第4章 重要有机物的质谱图及裂解规律
质谱原理
IoT技术在智能交通中的应用智能交通是指各种交通工具之间以及与交通基础设施之间相互联系、交互运作的综合性交通系统。
IoT技术的出现,使得交通系统更加智能化,实现车辆与基础设施的无缝连接,提高了交通的效率,同时给出行带来更多的安全保障。
一、智慧路灯IoT技术可以使路灯具备“智慧”,实现更加智能、节能、环保、创新的城市路灯智能控制系统。
智能路灯可以自由控制,通过传感器和网络,对路灯进行管理,可以实现路灯的调光、定时开关等功能。
并可以根据环境变化自动调整光线明暗度,并实时监控空气湿度、温度等环境状态,进一步节能和保护环境。
智能路灯可在不同时间和不同地方提供不同类型的照明服务,同时为自动驾驶技术的落地,提供了重要的物联网基础设施,有利于推广自动驾驶的技术发展。
二、智能交通信号灯在现今的城市交通中,交通信号灯的设立是必不可少的。
IoT技术的应用,让智能信号灯的管理更加简单、便捷和高效。
智能信号灯集成车流量数据、天气数据等数据,分析信息将灯的亮度、数量和间隔时间做出调整。
通过交通信号灯设备,可以实时的监控和调控车流量,优化路段繁忙路口等交通流量,并提高城市道路的通行效率和道路安全性,进一步提高城市的品质。
三、智慧停车IoT技术在智慧交通中的另一个重要实践,是车辆停车场系统。
智能停车系统可以通过网络管理,应用传感器技术、车辆识别技术、视频监控等技术,将车位信息和停车,车辆管理,互联互通,打通全链。
通过智能车位导航,可直接导航过去余位,减少了车辆寻找停车位置的时间,极大地改善了城市路面交通秩序,进一步解决了车流堵塞问题。
四、智能路牌智能路牌系统可以在路上带来很多的优势,比如在导航、旅游等方面都能够更加精准的服务。
此外,配合城市建设的不断发展,智能路牌也能够满足用户不同的需求,达到智能城市的标准。
同时,智能路牌升级到无人驾驶城市管理,还能开启完全自动驾驶、特殊技术的使用,可以提供更为全面的计算机视觉技术,使道路更加安全、可靠。
质 谱(第五六节)
(M-OR)的峰 ,判断酯的类型;(31+14 n )
(M-R)的峰,29+14 n;59+14 n 3)麦氏重排,产生的峰:74+14 n 4)乙酯以上的酯可以发生双氢重排,生成 的峰:61+14 n
33
5. 酰胺类化合物 1)分子离子峰较强。 2) α 裂解; γ-氢重排
34
6. 氨基酸与氨基酸酯
芳香羧酸分子离子峰强,苯甲酸α -断裂丢失-OH基团后。再丢失中性 分子CO得到m/z 77的苯基离子,其质谱图示于图4-42中。
30
芳酸:1)分子离子峰较强。 2)邻位取代羧酸会有 M-18(-H2O)峰。
31
4 .酯
酯可以发生 α - 裂解丢失 · R或· OR 自由基产生 m/z59+n×14 和 29+n×14 的离子,乙酸丙酯为例:
37
2.芳胺 1)分子离子峰很强,基峰。 2)杂原子控制的 α 断裂。
38
芳胺的分子离子峰是基峰,M-1是中等强度的峰;特征裂解是丢 失HCN,与苯酚丢失CHO基团相类似。
12
叔醇 - 叔丁醇也有三种 α - 断裂,每种α - 断裂丢失的 · R 自由基是相同的, 得到m/z59的强峰,其他叔醇可产生m/z59+n×14的峰。
消去H20的开裂(见重排裂解)产生M-18(H20)的离子峰。正丁醇的质谱有很 弱的分子离子峰 m/z74 ,强的 m/z56 的离子峰就是 M-18(H20) 而得的。长链 高级醇更容易发生环化脱水反应。
26
1)酮类化合物分子离子峰较强。
2)α 裂解(优先失去大基团)
烷系列:29+14 n
3) γ-氢重排 酮的特征峰 m/z 58 或 58+14 n
27
3.羧酸
质谱谱图解析
(5) 研究低质量端离子峰,寻找不同化合物断裂后生成的特
征离子和特征离子系列。例如,正构烷烃的特征离子系列 为m/z15、29、43、57、71等,烷基苯的特征离子系列 为m/z91、77、65、39等。根据特征离子系列可以推测化 合物类型。
(6) 通过上述各方面的研究,提出化合物的结构单元。再根 据化合物的分子量、分子式、样品来源、物理化学性质等 ,提出一种或几种最可能的结构。必要时,可根据红外和 核磁数据得出最后结果。
6. ,m因/z为9m5/与z 9m5/只z 含673相个差氢2,8u因,此可失能去失C去OC是2H正4确或C的O
7. 构根,据既上甲述酯两点,未知物分子中应含COOCH3子结
8.
可导出m/z 由于低于m/z
6677组的成大为部C分4H离3O子,丰环度加较双低键,值推为测3。该
离子为杂环,即呋喃环。由质谱库看出呋喃有显
2020/9/24
6. 化合物(1)能产 生如右碎片:失去与C 连接的3个甲基中的任 意一个,都能产生m/z 86 离 子 , 但 不 易 产 生 m/z 58和m/z 30的显 7著. 峰化合物(2)能产生 如右碎片:化合物(2 )能产生较强m/z72而
仪器分析
有机化合物的断裂规律
2020/9/24
一、基本方法
谱图解释的一般方法: 一张化合物的质谱图包含有很多的信息
,根据使用者的要求,可以用来确定分子量 、验证某种结构、确认某元素的存在,也可 以用来对完全未知的化合物进行结构鉴定。 对于不同的情况解释方法和侧重点不同。 质谱图一般的解释步骤如下: (1)由质谱的高质量端确定分子离子峰,求出 分子量,初步判断化合物类型及是否含有Cl 、Br、S等元素。 (2)根据分子离子峰的高分辨数据,给出化合 物的组成式。 (3202)0由/9/24 组成式计算化合物的不饱和度,即确定
有机分子的裂解规律
100
% OF BASE PEAK
90 80 70 60 50 40 30 20 10 0
M=84
0 10 20 30 40 50 60 70 80 90 100 110
芳烃
91
100
% OF BASE PEAK
90 80 70 60 50 40 30 20 10 0
CH2 CH2 CH2 CH3 92
其它化合物
100
% OF BASE PEAK
90 80 70 60 50 40 30 20 10 0
Methyl octanoate CH3(CH2)6COOCH 3 C OCH 3 158(M) H2C O 159(M+1) CH2CH2OCH 3 160(M+2) O 87 COCH 3 M 121[M-31] M+1 59 M+2 74
m/z=43 C3 m/z=57 C4
5-Methylpentadecane 169 CH3(CH2)3 57 CH CH3 85 141 (CH2)9CH3
100 90
% OF BASE PEAK
80 70 60 50 40 30 20 10 0 0
C6 m/z=85 m/z=71 C5 m/z=99 C7
58
114 129(M )
29
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
85
100
% OF BASE PEAK
90 80 70 60 50 40 30 20 10 0
56 42 44 29 57
85(M ) N H M=85
0
10 20 30 40 50
各类有机化合物质谱的裂解规律
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(C n H2n-1, CnH2n, C n H2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的C n H2n离子,有时可强于相应的C n H2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等C n H2n-1和C n H2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,……CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去C2H2化合物含苯环时,一般可见m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰,仲醇则产生m/z为45的特征峰,叔醇则产生m/z为59的特征峰。
有机质谱断裂规律
M+e → M++2e 分子离子的质量就是化合物的相对分子量。根据分子离 子和相邻质荷比较小的碎片离子的关系,可以判断化合物的 类型及含有的可能官能团。由分子离子及同位素峰的相对强 度或由高分辨质谱仪测得的精确分子量,可推导化合物的分 子式。 若有机化合物产生的分子离子足够稳定,质谱中位于质 荷比最高位置的峰就是分子离子峰。但有的化合物不稳定, 质谱中位于质荷比最高位置的峰不是分子离子峰。因此,给 分子离子峰的识别造成困难。
┐ rH β
R
R CH
┐
+
CH2
H2C
中性分子
m/z 92
其它重排
除麦氏重排外,重排的种类还很多,经过 四元环,五元环都可以发生重排。重排既 可以是自由基引发的,也可以是电荷引发 的。 • 自由基引发的重排:
• 电荷引发的重排:
3.同位素峰(M+1峰)
组成有机化合物一些主要元素,如C H ,O, N,S, Cl ,Br等 都具有同位素,由于同位素的存在,可以 看到比分子离子峰大一个质量单位的峰;有时还可以 观察到M+2,M+3。。。。;
43 57
71
H 3 C CH 2 CH 2 CH 2 CH 2 CH 3 71 57 43 29 15
71 H 3C 57 H 3C
CH 2 CH 2 CH 2 CH 2
CH 2 CHቤተ መጻሕፍቲ ባይዱ2 CH 2
CH 2
CH 3 CH 3
43 H 3C 29 H 3C
CH 2 CH 2
CH 2 CH 2 CH 3
断裂机理-不同类型化合物谱图
键的断裂也有键的生成。重排产生了在原化合物中不 存在的结构单元的离子。 最常见的重排反应是氢重排裂解。
化合物分子中含有C X(X为O,N,S,C)基团, 而且于这个基团相连的链上有γ氢原子,这种化合 物的分子离子破碎时, γ氢原子可以转移到X原子 上去,同时发生β键断裂。
+.
O
RCH
.
+
R +HC O
+
O
.
+
R C O R'
R+R'O C O
+
O
R C+O H
O
R C R'
.
+
R +HO C O
.
+
R +R'C O
电荷位置引发的裂解反应
+
i
RYR '
R ++Y R '
O+
R' C R
R' + R
C
+ O
i
+ R
+
CO
自由基位置引发的重排反应
+ H
X W
C Y
CH2 R
-R CH2
m/z 91
基峰
3. Stevenson规则
奇电子离子裂解过程中,自由基留在电离 电位(IP)较高的碎片上,而正电荷留在IP 较低的碎片上。
.
A+ BCD
A+
+
.
BCD
A +.BCD
A. + +BCD
质谱图.ppt
ZCX
0910
• 20世纪70年代,出现了场解吸(FD)离子 化技术,能够测定分子量高达1500~2000Da 的非挥发性化合物,但重复性差。
• 20世纪80年代初发明了快原子质谱法 (FAB-MS),能够分析分子量达数千的多 肽。
• 在20世纪80及90年代,质谱法经历了两次 飞跃。在此之前,质谱法通常只能测定分 子量500Da以下的小分子化合物。
ZCX
0910
• 一般分析物分子量小于2000Da带单电荷或 双电荷
•
> 2000Da带多电荷
ZCX
0910
ZCX
0910
NANO-ESI喷雾照片
ZCX
0910
ESI特点
• 1、 ESI产生的生物大分子离子如多肽蛋白等常常带 10个以上电荷,使得m/z大大减小,弥补了四极杆质 量分析器等质量范围窄的缺点。
• 理想的基质必须蒸汽压低,同时是被分析样品的良好溶剂,甘油是最 常用的一种基质。
ZCX
原子枪 Ar0/Cs+
样品 MH+
0910
ZCX
0910
FAB优缺点
•
优点
• 缺点
•
1、质量数可以做到7000Da。
•
1、质量数高时灵敏度下 降严重。
• 2、快速。
• 2、灵敏度比MALDI,ESI
• 3、软电离方式,碎片离子少。 低。
四极杆或离子阱 统称API-MS
质量分析器
基质辅助激光解吸电离
飞行时间 质量分析器
仪器统称基质辅助激光 解吸电离飞行时间质谱仪
(MALDI-TOF-MS)
API-MS:是可以和液相色谱、毛细管电泳等分离手段联用,扩展 了应用范围,包括药物代谢、临床和法医学、环境分析、食品 检验、组合化学、有机化学的应用等;
断裂机理-不同类型化合物谱图
N
H
N +H
+
.
m/z 93
烯烃的麦氏重排
RH
R
C H 2 e
H
.C H 2 rH
+
C H 3
+
.+
R
m /z 42
环氧的麦氏重排
R H +.
O
rH
.
H O+ m/z 58
R +
两次麦氏重排
C 2 H 5 H+ .
O
+
O H
rH
.
m /z 8 6
+ . H
O
rH
+
O H
.
m /z 5 8
其他氢重排
R ' C 2 Y R R " R '• C 2 Y R R "
试写乙醇分子离子裂解
醇、胺、醚、硫醇、硫醚、卤代物
断裂:
α R CH2 OH
α R CH2 NH2
α R CH2 SH
α R CH2 OR
m 31 z CH2 OH + R CH2 NH2 + R CH2 SH + R CH2 OR + R
(2) 环状化合物的裂解 逆Diels-Alder反应(Retro-Diels-Alder, RDA)
当分子中存在含一个 键的六员环时,可发生RAD反应。
. e +
+
.
.
+
+
m /z 54
说明:该重排正好是Diels-Alder反应的逆反应; 含原双键的部分带正电荷的可能性大些; 当环上有取代基时,正电荷也有可能在烯的碎片上
质 谱(第四节)
②含Cl、Br和S元素化合物同位素峰的强度
化合物含一个Cl、Br和S时都具有比分子离子高2的同位素峰,它们的丰
度较大,很容易识别。
35Cl/ 37Cl=100/32.5; 79Br/81Br=100/98; 32S/34S=100/4.42
CH3F m/z34,由于氟没有同位素,其M+1峰的强度是M+· 峰的1%,是由一 个 13C 贡献的。 CH3C1 m /z50 ,可以看出 M+2 m /z52 的相对强度大约是分子 离子的1/3。 CH3Br m/z94,可见[M]:[M+2]=1:1。
分子离子峰强度规律: 芳烃>共轭烯烃>烯烃>环烷烃>酮>直链烷烃>醚>酯>胺>醇>高分 支的烃。
9
6.分子离子正电荷的标记
电子电离电位的规律是: n电子<π 电子<σ 电子 9.8eV 10.6eV 11.5eV
(1)含杂原子化合物(0、N、S等原子)的正电荷的标记。 杂原子上的孤对电子最容易丢失, 正电荷标在杂原子上。 (2)有双键(无杂原子)时,正电荷标 记在双键的任一个碳原子上。
带有偶电子的阳离子碎片a阳离子阳离子中性分子自由基阳离子自由基偶电子偶电子偶电子奇电子奇电子阳离子碎片a离子只能断裂成带偶电子的阳离子和中性分子两部分不能产生带奇电子的自由基阳离子和自由基两部分
第四节 质谱中的主要离子
质谱图
分子离子确定分子量。 碎片离子提供结构信息,即试样分子中 的结构单元及其连接顺序。
- e-
CH3 C H
-裂解
or
O+ CH3 C H
-裂解
CH3 C O+ + H 43
质谱图结构解析ppt课件
M C16
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210220230
❖分子离子:C1(100%), C10(6%), C16(小), C45(0) ❖有m/z :15, 29,43,57,71,…CnH2n+1 奇数系列峰(σ-断裂) ❖m/z : 43(C3H7+),57(C4H9+) 最强,基峰 ❖有m/z :27,41,55,69,……CnH2n-1 系列峰
CH2
(CH2)n
14
% OF BASE PEAK
100 CH2OH
90 80 70 60 50 40 30
1-PenTanol MW88
M - (H2O and CH2 CH2) CH3(CH2)3
CH2OH
M - (H2O and CH3)
31
M - H2O
20
10
M-1
0
0 10 20 30 40 50 60 70 80 90 100110120130140150
EI谱图解析小结
1.相对分子质量的确定 判断分子离子峰的方法 :判断原则;
2.分子式确定 同位素峰,贝农(Beynon)表 ;
3.分子结构的确定 分子离子峰,碎片离子峰(特征离子、特征离子系列) 验证
35
谱图联合解析(一)
某可能含有C、 H、N及O的未知 化合物。试由质 谱、红外、核磁 谱图确定该化合 物的结构。
12
H
H3C CH2 CH2
H3C CH2 CH2
H
C OH CH3
CH3
H C OH CH3
m/z=45(M-43)
H
有机质谱断裂规律
1
常用符号介绍
OE+. 奇电子离子或称自由基阳离子
EE + 偶电子离子或称阳离子
M+. 分子离子是一种奇电子离子
m* 亚稳离子
┐+. 表示离子中电荷位置不一定
m/z 质荷比,z所带的电荷为1时以m/e表示
双箭头表示一对电子转移
鱼钩箭头表示单电子转移
RA 相对强度(相对丰度)
e σ m /z 84
α +C H 2 C H 2
m /z 56
环己烷的分子离子由独电子引发经α-断裂产生一个 CH2=CH2中性分子和一个m/z56的奇电子离子(基峰)。
②不饱和环的断裂
不饱和环的开裂遵循反狄尔斯-阿尔德反应(RetroDiels-Alder-Reaction简称RDA)。
e
- α
R2
α1 - R1
O
C
R2
R2
O
R1
Cα2 R2
α2 - R2
O
C
R1
R1
+ CO + CO
酸、酯、醛、酰胺等 也可以发生α-键断裂。
酮、醇、醚、胺等的分子离子有多个α- 键,因此可发生 多个α键断裂,而是去烷基游离基,在多个竞争的反应中, 失去的烷基游离基愈大,反应愈有利,因而对应的产物离 子丰度愈大。
R+C H 2 C H C H 2
自 由 基 阳 离 子
与双键相连的是α键,紧挨着α键的是β键。由独电 子引发,β键发生断裂,在α键处生成一个新键,产生一 个自由基和一个阳离子,正电荷在双键一侧。
② 芳烃的β-断裂
当芳烃具有烷基侧链时,相当于芳环双键的β 位容易开裂,生成苄基离子。
MS
● 贝农表(Beynon表) Beynon将质量在500以下的含碳、氢、 氧、氮原子的各种组合,按质量和同位素丰 度编制成表。
在Beynon表中,(M+1)和(M+2)栏 是表示(M+1)/M和(M+2)/M的百分比。 在一般参考书中,都附有Beynon表。
※ 含Br,Cl,S等元素的化合物,使用 Beynon表注意事项: ① 应从高分辨质谱仪测得的精确分子
● 表图:可表示各峰之间的精确强度 —— 适用于定量分析。 ● 元素图表 —— 仅用于高分辨质谱图。
棒 图(bar graph)
1. 常规质谱图简化的方法:
◆ 选择基峰(base peak) —— 最强峰,规定其丰度为100。 ◆ 求相对丰度(relative abundance) —— 其它离子峰与基峰比较; 求基峰外各峰的相对丰度(I)%。
+ .
2.分子离子峰的确认
理论上,一般m/z最大即为分子离子峰, 但实际不尽然。
原因如下: ① M+n(n=1,2,3….)同位素峰 ② 杂质峰(样品不纯或仪器污染) ③ 分子离子峰很弱或不出现,常误认碎 片离子峰为分子离子峰。
分子离子峰特征判断原则
● 分子的质量数服从氮律(N律)
① 由C,H,O组成化合物,其分子离子峰的质量 数是偶数;
◆ 电子流轰击(electronimpact source,EI)
轰击的电子的能量 > 分子的电离能 (ΔE≈70ev) (12ev ~20ev) 分子 M + e(高速)→ M++ 2e(低速) -e M ——— M+ + e 适合于易挥发、热稳定的有机化合物
◆ 化学电离法(chemical ionization, CI) 反应气体(CH4,NH3,H2,N2) 50ev电子流轰击 样品(M)
各类有机化合物质谱的裂解规律
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(C n H2n-1, CnH2n, C n H2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的C n H2n离子,有时可强于相应的C n H2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等C n H2n-1和C n H2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,……CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去C2H2化合物含苯环时,一般可见m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰,仲醇则产生m/z为45的特征峰,叔醇则产生m/z为59的特征峰。
各类有机化合物质谱的裂解规律
各类有机化合物质谱的裂解规律烃类化合物的裂解规律:烃类化合物的裂解优先失去大的基团生成稳定的正碳离子含杂原子化合物的裂解(羰基化合物除外):正电荷在杂原子上,异裂羰基化合物的裂解:直链烷烃的质谱特点: 1.直链烷烃显示弱的分子离子峰。
2.直链烷烃的质谱由一系列峰簇(Cn H2n-1, CnH2n, CnH2n+1)组成,峰簇之间差14个质量单位。
3.各峰簇的顶端形成一平滑曲线,最高点在C3或C4支链烷烃的质谱特点: 1.支链烷烃的分子离子峰较直链烷烃降低。
2.各峰簇顶点不再形成一平滑曲线。
因在分枝处易断裂,其离子强度增强。
3.在分枝处的断裂,伴随有失去单个氢的倾向,产生较强的Cn H2n离子,有时可强于相应的CnH2n+1离子。
环烷烃的质谱特点: 1.分子离子峰的强度相对增加。
2.质谱图中可见m/z为41,55,56,69,70等Cn H2n-1和CnH2n的碎片离子峰。
3.环的碎化特征是失去C2H4(也可能失去C2H5)。
链状不饱和脂肪烃的质谱特点:1.双键的引入,可增加分子离子峰的强度2.仍形成间隔14质量单位的一系列峰簇,但峰簇内最高峰为CnH2n-1 出现m/z 41, 55, 69, 83等离子峰。
3.长碳链烯烃具有γ-H原子的可发生麦氏重排反应,产生28,42,56,70,…… CnH2n系列峰环状不饱和脂肪烃的质谱特点:1.当符合条件时环状不饱和脂肪烃可发生RDA反应。
2.环状不饱和脂肪烃支链的质谱碎裂反应类似于链烃的断裂方式。
芳烃:1. 分子离子峰较强2. 简单断裂生成苄基离子当苯环连接 CH2时,m/z 91 的峰一般都较强。
3. MacLafferty 重排当相对苯环存在 氢时,m/z 92 的峰有相当强度。
4. 苯环碎片离子依次失去 C2H 2化合物含苯环时,一般可见 m/z 39、51、65、77 等峰醇:1.醇类分子离子峰都很弱,有的甚至不出现分子离子峰。
2.容易发生α断裂反应,生成较强的CnH2n+1O+特征碎片离子,伯醇R-OH,则生成CH2=O+H,m/z为31的特征峰 ,仲醇则产生m/z为45的特征峰 ,叔醇则产生m/z为59的特征峰。
第4章 重要有机物的质谱图及裂解规律-4
m/z>57后强度逐渐减弱。直链烷烃篱笆离子的峰顶联结起来
成为一个圆滑的抛物线,在分子离子峰处略有抬高。支链烷
烃无此特征。
整理版ppt
2
整理版ppt
3
③ m/z43和m/z57的峰强度较大。
④ 在比CnH2n+1离子小一个质量数处有一个小峰,即CnH2n离子 峰m/z=28、42、56、70、84、98……一系列弱峰是由H转 移重排成的.
α1 C 2H 5 C H 3C H O CH2CH3
m /z 75(31)
-CH 2 CH2 C H 3C H OH m /z 45(100)
α1'或 α2' H
H
CH 3CH 2 C O
CH3
m /z 101
CHCH3
α3' CH3
C H 3C H 2C H O CH2
CH3
m /z 87
整理版ppt
m/z 105
CO m*56.5
┒ C CH m*33.8
m/z 77
┒ C4H3 m/z 51
整理版ppt
34
α-断裂得到的M-1峰是醛(芳醛和脂醛)的特征峰,有一定的强 度,有时比分子离子峰还强。苯甲醛的M-1离子继续丢失CO后形成 m/z77的苯基离子,再丢失CH≡CH得到m/z51的离子。这些丢失都是 由亚稳离子得到证实。
27 41 55 69
③单烯的σ-断裂得到CnH2n-1 的峰即m/z27、41、55、69、 83……即27+14n一系列的峰。
整理版ppt
8
整理版ppt
9
④环烯烃容易发生反狄-阿裂解
┐ RDA
HO
┐ +
OH
有机质谱中的裂解反应
异裂
① 均裂—自由基引发裂解—α裂解
自由基引发的ɑ断裂反应:动力来自自由基强烈的电子配对倾向。该 反应由自由基中心提供一个电子与邻接的原子形成一个新键,而邻 接原子的另一个化学键则发生断裂。下面列举几种含n、π电子化合 物发生ɑ断裂反应的情况:
醚: R1 醇: 胺: R1
+ O
R2
α R1
第二章 有机质谱
2.3 有机质谱中的裂解反应
一、有机质谱裂解反应机理 二、有机化合物的一般裂解规律
一、有机质谱裂解反应机理
裂解方式:1. 简单裂解 2. 重排开裂
1. 简单裂解 电荷-自由基定位理论:分子离子中电荷或自由基定位在分子的
某个特定位置上(首先先确定这个特定位置),然后以一个电子或 电子对的转移来“引发”裂解。单电子转移发生的裂解称为均裂, 双电子转移发生的裂解称为异裂。
CH3(CH2)nCH3 C6H5CH2(CH2)n CH3
m/z 43或57 是基峰 m/z 91是基峰
3.含杂原子化合物的裂解(羰基化合物除外)
+
R CH2 NHR'
R + H2C
+ NHR'
+
R CH2 OH(R' )
R + H2C
+ OH(R' )
+
R CH2 SH(R' )
C
+ O
i
R2
氯代物:
+
i
Cl
+
R1 +
C
O
R2
+ (CH3)2CH + CH2 = C l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
举例
以丁苯的各种裂解为例,说明苯环化合物断裂规律及其质谱图的特征:
CH2 α C3H7
C4H9
m/z 91 扩 环
m/z 134
H
CH3 CH
H2C C H2
m/z 134
CH3CH CH2 H2C m/z 92
C4H9
m/z 91
CH CH
m/z 65
CH CH
C3H3 m/z 39
m/z 77 CH CH
第四章 质谱分析
质谱图与结构解析
(有机化合物的裂解规律)
.
一、饱和烷烃的质谱图
(1)直链烷烃的质谱特征
① 直链烷烃分子离子峰强度不高,强度随碳链增长而降低,通 常碳数<40的烷烃分子离子峰(M+. )尚可观察到。
② 有相差14个质量数的一系列奇质量数的峰(CnH2n+1 ),即有质 荷比m/z=29、43、57、71、85、99……一系列篱笆离子的峰, m/z>57后强度逐渐减弱。直链烷烃篱笆离子的峰顶联结起来 成为一个圆滑的抛物线,在分子离子峰处略有抬高。支链烷 烃无此特征。
27 41 55 69
③单烯的σ-断裂得到CnH2n-1 的峰即m/z27、41、55、69、 83……即27+14n一系列的峰。
.
.
④环烯烃容易发生反狄-阿裂解
┐ RDA
HO
┐ +
OH
⑤烯烃含Cγ和Hγ 发生麦氏重排形成偶质量数的CnH2n正离
子的峰
H3C H
CH CH2┐
H2C
CH
CH2
m/z 84
m/z 106
m/z 105
m/z29- H2 =27 , m* =25.14 m/z43- H2 =41 , m* =39.09
.
(2)支链烷烃质谱的特征
① 分子离子峰的强度比直链烷烃的弱,支链越 多分子离子峰(M+. )强度越弱。
② 仍然存在篱笆离子,但强度不是随质荷比的 增加而减弱,其强度与分支的位置有关,峰 顶联不成圆滑的抛物线。
.
.
③ m/z43和m/z57的峰强度较大。 ④ 在比CnH2n+1离子小一个质量数处有一个小峰,即CnH2n离子
峰m/z=28、42、56、70、84、98……一系列弱峰是由H转 移重排成的. ⑤ 还有一系列CnH2n-1 的碎片峰是有 CnH2n+1 脱去一个H2 中 性分子而形成的,可有亚稳离子得到证实:
③ 在分支处容易断裂,正电荷在支链多的一侧, 以丢失最大烃基为最稳定。
.
.
CH3
CH2
CH3 H
C CH2 C
CH2
127
CH3
71
CH3
85 113
CH3
m/z=71(M-C5H11)、m/z=85( M-C4H9 )、 m/z=113( M-C2H5 )、m/z=127( M-CH3)。其中 m/z=71的峰最强,因为它是M+. 丢失最大的烃基形成的,可
CH2
C
CH2
R
H
C
H2 n
R
C
H2 n
H
或
C
CH2
R
C
H2 n
M-18
HO
H
CH2
CH
CH2
R
C
H2
-CH2CH2 H2O
H2C CHR
.
M-46
M=102
.
M=88
.
M=74
.
M=100
.
(2)芳香醇
苯甲醇的裂解:
CH2 ¦β OH
CH2 OH
H2
CH O α H
CO
m/z 91
m/z 108
的峰,以丢失最大的烃基为最稳定。
.
叔醇-叔丁醇也有三种α-断裂,因为叔醇不含Hα故只丢失R·自由基, 对叔丁醇而言每种α-断裂丢失的R·自由基是相同的,得到m/z59的强
峰,其他叔醇可产生m/z59+14n的峰。
CH3
α
CH3 C OH
CH3
m/z 74
CH3 C OH + CH3
CH3
m/z 59(100)
.
伯醇α-断裂形成稳定的m/z31的离子是基峰。
CH3
CH2
CH2 α1
H C
α2
H
OH α1
m/z 74
CH2 OH + C3H7 m/z 31(100)
( 离子)
α2 CH3CH2CH2CH OH + H m/z 73(1.5)
( 离子).ຫໍສະໝຸດ 仲醇-2-丁醇的三种α-断裂(括号中数字为相对丰度):
.
醇类除了能丢失Hα的 α-断裂外,还有丢失2和3个氢 的可能,有M-2,M-3的峰:
H
┐
R C OH
H2
H
RC
┐
O
α
H
H
m/z M -2
RC O
m/z M -3
醇易失去一个分子水,并伴随失去一分子乙烯,生成 (M-18)+和(M-46)+峰。
.
H
OH
CH
CH2
R
C
H2 n
H
OH -H2O
H C
m/z 51 .
四、醇类
(1)脂肪醇 分子离子峰很弱,往往观察不到,在判断醇类的分子离子峰时要谨
慎。 长链醇可发生α-、β-、γ-、δ-裂解
δ
γ
β
α
CH3 CH2 CH2 CH2 CH2 OH M=88
73 59 45 31 (0.1) (1.2) (8.2) (100.0)
α-断裂是醇类的主要裂解,质谱图中的主要碎片几乎都是α断裂产生的。伯醇-正丁醇有两种α-裂解,丢失H·(M-1) 和自由基。
H
α3
H3C CH2 α1 C α2 CH3 α1
CH3 CH OH + CH2CH3
OH
m/z 45(100)
m/z 74
α2 CH3 CH2 CH OH + CH3 m/z 59(19)
CH3
α3
CH3 CH2 C OH + H
m/z 73(1.2)
仲醇α-断裂也是丢失H·自由基或 R·自由基得到45+14n
根据这些特征峰来确定分子中支链的位置。
④ 在质谱图中若有m/z=15、M-15的峰,则表明结构中存在
甲基支链。
.
二、 烯烃
①分子离子比烷烃强;
②容易发生β-裂解得到m/z 41+14n的峰;
H
β
H2C C CH2 CH2 CH2 CH3
CH2 CH CH2 + CH2CH2CH3
CH2 CH CH2 CH2 CH2 CH3
H3C ┐
CH
CH3 + CH
CH2
CH2
m/z 42
.
三、芳香族化合物
芳烃质谱的特征:
①分子离子峰较强,苯的分子离子峰m/z78是基峰。稠环化合物 的分子离子峰是基峰。萘的( M+. )m/z128就是基峰。 ②碎片少,具有苯环指纹的一系列特征峰m/z39、50、51、52、 53、63、65、76、77和78等弱峰。 ③烷基苯以β-断裂最为重要,产生稳定的鎓离子m/z91是基峰 ④直链烷基取代苯中R≥3,即具有Cγ,Hγ 时发生麦氏重排,形成 m/z92的峰. ⑤烷基苯的σ-裂解产生m/z77的苯基离子(C6H5+ )峰,单取代 苯环化合物的H重排还可以形成m/z78的(C6H6+. )离子峰。