意,取AB 中点为M ,则有=2PA PB PM +,可知求解2PM 的范围就是PA PB +的范围.【详解】由题意,取AB 中点为M ,则有=2PA PB PM +,=2PA PB PM∴+,如图所示,当P 点与D 点或者C 点重合时,=2PA PB PM +取最大值22当P 点与M 点重合时,=2PA PB PM +取最小值0 故答案为:[0,2]【点睛】本题考查向量计运算,属于基础题.四、解答题17.已知()1,2a =,()3,2b =-. (1)求||a b -;(2)当k 为何值时,ka b +与3a b -垂直? 【答案】(1)4(2)19【解析】(1)由题意,先求(4,0)a b -=,再求模长; (2)根据向量垂直,推出数量积为零,求解参数. 【详解】解:(1)因为()4,0a b -=,所以||4a b -=; (2)因为1(3)221a b ⋅=⋅-+⋅=, 所以22()(3)(13)32380ka b a a kak a b b k +⋅-=+-⋅-=-=,解得19k =. 【点睛】本题考查(1)向量模长的求法;(2)垂直关系的向量表示;本题考查转化与化归思想,属于基础题. 18.已知函数2()sin cos f x x x x =+.(1)求6f π⎛⎫⎪⎝⎭的值;(2)若325f α⎛⎫= ⎪⎝⎭,54,63ππα⎛⎫∈ ⎪⎝⎭,求sin α的值.【答案】(1)6f π⎛⎫= ⎪⎝⎭2)sin α=【解析】(1)根据三角函数恒等变换,化简函数()sin 23f x x π⎛⎫=-+ ⎪⎝⎭(2)由(1)代入3225f α⎛⎫=+ ⎪⎝⎭,可知3sin 35πα⎛⎫-= ⎪⎝⎭,由角的范围,求出4cos 35πα⎛⎫-=- ⎪⎝⎭,由组合角sin sin 33ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,即可求解. 【详解】解:(1)因为21cos 21()sin cos sin 222x f x x x x x -=+=+sin 23x π⎛⎫=- ⎪⎝⎭所以62f π⎛⎫=⎪⎝⎭.(2)因为3sin 23225f απα⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭, 所以3sin 35πα⎛⎫-= ⎪⎝⎭,又因为54,63ππα⎛⎫∈⎪⎝⎭,所以,32ππαπ⎛⎫-∈ ⎪⎝⎭, 所以cos 03πα⎛⎫-< ⎪⎝⎭,所以4cos 35πα⎛⎫-==- ⎪⎝⎭,因此sin sin sin cos cos sin 333333ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,3143sin 525210α-⎛⎫=⨯+-⨯= ⎪⎝⎭. 【点睛】本题考查(1)三角函数恒等变换;(2)配凑组合角求值问题;注意角的取值范围,考察计算能力,属于中等题型. 19.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围;(2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 【答案】(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】 解:(1)对于函数()f x ,开口向上,对称轴2mx =, 当()f x 在[]1,1x ∈-上单调递增时,12m≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m≥,解得2m ≥,综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值, 当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意. 综上所述,1m =. 【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型. 20.如图,半径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中AB BE <,设AOB θ∠=.(1)将十字形的面积S 表示为θ的函数; (2)求十字形的面积S 的最大值. 【答案】(1)28sin cos 4sin 222S θθθ=-(2)max 252S =.【解析】(1)由题意,根据三角函数和圆的半径表达2sin2AB θ=,2cos2BE θ=,再计算十字形的面积;(2)由(1)中十字形的面积28sin cos 4sin 222S θθθ=-,根据三角恒等变换,化简函数解析式,即可求解最大值. 【详解】解:(1)由题意,2sin 2AB θ=,2cos 2BE θ=,因为AB BE <,所以0,2πθ⎛⎫∈ ⎪⎝⎭. 所以222sin 2cos 2sin 222S θθθ⎛⎫⎛⎫=⋅- ⎪ ⎪⎝⎭⎝⎭.即28sin cos 4sin 222S θθθ=-,0,2πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)得:4sin 2cos 2S θθ=+-1)2tan 2θϕϕ⎛⎫=+-= ⎪⎝⎭所以max 2S =.答:(1)28sin cos 4sin 222S θθθ=-; (2)max 2S =.【点睛】本题考查(1)三角函数在几何图形中的应用;(2)三角恒等变换求最值问题;考察计算能力,实际操作能力,综合性较强,有一定难度. 21.设函数32()32x xxxa f x -⋅=+为奇函数.(1)求实数a 的值;(2)当[1,)x ∈+∞时,求()f x 的值域.【答案】(1)1(2)1,15⎡⎫⎪⎢⎣⎭【解析】(1)由题意,根据奇函数(0)0f =,即可求解;(2)由(1),将函数化简为31322()32312xx x xx x y f x ⎛⎫- ⎪-⎝⎭===+⎛⎫+ ⎪⎝⎭,导出3121xy y+⎛⎫= ⎪-⎝⎭,再根据指数函数有界性,求解y 的范围,即可求解值域. 【详解】解:(1)因为函数()f x 为奇函数,且函数()f x 的定义域为(,)-∞+∞,所以0000321(0)0322a af -⋅-===+,所以1a =. 证明:函数32()32x x xxf x -=+,其定义域为R ,3223()()3223x x x xx x x xf x f x -------===-++,故()f x 为奇函数, 故所求实数a 的值为1.(2)因为函数31322()32312xx xx x x y f x ⎛⎫- ⎪-⎝⎭===+⎛⎫+ ⎪⎝⎭,所以3121x y y +⎛⎫= ⎪-⎝⎭, 又[1,)x ∈+∞时,3322x⎛⎫≥ ⎪⎝⎭,所以1312y y +≥-,解得115y ≤<,故所求函数的值域为1,15⎡⎫⎪⎢⎣⎭. 【点睛】本题考查(1)奇函数定义(2)函数值域求法:反函数法;考查直观想象能力,考查计算能力,技巧性强,有一定难度.22.如果函数()f x 在定义域的某个区间[],m n 上的值域恰为[],m n ,则称函数()f x 为[],m n 上的等域函数,[],m n 称为函数()f x 的一个等域区间.(1)若函数2()f x x =,x ∈R ,则函数()f x 存在等域区间吗?若存在,试写出其一个等域区间,若不存在,说明理由 (2)已知函数()()x f x a a k x b =+-+,其中0a >且1a ≠,0k >,b ∈R .(ⅰ)当a k =时,若函数()f x 是[]0,1上的等域函数,求()f x 的解析式;(ⅱ)证明:当01a <<,1k a ≥+时,函数()f x 不存在等域区间.【答案】(1)[]0,1;见解析(2)(ⅰ)()21x f x =-(ⅱ)见解析【解析】(1)由题意,分析等域区间定义,写出函数2()f x x =的等域区间;(2)(ⅰ)当a k =时,分析函数单调性,分类讨论等域区间,即可求解;(ⅱ)由题意,根据01a <<,1k a ≥+,判断函数()()x f x a a k x b =+-+为减函数,再由反证法,假设函数存在等域区间[,]m n ,推导出矛盾,即可证明不存在等域区间. 【详解】解:(1)函数2()f x x =存在等域区间,如[]0,1;(2)已知函数()()x f x a a k x b =+-+,其中0a >且1a ≠,0k >,b ∈R D(ⅰ)当a k =时,()x f x a b =+ 若函数()f x 是[]0,1上的等域函数, 当1a >时,()f x 为增函数,则(0)10(1)1f b f a b =+=⎧⎨=+=⎩得21a b =⎧⎨=-⎩,此时()21x f x =-. 当01a <<时,()f x 为减函数,则(0)11(1)0f b f a b =+=⎧⎨=+=⎩,得00a b =⎧⎨=⎩,不满足条件. 即()21x f x =-.(ⅱ)证明:当01a <<,1k a ≥+时,1k a -≤--,即10a k -≤-<, 则()()x f x a a k x b =+-+为减函数, 假设函数存在等域区间[,]m n ,则()()()()m n f m a a k m b n f n a a k n b m ⎧=+-+=⎨=+-+=⎩, 两式作差()()m n a a a k m n n m -+--=-, 即()()()(1)()m n a a a k m n n m k a m n -=---+-=---,01a <<,1k a ≥+,0m n a a ∴->,0m n -<,10k a --≥,则(1)()0k a m n ---<,等式不成立,即函数()f x 不存在等域区间. 【点睛】本题考查(1)函数新定义概念辨析(2)函数单调性、最值问题分析;考察计算能力,考查分析问题的能力,探究问题本质为单调性对值域的分析,综合性较强,属于难题.。
江苏省如皋中学2020学年高一数学上学期期末教学质量调研试题
江苏省如皋中学2020 学年高一数学上学期期末教课质量调研试题一、选择题:(本大题共12 小题,每题 4 分, 共 48 分)1.已知全集 U1, 2,3,4 ,会合 A1,4 ,B 2,4 ,则AI e U B =.A. 2B. 4C. 1D. 1,2,42.若幂函数 f x 的图象经过点3, 3 ,则 f 4 =.A.16B.2C.2D.23.函数 f x lg x 13x 的定义域为.A.,3B.1,3C. 0,3D. 1,34.已知弧长为πcm的弧所对的圆心角为π,则这条弧所在的扇形面积为4A.πB.4πC.2πD. 2π5.已知向量 a4,2 , b3,1 ,则向量 a 与 b 的夹角为.A.πB.3πC.π或3πD.π444436.如图是函数 f x A sin x( A0 ,0 ,π)2在一个周期内的图象,则其分析式是.A. f x3sin x πB. f x 3 sinπ32 x3C. f x3sin 2 x πD. f x 3 sinπ32 x67.若tan 2 ,则2 sin23sin cos.A.10B.2C.2D.255 r rb a b 2 ,则 2a b =.8.已知向量 a , b 知足 aA.27B.2C.2 3D.2 59.已知函数 f x sinπ,4x,f f x3的零点为2x0则 y2 x1,x0,A.0和3B.2C.3D.1cm2..10.在平面直角坐标系xOy 中 , 点 A, B 在单位圆上,且点A 在第一象限,横坐标是3,将点 A 绕原5点 O 顺时针旋转π到 B 点,则点 B 的横坐标为.3A .4 33B .343C .33 4D .33 41010101011. 已知函数 f xe x e x , 则不等式f 2 x 21f x 0 的解集为.A . 0,1B .1C .1,2D .1,1,1222x22ax ,x 0 ,12.已知定义在 ( ,0) U (0,) 上的函数 f xfx 0 在定义域上有x 若 f x1 ,x 0 ,4 两个不一样的解,则 a 的取值范围为 .A . ,1B .3C .,1 U3D .132,2,2 ,222二、填空题(本大题共4小题,每题 5分,共 20分)8 213.计算:3lg 2lg5.2714.若 sinxπ 1 ,则 sin 2 x π.63615.三角形 ABC 中,已知 AC4 ,AB 2, BC 3BP,CB4CQ , AP AQ4,则 AB AC =.16.已知函数f xxa,此中 aR ,若对于x 的方程xf 2 x1 2a1有三个不一样的实数解,则实数 a 的取值3范围是 ______________.三、解答题(本大题共6小题,共82分)17. ( 本小题满分 10 分)设全集 UR ,会合x 1 x m5 ,x12x4 .2( 1)当 m 1 时,求 AI e U B ;(2)若 AIB ,务实数 m 的取值范围.18. ( 本小题满分12 分)已知cos 4, cos()5, ,均为锐角 . 513(1)求sin2的值;(2)求 sin 的值.19. ( 本小题满分14 分 )已知向量 a 3 cos x sin x,4 sin x , b 3 cos x sin x, 3 cos x ,设 f x a b .( 1)将 f x 的图像向右平移π个单位,而后纵坐标不变,横坐标变成本来的 2 倍获得 g x 的图3像,求 g x 的单一增区间;( 2)若 x0,时,mf x m f ( x) 2 恒建立,务实数m 的取值范围 .320. ( 本小题满分 14 分 )在三角形 ABC 中, AB 2 , AC1,ACB π, D 是线段 BC 上一点,且BD1DC ,22F 为线段 AB 上一点.( 1)设 AB a ,AC b ,设 AD xa yb ,求x y ;.(2)求 CF FA 的取值范围;(3)若F为线段AB的中点,直线CF与AD订交于点M,求CM AB.21. ( 本小题满分16 分 )如图,某城市拟在矩形地区ABCD 内修筑少儿乐园,已知 AB 2 百米, BC 4 百米,点E, N分别在 AD , BC 上,梯形DENC 为水上乐园;将梯形EABN 分红三个活动地区,M 在 AB 上,且点B, E对于 MN 对称.现需要修筑两道栅栏ME , MN 将三个活动地区分开.设BNM,两道栅栏的总长度L( ) ME MN.(1)求 L( ) 的函数表达式,并求出函数的定义域;(2)求 L( ) 的最小值及此时的值.22. ( 本小题满分16 分)若函数 f x x | x m |m2,m R( 1)若函数 f x 为奇函数,求 m 的值;( 2)若函数 f ( x) 在x1,2上是增函数,务实数m 的取值范围;( 3)若函数 f ( x) 在x1,2上的最小值为7 ,务实数m的值.答案一、选择题:(本大题共12小题,每题 4分,共 48分)1.C2.D3.B 4,C 5.A 6.B7.D 8.C 9.C 10.B 11. D12.A二、填空题(本大题共4小题,每题 5分,共 20分)13.714.74915.816.27a3三、解答题(本大题共6小题,共 82分)17. ( 本小题满分10 分 )( 1) . 当m 1时, A x 0x 6 , B x 1 x 2C U B x x 或x2 1A C UB x 2x6 4 分( 2) . A x m 1x m 5 , B x 1 x 2A I Bm 1 2 或 m51m 3 或 m610 分18.( 本小题满分 12 分 )( 1) . cos4由 sin 2cos2 1 得 sin355为锐角sin0sin 3 5sin 2 2 sin cos 246 252 . cos5sin 2 () cos2 () 1 sin()121313 ,.012sin0sin()13sinsin sin coscos sin=124533312 1351356519 (14 )1 . f x a b 3 cos x sin x,4 sin x 3 cos x sin x, 3 cos x= 3 cos x2 x sin 2 x23 sin x cos x =2 cos 2 x223f x πf1 x 2 cos 2x2 2 cos 2x2 33332g x 2 cos x2432k x2k2k 22k3x3 3g x2k 2k z7 ,2k332 .mf x m f ( x) 2m f x 1 f x 2f x1 2 cos 2 x33x0,cos 2x1,1 f x 1 1,49 323m f x2f x1f x 1 t t1,4m11h t11 t th t1 1t h t1 1 h 1 2tm 21420. (14)1 .ADAC 2CB AC2 AB AC 2AB1AC2 a 1 b333333ADxa ybx2y133xy1432 .ABC AB2 , AC 1,π CABBC3ACB23CF FACA AF FA =CA FA AF FAAFx x0,2=1x cos3x 2x21x x0,22183,163 .FABCFCA1 1 1ABCACB222CMCFCMCACB22 AMCM CA1 CA CB22AD2CBCA3A 、M 、DAMAD1 CA CB2 CB CA223- 1 - 42211523CM2CA2CB55CM AB2 2 2 22 24 CACB CB CACBCA1455555C 0,0A 0,1B3 ,02 D3,032 3a3, 1b 0, 11 AD, 13AD xa ybx3 , 1 y 0, 12 3x23x 3 3xyy113xy132 AB y3 1x33 x 0,3F x,x 13FA3 CF3 x 1x,xx,33CF FA4 x 2 3x x 0, 333 CF FA13,163F AB3 1CF y3F,x2 23A 0,1D2 AD y3 3 ,0x 13248M23 , 2CM2 3 , 2 12555 5A 0,1B 3,0AB3,1CM4 14AB521. (16) 1. ABCD B,E MN BNMAME 2,BM EMRT AEMAM EM cos2BM cos2AM BM2BM cos2BM2BM EM21 (4)1 cos2cos2RT EMNMN EM 1sin cos2sinL ( ) ME MN11.............cos2cos2sin.6RT BMNBNMN cos1sincos0 BM 2,0 BN 412cos214,( , ) (8)sin cos12412 422 .L() ME MN111 sin1cos 2cos 2 sin(1 sin 2) sin(1.11sin ) sintsin( , )t (62 , 2 )12 442(t ) t 2 tt1 ( 62 ,2)1 (15)24264∴ L ( ) 的最小值为 4 百米,此时. ...............................16 分622.( 本小题满分 16 分)( 1)∵ f ( x) 是奇函数,定义域为 R∴ f ( x) f ( x) ,令 x 0 ,得 f ( 0)0 ,∴ m 0 (2)分经查验: m 0 时 f ( x)f (x) ,∴ m 0 (3)分( 2)m 1时, f ( x) x 2mx m 2张口向上,对称轴为 xm 1 ,2 2∴ f (x) 在 [1,2] 上单一递加 . (5)分m 2 时, f (x)x 2 mx m 2张口向下,对称轴为 xm ,2∴ f (x) 在 (,m) 上单一递加,在( m, ) 上单一递减,22∵ f ( x) 在 [1,2] 上单一递加∴m2 ,∴ m 4. (7)分21 m2 时, f (x) x 2 mx m 2 , x m 2 mx m 2 , x m x 函数 f ( x) 在 ( , m ) 和 (m, ) 上单一递加,则 ( m , m) 上单一递减, 2 2 B ∴ f ( x) 在 [1,2] 上不但一,不知足题意 . ∴ m 的取值范围是 ( ,1] [ 4, ). .....................................9 分 ( 3)由( 2)可知 m 1时, f (x) x 2 mx m 2 , f (x) 在 [1,2] 上单一递加, ∴ f ( x) min f (1) 1 m m 2 7 解得 m 2 或 m3 ∵ m 1 ∴ m 2 ......................... .....11 分 m 2 时, f ( x) x 2 mx m 2 , f (x) 在 ( , m ) 上单一递加,在 ( m , ) 上单一递减, 2 2 当 m 3 即 m 3 时, f (x) min f (1) 1 m m 2 7 2 2 解得: m 1 33 (舍) ...................................... 12 分 2 当 m 3 即 2 m 3 时, f ( ) f ( 2)4 2 m 2 7 2 2 x min m 解得: m 1 2 3,∵ 2 m 3 ,∴ m 2 3 1 .............................13 分 1 m 2 时, f (x) x 2 mx m 2 , x m x 2 mx m 2 , x m 函数 f ( x) 在 ( , m ) 和 (m, ) 上单一递加,则 ( m , m) 上单一递减, 2 2 ∴当 1 m 2 时, f ( x)min f (m) m 2 7 解得: m 7 (舍) .......................................15 分 综上: m 2 或2 3-1. ..........................................16 分。
江苏省南通市如皋第一中学2020年高一数学文测试题含解析
江苏省南通市如皋第一中学2020年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 平行线3x+4y﹣9=0和6x+my+2=0的距离是()A.B.2 C.D.参考答案:B【考点】两条平行直线间的距离.【专题】直线与圆.【分析】利用两直线平行求得m的值,化为同系数后由平行线间的距离公式得答案.【解答】解:由直线3x+4y﹣9=0和6x+my+2=0平行,得m=8.∴直线6x+my+2=0化为6x+8y+2=0,即3x+4y+1=0.∴平行线3x+4y﹣9=0和6x+my+2=0的距离是.故选:B.【点评】本题考查了两条平行线间的距离公式,利用两平行线间的距离公式求距离时,一定要化为同系数的方程,是基础的计算题.2. 一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是()A.a B.b C.c D.d参考答案:A【考点】F4:进行简单的合情推理.【分析】根据题意,条件“四人都只说对了一半”,若甲同学猜对了1﹣b,依次判断3﹣d,2﹣c,4﹣a,再假设若甲同学猜对了3﹣c得出矛盾.【解答】解:根据题意:若甲同学猜对了1﹣b,则乙同学猜对了,3﹣d,丙同学猜对了,2﹣c,丁同学猜对了,4﹣a,根据题意:若甲同学猜对了3﹣c,则丁同学猜对了,4﹣a,丙同学猜对了,2﹣c,这与3﹣c相矛盾,综上所述号门里是a,故选:A.3. 已知全集U={1,2,3,4},集合A={1,2},B={2},则C U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}参考答案:B【考点】交、并、补集的混合运算.【分析】根据已知中集合U,A,B,结合集合的并集和补集运算的定义,可得答案.【解答】解:∵集合A={1,2},B={2},∴A∪B={1,2},又∵全集U={1,2,3,4},∴C U(A∪B)={3,4},故选:B4. .在一个几何体的三视图中,正视图和俯视图如图12-2所示,则相应的侧视图可以为()图12-2图12-3参考答案:D5. 在正三角形中,,是上一点,且,则()A.B.C.D.参考答案:A6. 若是第四象限角,则下列结论正确的是()A.B.C.D.参考答案:D7. 已知数列{a n}满足a1=3,a n+1=,则a2012=A. 2B. -3C.D.参考答案:C8. 如果且,则角为()A.第一象限角 B.第二象限角 C.第一或第二象限角 D.第一或第三象限角参考答案:D9. 函数的图象是()A.B.C.D.参考答案:A【考点】幂函数的图象.【分析】利用函数定义域、单调性对选项进行排除即可.【解答】解:因为函数的定义域是[0,+∞),所以图象位于y轴右侧,排除选项C、D;又函数在[0,+∞)上单调递增,所以排除选项B.故选A.10. 已知过点A(-2,m)和B(m,4)的直线与直线2x+y+1=0平行,则m的值为A. -8B. 8C. 0D. 2参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 设函数f(x)满足f(x)=1+f()log2x,则f(2)= .参考答案:【考点】函数的值.【分析】通过表达式求出f(),然后求出函数的解析式,即可求解f(2)的值.【解答】解:因为,所以.,∴.∴=.故答案为:.12. 若角的终边落在直线上,则__________.参考答案:【分析】根据角的终边落在直线上,判断出角所在的象限,并用平方关系化简所求的式子,再对角分类利用三角函数值的符号求解.【详解】因为角的终边落在直线上,所以角为第二或第四象限角,因为,当角为第二象限角时,原式,当角为第四象限角时,原式,综上:当角为第二或第四象限角时,均为0.故答案为:0【点睛】本题主要考查三角函数值的符号以及同角三角函数基本关系式,还考查了运算求解的能力,属于中档题.13. 在△ABC中,三个内角A,B,C所对的边分别为a,b,c,若,则B = ▲ .参考答案:根据正弦定理,结合题中的条件可知,即,所以,结合三角形内角的取值范围可知.14. 函数的图像与直线的两个相邻交点的距离等于,则_______________.参考答案:2略15. 若函数是偶函数,则的增区间是参考答案:16. 已知函数f(x)是定义在R上的偶函数,且当时,.若关于x的方程有四个不同的实数解,则实数m的取值范围是_____.参考答案:(-1,0)【分析】若方程有四个不同的实数解,则函数与直线有4个交点,作出函数的图象,由数形结合法分析即可得答案.【详解】因为函数是定义在R上的偶函数且当时,,所以函数图象关于轴对称,作出函数的图象:若方程有四个不同的实数解,则函数与直线有4个交点,由图象可知:时,即有4个交点.故m的取值范围是,故答案为:【点睛】本题主要考查了偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,数形结合,属于中档题.17. 函数的最小正周期为▲ .参考答案:π三、解答题:本大题共5小题,共72分。
2019-2020学年江苏省南通市高一上学期期末数学试题及答案解析
2019-2020学年江苏省南通市高一上学期期末数学试题及答案解析一、单选题1.设集合{}|11M x x =-<<,{}02|N x x =≤<,则M N ⋃等于( ) A .{}|12x x -<< B .{}|01x x ≤< C .{}1|0x x << D .{}|10x x -<<【答案】A【解析】根据集合并集运算,即可求解. 【详解】{}|11M x x =-<<,{}02|N x x =≤<∴{}12M N x x ⋃=-<<故选:A 【点睛】本题考查集合的交集运算,属于基础题. 2.cos960︒等于( )A .BC .12-D .12【答案】C【解析】根据三角函数诱导公式,化简求值. 【详解】由题意1cos960cos(720240)cos(18060)cos602=+=+=-=-故选:C 【点睛】本题考查三角函数诱导公式,属于基础题.3.已知点()1,2A ,()3,4B ,则与AB 共线的单位向量为( )A.22⎛ ⎝⎭B.22⎛-- ⎝⎭C.⎝⎭或⎛ ⎝⎭D .()2,2【答案】C【解析】由题意写出()2,2AB =.可设与AB 共线的单位向量(),e m m =,由1e =,即可求解.【详解】 由题意()2,2AB =设与AB 共线的单位向量(),e m m =, 又1e =1=解得212m =,2m =±故2,e ⎛= ⎝⎭或2,e ⎛=- ⎝⎭故选:C 【点睛】本题考查向量共线的坐标运算,属于基础题. 4.已知函数1123,0()log (1),0x x f x x x -⎧≤⎪=⎨+>⎪⎩,则[(3)]f f 等于( )A .27-B .127C .3D .9【答案】B【解析】由分段函数代入即可求解 【详解】 由题意()()11223log 31log 42f =+==-()()21132327f f f --⎡⎤=-==⎣⎦ 故选:B 【点睛】本题考查分段函数求值,属于基础题. 5.在ABC 中,D 为边BC 上的一点,且3BD DC =,则AD =()A .3144AB AC + B .1344AB AC + C .1344AB AC -D .3144AB AC - 【答案】B【解析】D 为边BC 上的一点,且3BD DC =,D 是四等分点,结合AD AB BD =+,最后得到答案. 【详解】∵D 为边BC 上的一点,且3BD DC =,∴D 是四等分点,()33134444AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,故选:B . 【点睛】本题考查了向量的线性运算及平面向量基本定理的应用,属于基础题.6.已知幂函数y =f (x )的图象过点(2),则()2log 2f的值为( )A .12B .1C .12-D .1-【答案】A【解析】先求幂函数的表达式,进而求值即可. 【详解】设幂函数f (x )=x α, 因为幂函数的图象经过点(2,所以2α=α12=,则幂函数的解析式为()f x =∴()2f =,()221log 2log ,2f ==故选:A 【点睛】本题考查幂函数的求法,考查函数值的求法及对数运算,属于基础题.7.已知角α的终边过点()1,1P -,则sin 2cos 2sin cos αααα+-等于( )A .13B .13-C .3D .3-【答案】B【解析】由题意,根据三角函数定义,可知tan 1α=-,再将分式上下同除cos α,即可求解. 【详解】由题意,角α终边过点()1,1P -tan 1α∴=-原式sin cos 2sin cos αααα+=-tan 22tan 1αα+=-121213-+==---故选:B本题考查齐次式求值,属于基础题.8.求值:222sin sin cos 33ππααα⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭( )A .12- B .12C .0D .1-【答案】B【解析】由题意,先根据三角函数两角和与差的正弦公式,化简,即可求值. 【详解】222sin sin cos 33ππααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭22211sin sin cos 22ααααα⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 222132sin cos cos 44ααα⎡⎤=+-⎢⎥⎣⎦22213sin cos cos 22ααα=+- 2211sin cos 22αα=+ 12= 故选:B 【点睛】本题考查两角和与差的正弦公式,三角函数的化简与求值,考察计算能力,属于中等题型.9.函数()y f x =是定义域为R ,周期为2的函数,且当[)1,1x ∈-时,()21f x x =-;已知函数()lg ||g x x =,则函数()()y f x g x =-在区间[]7,10-内的零点个数为( ) A .11B .13C .15D .17【解析】根据函数的周期性,作出函数()f x 和()g x 的图象,观察图像,即可得到两个函数公共点的个数. 【详解】函数()y f x =是定义域为R ,周期为2的函数,且当[)1,1x ∈-时,()21f x x =-;∴作出函数()f x 的图象如图:()lg ||g x x =,定义域()(),00,-∞⋃+∞∴在同一直角坐标系内,作出函数()g x 的图象如图:当910x ≤≤时,1100x -≤-≤ 则()()()210110f x f x x =-=--此时()()101,101f g ==()()90,9lg9f g ==故由图象可知两个图象的交点个数为15个. 故选:C 【点睛】本题考查函数周期性、对数函数运算,考查函数与方程思想、数形结合思想,综合性较强,有一定难度.10.平行四边形ABCD 中,已知4AB =,3AD =,60BAD ∠=︒,点E ,F 分别满足AE ED λ=,DF FC =,若6AF BE ⋅=-,则λ等于( ) A .23B .13C .1D .2【解析】利用平行四边形法则,将AF BE ⋅分别利用平行四边形的相邻两边表示,然后利用已知计算向量的数量积,列出方程求解参数. 【详解】由题意4AB =,3AD =,60BAD ∠=︒216AB ∴=,29AD =,43cos606AB AD ⋅=⨯⋅=由图知12AF AD DF AD AB =+=+AE ED λ=1AE AD λλ∴=+1BE BA AE AB AD λλ∴=+=-++则121AF BE AB AD AB AD λλ⎛⎫⎛⎫⋅=+-+ ⎪⎪+⎝⎭⎝⎭()221262121AB AD AB AD λλλλ--=-++⋅=-++ 代入,得()92866121λλλλ+-+-⋅=-++ 解得2λ= 故选:D 【点睛】考查几何图形中的向量表达,化成同一组基底进行数量积的运算,典型题,考查热点,本题属于中等题型.二、多选题 11.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )A .1-B .113C D【答案】BCD 【解析】由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解. 【详解】若A ∠为直角,则AB AC ⊥即0AC AB ⋅=230k ∴+=解得23k =-若B 为直角,则BC AB ⊥即0BC AB ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--2390k ∴-+-=解得113k =若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--()130k k ∴-+-=解得32k ±=综合可得,k 的值可能为21133,,,3322+- 故选:BCD 【点睛】本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.12.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0πϕ<<的部分图象,则下列结论正确的是( ).A .函数()f x 的图象关于直线π2x =对称 B .函数()f x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称C .函数()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调增D .函数1y =与()π23π1212y f x x ⎛⎫=-≤≤ ⎪⎝⎭的图象的所有交点的横坐标之和为8π3【答案】BCD【解析】根据图像求出函数()f x 的解析式,再求出它的对称轴和对称中心,以及单调区间,即可判断. 【详解】由函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0πϕ<<)的图像可得:2A =,2543124T πππ=-=,因此T π=,22πωπ∴==,所以()()2sin 2f x x ϕ=+,过点2,23π⎛⎫-⎪⎝⎭,因此432,32k k Z ππϕπ+=+∈,又0πϕ<<,所以6π=ϕ,()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,当2x π=时,12f π⎛⎫=- ⎪⎝⎭,故A 错; 当12x π=-时,012f π⎛⎫-= ⎪⎝⎭,故B 正确; 当ππ,36x ⎡⎤∈-⎢⎥⎣⎦,ππ2,226x π⎡⎤+∈-⎢⎥⎣⎦,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在ππ,36x ⎡⎤∈-⎢⎥⎣⎦上单调递增,故C 正确; 当π23π1212x -≤≤时,[]20,46x ππ+∈,所以1y =与函数()y f x =有4的交点的横坐标为1234,,,x x x x ,12347822663x x x x πππ+++=⨯+⨯=,故D 正确. 故选:BCD . 【点睛】本题主要考查的是三角函数图像的应用,正弦函数的性质的应用,考查学生分析问题解决问题的能力,是中档题.三、填空题 13.函数1()ln(1)1f x x x =++-的定义域是________. 【答案】(1,1)(1,)-+∞【解析】由题意分析,使函数成立需满足真数大于0、分母不为0,然后取交集,即可求解.【详解】 要使函数1()ln(1)1f x x x =++-有意义,需满足10x +>且10x -≠, 得1x >-且1x ≠ 故答案为:(1,1)(1,)-+∞【点睛】本题考查函数定义域求法,属于基础题.14.已知函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞上是减函数,则()()2f x f ≤的解集是________.【答案】(][)22-∞-⋃+∞,, 【解析】由题意先确定函数()f x 在(),0-∞上是增函数,再将不等式转化为()()112f f ⨯≤即可求得x 的取值范围. 【详解】函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞上是减函数,∴函数()f x 在区间(),0-∞上是增函数()()2f x f ≤()()2f x f ∴≤2x ∴≥2x ∴≥或2x -≤∴解集为(][),22,-∞-+∞故答案为:(][),22,-∞-+∞ 【点睛】本题考查偶函数与单调性结合解抽象函数不等式问题,直观想象能力,属于中等题型.15.若函数sin()(0)y x ωϕω=+>的部分图象如图所示,则ω的值为_______________.【答案】=4ω.【解析】由所给函数图像 过点05(,)24y π,011(,)24y π-,列式115sin()sin()2424ππωϕωϕ+=-+,利用诱导公式可得.【详解】由函数图像过点05(,)24y π,011(,)24y π-,得05sin()24y πωϕ=+,011sin()24y πωϕ-=+,所以115sin()sin()2424ππωϕωϕ+=-+,又两点在同一周期,所以115()2424ππωϕπωϕ+=++,4ω=.故答案为4. 【点睛】本题考查三角函数的图像与性质,考查简单三角方程的解,考查图形识别与运算求解能力,属于基础题. 16.矩形ABCD 中,2AB =,1AD =,点P 为矩形ABCD 内(包括边界)一点,则||PA PB +的取值范围是________. 【答案】[0,2]【解析】由题意,取AB 中点为M ,则有=2PA PB PM +,可知求解2PM 的范围就是PA PB +的范围.【详解】由题意,取AB 中点为M ,则有=2PA PB PM +,=2PA PB PM∴+,如图所示,当P 点与D 点或者C 点重合时,=2PA PB PM +取最大值22当P 点与M 点重合时,=2PA PB PM +取最小值0 故答案为:[0,2]【点睛】本题考查向量计运算,属于基础题.四、解答题17.已知()1,2a =,()3,2b =-. (1)求||a b -;(2)当k 为何值时,ka b +与3a b -垂直? 【答案】(1)4(2)19【解析】(1)由题意,先求(4,0)a b -=,再求模长; (2)根据向量垂直,推出数量积为零,求解参数. 【详解】解:(1)因为()4,0a b -=,所以||4a b -=; (2)因为1(3)221a b ⋅=⋅-+⋅=, 所以22()(3)(13)32380ka b a a kak a b b k +⋅-=+-⋅-=-=,解得19k =. 【点睛】本题考查(1)向量模长的求法;(2)垂直关系的向量表示;本题考查转化与化归思想,属于基础题. 18.已知函数2()sin cos f x x x x =+.(1)求6f π⎛⎫⎪⎝⎭的值;(2)若325f α⎛⎫= ⎪⎝⎭,54,63ππα⎛⎫∈ ⎪⎝⎭,求sin α的值.【答案】(1)6f π⎛⎫= ⎪⎝⎭2)sin α=【解析】(1)根据三角函数恒等变换,化简函数()sin 23f x x π⎛⎫=-+ ⎪⎝⎭(2)由(1)代入3225f α⎛⎫=+ ⎪⎝⎭,可知3sin 35πα⎛⎫-= ⎪⎝⎭,由角的范围,求出4cos 35πα⎛⎫-=- ⎪⎝⎭,由组合角sin sin 33ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,即可求解. 【详解】解:(1)因为21cos 21()sin cos sin 222x f x x x x x -=+=+sin 23x π⎛⎫=- ⎪⎝⎭所以62f π⎛⎫=⎪⎝⎭.(2)因为3sin 23225f απα⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭, 所以3sin 35πα⎛⎫-= ⎪⎝⎭,又因为54,63ππα⎛⎫∈⎪⎝⎭,所以,32ππαπ⎛⎫-∈ ⎪⎝⎭, 所以cos 03πα⎛⎫-< ⎪⎝⎭,所以4cos 35πα⎛⎫-==- ⎪⎝⎭,因此sin sin sin cos cos sin 333333ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,3143sin 525210α-⎛⎫=⨯+-⨯= ⎪⎝⎭. 【点睛】本题考查(1)三角函数恒等变换;(2)配凑组合角求值问题;注意角的取值范围,考察计算能力,属于中等题型. 19.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围;(2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 【答案】(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】 解:(1)对于函数()f x ,开口向上,对称轴2mx =, 当()f x 在[]1,1x ∈-上单调递增时,12m≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m≥,解得2m ≥,综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值, 当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意. 综上所述,1m =. 【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型. 20.如图,半径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中AB BE <,设AOB θ∠=.(1)将十字形的面积S 表示为θ的函数; (2)求十字形的面积S 的最大值. 【答案】(1)28sin cos 4sin 222S θθθ=-(2)max 252S =.【解析】(1)由题意,根据三角函数和圆的半径表达2sin2AB θ=,2cos2BE θ=,再计算十字形的面积;(2)由(1)中十字形的面积28sin cos 4sin 222S θθθ=-,根据三角恒等变换,化简函数解析式,即可求解最大值. 【详解】解:(1)由题意,2sin 2AB θ=,2cos 2BE θ=,因为AB BE <,所以0,2πθ⎛⎫∈ ⎪⎝⎭. 所以222sin 2cos 2sin 222S θθθ⎛⎫⎛⎫=⋅- ⎪ ⎪⎝⎭⎝⎭.即28sin cos 4sin 222S θθθ=-,0,2πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)得:4sin 2cos 2S θθ=+-1)2tan 2θϕϕ⎛⎫=+-= ⎪⎝⎭所以max 2S =.答:(1)28sin cos 4sin 222S θθθ=-; (2)max 2S =.【点睛】本题考查(1)三角函数在几何图形中的应用;(2)三角恒等变换求最值问题;考察计算能力,实际操作能力,综合性较强,有一定难度. 21.设函数32()32x xxxa f x -⋅=+为奇函数.(1)求实数a 的值;(2)当[1,)x ∈+∞时,求()f x 的值域.【答案】(1)1(2)1,15⎡⎫⎪⎢⎣⎭【解析】(1)由题意,根据奇函数(0)0f =,即可求解;(2)由(1),将函数化简为31322()32312xx x xx x y f x ⎛⎫- ⎪-⎝⎭===+⎛⎫+ ⎪⎝⎭,导出3121xy y+⎛⎫= ⎪-⎝⎭,再根据指数函数有界性,求解y 的范围,即可求解值域. 【详解】解:(1)因为函数()f x 为奇函数,且函数()f x 的定义域为(,)-∞+∞,所以0000321(0)0322a af -⋅-===+,所以1a =. 证明:函数32()32x x xxf x -=+,其定义域为R ,3223()()3223x x x xx x x xf x f x -------===-++,故()f x 为奇函数, 故所求实数a 的值为1.(2)因为函数31322()32312xx xx x x y f x ⎛⎫- ⎪-⎝⎭===+⎛⎫+ ⎪⎝⎭,所以3121x y y +⎛⎫= ⎪-⎝⎭, 又[1,)x ∈+∞时,3322x⎛⎫≥ ⎪⎝⎭,所以1312y y +≥-,解得115y ≤<,故所求函数的值域为1,15⎡⎫⎪⎢⎣⎭. 【点睛】本题考查(1)奇函数定义(2)函数值域求法:反函数法;考查直观想象能力,考查计算能力,技巧性强,有一定难度.22.如果函数()f x 在定义域的某个区间[],m n 上的值域恰为[],m n ,则称函数()f x 为[],m n 上的等域函数,[],m n 称为函数()f x 的一个等域区间.(1)若函数2()f x x =,x ∈R ,则函数()f x 存在等域区间吗?若存在,试写出其一个等域区间,若不存在,说明理由 (2)已知函数()()x f x a a k x b =+-+,其中0a >且1a ≠,0k >,b ∈R .(ⅰ)当a k =时,若函数()f x 是[]0,1上的等域函数,求()f x 的解析式;(ⅱ)证明:当01a <<,1k a ≥+时,函数()f x 不存在等域区间.【答案】(1)[]0,1;见解析(2)(ⅰ)()21x f x =-(ⅱ)见解析【解析】(1)由题意,分析等域区间定义,写出函数2()f x x =的等域区间;(2)(ⅰ)当a k =时,分析函数单调性,分类讨论等域区间,即可求解;(ⅱ)由题意,根据01a <<,1k a ≥+,判断函数()()x f x a a k x b =+-+为减函数,再由反证法,假设函数存在等域区间[,]m n ,推导出矛盾,即可证明不存在等域区间. 【详解】解:(1)函数2()f x x =存在等域区间,如[]0,1;(2)已知函数()()x f x a a k x b =+-+,其中0a >且1a ≠,0k >,b ∈R D(ⅰ)当a k =时,()x f x a b =+ 若函数()f x 是[]0,1上的等域函数, 当1a >时,()f x 为增函数,则(0)10(1)1f b f a b =+=⎧⎨=+=⎩得21a b =⎧⎨=-⎩,此时()21x f x =-. 当01a <<时,()f x 为减函数,则(0)11(1)0f b f a b =+=⎧⎨=+=⎩,得00a b =⎧⎨=⎩,不满足条件. 即()21x f x =-.(ⅱ)证明:当01a <<,1k a ≥+时,1k a -≤--,即10a k -≤-<, 则()()x f x a a k x b =+-+为减函数, 假设函数存在等域区间[,]m n ,则()()()()m n f m a a k m b n f n a a k n b m ⎧=+-+=⎨=+-+=⎩, 两式作差()()m n a a a k m n n m -+--=-, 即()()()(1)()m n a a a k m n n m k a m n -=---+-=---,01a <<,1k a ≥+,0m n a a ∴->,0m n -<,10k a --≥,则(1)()0k a m n ---<,等式不成立,即函数()f x 不存在等域区间. 【点睛】本题考查(1)函数新定义概念辨析(2)函数单调性、最值问题分析;考察计算能力,考查分析问题的能力,探究问题本质为单调性对值域的分析,综合性较强,属于难题.。
南通市如皋市高一上期末数学检测试卷((含答案))
江苏省南通市如皋市高一(上)期末检测数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)设全集U={﹣1,2,4},集合A={﹣1,4},则∁UA= .2.(5分)已知函数y=2sin(ωx+)(ω>0)的最小正周期为,则ω= .3.(5分)已知幂函数的图象过点(2,4),则它的单调递减区间是.4.(5分)设函数f(x)=,则f[f(﹣)]的值为.5.(5分)在△ABC中,向量=(1,cosB),=(sinB,1),且⊥,则角B的大小为.6.(5分)(log23+log227)×(log44+log4)的值为.7.(5分)将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g (x)的图象,若y=g(x)是偶函数,则φ= .8.(5分)已知函数f(x)=mx2﹣2x+m的值域为[0,+∞),则实数m的值为.9.(5分)已知sin(α﹣)=,则sin(2α+)的值为.10.(5分)已知sin(α+β)=,sin(α﹣β)=,则的值为.11.(5分)在平面直角坐标系xOy中,点P(1,4)是角α终边上一点,将射线OP绕坐标原点O逆时针方向旋转θ(0<θ<π)角后到达角π的终边,则tanθ= .12.(5分)已知函数f(x)=,若关于x的方程f(x)﹣a2+2a=0有三个不同的实数根,则实数a的取值范围是.13.(5分)已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则|+|= .14.(5分)如图,在△ABC中,已知AB=2,AC=3,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=3,点F位线段DE上的动点,则•的取值范围是.()二、解答题(共6小题,满分90分.解答时写出文字说明,证明过程或演算步骤)15.(14分)已知集合A={x|f(x)=lg(x﹣1)+},集合B={y|y=2x+a,x≤0}.(1)若a=,求A∪B;(2)若A∩B=∅,求实数a的取值范围.16.(14分)已知函数f(x)=Asin(ωx﹣)(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若f(α+)=,f(β+)=,且α,β∈(0,),求α+β的值.17.(14分)若||=1,||=m,|+|=2.(1)若|+2|=3,求实数m的值;(2)若+与﹣的夹角为,求实数m的值.18.(16分)如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N (异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:km),PN⊥MN.(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;(2)当θ为何值时,l(θ)有最大值?并求出该最大值.19.(16分)已知函数f(x)=m(sinx+cosx)﹣4sinxcosx,x∈[0,],m∈R.(1)设t=sinx+cosx,x∈[0,],将f(x)表示为关于t的函数关系式g(t),并求出t 的取值范围;(2)若关于x的不等式f(x)≥0对所有的x∈[0,]恒成立,求实数m的取值范围;(3)若关于x的方程f(x)﹣2m+4=0在[0,]上有实数根,求实数m的取值范围.20.(16分)(1)已知函数f(x)=2x+(x>0),证明函数f(x)在(0,)上单调递减,并写出函数f(x)的单调递增区间;(2)记函数g(x)=a|x|+2a x(a>1)①若a=4,解关于x的方程g(x)=3;②若x∈[﹣1,+∞),求函数g(x)的值域.2019-2020学年江苏省南通市如皋市高一(上)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)设全集U={﹣1,2,4},集合A={﹣1,4},则∁A= {2} .U【解答】解:全集U={﹣1,2,4},集合A={﹣1,4},则∁A={2}.U故答案为:{2}.2.(5分)已知函数y=2sin(ωx+)(ω>0)的最小正周期为,则ω= 3 .【解答】解:由题意可得:最小正周期T==,解得:ω=3.故答案为:3.3.(5分)已知幂函数的图象过点(2,4),则它的单调递减区间是(﹣∞,0).【解答】解:设幂函数的解析式为y=xα,其函数图象过点(2,4),则4=2α,解得α=2,所以y=x2,所以函数y的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).4.(5分)设函数f(x)=,则f[f(﹣)]的值为 4 .【解答】解:∵f(x)=,∴f(﹣)=2=2=2,f[f(﹣)]=f(2)=22=4.故答案为:4.5.(5分)在△ABC中,向量=(1,cosB),=(sinB,1),且⊥,则角B的大小为.【解答】解:∵⊥,∴•=sinB+cosB=0⇒tanB=﹣1,∵B∈(0,π),∴B=.故答案为:.6.(5分)(log23+log227)×(log44+log4)的值为0 .【解答】解:原式=log281×log41=0,故答案为:07.(5分)将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ= .【解答】解:图象向左平移得到f(x+)=2sin(2x++φ),∴g(x)=2sin(2x++φ),∵g(x)为偶函数,因此+φ=kπ+,又0<φ<π,故φ=.故答案为:.8.(5分)已知函数f(x)=mx2﹣2x+m的值域为[0,+∞),则实数m的值为 1 .【解答】解:f(x)=mx2﹣2x+m的值域为[0,+∞),∴,解得m=1故答案为:19.(5分)已知sin(α﹣)=,则sin(2α+)的值为.【解答】解:∵sin(α﹣)=,∴sin(2α+)=cos[﹣(2α+)]=cos(2α)=cos[2(α﹣)]=1﹣2sin2(α﹣)=1﹣2×()2=.故答案为:.10.(5分)已知sin(α+β)=,sin(α﹣β)=,则的值为 3 .【解答】解:∵sin(α+β)=sinαcosβ+cosαsinβ=,sin(α﹣β)=sinαcosβ﹣cosαsinβ=,∴sinαcosβ=,cosαsinβ=,则===3,故答案为:3.11.(5分)在平面直角坐标系xOy中,点P(1,4)是角α终边上一点,将射线OP绕坐标原点O逆时针方向旋转θ(0<θ<π)角后到达角π的终边,则tanθ= .【解答】解:由题意可得,α+θ=,tanα=4,∴tan(α+θ)=﹣1,即=﹣1,即=﹣1,求得tanθ=,故答案为:.12.(5分)已知函数f(x)=,若关于x的方程f(x)﹣a2+2a=0有三个不同的实数根,则实数a的取值范围是0<a<1或1<a<2 .【解答】解:由题意,关于x的方程f(x)﹣a2+2a=0有三个不同的实数根,则f(x)=a2﹣2a有三个不同的交点,∵f(x)=,∴﹣1<a2﹣2a<0,∴0<a<1或1<a<2,故答案为0<a<1或1<a<2.13.(5分)已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则|+|= π.【解答】解:由题意,M,N关于点(,0)对称,∴|+|=2×=π,故答案为π.14.(5分)如图,在△ABC中,已知AB=2,AC=3,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=3,点F位线段DE上的动点,则•的取值范围是[﹣,] .()【解答】解:设=,,∴,;则•=+=,当λ=0时,f(λ)=最大为,当时,f(λ)=最小为﹣;则•的取值范围是[﹣,],故答案为:[﹣,],二、解答题(共6小题,满分90分.解答时写出文字说明,证明过程或演算步骤)15.(14分)已知集合A={x|f(x)=lg(x﹣1)+},集合B={y|y=2x+a,x≤0}.(1)若a=,求A∪B;(2)若A∩B=∅,求实数a的取值范围.【解答】解:(1)由f(x)=lg(x﹣1)+可得,x﹣1>0且2﹣x≥0,解得1<x≤2,故A={x|1<x≤2};…(2分)若a=,则y=2x+,当x≤0时,0<2x≤1,<2x+≤,故B={y|<y≤};…(5分)所以A∪B={x|1<x≤}.…(7分)(2)当x≤0时,0<2x≤1,a<2x+a≤a+1,故B={y|a<y≤a+1},…(9分)因为A∩B=∅,A={x|1<x≤2},所以a≥2或a+1≤1,…(12分)即a≥2或a≤0,所以实数a的取值范围为a≥2或a≤0.…(14分)16.(14分)已知函数f(x)=Asin(ωx﹣)(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若f(α+)=,f(β+)=,且α,β∈(0,),求α+β的值.【解答】(本题满分为14分)解:(1)据函数y=f(x)的解析式及其图象可知A=2,…(2分)且T=﹣(﹣)=π,其中T为函数y=f(x)的最小正周期,故T=2π,…(4分)所以=2π,解得ω=1,所以f(x)=2sin(x﹣).…(6分)(2)由f(α+)=,可知2sin(﹣)=,即sinα=,因为α∈(0,),所以cos==.…(8分)由f(β+)=,可知2sin(﹣)=,即sin(x+)=,故cosβ=,因为β∈(0,),所以sin=,…(10分)于是cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=.…(12分)因为α,β∈(0,),所以α+β∈(0,π),所以α+β=.…(14分)17.(14分)若||=1,||=m,|+|=2.(1)若|+2|=3,求实数m的值;(2)若+与﹣的夹角为,求实数m的值.【解答】解:(1)因为|+|=2,所以|+|2=4.即以2+2+2•=4.,…(2分)又||=1,||=m,所以.…(3分)由|+2|=3,所以所以|+2|2=9.即以2+42+4•=9,所以1+4×+4m2=9,解得m=±1,…(6分)又||≥0,所以m=1.…(7分)(2)因为,||=1,||=m,所以|﹣|2=2+2﹣2•=1﹣2×+m2=2m2﹣2,|﹣|=.…(9分)又因为+与﹣的夹角为,所以(+)•(﹣)=以2﹣2=|+|×|﹣|cos即,所以1﹣m2=2×,解得m=±,…(13分)又||≥0,所以m=.…(14分)18.(16分)如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N (异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:km),PN⊥MN.(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;(2)当θ为何值时,l(θ)有最大值?并求出该最大值.【解答】解:(1)过点P作PD⊥AC,垂足为D,连结PA.在Rt△MAN中,sinθ==,故NA=2sinθ,在Rt△PND中,∠PND=θ,sinθ==,cosθ==,故PD=sinθ,ND=cosθ.在Rt△PDA中,PA===,所以l(θ)=,函数l(θ)的定义域为(0,).(2)由(1)可知,l(θ)=,即l(θ)=====,又θ∈(0,),故2θ﹣∈(﹣,),所以当2θ﹣=,即θ=时,sin(2θ﹣)取最大值1,l(θ)==1+.max答:当θ=时,l(θ)有最大值,最大值为1+.19.(16分)已知函数f(x)=m(sinx+cosx)﹣4sinxcosx,x∈[0,],m∈R.(1)设t=sinx+cosx,x∈[0,],将f(x)表示为关于t的函数关系式g(t),并求出t 的取值范围;(2)若关于x的不等式f(x)≥0对所有的x∈[0,]恒成立,求实数m的取值范围;(3)若关于x的方程f(x)﹣2m+4=0在[0,]上有实数根,求实数m的取值范围.【解答】解:(1)因为t=sinx+cosx=,x∈[0,],所以t∈[1,],sinxcosx=.…(2分)所以g(t)=mt﹣4•=﹣2t2+mt+2.…(5分)(2)因为关于x的不等式f(x)≥0对所有的x∈[0,]恒成立,据(1)可知g(t)=﹣2t2+mt+2≥0对所有的t∈[1,]恒成立,…(6分)所以,得m≥.所以实数m的取值范围是[,+∞).…(10分)(3)因为关于x的方程f(x)﹣2m+4=0在[0,]上有实数解,据(1)可知关于t的方程﹣2t2+mt+2﹣2m+4=0在t∈[1,]上有实数解,即关于t的方程2t2﹣mt+2m﹣6=0在t∈[1,]上有实数解,…(11分)所以△=m2﹣16(m﹣3)≥0,即m≤4或m≥12.令h(t)=2t2﹣mt+2m﹣6,开口向上,对称轴t=,①当m≥12时,对称轴t≥3,函数h(t)在t∈[1,]上单调递减,故,解得m不存在.…(13分)②当m≤4时,对称轴t≤1,函数h(t)在t∈[1,]上单调递增,故,解得2+≤m≤4.…(15分)综上所述,实数m的取值范围是[2+,4].…(16分)20.(16分)(1)已知函数f(x)=2x+(x>0),证明函数f(x)在(0,)上单调递减,并写出函数f(x)的单调递增区间;(2)记函数g(x)=a|x|+2a x(a>1)①若a=4,解关于x的方程g(x)=3;②若x∈[﹣1,+∞),求函数g(x)的值域.【解答】(1)证明:设x1,x2是区间(0,)上的任意两个实数,且x1<x2,则f(x1)﹣f(x2)=2(x1﹣x2)+(﹣)=,因为0<x1<x2<,所以x1﹣x2<0,0<x1x2<,故2x1x2﹣1<0,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以函数f(x)在(0,)上单调递减,函数f(x)的单调递增区间为(,+∞).(2)解:①当a=4时,4|x|+2•4x=3,(ⅰ)当x≥0时,4x+2•4x=3,即4x=1,所以x=0;(ⅱ)当x<0时,4﹣x+2•4x=3,即2•(4x)2﹣3•4x+1=0,解得:4x=1或4x=,所以x=﹣或0;综上所述,方程g(x)=3的解为x=0或x=﹣;②(ⅰ)当x≥0时,g(x)=3a x,其中a>1,所以g(x)在[0,+∞)上单调递增,g(x)=g(0)=3,min所以g(x)在[0,+∞)上的值域为[3,+∞);(ⅱ)当x∈[﹣1,0)时,g(x)=a﹣x+2a x,其中a>1,令t=a x,则t∈[,1),g(x)=2t+=f(t),(ⅰ)若1<a≤,则≥,据(1)可知,f(t)=2t+在[,1)上单调递增,所以f()≤f(t)<f(1),且f()=a+,f(1)=3,此时,g(x)在[﹣1,0)上的值域为[a+,3);(ⅱ)若a>,则<,据(1)可知,f(t)=2t+在[,)上单调递减,在(,1)上单调递增,=f()=2,又f()=a+,f(1)=3,所以f(t)min当f()≥f(1)时,g(x)在[﹣1,0)上的值域为[2,a+],当f()<f(1)时,g(x)在[﹣1,0)上的值域为[2,3);综上所述,当1<a≤时,函数g(x)在[﹣1,+∞)上的值域为[a+,+∞;当a>时,函数g(x)在[﹣1,+∞)上的值域为[2,+∞).。
2019-2020学年江苏省如皋市高一上学期期末考试数学试题 PDF版
………6 分 ………8 分
因为 B (CR A) ,
所以 3a 1 ,解得 a 0.
………10 分
18.解:(1)设 POB ,则 sin 3 , cos 4 .
5
5
3
3
3
所以 CH CP 2 sin cos 2 cos ( 3 cos 1 sin ) , 0, ,
2
2
3
………10 分
所以 CH CP sin 2 3 cos 2 sin cos
1 s i n2 3 c o s2 3 s i n2( ) 3 ,
所以当 sin 1 时,即 , AC CP 的最大值为 5 .
2
6
4
………4 分 ………6 分
(2)在直角 ABC 中,由 SABC
1 CA CB 2
1 2
AB CH
,
可得 CH sin cos sin cos . 1
在直角 PBC 中,PC BC sin( ) cos (sin cos cos sin ) ,
………2 分
所以 xQ
cos(
)
cos( 2
)
sin
3 5
,
………4 分
AQ
AO
(xQ
(1),
yQ
)
(0
(1),0)
xQ
1
2 5
.
………6 分
2020年江苏省南通市如皋二案中学高一数学文上学期期末试卷含解析
2020年江苏省南通市如皋二案中学高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 有两只水桶,桶1中有升水,桶2是空桶. 现将桶1中的水缓慢注入桶2中,分钟后桶1中剩余的水符合指数衰减曲线,桶2中的水就是(为常数),假设5分钟时,桶1和桶2中的水量相等. 从注水开始时,经过分钟时桶2中的水是桶1中水的3倍,则A. 8B. 10C. 15D. 20参考答案:B2. 下列函数中,在其定义域内既是奇函数又是减函数的是()A. B. C. D.参考答案:A3. 方程的解所在区间是A.(0,2)B.(1,2)C.(2,3)D.(3,4)参考答案:C略4. 已知函数且a n=f(n)+f(n+1),则a1+a2+…+a99等于()A.0 B.100 C.﹣101 D.﹣99参考答案:C【考点】8E:数列的求和;3T:函数的值.【分析】函数且a n=f(n)+f(n+1),可得a2n=f(2n)+f(2n+1)=4n+1,a2n﹣1=f(2n﹣1)+f(2n)=1﹣4n.可得a2n+a2n﹣1=2.即可得出.【解答】解:∵函数且a n=f(n)+f(n+1),∴a2n=f(2n)+f(2n+1)=﹣(2n)2+(2n+1)2=4n+1,a2n﹣1=f(2n﹣1)+f(2n)=(2n﹣1)2﹣(2n)2=1﹣4n.∴a2n+a2n﹣1=2.则a1+a2+…+a99=(a1+a2)+(a3+a4)+…+(a97+a98)+a99=2×49+1﹣4×50=﹣101.故选:C.5. 已知,则的值()....参考答案:C6. 点P()位于( )A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D7. 在直角坐标系中,设,沿轴把坐标平面折成的二面角后,的长是A. B. 6 C. D.参考答案:A8. △ABC中,c是a与b的等差中项,sinA,sinB,sinC依次为一等比数列的前n项,前2n 项,前3n项的和,则cosC的值为()A.B.C.D.参考答案:C【考点】8M:等差数列与等比数列的综合.【分析】运用等差数列和等比数列的性质,结合正弦定理,可得a,b,c的关系,再由余弦定理计算即可得到所求值.【解答】解:c是a与b的等差中项,可得a+b=2c,①sinA,sinB,sinC依次为一等比数列的前n项,前2n项,前3n项的和,由等比数列的和的性质,可得sinA,sinB﹣sinA,sinC﹣sinB成等比数列,可得sinA(sinC﹣sinB)=(sinB﹣sinA)2,由正弦定理可得sinA=,sinB=,sinC=,代入,化简可得a(c﹣b)=(b﹣a)2,②由①②可得a(a+b﹣2b)=2(b﹣a)2,化简可得a=b或a=2b,若a=b,则a=b=c,由等比数列各项均不为0,可得a≠b;则a=2b,c=b,即有cosC===.故选:C.【点评】本题考查等差数列和等比数列中项的性质,考查正弦定理和余弦定理的运用,考查化简整理的运算能力,属于中档题.9. 已知等差数列满足,,则它的前10项的和()A.138 B.135 C.95D.23参考答案:C略10. 已知函数,则的值为()A. B. C.D.1参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. .已知正数a、b满足,则的最大值为__________.参考答案:5【分析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为:5【点睛】本题考查了均值不等式,意在考查学生的计算能力.12. 我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约石.参考答案:18913. 已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥 O-ABCD的体积为_____________.参考答案:略14. 函数的值域为▲ .参考答案:略15. 若函数的最大值为3,最小值为﹣1,其图象相邻两条对称轴之间的距离为,则= .参考答案:3【考点】由y=Asin (ωx+φ)的部分图象确定其解析式;正弦函数的图象. 【专题】计算题;函数思想;综合法;三角函数的图像与性质.【分析】由函数的最值求出A 和B ,由周期求出ω,可得函数的解析式,再代值计算即可.【解答】解:的最大值为3,最小值为﹣1,∴,解的A=2,B=1,再根据图象相邻两条对称轴之间的距离为,可得函数的周期为=2×,求得ω=2,∴f(x )=2sin (2x ﹣)+1, ∴=2sin (3×﹣)+1=2sin+2=3,故答案为:3【点评】本题主要考查由函数y=Asin (ωx+φ)+B 的部分图象求解析式,由函数的最值求出A 和B ,由周期求出ω,属于基础题.16. (5分)若函数y=3x 2﹣4kx+5在区间上是单调函数,则实数k 的取值范围参考答案:(﹣∞,﹣]∪[,+∞)解答: 由于函数y=3x 2﹣4kx+5的图象的对称轴方程为x=,当函数在区间上是单调增函数时,≤﹣1,求得k ≤﹣.当函数在区间上是单调减函数时,≥3,求得k ≥,故答案为:(﹣∞,﹣]∪[,+∞)上单调递减.【题文】(12分)已知函数f (x )=αx+(其中α,b 为常数)的图象经过﹙1,2﹚,﹙2,)两点.(Ⅰ)求函数f (x )的解析式,并判断f (x )的奇偶性. (Ⅱ)用定义证明f (x )在区间﹙0,1]上单调递减. 【答案】 【解析】考点: 函数单调性的判断与证明;函数奇偶性的判断. 专题: 计算题;证明题;函数的性质及应用.分析: (Ⅰ)f (x )的图象经过两点,把这两点的坐标代入解析式,可求得a 、b 的值; (Ⅱ)用定义法证明函数的增减性时,基本步骤是:一取值,二作差,三判正负.四下结论.解答: (Ⅰ)∵f (x )=ax+的图象经过(1,2),(2,)两点;∴有,解得;∴f (x )的解析式为f (x )=x+,(其中x ≠0), 则定义域关于原点对称,且f (﹣x )=﹣x ﹣=﹣(x+)=﹣f (x ), 则f (x )为奇函数;(Ⅱ)证明:任取x 1,x 2,且0<x 1<x 2≤1,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=(x1﹣x2)+(﹣)=;∵0<x1<x2≤1,∴x1x2<1,x1﹣x2<0,x1x2﹣1<0,x1x2>0;∴f(x1)﹣f(x2)>0,即f(x1)>f(x2);∴f(x)在(0,1]上是减函数.点评:本题考查了用待定系数法求函数的解析式以及用定义法证明函数的单调性问题,是基础题.17. 设a>0,b>0,a+4b+ab=3,则ab的最大值为_________ .参考答案:1三、解答题:本大题共5小题,共72分。
江苏省如皋市2020-2021学年度高一第一学期期末质量调研模拟数学答案
9
10
11
12
答案
BD
ABD
BCD
ACD
三、填空题(本大题共 4 小题,每题 5 分,共 20 分)
13.2
14. 15 15. m ≤ 9
10
16. − 3
四、解答题(本大题共 6 小题,满分 70 分)
17. 解:(1) ∵ A = {x| − 1 < x < 5},B = {x| − 1 < x < 1},
12
34
=
tanπ3−tanπ4 1+tanπ3tanπ4
=
3−1 1+ 3
=
2
−
3.
19. 解:因为 A =
x 2x − 1 < 0
=
− ∞, 1
2
,所以∁
UA =
1,+∞ .
2
若选择①,B = x x2 + x > 2 = − ∞, − 2 ⋃ 1, + ∞ ,
所以 ∁ UA ⋂ B = 1, + ∞ .
b=7
∴点 C 的坐标为(6,7).
21. 解:(1) ∵当 0 < x < 80 时,
=− 1 x2 + 60x − 500,
2
∴ y = 100x − ( 1 x2 + 40x) − 500 2
∵当 x ≥ 80 时,
8100 ∴ y = 100x − (101x + − 2180) − 500
=
0,
∴ a = 1;
(2)f(x)是 R 上的增函数,证明如下:
设任意x1,x2 ∈ R 且x1 < x2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2020学年江苏省南通市如皋市高一(上)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)设全集U={﹣1,2,4},集合A={﹣1,4},则∁U A=.2.(5分)已知函数y=2sin(ωx+)(ω>0)的最小正周期为,则ω=.3.(5分)已知幂函数的图象过点(2,4),则它的单调递减区间是.4.(5分)设函数f(x)=,则f[f(﹣)]的值为.5.(5分)在△ABC中,向量=(1,cosB),=(sinB,1),且⊥,则角B的大小为.6.(5分)(log23+log227)×(log44+log4)的值为.7.(5分)将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ=.8.(5分)已知函数f(x)=mx2﹣2x+m的值域为[0,+∞),则实数m的值为.9.(5分)已知sin(α﹣)=,则sin(2α+)的值为.10.(5分)已知sin(α+β)=,sin(α﹣β)=,则的值为.11.(5分)在平面直角坐标系xOy中,点P(1,4)是角α终边上一点,将射线OP绕坐标原点O逆时针方向旋转θ(0<θ<π)角后到达角π的终边,则tanθ=.12.(5分)已知函数f(x)=,若关于x的方程f(x)﹣a2+2a=0有三个不同的实数根,则实数a的取值范围是.13.(5分)已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则|+|=.14.(5分)如图,在△ABC中,已知AB=2,AC=3,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=3,点F位线段DE上的动点,则•的取值范围是.()二、解答题(共6小题,满分90分.解答时写出文字说明,证明过程或演算步骤)15.(14分)已知集合A={x|f(x)=lg(x﹣1)+},集合B={y|y=2x+a,x≤0}.(1)若a=,求A∪B;(2)若A∩B=∅,求实数a的取值范围.16.(14分)已知函数f(x)=Asin(ωx﹣)(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若f(α+)=,f(β+)=,且α,β∈(0,),求α+β的值.17.(14分)若||=1,||=m,|+|=2.(1)若|+2|=3,求实数m的值;(2)若+与﹣的夹角为,求实数m的值.18.(16分)如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N(异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:km),PN⊥MN.(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;(2)当θ为何值时,l(θ)有最大值?并求出该最大值.19.(16分)已知函数f(x)=m(sinx+cosx)﹣4sinxcosx,x∈[0,],m∈R.(1)设t=sinx+cosx,x∈[0,],将f(x)表示为关于t的函数关系式g(t),并求出t的取值范围;(2)若关于x的不等式f(x)≥0对所有的x∈[0,]恒成立,求实数m的取值范围;(3)若关于x的方程f(x)﹣2m+4=0在[0,]上有实数根,求实数m的取值范围.20.(16分)(1)已知函数f(x)=2x+(x>0),证明函数f(x)在(0,)上单调递减,并写出函数f(x)的单调递增区间;(2)记函数g(x)=a|x|+2a x(a>1)①若a=4,解关于x的方程g(x)=3;②若x∈[﹣1,+∞),求函数g(x)的值域.2020-2020学年江苏省南通市如皋市高一(上)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)设全集U={﹣1,2,4},集合A={﹣1,4},则∁U A={2} .【解答】解:全集U={﹣1,2,4},集合A={﹣1,4},则∁U A={2}.故答案为:{2}.2.(5分)已知函数y=2sin(ωx+)(ω>0)的最小正周期为,则ω=3.【解答】解:由题意可得:最小正周期T==,解得:ω=3.故答案为:3.3.(5分)已知幂函数的图象过点(2,4),则它的单调递减区间是(﹣∞,0).【解答】解:设幂函数的解析式为y=xα,其函数图象过点(2,4),则4=2α,解得α=2,所以y=x2,所以函数y的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).4.(5分)设函数f(x)=,则f[f(﹣)]的值为4.【解答】解:∵f(x)=,∴f(﹣)=2=2=2,f[f(﹣)]=f(2)=22=4.故答案为:4.5.(5分)在△ABC中,向量=(1,cosB),=(sinB,1),且⊥,则角B的大小为.【解答】解:∵⊥,∴•=sinB+cosB=0⇒tanB=﹣1,∵B∈(0,π),∴B=.故答案为:.6.(5分)(log23+log227)×(log44+log4)的值为0.【解答】解:原式=log281×log41=0,故答案为:07.(5分)将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ=.【解答】解:图象向左平移得到f(x+)=2sin(2x++φ),∴g(x)=2sin(2x++φ),∵g(x)为偶函数,因此+φ=kπ+,又0<φ<π,故φ=.故答案为:.8.(5分)已知函数f(x)=mx2﹣2x+m的值域为[0,+∞),则实数m的值为1.【解答】解:f(x)=mx2﹣2x+m的值域为[0,+∞),∴,解得m=1故答案为:19.(5分)已知sin(α﹣)=,则sin(2α+)的值为.【解答】解:∵sin(α﹣)=,∴sin(2α+)=cos[﹣(2α+)]=cos(2α)=cos[2(α﹣)]=1﹣2sin2(α﹣)=1﹣2×()2=.故答案为:.10.(5分)已知sin(α+β)=,sin(α﹣β)=,则的值为3.【解答】解:∵sin(α+β)=sinαcosβ+cosαsinβ=,sin(α﹣β)=sinαcosβ﹣cosαsinβ=,∴sinαcosβ=,cosαsinβ=,则===3,故答案为:3.11.(5分)在平面直角坐标系xOy中,点P(1,4)是角α终边上一点,将射线OP绕坐标原点O逆时针方向旋转θ(0<θ<π)角后到达角π的终边,则tanθ=.【解答】解:由题意可得,α+θ=,tanα=4,∴tan(α+θ)=﹣1,即=﹣1,即=﹣1,求得tanθ=,故答案为:.12.(5分)已知函数f(x)=,若关于x的方程f(x)﹣a2+2a=0有三个不同的实数根,则实数a的取值范围是0<a<1或1<a<2.【解答】解:由题意,关于x的方程f(x)﹣a2+2a=0有三个不同的实数根,则f(x)=a2﹣2a有三个不同的交点,∵f(x)=,∴﹣1<a2﹣2a<0,∴0<a<1或1<a<2,故答案为0<a<1或1<a<2.13.(5分)已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则|+|=π.【解答】解:由题意,M,N关于点(,0)对称,∴|+|=2×=π,故答案为π.14.(5分)如图,在△ABC中,已知AB=2,AC=3,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=3,点F位线段DE上的动点,则•的取值范围是[﹣,] .()【解答】解:设=,,∴,;则•=+=,当λ=0时,f(λ)=最大为,当时,f(λ)=最小为﹣;则•的取值范围是[﹣,],故答案为:[﹣,],二、解答题(共6小题,满分90分.解答时写出文字说明,证明过程或演算步骤)15.(14分)已知集合A={x|f(x)=lg(x﹣1)+},集合B={y|y=2x+a,x≤0}.(1)若a=,求A∪B;(2)若A∩B=∅,求实数a的取值范围.【解答】解:(1)由f(x)=lg(x﹣1)+可得,x﹣1>0且2﹣x≥0,解得1<x≤2,故A={x|1<x≤2};…(2分)若a=,则y=2x+,当x≤0时,0<2x≤1,<2x+≤,故B={y|<y≤};…(5分)所以A∪B={x|1<x≤}.…(7分)(2)当x≤0时,0<2x≤1,a<2x+a≤a+1,故B={y|a<y≤a+1},…(9分)因为A∩B=∅,A={x|1<x≤2},所以a≥2或a+1≤1,…(12分)即a≥2或a≤0,所以实数a的取值范围为a≥2或a≤0.…(14分)16.(14分)已知函数f(x)=Asin(ωx﹣)(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若f(α+)=,f(β+)=,且α,β∈(0,),求α+β的值.【解答】(本题满分为14分)解:(1)据函数y=f(x)的解析式及其图象可知A=2,…(2分)且T=﹣(﹣)=π,其中T为函数y=f(x)的最小正周期,故T=2π,…(4分)所以=2π,解得ω=1,所以f(x)=2sin(x﹣).…(6分)(2)由f(α+)=,可知2sin(﹣)=,即sinα=,因为α∈(0,),所以cos==.…(8分)由f(β+)=,可知2sin(﹣)=,即sin(x+)=,故cosβ=,因为β∈(0,),所以sin=,…(10分)于是cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=.…(12分)因为α,β∈(0,),所以α+β∈(0,π),所以α+β=.…(14分)17.(14分)若||=1,||=m,|+|=2.(1)若|+2|=3,求实数m的值;(2)若+与﹣的夹角为,求实数m的值.【解答】解:(1)因为|+|=2,所以|+|2=4.即以2+2+2•=4.,…(2分)又||=1,||=m,所以.…(3分)由|+2|=3,所以所以|+2|2=9.即以2+42+4•=9,所以1+4×+4m2=9,解得m=±1,…(6分)又||≥0,所以m=1.…(7分)(2)因为,||=1,||=m,所以|﹣|2=2+2﹣2•=1﹣2×+m2=2m2﹣2,|﹣|=.…(9分)又因为+与﹣的夹角为,所以(+)•(﹣)=以2﹣2=|+|×|﹣|cos即,所以1﹣m2=2×,解得m=±,…(13分)又||≥0,所以m=.…(14分)18.(16分)如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N(异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:km),PN⊥MN.(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;(2)当θ为何值时,l(θ)有最大值?并求出该最大值.【解答】解:(1)过点P作PD⊥AC,垂足为D,连结PA.在Rt△MAN中,sinθ==,故NA=2sinθ,在Rt△PND中,∠PND=θ,sinθ==,cosθ==,故PD=sinθ,ND=cosθ.在Rt△PDA中,PA===,所以l(θ)=,函数l(θ)的定义域为(0,).(2)由(1)可知,l(θ)=,即l(θ)=====,又θ∈(0,),故2θ﹣∈(﹣,),所以当2θ﹣=,即θ=时,sin(2θ﹣)取最大值1,l(θ)max==1+.答:当θ=时,l(θ)有最大值,最大值为1+.19.(16分)已知函数f(x)=m(sinx+cosx)﹣4sinxcosx,x∈[0,],m∈R.(1)设t=sinx+cosx,x∈[0,],将f(x)表示为关于t的函数关系式g(t),并求出t的取值范围;(2)若关于x的不等式f(x)≥0对所有的x∈[0,]恒成立,求实数m的取值范围;(3)若关于x的方程f(x)﹣2m+4=0在[0,]上有实数根,求实数m的取值范围.【解答】解:(1)因为t=sinx+cosx=,x∈[0,],所以t∈[1,],sinxcosx=.…(2分)所以g(t)=mt﹣4•=﹣2t2+mt+2.…(5分)(2)因为关于x的不等式f(x)≥0对所有的x∈[0,]恒成立,据(1)可知g(t)=﹣2t2+mt+2≥0对所有的t∈[1,]恒成立,…(6分)所以,得m≥.所以实数m的取值范围是[,+∞).…(10分)(3)因为关于x的方程f(x)﹣2m+4=0在[0,]上有实数解,据(1)可知关于t的方程﹣2t2+mt+2﹣2m+4=0在t∈[1,]上有实数解,即关于t的方程2t2﹣mt+2m﹣6=0在t∈[1,]上有实数解,…(11分)所以△=m2﹣16(m﹣3)≥0,即m≤4或m≥12.令h(t)=2t2﹣mt+2m﹣6,开口向上,对称轴t=,①当m≥12时,对称轴t≥3,函数h(t)在t∈[1,]上单调递减,故,解得m不存在.…(13分)②当m≤4时,对称轴t≤1,函数h(t)在t∈[1,]上单调递增,故,解得2+≤m≤4.…(15分)综上所述,实数m的取值范围是[2+,4].…(16分)20.(16分)(1)已知函数f(x)=2x+(x>0),证明函数f(x)在(0,)上单调递减,并写出函数f(x)的单调递增区间;(2)记函数g(x)=a|x|+2a x(a>1)①若a=4,解关于x的方程g(x)=3;②若x∈[﹣1,+∞),求函数g(x)的值域.【解答】(1)证明:设x1,x2是区间(0,)上的任意两个实数,且x1<x2,则f(x1)﹣f(x2)=2(x1﹣x2)+(﹣)=,因为0<x1<x2<,所以x1﹣x2<0,0<x1x2<,故2x1x2﹣1<0,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以函数f(x)在(0,)上单调递减,函数f(x)的单调递增区间为(,+∞).(2)解:①当a=4时,4|x|+2•4x=3,(ⅰ)当x≥0时,4x+2•4x=3,即4x=1,所以x=0;(ⅱ)当x<0时,4﹣x+2•4x=3,即2•(4x)2﹣3•4x+1=0,解得:4x=1或4x=,所以x=﹣或0;综上所述,方程g(x)=3的解为x=0或x=﹣;②(ⅰ)当x≥0时,g(x)=3a x,其中a>1,所以g(x)在[0,+∞)上单调递增,g(x)min=g(0)=3,所以g(x)在[0,+∞)上的值域为[3,+∞);(ⅱ)当x∈[﹣1,0)时,g(x)=a﹣x+2a x,其中a>1,令t=a x,则t∈[,1),g(x)=2t+=f(t),(ⅰ)若1<a≤,则≥,据(1)可知,f(t)=2t+在[,1)上单调递增,所以f()≤f(t)<f(1),且f()=a+,f(1)=3,此时,g(x)在[﹣1,0)上的值域为[a+,3);(ⅱ)若a>,则<,据(1)可知,f(t)=2t+在[,)上单调递减,在(,1)上单调递增,所以f(t)min=f()=2,又f()=a+,f(1)=3,当f()≥f(1)时,g(x)在[﹣1,0)上的值域为[2,a+],当f()<f(1)时,g(x)在[﹣1,0)上的值域为[2,3);综上所述,当1<a≤时,函数g(x)在[﹣1,+∞)上的值域为[a+,+∞;当a>时,函数g(x)在[﹣1,+∞)上的值域为[2,+∞).。