人教版高二数学选修1-1第二章测试题

合集下载

数学选修1-1第二章测试卷(含答案)

数学选修1-1第二章测试卷(含答案)

第二章测试卷 (本栏目对应学生用书P81)一、选择题(每小题5分,共60分) 1.抛物线y =-2x 2的准线方程是( ) A .x =-12B .x =12C .y =18D .y =-18【答案】C【解析】化成标准方程为x 2=-12y ,所以准线方程为y =18.2.已知P ,Q 是椭圆9x 2+16y 2=1上的两个动点,O 为坐标原点,若OP ⊥OQ ,则点O 到弦PQ 的距离必等于( )A .1B .2C .15D .3 【答案】C【解析】选用特殊值法.选P ⎝⎛⎭⎫0,14,Q ⎝⎛⎭⎫13,0即可. 3.设抛物线y =ax 2(a >0)与直线y =kx +b (k ≠0)有两个公共点,其横坐标分别是x 1,x 2,而x 3是直线与x 轴交点的横坐标,则x 1,x 2,x 3关系是( )A .x 3=x 1+x 2B .x 3=1x 1+1x 2C .x 1x 2=x 2x 3+x 1x 3D .x 1x 3=x 2x 3+x 1x 2 【答案】C【解析】联立直线和抛物线的方程,得ax 2-kx -b =0,x 1x 2=-b a ,x 1+x 2=ka ,由直线方程x 3=-bk,结合得出答案. 4.若以x 2=-4y 上任一点P 为圆心作与直线y =1相切的圆,那么这些圆必定过平面内的点( ) A .(0,1) B .(-1,0) C .(0,-1) D .(-1,-1) 【答案】C【解析】由抛物线的定义可得.5.已知双曲线kx 2-y 2=1的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率是( )A .52B .2C .3D . 5【答案】A【解析】由于直线2x +y +1=0的斜率为-2,故k =14,∴x 24-y 2=1,由离心率e =1+b 2a 2=54=52. 6.若抛物线y 2=mx与椭圆x 29+y 25=1有一个共同的焦点,则m 的值为( )A .8B .-8C .±8D .±4【答案】C【解析】由已知椭圆的焦点为(2,0),(-2,0),∴m 4=2或m4=-2.∴m =8或m =-8.7.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝⎛⎭⎫b 2+c 2有四个交点.其中c 为椭圆的半焦距,则椭圆的离心率范围是( )A .55<e <35B .0<e <25C .25<e <35D .35<e <45【答案】A【解析】数形结合可知圆与椭圆有四个交点,则满足b <b2+c <a ,结合b =a 2-c 2可求得离心率的范围是55<e <35. 8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e ∈[2,2],令双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则此角的取值范围是( )A .⎣⎡⎦⎤π6,π2B .⎣⎡⎦⎤π3,π2C .⎣⎡⎦⎤π2,2π3D .⎣⎡⎦⎤2π3,5π6【答案】C 【解析】b a=e 2-1∈[1,3],∴θ2∈⎣⎡⎦⎤π4,π3.∴θ∈⎣⎡⎦⎤π2,2π3.9.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形【答案】C【解析】双曲线的离心率e 21=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a 2×m 2-b 2m 2=1,化简,得a 2+b 2=m 2.10.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且只有一条B .有且只有两条C .有无穷多条D .不存在【答案】B【解析】抛物线的焦点弦中最短的是通径,长为2p =4<5,所以这样的直线有两条.11.(2015年菏泽模拟)设双曲线x 2m +y 2n =1的离心率为2且一个焦点与抛物线x 2=8y 的焦点相同,则此双曲线的方程为( )A .x 23-y 2=1B .x 24-y 212=1C .y 2-x 23=1 D .x 212-y 24=1【答案】C【解析】抛物线x 2=8y 的焦点为(0,2),所以n >0>m ,n -m =4,2n=2.所以n =1,m =-3.故选C . 12.(2015年太原模拟)已知P 是抛物线y 2=2x 上动点,A ⎝⎛⎭⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( )A .4B .92C .5D .112【答案】B【解析】因为点P 在抛物线上,所以d 1=|PF |-12(其中点F 为抛物线的焦点),则d 1+d 2=|PF |+|P A |-12≥|AF |-12=⎝⎛⎭⎫72-122+42-12=5-12=92,当且仅当点P 是线段AF 与抛物线的交点时取等号,故选B.二、填空题(每小题5分,共20分)13.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =________. 【解析】抛物线y 2=2px (p >0)的焦点坐标是⎝⎛⎭⎫p 2,0,由两点间距离公式,得⎝⎛⎭⎫p 2+22+32=5,解得p =4.【答案】414.过(0,3)作直线l ,若l 和双曲线x 24-y 23=1只有一个公共点,则这样的直线l 共有________条.【解析】直线与双曲线有一个公共点时有两种情况,一是相交,此时与渐近线平行,一是相切,要考虑全面.【答案】415.过抛物线y 2=x 的焦点F 的直线l 的倾斜角θ≥π4,l 交抛物线于A ,B 两点且A 在x 轴上方,则|F A |的取值范围是____________.【解析】直线过焦点,AF 的长可转化为点A 到准线的距离,所以A 点的横坐标越大,AF 的长越大,最小在O 点时,|OF |=14.最大是AF 的倾斜角为π4时,设A (x 0,y 0),过A 作x 轴的垂线,垂足为C ,在△ACF 中,|AC |=y 0,|CF |=x 0-14.因为|AC |=|CF |,即y 0=x 0-14,结合y 20=x 0,得y 0=2+12,|AF |=2y 0=1+22. 【答案】⎝⎛⎦⎤14,1+2216.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.【解析】由题意知右焦点坐标为(1,0), 斜率为2的直线方程为 2x -y -2=0.则⎩⎪⎨⎪⎧2x -y -2=0,x 25+y 24=1,消去x ,得 3y 2+2y -8=0.解得y 1=-2,y 2=43.∴S △AOB =12×1×⎝⎛⎭⎫|-2|+43=53. 【答案】53三、解答题(共70分)17.(10分)指出方程(m -1)x 2+(3-m )y 2=(m -1)(3-m )所表示的曲线的形状. 【解析】当m ≠1,m ≠3时,把方程写成x 23-m +y 2m -1=1.当1<m <3,m ≠2时,方程表示椭圆; 当m =2时,方程表示圆;当m <1或m >3时,方程表示双曲线; 当m =1时,方程表示x 轴; 当m =3时,方程表示y 轴.18.(12分)已知圆(x +1)2+y 2=16的圆心为B 及点A (1,0),点C 为圆上任意一点,求线段AC 的垂直平分线l 与线段CB 的交点P 的轨迹方程.【解析】如图,因为P 在AC 的垂直平分线上,所以|P A |=|PC |,半径R =4=|BC |=|PC |+|PB |,所以|P A |+|PB |=|PC |+|PB |=4>|AB |=2.所以P 点轨迹是以A ,B 为焦点的椭圆,此椭圆中a =2,c =1,所以b 2=3,方程为x 24+y 23=1.19.(12分)已知顶点在原点,焦点在x 轴上的抛物线被直线y =2x -1截得的弦长为15,求抛物线方程.【解析】设抛物线方程为y 2=ax ,直线与抛物线的两交点为A (x 1,y 1),B (x 2y 2),联立方程得⎩⎪⎨⎪⎧y =2x -1,y 2=ax ,消去y 得4x 2-(4+a )x +1=0,x 1x 2=14,x 1+x 2=4+a 4,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2= 5 ×⎝⎛⎭⎫1+a 42-1=15, 解得a =-12或a =4,所以抛物线方程为y 2=-12x 或y 2=4x .20.(12分)设双曲线方程与椭圆x 227+y 236=1有共同焦点且与椭圆相交,在第一象限的交点为A 且A的纵坐标为4,求此双曲线的方程.【解析】由椭圆方程x 227+y 236=1得椭圆的两个焦点为F 1(0,-3),F 2(0,3). ∵椭圆与双曲线的交点A 的纵坐标为4, ∴这个交点为A (15,4).设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧42a2-(15)2b 2=1,a 2+b 2=32,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故所求双曲线方程为y 24-x 25=1.21.(12分)若抛物线y =-x 2-2x +m 和直线y =2x 相交于不同的两点A ,B . (1)求m 的取值范围; (2)求|AB |;(3)求线段AB 的中点坐标. 【解析】联立方程得⎩⎪⎨⎪⎧y =2x ,y =-x 2-2x +m ,消y 得x 2+4x -m =0. (1)∵直线与抛物线有两个相异交点, ∴Δ>0,即42-4(-m )>0. ∴m >-4.(2)当m >-4时,方程x 2+4x -m =0有两个相异实根,设为x 1,x 2,由根与系数的关系x 1+x 2=-4,x 1·x 2=-m ,∴|AB |=1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2=25m +20.(3)设线段AB 的中点坐标为(x ,y ),则x =x 1+x 22=-42=-2,y =y 1+y 22=2x 1+2x 22=-4,∴线段AB 的中点坐标为(-2,-4).22.(2014年新课标Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .【解析】(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a .由MN 的斜率为34,可得b 2a 2c =34,即2b 2=3aC .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4A .①由|MN |=5|F 1N |, 得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则 ⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②,得9(a2-4a)4a2+14a=1.解得a=7,b2=4a=28,故a=7,b=2 7.。

2019-2020学年高中数学人教版选修1-1习题:第二章2.3-2.3.1抛物线及其标准方程 Word版含答案

2019-2020学年高中数学人教版选修1-1习题:第二章2.3-2.3.1抛物线及其标准方程 Word版含答案

第二章 圆锥曲线与方程2.3 抛物线2.3.1 抛物线及其标准方程A 级 基础巩固一、选择题1.准线方程为y =23的抛物线的标准方程为( ) A .x 2=83y B .x 2=-83y C .y 2=-83xD .y 2=83x解析:由准线方程为y =23,知抛物线焦点在y 轴负半轴上,且p 2=23,则p =43.故所求抛物线的标准方程为x 2=-83y .答案:B2.已知抛物线y -2 016x 2=0,则它的焦点坐标是( ) A .(504,0) B.⎝⎛⎭⎪⎫18 064,0 C.⎝⎛⎭⎪⎫0,18 064 D.⎝⎛⎭⎪⎫0,1504 解析:抛物线的标准方程为x 2=12 016y ,故其焦点为(0,18 064). 答案:C3.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148 D.124解析:将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148. 答案:C4.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆过定点( ) A .(4,0) B .(2,0) C .(0,2)D .(0,4)解析:由题意易知直线x +2=0为抛物线y 2=8x 的准线,由抛物线的定义知动圆一定过抛物线的焦点. 答案:B5.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是焦点,|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .x 1,x 3,x 2成等差数列C .y 1,y 2,y 3成等差数列D .y 1,y 3,y 2成等差数列解析:由抛物线的定义知|AF |=x 1+p2,|BF |=x 2+p 2, |CF |=x 3+p 2.因为|AF |,|BF |,|CF |成等差数列,所以2⎝⎛⎭⎪⎫x2+p 2=⎝⎛⎭⎪⎫x1+p 2+⎝⎛⎭⎪⎫x3+p 2,即2x 2=x 1+x 3.故x 1,x 2,x 3成等差数列.故选A.答案:A 二、填空题6.抛物线y 2=2x 上的两点A ,B 到焦点的距离之和是5,则线段AB 中点的横坐标是________. 解析:由抛物线的定义知点A ,B 到准线的距离之和是5,则AB 的中点到准线的距离为52,故AB 中点的横坐标为x =52-12=2.答案:27.抛物线过原点,焦点在y 轴上,其上一点P (m ,1)到焦点的距离为5,则抛物线的标准方程是________. 解析:由题意,知抛物线开口向上,且1+p 2=5,所以p =8,即抛物线的标准方程是x 2=16y . 答案:x 2=16y8.焦点为F 的抛物线y 2=2px (p >0)上一点M 在准线上的射影为N ,若|MN |=p ,则|FN |=________. 解析:由条件知|MF |=|MN |=p ,MF ⊥MN ,在△MNF 中,∠FMN =90°,得|FN |=2p . 答案:2p 三、解答题9.求满足下列条件的抛物线的标准方程.(1)焦点在坐标轴上,顶点在原点,且过点(-3,2);(2)顶点在原点,以坐标轴为对称轴,焦点在直线x -2y -4=0上.解:(1)当焦点在x 轴上时,设抛物线的标准方程为y 2=-2px (p >0).把(-3,2)代入,得22=-2p ×(-3),解得p =23.所以所求抛物线的标准方程为y 2=-43x .当焦点在y 轴上时,设抛物线的标准方程为x 2=2py (p >0). 把(-3,2)代入,得(-3)2=4p ,解得p =94.所以所求抛物线的标准方程为x2=92 y.(2)直线x-2y-4=0与x轴的交点为(4,0),与y轴的交点为(0,-2),故抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,设抛物线方程为y2=2px(p>0),则p2=4,所以p=8.所以抛物线方程为y2=16x.当焦点为(0,-2)时,设抛物线方程为x2=-2py(p>0),则-p2=-2,所以p=4.所以抛物线方程为x2=-8y.10.已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.解:设动圆圆心为M(x,y),半径为r,则由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,则动圆圆心的轨迹是以C(0,-3)为焦点,y=3为准线的一条抛物线,其方程为x2=-12y.B级能力提升1.点M(5,3)到抛物线y=ax2的准线的距离为6,那么抛物线的方程是( )A.y=12x2B.y=12x2或y=-36x2C.y=-36x2D.y=112x2或y=-136x2解析:当a>0时,抛物线开口向上,准线方程为y=-14a,则点M到准线的距离为3+14a=6,解得a=112,抛物线方程为y=112x2.当a<0时,开口向下,准线方程为y=-14a,点M到准线的距离为⎪⎪⎪⎪⎪⎪3+14a=6,解得a=-136,抛物线方程为y=-136x2.答案:D2.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值为________.解析:由已知得抛物线的焦点为F(1,0),由抛物线的定义知:动点P到直线l1和直线l2的距离之和的最小值即为焦点F(1,0)到直线l1:4x-3y+6=0的距离,由点到直线的距离公式得:d=|4-0+6|42+(-3)2=2,所以动点P到直线l1和直线l2的距离之和的最小值是2.答案:23.抛物线y2=2px(p>0)且一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y=2x,斜边长为513,求此抛物线方程.解:设抛物线y2=2px(p>0)的内接直角三角形为AOB,直角边OA所在直线方程为y=2x,另一直角边所在直线方程为y =-12x .解方程组⎩⎪⎨⎪⎧y =2x ,y2=2px ,可得点A 的坐标为⎝ ⎛⎭⎪⎫p 2,p ;解方程组⎩⎪⎨⎪⎧y =-12x ,y2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513,所以⎝ ⎛⎭⎪⎫p24+p2+(64p 2+16p 2)=325.所以p =2,所以所求的抛物线方程为y 2=4x .。

人教版高二数学选修1-1第二章测试题

人教版高二数学选修1-1第二章测试题

高二数学选修1-1第二章测试题一、选择题1.椭圆1422=+y x 的离心率为 ( ) A .21 B .23 C . ±21 D .±232. 如果椭圆22110036x y +=上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离为( ) A . 10 B . 6 C . 12 D . 143.双曲线19422=-y x 的渐近线方程是 ( ) A .x y 23±= B .x y 32±= C .x y 49±= D .x y 94±= 4. 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )5. 方程11422=-+-t y t x 表示的曲线为C,给出下面四个命题,其中正确命题的个数是( ) ①若曲线C 为椭圆,则1<t<4 ②若曲线C 为双曲线,则t<1或t>4 ③曲线C 不可能是圆 ④若曲线C 表示焦点在x 轴上的椭圆,则1<t<23 .2 C6. 3k >是方程22131x y k k +=--表示双曲线的( )条件。

A.充分但不必要 B.充要 C.必要但不充分 D.既不充分也不必要 7.抛物线24(0)y ax a =<的焦点坐标是( ) A.1(,0)4a B.1(0,)16a C. 1(0,)16a - D. 1(,0)16a8.过点(0,2)与抛物线28y x =只有一个公共点的直线有( ) 条 条 条 D.无数多条9.设12,F F 为双曲线2214x y -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F PF ∆的面积是( ) 2310.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为31,则椭圆的方程是( ) A.1442x +1282y =1 B.362x +202y =1 C.322x +362y =1 D.362x +322y =1 11.双曲线22a x -22by =1的两条渐近线互相垂直,那么它的离心率为( )B.3C.2D.23 12.动圆C 经过定点F(0,2)且与直线y+2=0相切,则动圆的圆心C 的轨迹方程是( )=8y=8x =2=213.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为 ( ) A .191622=-x y B .191622=-y x C .116922=-x y D .116922=-y x 14. 若椭圆22221(0)x y a b a b +=>>的离心率是32,则双曲线22221x y a b-=的离心率是( )A .54B .5C .32D .515.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14B .12C . 2D .416. 若双曲线1922=-myx 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为 ( ) A .2B .14C .5D .2517.“ab <0”是“方程ax 2+by 2=c 表示双曲线”的 ( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )非充分非必要条件 ,F 2是定点,|F 1F 2|=7,动点M 满足|MF 1|+|MF 2|=7,则M 的轨迹是( ) (A )椭圆 (B )直线 (C )线段 (D )圆19.椭圆2x 2+3y 2=6的长轴长是( )(A(B(C)(D)20.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y21.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )+y 24=1 +y 23=1 +y 22=1 +y 23=122.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1C .m >1D .m >223.已知双曲线222x y 1a 0a-=(>)的右焦点与抛物线y 2=8x 的焦点重合,则此双曲线的渐近线方程是( )(A )y=(B )y=(C)y=(D )y=24.设椭圆2222x y 1m n +=、双曲线2222x y 1m n-=、抛物线y 2=2(m+n )x (其中m >n >0)的离心率分别为e 1,e 2,e 3,则( )(A )e 1e 2>e 3 (B )e 1e 2<e 3 (C )e 1e 2=e 3 (D )e 1e 2与e 3大小不确定 25.抛物线y=-x 2上的点到直线4x+3y-8=0的距离的最小值是( )(A )43 (B )75 (C )85(D )3 26.设k <3,k ≠0,则二次曲线22x y 13k k -=-与22x y 152+=必有( ) (A)不同的顶点 (B)不同的准线 (C)相同的焦点 (D)相同的离心率27.设双曲线的—个焦点为F ,虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) (A(B (C )12 (D )12+ 28.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( )A .(5,0)或(-5,0)B .(52,332)或(52,-332)C .(0,3)或(0,-3)D .(532,32)或(-532,32) 29.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x的准线上,则双曲线的方程为( )-y 2108=1 -y 227=1 -y 236=1 -y 29=130.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)31.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上点M (m ,-2)到焦点的距离为4,则m 的值为( ) A .4或-4 B .-2 C .4 D .2或-232.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( ) +y 2=1 +y 22=1 +y 23=1 +y 24=133.椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点到两焦点的距离分别为d 1,d 2,焦距为2c ,若d 1,2c ,d 2成等差数列,则椭圆的离心率为( )34.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=y -12B .x 2=2y -116C .x 2=2y -1D .x 2=2y -235.已知双曲线222x y 1a 2a 2-=(>)的两条渐近线的夹角为3π,则双曲线的离心率为( )(A )233 (B )263(C )3 (D )2 二、填空1.过点P(-2, -4)的抛物线的标准方程为2、已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段AB 的中点坐标是 3、在抛物线y=x 2上的点___________处的切线倾斜角为4π 4.椭圆x 2+4y 2=16被直线y =x +1截得的弦长为 .5.若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则b 等于________.6.若中心在坐标原点,对称轴为坐标轴的椭圆经过点(4,0),离心率为32,则椭圆的标准方程为________.7.设F 1和F 2是双曲线x24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为________.8.过双曲线C :x2a2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.9.以抛物线2y 83x =的焦点F 为右焦点,且两条渐近线是x 3y=0的双曲线方程为______. 三、解答题1.(10分)已知抛物线y 2=6x ,过点P (4,1)引一条弦P 1P 2使它恰好被点P 平分,求这条弦所在的直线方程及|P 1P 2|.2.(12分)双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的标准方程.3.已知双曲线的中心在原点,焦点为F 1()022,-,F 2(0,22),且离心率324e =曲线的标准方程.4.设21,F F 分别为椭圆C :)0(12222>>=+b a by a x 的左右两个焦点,椭圆上的点A (1,23)到21,F F 两点的距离之和等于4,求:①写出椭圆C 的方程和焦点坐标②过1F 且倾斜角为30°的直线,交椭圆于A,B 两点,求△AB 2F 的周长5.已知抛物线顶点在原点,焦点在y 轴上,抛物线上一点M (a , 4)到焦点的距离等于5,求抛物线的方程和a 值。

最新高二人教版数学选修1-1练习:2章试卷 Word版含答案

最新高二人教版数学选修1-1练习:2章试卷 Word版含答案

最新人教版数学精品教学资料一、选择题(本大题共10小题,每小题5分,共50分)1.(2014·青岛质检)双曲线x 24-y 25=1的渐近线方程为(B )A .y =±54xB .y =±52xC .y =±55xD .y =±255x解析:由题意得双曲线x 24-y 25=1的渐近线方程为x 24-y 25=0,即y =±52x ,故选B.2.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为(A )A.53B.43C.54D.32解析:由b a =43,得b =43a .平方得b 2=169a 2.又b 2=c 2-a 2.代入,解得c a =53.3.(2014·浙江质检)椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为(A )A.14B.12 C .2 D .4解析:由椭圆x 2+my 2=1,得x 2+y 21m=1,∵焦点在y 轴上,长轴长是短轴长的两倍,∴21m =1,解得m =14.4.若抛物线y 2=-2px 的焦点与椭圆x 216+y 212=1的左焦点重合,则p 的值为(D )A .-2B .2C .-4D .6解析:∵椭圆的左焦点为(-2,0),抛物线的焦点为⎝⎛⎭⎫p 2,0,∴p2=3,p =6. 5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是(B )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)解析:∵F (1,0),设A (x 0,y 0)是抛物线上一点,则有y 20=4x 0.又OA →·AF →=-4, ∴(x 0,y 0)·(1-x 0,-y 0)=-4,化简得, x 20+3x 0-4=0.解得x 0=1,x 0=-4(舍去). 将x 0=1代入抛物线方程,得y 0=±2.6.曲线x 210-m +y 26-m =1(m <6)与曲线x 25-m +y 29-m=1(5<m <9)的(A )A .焦距相等B .离心率相等C .焦点相同D .准线相同解析:∵m <6,∴曲线x 210-m +y 26-m=1为焦点在x 轴上的椭圆.∴c 2=(10-m )-(6-m )=4,c =2,∴2c =4.又5<m <9,∴曲线x 25-m +y 29-m =1为焦点在y 轴上的双曲线,即y 29-m -x 2m -5=1.∴c 2=(9-m )+(m -5)=4,c =2,∴2c =4.7.(2014·东三省四市联考)以椭圆x 28+y 25=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的渐近线方程为(D )A .y =±35xB .y =±53xC .y =±155xD .y =±153x解析:依题意得双曲线的实轴为2a =28-5=23,焦距2c =28=42,b =c 2-a 2=8-3=5,因此该双曲线渐近线方程是y =±b a x =±153x ,故选D.8.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 为(A )A .-14B .-4C .4 D.14解析:将双曲线方程化为标准形式,得y 21-x 2-1m=1.∴a 2=1,b 2=-1m.根据题意,得2b =2·2a .即2-1m=4.∴m =-14.9.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·PN →=0,则动点P (x ,y )的轨迹方程为(B )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析:设点P (x ,y ),∵|MN |=4,|MP |=(x +2)2+y 2,又 MN →·PN →=(4,0)·(2-x ,-y )=4(2-x ),∴4(x +2)2+y 2=-4(2-x ),化简得,y 2=-8x .10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C )A .(1,2)B .(1,2)C .[2,+∞)D .(2,+∞)解析:∵双曲线的渐近线方程为y =±bax ,又倾斜角为60°的直线的斜率为3,所以根据题意,得ba≥3,即b ≥3a .两边平方得,b 2≥3a 2.又b 2=c 2-a 2,∴ca≥2.二、填空题(本大题共4小题,每小题5分,共20分)11.已知双曲线中心在原点,一个焦点的坐标为(3,0),且焦距与虚轴长之比为5∶4,则双曲线的标准方程是________________.解析:可知焦点在x 轴上,c =3,又2c ∶2b =5∶4,∴5b =4c =12,b =125.根据a 2=c 2-b 2=9-⎝⎛⎭⎫1252=8125,故所求的双曲线方程为x 28125-y 214425=1.答案:x 28125-y214425=112.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为__________.解析:设抛物线为y 2=kx ,与y =x 联立方程组,消去y ,得:x 2-kx =0,x 1+x 2=k =2×2,故y 2=4x .答案:y 2=4x 13.(2014·郴州二监)过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB |=10,则AB 的中点P 到y 轴的距离等于________.解析:抛物线y 2=4x 焦点为E (1,0),准线为x =-1,过点A ,B ,P 分别作准线的垂线,垂足分别为点C ,D ,F ,PF 交y 轴于点H ,如图所示,则PF 为直角梯形ABCD 的中位线,|PF |=|AC |+|BD |2=|AE |+|BE |2=|AB |2=5,故|PH |=|PF |-1=4,即AB 的中点P 到y 轴的距离等于4.14. ax 2+by 2=1与直线y =-x +1交于A 、B 两点,过原点与线段AB 中点的直线斜率为22,则ab=________. 解析:设A (x 1,y 1),B (x 2,y 2),则ax 21+by 21=1,①ax 22+by 22=1,② ①-②可得:a (x 1-x 2)(x 1+x 2)+b (y 1-y 2)(y 1+y 2)=0,从而得a b =-(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-(-1)×22=22.答案:22三、解答题(本大题共6小题,共80分)15.(12分)已知A (2,0)、定圆M :(x +2)2+y 2=25,P 是圆上的动点,线段AP 的垂直平分线交MP 于Q ,求Q 的轨迹方程.解析:如图,|QP |=|QA |,∴|QM |+|QA |=|QM |+|QP |=|MP |=5. ∴动点Q 的轨迹是椭圆,又∵2a =5,c =2,∴b 2=a 2-c 2=94,∴Q 的轨迹方程为x 2254+y294=1.16.(12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P ⎝⎛⎭⎫32,6,求抛物线的方程和双曲线的方程.解析:依题意,设抛物线的方程为y 2=2px (p >0),∵点P ⎝⎛⎭⎫32,6在抛物线上∴6=2p ×32. ∴p =2,∴所求抛物线的方程为y 2=4x .∵双曲线的左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点P ⎝⎛⎭⎫32,6在双曲线上,∴94a 2-6b2=1, 解方程组⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1,得⎩⎨⎧a 2=14,b 2=34,或⎩⎪⎨⎪⎧a 2=9b 2=-8,(舍去). ∴所求双曲线的方程为4x 2-43y 2=1.17.(14分)已知抛物线方程为y 2=2x ,在y 轴上截距为2的直线l 与抛物线交于M ,N 两点,O 为坐标原点.若OM ⊥ON ,求直线l 的方程.解析:设直线l 的方程为y =kx +2, 由⎩⎪⎨⎪⎧y 2=2x ,y =kx +2,消去x 得ky 2-2y +4=0. ∵直线l 与抛物线相交, ∴⎩⎪⎨⎪⎧k ≠0,Δ=4-16k >0,解得k <14且k ≠0.设M (x 1,y 1),N (x 2,y 2),则y 1y 2=4k,从而x 1x 2=y 212·y 222=4k2.∵OM ⊥ON ,∴x 1x 2+y 1y 2=0, 即4k 2+4k=0,解得k =-1符合题意, ∴直线l 的方程为y =-x +2.18.(14分)已知椭圆x 24+y 29=1及直线l :y =32x +m ,(1)当直线l 与该椭圆有公共点时,求实数m 的取值范围; (2)求直线l 被此椭圆截得的弦长的最大值.解析:(1)由⎩⎨⎧y =32x +m ,x 24+y29=1,消去y ,并整理得9x 2+6mx +2m 2-8=0.① 上面方程的判别式Δ=36m 2-36(2m 2-8)=-36(m 2-8). ∵直线l 与椭圆有公共点,∴Δ≥0,据此可解得-22≤m ≤2 2.故所求实数m 的取值范围为[-22,22].(2)设直线l 与椭圆的交点为A (x 1,y 1),B (x 2,y 2),由①得:x 1+x 2=-6m9,x 1x 2=2m 2-89,故|AB |=1+k2(x 1+x 2)2-4x 1x 2=1+⎝⎛⎭⎫322⎝⎛⎭⎫-6m 92-4×2m 2-89=133-m 2+8. 当m =0时,直线l 被椭圆截得的弦长的最大值为2263. 19.(2014·海淀二模)(14分)已知椭圆G 的离心率为22,其短轴两端点为A (0,1),B (0,-1).(1)求椭圆G 的方程;(2)若C 、D 是椭圆G 上关于y 轴对称的两个不同点,直线AC ,BD 与x 轴分别交于点M ,N ,判断以MN 为直径的圆是否过点A ,并说明理由.解析:(1)由已知可设椭圆G 的方程为x 2a 2+y 21=1(a >1).由e =22得e 2=a 2-1a 2=12,解得a 2=2,所以椭圆的标准方程为x 22+y 21=1.(2)设C (x 0,y 0),且x 0≠0,则D (-x 0,y 0). 因为A (0,1),B (0,-1),所以直线AC 的方程为y =y 0-1x 0x +1.令y =0,得x M =-x 0y 0-1,所以M ⎝⎛⎭⎫-x 0y 0-1,0. 同理直线BD 的方程为y =y 0+1-x 0x -1,求得N ⎝⎛⎭⎫-x 0y 0+1,0. AM →=⎝⎛⎭⎫x 01-y 0,-1,AN →=⎝⎛⎭⎫-x 01+y 0,-1, 所以AM →·AN →=-x 201-y 20+1,由C (x 0,y 0)在椭圆G :x 22+y 2=1上,所以x 20=2(1-y 20), 所以AM →·AN →=-1≠0,所以∠MAN ≠90°, 所以以线段MN 为直径的圆不过点A . 20.(14分)(2014·东三省四市联考)已知圆M 和圆P :x 2+y 2-22x -10=0相内切,且过定点Q (-2,0).(1)求动圆圆心M 的轨迹方程;(2)不垂直于坐标轴的直线l 与动圆圆心M 的轨迹交于A ,B 两点,且线段AB 的垂直平分线经过点⎝⎛⎭⎫0,-12,求△AOB (O 为原点)面积的最大值. 解析:(1)由已知|MP |=23-|MQ |,即|MP |+|MQ |=23,且23大于|PQ |,所以M 的轨迹是以(-2,0),(2,0)为焦点,23为长轴长的椭圆,即其方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2)且过AB 的直线l 的方程为y =kx +t , 代入椭圆方程得(3k 2+1)x 2+6ktx +3t 2-3=0, 因为方程有两个不同的解,所以Δ=4(9k 2+3-3t 2)>0,即3k 2+1>t 2,①又因为x 1+x 2=-6kt 3k 2+1,所以x 1+x 22=-3kt3k 2+1,y 1+y 22=t3k 2+1, 所以y 1+y 22+12x 1+x 22-0=-1k ,化简得到3k 2+1=4t ,②综合①②得0<t <4,又原点到直线的距离为d =|t |k 2+1,|AB |=1+k 2|x 1-x 2|=1+k 2 4(9k 2+3-3t 2)3k 2+1,化简得S △ABO =143(4t -t 2),所以当t =2,即k =±73时,S △AOB 取最大值32.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2→| =(C )A.32B.3C.72D .4 2.抛物线的顶点和椭圆x 225+y 29=1的中心重合,抛物线的焦点和椭圆x 225+y 29=1的右焦点重合,则抛物线的方程为(A )A .y 2=16xB .y 2=8xC .y 2=12xD .y 2=6x3.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是(C )A .m >12B .m ≥1C .m >1D .m >2解析:由e 2=⎝⎛⎭⎫c a 2=1+m 1=1+m >2,m >1.4.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为(B )A.x 236-y 2108=1B.x 29-y 227=1C.x 2108-y 236=1D.x 227-y 29=1 解析:本题主要考查双曲线与抛物线的几何性质与标准方程,属于容易题.依题意知⎩⎨⎧ba=3,c =6,c 2=a 2+b 2,⇒a 2=9,b 2=27,所以双曲线的方程为x 29-y 227=1.5.(2013·惠州一调)已知实数4,m ,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为(C )A.306 B.7 C.306或7 D.56或7解析:因4,m ,9成等比数列,则m 2=36,∴m =±6.当m =6时圆锥曲线为椭圆x 26+y 2=1,其离心率为306;当m =-6时圆锥曲线为双曲线y 2-x26=1,其离心率为7,故选C.6.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是(B)A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)解析:如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|,当且仅当A ,P ,N 三点共线时取等号,∴P 点的横坐标与A 点的横坐标相同即为1,则可排除A 、C 、D 项,故选B.7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为(C)A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25=y 24=1 解析:依题意可设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则A ⎝⎛⎭⎫1,b 2a ,B ⎝⎛⎭⎫1,-b 2a ,又|AB |=b 2a-⎝⎛⎭⎫-b 2a =2b 2a =3,∴2b 2=3a .又a 2-b 2=c 2=1,∴a =2,b = 3.故C 的方程为x 24+y23=1. 8.(2013·新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为(C )A .2B .2 2C .2 3D .4解析:设P (a ,b )为抛物线上在第一象限内的点,则a +2=42,得a =32,因为点P (a ,b )在抛物线上,所以b =26,所以S △POF =12×2×26=23,故选C.9.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点(B ) A .(4,0) B .(2,0) C .(0,2) D .(0,-2)解析:直线x +2=0是抛物线的准线,又动圆圆心在抛物线上,由抛物线的定义知,动圆必过抛物线的焦点(2,0).10.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是(C)A .x 2=y -12B .x 2=2y -116C .x 2=2y -1D .x 2=2y -2解析:由y =14x 2⇒x 2=4y ,焦点F (0,1),设PF 中点Q (x ,y )、P (x 0,y 0), 则⎩⎪⎨⎪⎧2x =0+x 0,2y =1+y 0,4y 0=x 20,∴x 2=2y -1. 11.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是(C )A .(5,0)或(-5,0) B.⎝⎛⎭⎫52,332或⎝⎛⎭⎫52,-332C .(0,3)或(0,-3) D.⎝⎛⎭⎫532,32或⎝⎛⎭⎫-532,32解析:|PF 1|+|PF 2|=2a =10,∴|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1||PF 2|22=25.当且仅当|PF 1|=|PF 2|=5时,取得最大值, 此时P 点是短轴端点,故选C.12.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率的取值范围是(C )A .(1,3)B .(1,2)C .(1,3]D .(1,2]解析:|PF 2|2|PF 1|=(|PF 1|2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当|PF 1|=4a 2|PF 1|,即|PF 1|=2a 时取等号.又|PF 1|≥c -a ,∴2a ≥c -a .∴c ≤3a ,即e ≤3.∴双曲线的离心率的取值范围是(1,3].二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上)13.抛物线y 2=8x 上一个点P (P 在x 轴上方)到焦点的距离是8,此时P 点的坐标是________. 答案:()6,4314.与椭圆x 24+y 23=1具有相同的离心率且过点(2,-3)的椭圆的标准方程是________________________________________________________________________.答案:x 28+y 26=1或3y 225+4x 225=115.若直线y =32x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率是________.答案:216.抛物线y 2=x 上存在两点关于直线y =m (x -3)对称,则m 的范围是________________________________________________________________________.解析:设抛物线上两点A (x 1,y 1),B (x 2,y 2)关于直线y =m (x -3)对称,A ,B 中点M (x ,y ),则当m =0时,有直线y =0,显然存在点关于它对称.当m ≠0时,⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2⇒y 1-y 2x 1-x 2=1y 1+y 2=12y =-1m ,所以y =-m 2,所以M 的坐标为(52,-m 2),∵M 在抛物线内,则有52>(m2)2,得-10<m <10且m ≠0,综上所述,m ∈(-10,10). 答案:(-10,10)三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)求适合下列条件的双曲线的标准方程:(1)焦点在 x 轴上,虚轴长为12,离心率为 54;(2)顶点间的距离为6,渐近线方程为y =±32x .解析:(1)焦点在x 轴上,设所求双曲线的方程 为x 2a 2-y 2b 2=1.由题意,得 ⎩⎨⎧2b =12,c a =54,b 2=c 2-a 2.解得a =8,b =6,c =10. 所以焦点在x 轴上的双曲线的方程为 x 264-y 236=1. (2)当焦点在x 轴上时,设所求双曲线的方程为 x 2a 2-y 2b 2=1 由题意,得⎩⎪⎨⎪⎧2a =6,b a =32.解得a =3,b =92.所以焦点在x 轴上的双曲线的方程为 x 29-y 2814=1. 同理可求当焦点在y 轴上双曲线的方程为 y 29-x 24=1. 故所求双曲线的方程为x 29-y 2814=1或y 29-x 24=1. 18.(12分) 已知椭圆C 的焦点F 1(-22,0)和F 2(22,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.解析:由已知条件得椭圆的焦点在x 轴上,其中c =22,a =3,从而b =1,所以其标准方程是 x29+y 2=1.联立方程组⎩⎪⎨⎪⎧x 29+y 2=1,y =x +2,消去y 得,10x 2+36x +27=0.设A (x 1,y 1),B (x 2,y 2),AB 线段的中点为M (x 0,y 0),那么:x 1+x 2=-185, x 0=x 1+x 22=-95. 所以y 0=x 0+2=15.也就是说线段AB 的中点坐标为⎝⎛⎭⎫-95,15. 19.(12分)中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3∶7.求这两条曲线的方程.解析:设椭圆的方程为x 2a 21+y 2b 21=1,双曲线的方程为x 2a 22-y2b 22=1,半焦距c =13, 由已知得:a 1-a 2=4, c a 1∶ca 2=3∶7,解得:a 1=7,a 2=3. 所以:b 21=36,b 22=4,故所求两条曲线的方程分别为:x 249+y 236=1 ,x 29-y 24=1.20. (12分)已知动点P 与平面上两定点A (-2,0)、B (2,0)连线的斜率的积为定值-12.(1)试求动点P 的轨迹方程C ;(2)设直线l :y =kx +1与曲线C 交于M 、N 两点,当|MN |=423时,求直线l 的方程.解析:(1)设点P (x ,y ),则依题意有 y x +2·y x -2=-12,整理得x 22+y 2=1.由于x ≠±2,所以求得的曲线C 的方程为x22+y 2=1(x ≠±2). (2)联立方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +1,消去y 得:(1+2k 2)x 2+4kx =0. 解得x 1=0, x 2=-4k1+2k 2(x 1,x 2分别为M ,N 的横坐标).由|MN |=1+k 2|x 1-x 2|=1+k 2⎪⎪⎪⎪4k 1+2k 2=432,解得:k =±1.所以直线l 的方程x -y +1=0或x +y -1=0.21.(12分)设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),抛物线C 2:x 2+by =b 2. (1)若C 2经过C 1的两个焦点,求C 1的离心率;(2)设A (0,b ),Q ⎝⎛⎭⎫33,54b ,又M ,N 为C 1与C 2不在y 轴上的两个交点,若△AMN 的垂心为B ⎝⎛⎭⎫0,34b ,且△QMN 的重心在C 2上,求椭圆C 1和抛物线C 2的方程. 解析:(1)由已知椭圆焦点(c ,0)在抛物线上,可得c 2=b 2,由a 2=b 2+c 2=2c 2,有c 2a 2=12⇒e =22.(2)由题设可知M 、N 关于y 轴对称,设M (-x 1,y 1),N (x 1,y 1)(x 1>0),由△AMN 的垂心为B ,有BM →·AN →=0⇒-x 21+⎝⎛⎭⎫y 1-34b (y 1-b )=0 由点N (x 1,y 1)在抛物线上,x 21+by 1=b 2,解得y 1=-b 4,或y 1=b (舍去), 故x 1=52b ,M ⎝⎛⎭⎫-52b ,-b 4,N ⎝⎛⎭⎫52b ,-b 4, 得△QMN 重心坐标⎝⎛⎭⎫3,b 4. 由重心在抛物线上得3+b 24=b 2, ∴b =2,M ⎝⎛⎭⎫-5,-12,N ⎝⎛⎭⎫5,-12, 又∵M ,N 在椭圆上,得a 2=163, 椭圆方程为x 2163+y 24=1, 抛物线方程为x 2+2y =4.22.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63. 过点A (0,-b )和B (a ,0)的直线与原点的距离为32. (1)求椭圆的方程;(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C ,D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点,请说明理由.解析:(1)直线AB 方程为:bx -ay -ab =0.依题意⎩⎪⎨⎪⎧c a =63,ab a 2+b 2=32,解得⎩⎪⎨⎪⎧a =3,b =1. ∴椭圆方程为x 23+y 2=1. (2)假若存在这样的k 值,由⎩⎪⎨⎪⎧y =kx +2,x 2+3y 2-3=0,得 (1+3k 2)x 2+12kx +9=0.∴Δ=(12k )2-36(1+3k 2)>0.①设C (x 1,y 1),D (x 2,y 2),则⎩⎨⎧x 1+x 2=-12k 1+3k 2,x 1·x 2=91+3k 2.② 而y 1·y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4. 要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则y 1x 1+1·y 2x 2+1=-1. 即y 1y 2+(x 1+1)(x 2+1)=0.∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0.③将②式代入③整理解得k =76.经验证k =76使①成立. 综上可知,存在k =76,使得以CD 为直径的圆过点E .。

高二数学选修1-1第一、二章测试题

高二数学选修1-1第一、二章测试题

高二数学选修1-1第一、二章测试题班级: 姓名: 座号: 一.选择题(本大题共12小题,每小题4分,共48分)1. “21sin =A ”是“︒=30A ”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 2. 平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么( )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C . 甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件3.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,4.双曲线121022=-y x 的焦距为( ) A .22 B .24 C .32 D .345. 已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A. 2 3 B . 6 C . 4 3 D . 126. 双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±=7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .B .C .12D .138.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x9. 已知双曲线x 2a 2-y 2b2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )A .53B. 43C . 54D. 3210.抛物线281x y -=的准线方程是 ( )A . 321=xB .2=yC . 321=y D .2-=y11.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .412. 抛物线214x y =-的一点M 到焦点的距离为1,则点M 的纵坐标是:( ) A .17-B .15-C .7D .1513. 椭圆2214x y +=的离心率为 .14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = .15.已知双曲线11222-=-+ny n x n = . 16.已知抛物线的方程是x y 82=,双曲线的右焦点是抛物线的焦点,离心率为2,则双曲线的标准方程是 .三.解答题(本大题共5小题,共40分) 17.(12分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆;(2)抛物线的焦点是双曲线14491622=-y x 的左顶点.(3) 顶点间的距离为6,渐近线方程为x y 23±=的双曲线。

人教版高二数学选修1-1第二章测试题

人教版高二数学选修1-1第二章测试题

高二数学选修1-1第二章测试题一、选择题1.椭圆1422=+y x 的离心率为 ( ) A .21 B .23 C . ±21D .±232. 如果椭圆22110036x y +=上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离为( )A . 10B . 6C . 12D . 143.双曲线19422=-y x 的渐近线方程是 ( )A .x y 23±= B .x y 32±= C .x y 49±= D .x y 94±= 4. 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )5. 方程11422=-+-t y t x 表示的曲线为C,给出下面四个命题,其中正确命题的个数是①若曲线C 为椭圆,则1<t<4 ②若曲线C 为双曲线,则t<1或t>4 ③曲线C 不可能是圆 ④若曲线C 表示焦点在x 轴上的椭圆,则1<t<23 A.1 B.2 C.3 D.46. 3k >是方程22131x y k k +=--表示双曲线的( )条件。

A .充分但不必要 B .充要 C .必要但不充分 D .既不充分也不必要 7.抛物线24(0)y ax a =<的焦点坐标是( ) A .1(,0)4a B .1(0,)16a C .1(0,)16a -D . 1(,0)16a8.过点(0,2)与抛物线28y x =只有一个公共点的直线有( ) A .1条 B .2条 C .3条 D .无数多条9.设12,F F 为双曲线2214x y -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅= ,则12F PF ∆的面积是( ) A .1 B .C .D .210.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为31,则椭圆的方程是( ) A.1442x +1282y =1 B.362x +202y =1 C.322x +362y =1 D.362x +322y =1 11.双曲线22a x -22by =1的两条渐近线互相垂直,那么它的离心率为( )A.2B.3C.2D.23 12.动圆C 经过定点F(0,2)且与直线y+2=0相切,则动圆的圆心C 的轨迹方程是( )A.x 2=8yB.y 2=8x C.y=2D.x=213.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x14. 若椭圆22221(0)x y a b a b +=>>,则双曲线22221x y a b-=的离心率是( )A .54B .2C .32D . 415.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14B .12C . 2D .4 16. 若双曲线1922=-my x 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为 ( ) A .2B .14C .5D .2517.“ab <0”是“方程ax 2+by 2=c 表示双曲线”的 ( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )非充分非必要条件 二、填空题18.过点P(-2, -4)的抛物线的标准方程为19、已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段AB 的中点坐标是 20、在抛物线y=x 2上的点___________处的切线倾斜角为4π 21.椭圆x 2+4y 2=16被直线y =x +1截得的弦长为 . 三、解答题22.已知双曲线的中心在原点,焦点为F 1()022,-,F 2(0,22),且离心率e =线的标准方程.23.设21,F F 分别为椭圆C :)0(12222>>=+b a by a x 的左右两个焦点,椭圆上的点A (1,23)到21,F F 两点的距离之和等于4,求:①写出椭圆C 的方程和焦点坐标②过1F 且倾斜角为30°的直线,交椭圆于A,B 两点,求△AB 2F 的周长24.已知抛物线顶点在原点,焦点在y 轴上,抛物线上一点M (a , 4)到焦点的距离等于5,求抛物线的方程和a 值。

(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(2)

(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(2)

一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D 2.平面α内有一条直线m ,过平面α外一点P 作直线n 与m 所成角为6π,则直线n 与平面α交点的轨迹是( ) A .直线B .抛物线C .椭圆D .双曲线3.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54 B .45C .43D .344.已知椭圆22:13620x y C +=的右焦点是F ,直线()0y kx k =≠与椭圆C 交于A 、B 两点,则222AF BF +的最小值是( ) A .36B .48C .72D .965.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .46.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1167.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .48.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分9.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .2y x =±D .y =11.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .812.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.已知双曲线()22210y x a a -=>的离心率e =12,F F 分别是它的下焦点和上焦点,若Р为该双曲线上支上的一个动点,则1PF 与P 到一条渐近线的距离之和的最小值为_________.14.双曲线()222210,0x y a b a b-->>的左右焦点分别为1F ,2F ,过1F 作直线l 与双曲线有唯一交点P ,若124sin 5F PF ∠=,则该双曲线的离心率为___________. 15.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l交椭圆C 于A B 、两点,则1F AB 的面积为___________.16.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.17.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.18.已知椭圆222:1(06)6x y G b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+.当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个;③||OP 的最小值为2,其中,所有正确命题的序号是___________.19.已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,则该双曲线的离心率的取值范围___________.20.在平面直角坐标系xOy 中,已知双曲线22:17y x Γ-=的两个焦点分别为1F ,2F ,以2F 为圆心,12F F 长为半径的圆与双曲线Γ的一条渐近线交于M ,N 两点,若OM ON ≥,则OMON的值为________. 三、解答题21.已知抛物线2:2(0)C y px p =>的焦点F 到直线:l y x =的距离为2,A B ,为抛物线C 上两个动点,满足线段AB 的中点M 在直线l 上,点(0,2)N .(1)求抛物线C 的方程; (2)求NAB △面积的取值范围.22.在平面直角坐标系xOy 中,已知两点()1,0M -,()1,0N ,动点Q 到点M 的距离为,线段NQ 的垂直平分线交线段MQ 于点K ,设点K 的轨迹为曲线E . (1)求曲线E 的方程;(2)已知点()2,0P ,设直线l :10x my +-=与曲线E 交于A ,B 两点,求证:OPA OPB ∠=∠.23.设1F 、2F 分别是椭圆2214xy +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求1PF ·2PF 的取值范围;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.24.已知椭圆()2222:10x y C a b a b+=>>经过点()2,1A ,椭圆C 在点A 处的切线方程为3y x =-+.(1)求椭圆C 的方程;(2)设过点()3,0B 且与x 轴不重合的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 分别与直线3x =-分别交于P ,Q ,记点P,Q 的纵坐标分别为p ,q ,求p q +的值.25.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别为1F 、2F ,点M 为短轴的一个端点,离心率为12,12MF F △的面积S = (1)求椭圆C 的方程;(2)设A 是椭圆上的一点,B 是点A 关于x 轴的对称点,P 是椭圆C 上异于A 、B 的任意一点,且直线PA 、PB 分别于x 轴交于不同的点C 、D ,O 为坐标原点,求POC POD S S ⋅△△的最大值,并求出此时P 点的坐标26.已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ∆的面积为92. (1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得62ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.D解析:D 【分析】过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系,设出坐标,分别表示出直线AB 与PM 的方向向量,利用夹角公式即可得出. 【详解】解:过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系.不妨设1OP =,30PBO ∠=︒,OB ∴=. 则(0P ,0,1),B .设点(Q x ,y ,0),则(,,1)PQ x y =-,取直线m 的方向向量为(0,1,0)u =. 直线AB 与PQ 所成的角为30,2||cos30||||PQ u PQ u x ∴︒===+化为2213yx-=,即为点Q的轨迹.故选:D.【点睛】熟练掌握通过建立如图所示的空间直角坐标系利用异面直线的夹角公式求得轨迹的方法是解题的关键.3.D解析:D【分析】设112233(,),(,),(,)P x y Q x y G x y,则可得切线,GP GQ的方程,即可得到直线PQ的方程,进而可求出点点,M N的坐标,再结椭圆方程可求出2231OM ON+的值【详解】解:设112233(,),(,),(,)P x y Q x y G x y,则切线GP的方程为114x x y y+=,切线GQ的方程为224x x y y+=,因为点G在切线,GP GQ上,所以13134x x y y+=,23234x x y y+=,所以直线PQ的方程为334x x y y+=,所以3344(,0),(0,)M Nx y,因为点33(,)G x y在椭圆221124y x+=上,所以2233312x y+=,所以22223333223311123(3)161616164x yx yOM ON+=+=+==,故选:D【点睛】关键点点睛:此题考查椭圆的标准方程,以及简单性质有应用,解题的关键是设点33(,)G x y ,再由已知条件得到直线PQ 的方程为334x x y y +=,从而可得,M N 的坐标,进而可得答案,考查计算能力和转化能力,属于中档题4.D解析:D 【分析】求得2AF BF a +=,结合a c BF a c -<<+,利用二次函数的基本性质可求得222AF BF +的最小值.【详解】设椭圆C 的左焦点为F ',在椭圆C 中,6a =,25b =,则224c a b =-=,由题意可知,点A 、B 关于原点对称,且O 为FF '的中点, 所以,四边形AFBF '为平行四边形,所以,BF AF '=,由椭圆的定义可得212AF BF AF AF a '+=+==,0k ≠,a c BF a c ∴-<<+,即210BF <<,()()2222222122324144349696AF BF BFBF BF BF BF ∴+=-+=-+=-+≥,当且仅当4BF =时,等号成立,因此,222AF BF +的最小值为96. 故选:D. 【点睛】关键点点睛:解决本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应曲线的定义,本题中利用对称性结合椭圆定义可得出AF BF +;(2)利用椭圆的几何性质得出焦半径的取值范围.5.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =,故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 的最小值为22即m 2, 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.6.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 7.B解析:B 【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】 如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.8.D解析:D 【分析】由题意画出图形,可知点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线. 【详解】如图,点P 是侧面11BCC B 内的一动点,点P 到直线1BB 的距离即为点P 到面11ABB A 的距离, 因为点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线, 故选:D . 【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.9.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).10.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-,即112122,M F F D F DE M =∴=,可知四边形12MF DE 为平行四边形;又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故==ce a, 故双曲线C的渐近线方程为y = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.11.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点,所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】根据离心率先求出双曲线的方程得出渐近线方程根据双曲线的定义可得:所以设点到一条渐进线的距离为则从而得出答案【详解】双曲线的离心率所以解得所以双曲线由的双曲线的渐进线方程为由为该双曲线上支上的 解析:5【分析】根据离心率先求出双曲线的方程,得出渐近线方程,根据双曲线的定义可得:1224PF PF a -==,所以124PF PF =+,设点Р到一条渐进线的距离为d ,则124PF d PF d +=++,从而得出答案.【详解】双曲线()22210y x a a -=>的离心率e =所以221514e a =+=,解得2a =,所以((120,,F F 双曲线2214y x -=,由2204y x -=,的双曲线的渐进线方程为2y x =±由Р为该双曲线上支上的一个动点,根据双曲线的定义可得:1224PF PF a -== 所以124PF PF =+,设点Р到渐进线2y x =的距离为d则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,垂足为M ,如图.所以21F M ==所以122445PF d PF d F M +=++≥+=同理1PF 与P 到渐近线2y x =-的距离之和的最小值为5 故答案为:5【点睛】关键点睛:本题考查利用双曲线的定义解决距离之和的最值问题,解答本题的关键是根据双曲线的定义可得:1224PF PF a -==,所以124PFPF =+,设点Р到渐进线2y x =的距离为d ,则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,属于中档题.14.或【分析】首先设出直线的方程与双曲线方程联立求得点的坐标利用弦长公式求得并根据定义表示中根据余弦定理表示再求离心率【详解】如图当直线与渐近线平行时与双曲线有唯一交点设与双曲线方程联立得解得:中由余弦217 【分析】首先设出直线l 的方程,与双曲线方程联立,求得点P 的坐标,利用弦长公式求得1PF ,并根据定义表示2PF ,12F PF △中,根据余弦定理表示12281cos 3F PF e ∴-∠=+,再求离心率. 【详解】如图,当直线与渐近线平行时,l 与双曲线有唯一交点P ,设():bl y x c a=+,与双曲线方程联立,得222cx a c -=+,解得:22a cx c+=-,()22222122122P b c a c b PF c c a a c a +=+--=+=,2221422b a PF PF a a +=+=,122F F c =, 12F PF △中,124sin 5F PF ∠=,123cos 5F PF ∴∠=±, 由余弦定理222121212122cos F F PF PF PF PF F PF =+-∠()()212121221cos PF PF PF PF F PF =-+-∠,()()()2222212244221cos 4b a b c a F PF a+∴=+⋅-∠,2212222228881cos 433a a F PFb ac a e ∴-∠===+++, 当123cos 5F PF ∠=时,28235e =+,17e =, 当123cos 5F PF ∠=-时,28835e =+,2e =,172 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积 解析:1227【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0,∴121269,77y y y y +=-=-12211111|||227|2227F AB S F F y y -∴=⨯=⨯⨯==△即1F AB 的面积为7【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 16.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==11122OABSO y O y A B ==12⨯=≥=,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 17.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 18.①③【分析】运用椭圆的定义可得也在椭圆上分别画出两个椭圆的图形即可判断①正确;通过的变化可得②不正确;由图象可得当的横坐标和纵坐标的绝对值相等时的值取得最小即可判断③【详解】解:椭圆的两个焦点分别为解析:①③ 【分析】运用椭圆的定义可得P 也在椭圆222166y x b+=-上,分别画出两个椭圆的图形,即可判断①正确;通过b 的变化,可得②不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时,||OP 的值取得最小,即可判断③.【详解】解:椭圆222:1(06x y G b b+=<<的两个焦点分别为1F ,0)和2(F 0),短轴的两个端点分别为1(0,)B b -和2(0,)B b ,设(,)P x y ,点P 在椭圆G 上,且满足1212||||||||PB PB PF PF +=+,由椭圆定义可得,12||||22PB PB a b +==>,即有P 在椭圆222166y x b+=-上. 对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称, 故①正确;对于②,由图象可得轨迹关于x ,y 轴对称,且0b <<则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 仅有两个,故②不正确;对于③,点P 靠近坐标轴时(0b →或b →,||OP 越大,点P 远离坐标轴时,||OP 越小,所以226b b -=,即23b =时,取得最小值,此时22:163x y G +=,与22163y x +=两方程相加得222222x y +=⇒=,即||OP 的最小值为 2,故③正确.故答案为:①③.【点睛】本题考查椭圆的对称性及由椭圆上的点到焦点的距离之和等于到短轴的顶点距离之和可得另一个椭圆,及到定点距离的最值的判断.19.【分析】作出图形根据已知条件可得出与的大小关系再利用公式可求得双曲线的离心率的取值范围【详解】如下图所示双曲线的渐近线方程为由于过点且倾斜角为的直线与双曲线的右支有且只有一个公共点由图可知直线的倾斜解析:23,⎡⎫+∞⎪⎢⎪⎣⎭【分析】作出图形,根据已知条件可得出b a 与tan 6π的大小关系,再利用公式21b e a ⎛⎫=+ ⎪⎝⎭可求得双曲线的离心率的取值范围. 【详解】如下图所示,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,由于过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,由图可知,直线by xa=的倾斜角6πα≥,所以,tan63baπ≥=,因此,cea====≥所以,该双曲线的离心率为取值范围是3⎡⎫+∞⎪⎢⎪⎣⎭.故答案为:3⎡⎫+∞⎪⎢⎪⎣⎭.【点睛】方法点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a、b、c的齐次关系式,将b用a、e表示,令两边同除以a或2a化为e的关系式,进而求解.20.【分析】求出双曲线的两个焦点坐标和渐近线方程再求圆的方程与渐近线方程联立可得MN两点的横坐标由即为横坐标的绝对值的比可得答案【详解】由已知得取双曲线的一条渐近线所以圆的方程为由整理得解得取双曲线的另解析:32【分析】求出双曲线的两个焦点坐标和渐近线方程,再求圆的方程与渐近线方程联立可得M,N两点的横坐标,由OMON即为横坐标的绝对值的比可得答案.【详解】由已知得2221,7,8a b c===,2c=,12(F F-,取双曲线的一条渐近线y=,所以圆的方程为(2232x y+=-,由(2232yx y⎧=⎪⎨-+=⎪⎩整理得2260x-=,解得2NMx x==,32MNMOxxON===.取双曲线的另一条渐近线y=,(2232yx y⎧=⎪⎨-+=⎪⎩整理得2260x-=与上同,综上32OMON=.故答案为:32. 【点睛】关键点点睛:本题考查了直线与双曲线、圆的位置关系,解答本题的关键是求出渐近线与圆的方程然后联立,得到M ,N 两点的横坐标再由绝对值做比值,考查了学生的运算求解能力.三、解答题21.(1)24y x =;(2)(0,4]. 【分析】(1)利用抛物线焦点F 到直线l的距离为2,求出抛物线方程; (2)设出直线AB 的方程与抛物线方程联立,由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法得出NAB △面积的取值范围. 【详解】(1),02p F ⎛⎫ ⎪⎝⎭由2pd ==,解得2p = 所以抛物线方程为24y x =(2)设直线AB 的方程为:221212,,,,44y y x my t A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭联立方程组24y x x my t ⎧=⎨=+⎩,消去x 得2440y my t --=所以121244y y m y y t +=⎧⎨=-⎩,得(2,2)M m m有2212444y y m +=,即()21212216y y y y m +-= 所以222t m m =- 点N 到AB的距离h =||AB ==所以1||2|2|2NABSAB h m t =⋅⋅=+42m m =-令u =u = 由24y xy x =⎧⎨=⎩,得l 与抛物线的两交点坐标为(0,0),(4,4), 因点M 在l 上可得(0,2)m ∈ 所以(0,1]μ∈ 得34(0,4]NABSu =∈【点睛】关键点点睛:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查面积公式,解决本题的关键点是由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法和函数的性质得出NAB △的面积的取值范围,考查了学生计算能力,属于中档题.22.(1)2212x y +=;(2)证明见解析.【分析】(1)利用中垂线的性质可得KN KQ =,从而得到2KM KN QM MN +==>=,利用椭圆的定义进行分析求解即可;(2)根据点P 的位置,确定OPA ∠,OPB ∠都是锐角,然后联立直线与椭圆的方程,得到韦达定理,再将问题转化为求证两个角的正切值相等,代入化简求解,即可证明. 【详解】(1)∵线段NQ 的垂直平分线交MQ 于点K ,∴||||KN KQ =,∴||||||||||2||KM KN KM KQ MQ MN +=+==>= ∴点K 的轨迹是以原点为中心,以,M N 为焦点的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则a =1c =,1b =,所以曲线E 的方程为2212x y +=(2)由221210x y x my ⎧+=⎪⎨⎪+-=⎩消去x 可得()222210m y my +--=.设()11,A x y ,()22,B x y ,则12222m y y m +=+,12212y y m =-+. 易知PA ,PB 的斜率存在,则()()121212121212122221111PA PB y y y y y y my y k k x x my my my my +++=+=+=-------++,又因为121222222022m my y my y m m ++=-=++ 所以0PA PB k k +=,所以OPA OPB ∠=∠. 【点睛】方法点睛:解答直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 23.(1)[]2,1-;(2)22k -<<-或22k <<. 【分析】(1)根据椭圆的标准方程可得())12,F F ,设(),P x y ,利用向量数量积的坐标运算可得()2121384PF PF x ⋅=-,再由[]2,2x ∈-即可求解. (2)由题意可得直线0x =不满足题设条件,可设直线:2l y kx =+,将直线与椭圆方程联立,消去y ,可得()221416120kxkx +++=,0∆>,且12120OA OB x x y y ⋅=>+,结合韦达定理即可求解.【详解】解:(1)易知2,1,a b c ===())12,F F ,设(),P x y,则())2212,,,3PF PF x y x y x y ⋅=---=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2-; 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1; ∴1PF ·2PF 的取值范围是[]2,1-(2)显然直线0x =不满足题设条件,可设直线:2l y kx =+,联立22244y kx x y =+⎧⎨+=⎩,消去y ,整理得:()221416120k x kx +++= 由题意,()()2216414120k k ∆=-+⋅>得2k <-或2k >,① 令()()1122,,,A x y B x y ,∴1212221612,1414k x x x x k k+=-=++∵AOB ∠为锐角,∴cos 0AOB ∠>即0OA OB ⋅>, ∴12120OA OB x x y y ⋅=>+又()()()2121212122224y y kx kx k x x k x x =++=+++22222212322044141414k k k k k k=-+=-++++ ∴2221220401414k OA OB k k⋅=-+>++,解得24k <, ∴22k -<<,② 故由①、②得22k -<<-或22k <<. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用数量积()2121384PF PF x ⋅=-,确定[]2,2x ∈-,并且根据题意得出0OA OB ⋅>,考查了运算求解能力.24.(1)22163x y +=;(2)12.【分析】(1)椭圆C 过点()2,1A ,()2,1B --,在点A 处的切线方程为3y x =-+,可用待定系数法求椭圆的标准方程;(2)用设而不求法把p ,q 表示出来,整理化简即可. 【详解】(1)由题意知椭圆C 在()2,1A 处的切线方程为2221x y a b +=也为3y x =-+,∴222113a a b b ⎧=⎪==⇒⎨=⎪⎩椭圆C 的方程为22163x y +=.(2)直线l 的方程为()3y k x =-,()11,M x y ,()22,N x y()()2222232696026y k x x k x x x y ⎧=-⇒+-+-=⎨+=⎩ ()222212121860k xk x k +-+-=直线AM 方程为:()111212y y x x -=-+-,令()1151312y x p x --=-⇒=+- 直线AN 方程为()221212y y x x -=-+-,令()2251312y x q x --=-⇒=+- ∴()()1212121231311152522222k x k x y y p q x x x x ⎡⎤----⎛⎫--+=-++=-++⎢⎥⎪----⎝⎭⎣⎦()()()()()121212122121452105122222k x k k x k x x k k x x x x ⎡⎤------+-=-++=-++⋅+⎢⎥----⎣⎦()()()222222221241210512186244121244105122210512212k k k k k k k kk k k k k k -+=-++⋅+--+++-=-++⋅+-=-++⋅+=.即12p q +=.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)22143x y+=;(2)POC PODS S⋅△△的最大值为3,此时P点坐标为(0,和(.【分析】(1)由面积得bc=,,a b c,得椭圆方程;(2)设()00,A x y,则()00,B x y-,不妨设y>,设()11,P x y,写出直线,PA PB方程,求得,C D两点的横坐标,计算C Dx x⋅,注意点,A P是椭圆上的点由此可得4C Dx x⋅=为常数,这样可计算出POC PODS S⋅△△=2Py,最大值易得.【详解】解:(1)由12ca=,2a c=,得b=,又12122MF FS c b=⨯⨯=△所以1c=,2a=,b=所以椭圆C的方程为22143x y+=(2)设()00,A x y,则()00,B x y-,不妨设y>,设()11,P x y则直线PA的方程为:()011101y yy y x xx x--=--,令y=,得100101Cx y x yxy y-=-,同理100101Dx y x yxy y+=+,所以222210012201C Dx y x yx xy y-⋅=-,又点A与点P均在椭圆上,故220413yx⎛⎫=-⎪⎝⎭,2211413yx⎛⎫=-⎪⎝⎭,得()222212201012222010141414334C Dyyy yy yx xy y y y⎛⎫⎛⎫---⎪⎪-⎝⎭⎝⎭⋅===--,所以4C DOC CD x x⋅=⋅=为定值,因为221114224POC POD P p p pS S OC y OD y y y⋅=⋅⋅⋅=⨯⨯=△△由P为椭圆上的一点,所以要使POC PODS S⋅△△最大,只要2py最大而2py最大为3,所以POC POD S S ⋅△△的最大值为3,此时P 点坐标为(0,和(. 【点睛】关键点点睛:本题考查由离心率求椭圆方程,考查椭圆中的最值问题,解题方法是解析几何的基本方程:设点,A P 坐标,:求直线方程,求交点坐标,计算面积之积,得出结论:即设点,A P 坐标,求出直线,AP BP 方程,求出交点,C D 的坐标(横坐标,纵坐标为0),而2111224POC POD P p C D p S S OC y OD y x x y ⋅=⋅⋅⋅=⨯⋅⨯△△,再计算CD x x ⋅可得最大值时P 点位置.26.(1)22143x y +=;(2)证明见解析.【分析】(1)根据椭圆离心率和椭圆的性质可知b =,再根据PQ x ⊥轴时,APQ 的面积为 92,由面积公式可知()212922b ac a +⋅=,由此即可求出椭圆方程; (2)设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知 12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线 BQ 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为 1x my =+,与椭圆22143x y +=联立,得 ()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,。

人教版数学高二同步文科选修1-1第二章椭圆的简单几何性质(二)

人教版数学高二同步文科选修1-1第二章椭圆的简单几何性质(二)

2.1.2椭圆的简单几何性质(二)[教材研读]预习课本P41例6,思考以下问题1.点与椭圆的位置关系如何判断?2.直线与椭圆的位置关系如何判断?[要点梳理]1.点与椭圆的位置关系点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系:点P在椭圆上⇔x20a2+y20b2=1;点P在椭圆内部⇔x20a2+y20b2<1;点P在椭圆外部⇔x20a2+y20b2>1.2.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系判断方法:联立⎩⎨⎧y =kx +m ,x 2a 2+y 2b 2=1.消去y 得到一个关于x 的一元二次方程.3.弦长公式设直线方程为y =kx +m (k ≠0),曲线方程f (x ,y )=0,直线与曲线的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=⎝ ⎛⎭⎪⎫1k y 1-1k y 22+(y 1-y 2)2=1+1k 2(y 1-y 2)2=1+1k 2(y 1+y 2)2-4y 1y 2.其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与曲线方程联立消去y (或x )后得到关于x (或y )的一元二次方程求得.[自我诊断]判断(正确的打“√”,错误的打“×”)1.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是m >1.( )2.椭圆2x 2+3y 2=m (m >0)的离心率为33.( )3.点A (2,2)在椭圆x 2+4y 2=36的内部.( ) [答案] 1.× 2.√ 3.√题型一 直线与椭圆的位置关系思考1:如何判断直线与椭圆的位置关系? 提示:联立直线与椭圆方程,求解的个数. 思考2:如何求椭圆上的点到直线的最小距离?提示:把点到直线的距离转化为过该点的直线与已知直线的两平行直线间的距离.在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y-16=0的距离最短,并求出最短距离.[思路导引] 找点较难,所以找与直线l 平行且与椭圆相切的直线.[解] 设与椭圆相切并与l 平行的直线方程为 y =32x +m , 代入x 24+y 27=1,并整理得4x 2+3mx +m 2-7=0,Δ=9m 2-16(m 2-7)=0⇒m 2=16⇒m =±4, 故两切线方程为y =32x +4和y =32x -4, 显然y =32x -4距l 最近, d =|16-8|32+(-2)2=813=81313, 切点为P ⎝ ⎛⎭⎪⎫32,-74.本题将求最小距离问题转化为直线与椭圆的位置关系问题.解此类问题的常规解法是直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交⇔Δ>0;(2)直线与椭圆相切⇔Δ=0;(3)直线与椭圆相离⇔Δ<0.所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具.[跟踪训练]已知椭圆x 2+8y 2=8,在椭圆上求一点P ,使P 到直线l :x -y +4=0的距离最短,并求出最短距离.[解] 设与直线x -y +4=0平行且与椭圆相切的直线为x -y +a=0,联立方程⎩⎪⎨⎪⎧x 2+8y 2=8,x -y +a =0,得9y 2-2ay +a 2-8=0,Δ=4a 2-36(a 2-8)=0, 解得a =3或a =-3,∴与直线l 距离较近的切线方程为x -y +3=0, 最小距离为d =|4-3|2=22.由{ x 2+8y 2=8,x -y +3=0,得⎩⎪⎨⎪⎧x =-83,y =13,即P ⎝ ⎛⎭⎪⎫-83,13.题型二 直线与椭圆的相交弦问题思考1:直线与椭圆的中点弦问题如何解决? 提示:注意韦达定理的应用.思考2:如何求直线被圆锥曲线截得的弦长?提示:会应用弦长公式.已知点P (4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点.(1)求直线l 的方程.(2)求直线l 被椭圆截得的弦长.[思路导引] 待定系数法,联立方程组,再由韦达定理求参数k ,然后由弦长公式求弦长.[解] (1)由题意可设直线l 的方程为y -2=k (x -4), 而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k (4k -2)x +4(4k -2)2-36=0. 所以x 1+x 2=8k (4k -2)4k 2+1=8.所以k =-12.满足Δ>0.所以直线l 的方程为y -2=-12(x -4), 即x +2y -8=0.(2)联立方程组⎩⎪⎨⎪⎧x +2y -8=0x 2+4y 2=36∴x 2-8x +14=0,则x 1+x 2=8,x 1·x 2=14,代入弦长公式 |AB |=1+k 2(x 1+x 2)2-4x 1x 2=10研究直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程,利用根与系数的关系或中点坐标公式解决.涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系.[跟踪训练]已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则椭圆E 的方程为__________________.[解析] 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程,有x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=12,∵线段AB 的中点坐标为(1,-1),∴b 2a 2=12,∵右焦点为F (3,0),c =3,∴a 2=18,b 2=9,∴椭圆E 的方程为x 218+y 29=1.[答案] x 218+y 29=1题型三 椭圆中的最值(范围)问题已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.[思路导引] 联立方程组,由解的个数确定m 的取值范围,再由韦达定理得弦长关于m 的函数.[解] (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m得5x 2+2mx +m 2-1=0, 因为直线与椭圆有公共点, 所以Δ=4m 2-20(m 2-1)≥0, 解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知:5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1), 所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2] = 2⎣⎢⎡⎦⎥⎤4m 225-45(m 2-1) =2510-8m 2.∴当m =0时,|AB |最大,即被椭圆截得的弦最长,此时直线方程为y =x .解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.[跟踪训练]如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于y 轴下方的端点,过点A 且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →=9.(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. [解] ∵直线AB 的斜率为1,∴∠BAP =45°, 即△BAP 是等腰直角三角形,|AB →|=2|AP →|. ∵AB →·AP →=9,∴|AB →||AP →|cos45°=2|AP →|2cos45°=9,∴|AP →|=3. (1)∵P (0,1),∴|OP →|=1,|OA →|=2, 即b =2,且B (3,1).∵B 在椭圆上,∴9a 2+14=1,得a 2=12, ∴椭圆C 的标准方程为x 212+y 24=1.(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3),∴t -3=-b ,即b =3-t .显然点B 的坐标是(3,t ),将它代入椭圆方程得:9a 2+t 2(3-t )2=1,解得a 2=3(3-t )23-2t. ∵a 2>b 2>0,∴3(3-t )23-2t>(3-t )2>0. ∴33-2t >1,即33-2t -1=2t 3-2t>0, ∴所求t 的取值范围是0<t <32.课堂归纳小结解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题步骤为(1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2);(2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程;(4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相切B .相交C .相离D .不确定[解析] ∵直线y -1=k (x -1),即直线恒过(1,1)点,又∵19+14<1,∴点(1,1)在椭圆内,所以选B.[答案] B2.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( ) A.22 B.233 C.922 D.2327[解析] 由⎩⎪⎨⎪⎧ mx 2+ny 2=1,y =1-x 消去y 得,(m +n )x 2-2nx +n -1=0.设M (x 1,y 1),N (x 2,y 2),MN 中点为(x 0,y 0),则x 1+x 2=2n m +n,∴x 0=n m +n ,代入y =1-x 得y 0=m m +n .由题意y 0x 0=22,∴m n =22,选A.[答案] A3.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .2个B .至多一个C .1个D .0个[解析] ∵直线mx +ny =4与圆x 2+y 2=4没有交点,∴4m 2+n2>2,即m 2+n 2<4,又∵m 29+n 24<m 29+4-m 24=1-5m 236<1,∴点P 在椭圆内.故直线与椭圆有2个交点.[答案] A4.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B.⎝ ⎛⎦⎥⎤0,12C.⎝ ⎛⎭⎪⎫0,22D.⎣⎢⎡⎭⎪⎫22,1 [解析] ∵MF 1→⊥MF 2→,∴点M 在以F 1F 2为直径的圆上,又点M在椭圆内部,∴c <b ,∴c 2<b 2=a 2-c 2,即2c 2<a 2,∴c 2a 2<12,即c a <22.又e >0,∴0<e <22.[答案] C 5.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长.[解] ∵a 2=4,b 2=1,∴c =a 2-b 2=3, ∴右焦点F (3,0),∴直线l 的方程y =x - 3.由⎩⎨⎧ y =x -3,x 24+y 2=1,消去y 并整理,得5x 2-83x +8=0. 设直线l 与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=835,x 1x 2=85, ∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] = 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫8352-4×85=85, 即弦AB 的长为85.。

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。

2021-2022高二人教版数学选修1-1练习:1.2充分条件与必要条件 Word版含答案

2021-2022高二人教版数学选修1-1练习:1.2充分条件与必要条件 Word版含答案

►基础梳理1.充分条件和必要条件. 一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p ⇒q ,并且说p 是q 的充分条件,q 是p 的必要条件.2.充要条件. 一般地,假如既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,此时我们说,p 是q 的充分必要条件,简称充要条件.明显,假如p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,假如p ⇔q ,那么p 与q 互为充要条件.♨思考:如何从集合与集合之间的关系上理解充分条件、必要条件和充要条件?答案:对于集合A ={x |p(x)},B ={x |q (x )},分别是使命题p 和q 为真命题的对象所组成的集合.,►自测自评1.已知集合A ,B ,则“A ⊆B ”是“A ∩B =A ”的(C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件2.“a =1”是“直线x +y =0和直线x -ay =0相互垂直”的(C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的充分不必要条件.解析:由a =2能得到(a -1)(a -2)=0,但由(a -1)·(a -2)=0得到a =1或a =2,而不是a =2,所以a =2是(a -1)(a -2)=0的充分不必要条件.1.在△ABC 中,“A >30°”是“sin A >12”的(B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当A =170°时,sin 170°=sin 10°<12,所以“过不去”;但是在△ABC 中,sin A >12⇒30°<A <150°⇒A >30°,即“回得来”.2.(2022·湛江一模)“x >2”是“(x -1)2>1”的(B ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3.“b 2=ac ”是“ a ,b ,c 成等比数列”的________条件.解析:由于当a =b =c =0时,“b 2=ac ”成立,但是a ,b ,c 不成等比数列; 但是“a ,b ,c 成等比数列”必定有“b 2=ac ”. 答案:必要不充分4.求不等式ax 2+2x +1>0恒成立的充要条件. 解析:当a =0时,2x +1>0不恒成立. 当a ≠0时,ax 2+2x +1>0恒成立⇔⎩⎪⎨⎪⎧a >0,Δ=4-4a <0⇔a >1. ∴不等式ax 2+2x +1>0恒成立的充要条件是a >1.5.已知p :x 2-2(a -1)x +a (a -2)≥0,q :2x 2-3x -2≥0,若p 是q 的必要不充分条件,求实数a 的取值范围.解析:令M ={x |2x -3x -2≥0} ={x |(2x +1)(x -2)≥0}⇒⎩⎨⎧⎭⎬⎫x |x ≤-12或x ≥2 N ={x |x 2-2(a -1)x +a (a -2)≥0}={x |(x -a )[x -(a -2)]≥0}⇒{x |x ≤a -2或x ≥a },已知q ⇒p 且p ⇒/ q ,得M N .所以⎩⎪⎨⎪⎧a -2≥-12,a <2或⎩⎪⎨⎪⎧a -2>-12,a ≤2⇔32≤a <2或32<a ≤2⇔32≤a ≤2.即所求a 的取值范围是⎣⎡⎦⎤32,2.。

数学选修1-1测试题

数学选修1-1测试题

(数学选修1-1)第一章 常用逻辑用语一、选择题1.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假2.下列命题中的真命题是( )A .3是有理数B .C .e 是有理数D .{}|x x 是小数R3.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为( )A .①②B .②③C .①③D .③④4.设a R ∈,则1a >是11a < 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件5.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是()A . 若0(,)a b a b R ≠≠∈,则220a b +≠B . 若0(,)a b a b R =≠∈,则220a b +≠C . 若0,0(,)a b a b R ≠≠∈且,则220a b +≠D . 若0,0(,)a b a b R ≠≠∈或,则220a b +≠6.若,a b R ∈,使1a b +>成立的一个充分不必要条件是( )A .1a b +≥B .1a ≥C .0.5,0.5a b ≥≥且D .1b <-二、填空题1.有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题;②、命题“面积相等的三角形全等”的否命题;③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题; ④、命题“若AB B =,则A B ⊆”的逆否命题。

其中是真命题的是 (填上你认为正确的命题的序号)。

2.已知,p q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则s 是q 的 ______条件,r 是q 的 条件,p 是s 的 条件.3.“△ABC 中,若090C ∠=,则,A B ∠∠都是锐角”的否命题为 ;4.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q , 则q p 是的 条件。

高中数学人教A版选修1-1一二章测试题及答案

高中数学人教A版选修1-1一二章测试题及答案

高中数学人教A 版选修1-1学业水平测试试题全卷满分150分,用时120分钟。

一、选择题:(本大题共10小题,每小题5分,共50分)在每小题给出的选项中只有一项符合题目要求。

1.下列命题是真命题的为( )A.若yx 11=,则x =y B.若12=x ,则x =1 C.若x =y ,则y x = D.若x <y ,则22y x <2. 使不等式x 2-3x <0成立的必要不充分条件是( )A.0<x <3B. 0<x <4C. 0<x <2D. x <0或x >33.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.设命题P:x >2是x 2>4的充要条件,命题q:若22cb c a >,则a >b ,那么( ) A.“p 或q”为真 B.“p 且q”为真C.p 真q 假D.p 、q 均为假命题5.已知焦点在x 轴上的椭圆的离心率为21,它的长轴长等于圆x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( ) A.1121622=+y x B. 1422=+y x C. 141622=+y x D.13422=+y x 6.抛物线y =ax 2的准线方程是y=1,则a 的值为( ) A.41 B. 41- C.4 D.-4 7.设△ABC 是正三角形,则以A 、B 为焦点且过BC 的中点的双曲线的离心率为( ) A.1+2 B.1+3 C.221+ D. 231+ 8.过抛物线y 2=2px (p >0)的焦点F 作一条直线e 交抛物线于A 、B 两点,以AB 为直径的圆和该抛物线的准线l 的位置关系是( )A.相交B.相离C.相切D.不能确定9.已知定点A (1,1)和直线l :x +y -2=0,那么到定点A 的距离和到定直线l 的距离相等的点的轨迹( )A.椭圆B.双曲线C.抛物线D.直线10.已知P 是椭圆192522=+y x 上一点,F 为椭圆左焦点,2=,若)(21+=,则为( ) A.2 B.3C.4D.5二、填空题:(本大题共5小题,每小题5分,共25分)11.已知P :x +y =2010;Q:x =2000且y =10,则P 是Q 的_____________条件。

高中数学选修1-1全册章节测试题集含答案

高中数学选修1-1全册章节测试题集含答案

人教A版高中数学选修1-1全册章节测试题目录1.1命题及其关系(同步练习)1.2 充分条件与必要条件同步测试.1.3_1.4试题(新人教选修1-1).1.3简单的逻辑联结词(同步练习)1.4全称量词与存在量词同步测试(新人教选修1-1).2.1《椭圆的几何性质》测试题2.1椭圆同步测试2.2双曲线几何性质测试2.2双曲线及其标准方程练习2.3抛物线及其标准方程习题精选2.3抛物线及其标准方程同步试题3.1变化率与导数(同步练习)3.2.1导数习题3.2.2 导数的运算法则习题3.3.3 函数的最大值与最小值练习题3.3《导数在研究函数中的应用》习题3.4生活中的优化问题举例(同步练习)1.1 命题及其关系测试练习第1题. 已知下列三个方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.答案:312a a a⎧⎫--⎨⎬⎩⎭或,剠.第2题. 若a b c ∈R ,,,写出命题“200ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假;否命题:200ac ax bx c ++=若则,…(a b c ∈R ,,)没有实数根,假;逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,…,真.第3题. 在命题22a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数为.答案:3.第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是.答案:假设三角形的内角中没有钝角.第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是. 答案:若0x ≠且0y ≠,则0xy ≠.第6题. 命题“若a b ,>则55a b -->”的逆否命题是( ) (A)若a b ,<则55a b --<(B)若55a b --,>则a b >(C) 若a b ,…则55a b --… (D)若55a b --,…则a b …答案:D第7题. 命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )(A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题答案:A第8题. 命题“若60A ∠=,则ABC △是等边三角形”的否命题是( ) (A)假命题(B)与原命题同真同假(C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假答案:D第9题. )(A) (B)是有理数(C) (D)答案:D第10题. 命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题答案:C第11题. 原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题答案:C第12题. 命题“若a A b B ∈∈则,”的否定形式是( ) (A)a A b B ∉∉若则, (B)a A b B ∈∉若则, (C)a A b B ∈∈若则, (D)b A a B ∉∉若则,答案:B第13题. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除答案:B第14题. 下列说法中,不正确的是( ) (A)“若p q 则”与“若q p 则”是互逆的命题 (B)“若非p q 则非“与“若q p 则”是互否的命题 (C)“若非p q 则非”与“若p q 则”是互否的命题 (D)“若非p q 则非”与“若q p 则”是互为逆否的命题答案:B第15题. 以下说法错误的是( )(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题答案:B第16题. 下列四个命题:⑴“若220x y +=,则实数x y ,均为0”的逆命题;⑵“相似三角形的面积相等“的否命题 ; ⑶“A B A A B =⊆ 则,”逆否命题;⑷“末位数不是0的数可被3整除”的逆否命题,其中真命题为( ) (A) ⑴⑵ (B)⑵⑶ (C)⑴⑶ (D)⑶⑷答案:C第17题. 命题“a b ,都是偶数,则a b +是偶数”的逆否命题是.答案:a b +不是偶数则a b ,不都是偶数.第18题. 已知命题:33p …;:34q >,则下列选项中正确的是() A .p 或q 为真,p 且q 为真,非p 为假; B .p 或q 为真,p 且q 为假,非p 为真; C .p 或q 为假,p 且q 为假,非p 为假; D .p 或q 为真,p 且q 为假,非p 为假答案:D第19题. 下列句子或式子是命题的有()个.①语文和数学;②2340x x --=;③320x ->;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个答案:A第20题. 命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④答案:A第21题. 若命题p 是的逆命题是q ,命题q 的否命题是r ,则q 是r 的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对答案:B第22题. 如果命题“p 或q ”与命题“非p ”都是真命题,那么q 为 命题.答案:真第23题. 下列命题:①“若1xy =,则x ,y 互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“22ac bc >则a b >”的逆命题,其中真命题是 .答案:①,②,③第24题. 命题“若0ad =,则0a =或0b =”的逆否命题是 ,是 命题.答案:若0a ≠且0b ≠,则0ab ≠,真第25题. 已知命题:p N Z Ü,:{0}q ∈N ,由命题p ,q 构成的复合命题“p 或q ”是 ,是 命题;“p 且q ”是 ,是 命题;“非p ”是 ,是 命题.答案:p 或q :N Z Ü或{0}∈N ,为真;p 且q :N Z Ü且{0}∈N ,为假;非:p N Z Ú或=N Z ,为假.第26题. 指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1)23≤;(2)()A A B Ú;(3)1是质数或合数;(4)菱形对角线互相垂直平分.答案:(1)这个命题是“p 或q ”形式,p :23<,q :23=.p 真q 假,p ∴或q 为真命题.(2)这个命题是“非p ”形式,:()p A A B ⊆ ,p 为真,∴非p 是假命题.(3)这个命题形式是p 或q 的形式,其中:1p 是命 数,:1q 是质数.因为p 假q 假,所以“p 或q ”为假命题.(4)这个命题是“p 且q ”形式,:p 菱形对角线互相垂直;:q 菱形对角线互相平分. 因为p 真q 真,所以“p 且q ”为真命题.第27题. 如果p ,q 是2个简单命题,试列出下列9个命题的直值表:(1)非p ;(2)非q ;(3)p 或q ;(4)p 且q ;(5)“p 或q ”的否定;(6)“p 且q ”的否定;(7)“非p 或非答案:第28题. 设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.答案:否命题为“若0m >,则关于x 的方程20x x m +-=没有实数根”; 逆命题为“若关于x 的方程20x x m +-=有实数根,则0m >”; 逆否命题“若关于x 的方程20x x m +-=没有实数根,则0m ≤”. 由方程的判别式14m =+ 得0> ,即14m >-,方程有实根. 0m ∴>使140m +>,方程20x x m +-=有实数根,∴原命题为真,从而逆否命题为真.但方程20x x m +-=有实根,必须14m >-,不能推出0m >,故逆命题为假.1.2 充分条件与必要条件 同步测试第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.《1.3简单的逻辑联结词》测试题A卷一.选择题:1.如果命题“p或q”是真命题,“非p”是假命题,那么()A 命题p一定是假命题 B命题q一定是假命题C命题q一定是真命题 D命题q是真命题或者是假命题2.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“ p”为假的必要不充分条件④“ p”为真是“p且q”为假的必要不充分条件A①② B①③ C②④ D③④3.对下列命题的否定说法错误的是()A p:能被3整除的整数是奇数; p:存在一个能被3整除的整数不是奇数B p:每一个四边形的四个顶点共圆; p:存在一个四边形的四个顶点不共圆C p:有的三角形为正三角形; p:所有的三角形都不是正三角形D p: x∈R,x2+2x+2≤0; p:当x2+2x+2>0时,x∈R4.已知p: 由他们构成的新命题“p且q”,“p或q”, “ ”中,真命题有()A 1个B 2个C 3个D 4个5.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A存在实数m,使得方程x2+mx+1=0无实根B不存在实数m,使得方程x2+mx+1=0有实根C对任意的实数m,使得方程x2+mx+1=0无实根D至多有一个实数m,使得方程x2+mx+1=0有实根6.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A. p真,q真B. p假,q假C. p真,q假D. p假,q真二.填空题:7.命题“ x∈R,x2+1<0”的否定是__________________。

2021-2022高二人教版数学选修1-1练习:2.1.1椭圆及其标准方程 Word版含答案

2021-2022高二人教版数学选修1-1练习:2.1.1椭圆及其标准方程 Word版含答案

►基础梳理1.椭圆的定义及标准方程.(1)平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两点间的距离叫做椭圆的焦距.(2)椭圆的标准方程(请同学们自己填写表中空白的内容):焦点在x 轴上 焦点在y 轴上标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0)焦点 (±c ,0) (0,±c )a ,b ,c 的关系:c 2=a 2-b 22.只有当||PF 1+||PF 2=2a >||F 1F 2时,点P 的轨迹才是椭圆; 当||PF 1+||PF 2=2a =||F 1F 2时,点P 的轨迹是线段F 1F 2; 当||PF 1+||PF 2=2a <||F 1F 2时,点P 的轨迹不存在. 3.正确理解椭圆的两种标准形式. (1)要熟记a ,b ,c 三个量的关系.椭圆方程中,a 表示椭圆上的点M 到两焦点间距离和的一半,正数a ,b ,c 恰构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2,其中c 是焦距的一半,叫做半焦距.(2)通过标准方程可以推断焦点的位置,其方法是:看x 2,y 2的分母大小,哪个分母大,焦点就在哪个坐标轴上.4.用待定系数法求椭圆标准方程的步骤.(1)作推断:依据条件推断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述推断设方程为x 2a 2+y 2b 2=1或x 2b 2+y 2a2=1.②在不能确定焦点位置的状况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,依据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求.,►自测自评1.到两定点F 1(-4,0)和F 2(4,0)的距离之和为8的点M 的轨迹是线段F 1F 2.2.椭圆的焦点坐标为(4,0),(-4,0),椭圆上一点到两焦点的距离之和为10,则椭圆的标准方程为x 225+y 29=1. 3.已知a =4,c =3,焦点在y 轴上的椭圆的标准方程为x 27+y 216=1.4.椭圆x 225+y 29=1的焦点坐标为(4,0),(-4,0).1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是(C ) A .圆 B .直线 C .椭圆 D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝⎛⎭⎫52,-32,则该椭圆的方程是(D ) A.y 28+x 24=1 B.y 210+x26=1 C.y 24+x 28=1 D.y 26+x 210=1 解析:由题意知,所求椭圆的焦点在x 轴上,可以排解A 、B ;再把点⎝⎛⎭⎫52,-32代入方程,可知应选D. 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.答案:2 24.写出适合下列条件的椭圆的标准方程: (1)a =4,b =3焦点在x 轴上; (2)a =5,c =2焦点在y 轴上;(3)求中心在原点,焦点在坐标轴上,且经过点⎝⎛⎭⎫63,3和点⎝⎛⎭⎫223,1.答案:(1)x 216+y 29=1;(2)y 225+x 221=1;(3)x 2+y 29=1.5.设F 1、F 2分别为椭圆C :x 2a 2+y2b2=1,(a >b >0)的左右两焦点,若椭圆C上的点A ⎝⎛⎭⎫1,32到F 1、F 2两点的距离之和为4,求椭圆C 的方程及焦点坐标.解析:椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1,F 2两点的距离之和是4,得2a =4,即a =2.又A ⎝⎛⎭⎫1,32在椭圆C 上, ∴122+⎝⎛⎭⎫322b 2=1,解得b 2=3. ∴c 2=a 2-b 2=1.∴椭圆C 的方程为x 24+y 23=1,焦点坐标为F (±1,0).。

人教B版高中数学高二选修1-1 第2章 单元综合检测2

人教B版高中数学高二选修1-1 第2章 单元综合检测2

第二章 单元综合检测(二)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知A (0,-5),B (0,5),|PA |-|PB |=2a ,当a =3和5时,点P 的轨迹为( ) A .双曲线和一条直线 B .双曲线和两条射线 C .双曲线的一支和一条直线 D .双曲线的一支和一条射线解析:当2a <|AB |时,表示双曲线的一支;当2a =|AB |时表示一条射线,故选D. 答案:D2.以双曲线x 24-y 212=1的焦点为顶点,顶点为焦点的椭圆方程为( )A .x 216+y 212=1B.x 212+y 216=1 C .x 216+y 24=1D .x 24+y 216=1解析:双曲线焦点(±4,0),顶点(±2,0),故椭圆的焦点为(±2,0),顶点(±4,0),故选A. 答案:A3.已知椭圆与双曲线x 23-y 22=1有共同的焦点,且离心率为15,则椭圆的标准方程为( )A .x 220+y 225=1B .x 225+y 220=1C .x 225+y 25=1D .x 25+y 225=1解析:双曲线x 23-y 22=1中a 21=3,b 21=2,则c 1=a 21+b 21=5,故焦点坐标为(-5,0),(5,0),故所求椭圆x 2a 2+y 2b 2=1(a >b >0)的c =5,又椭圆的离心率e =c a =15,则a =5,a 2=25,b 2=a 2-c 2=20,故椭圆的标准方程为x 225+y 220=1. 答案:B4.若P (x 0,y 0)是抛物线y 2=-32x 上一点,点F 为抛物线的焦点,则|PF |=( ) A .x 0+8 B .x 0-8 C .8-x 0D .x 0+16解析:由题意可知抛物线开口向左,且p =322=16,因此抛物线的准线方程为x =8,因此|PF |=8-x 0.答案:C5.[2014·贵州遵义一模]椭圆x 216+y 29=1中,以点M (-1,2)为中点的弦所在的直线斜率为( )A . 916B .932C .964D . -932解析:设弦的两个端点为A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 2116+y 219=1, ①x 2216+y229=1,②①-②得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)9=0,又∵弦中点为M (-1,2), ∴x 1+x 2=-2,y 1+y 2=4, ∴-2(x 1-x 2)16+4(y 1-y 2)9=0,∴k =y 1-y 2x 1-x 2=932.答案:B6.椭圆y 249+x 224=1与双曲线y 2-x 224=1有公共点P ,则P 与双曲线两焦点连线构成三角形的面积为( )A . 48B . 24C . 24 3D . 12 3解析:由已知得椭圆与双曲线具有共同的焦点F 1(0,5)和F 2(0,-5),又由椭圆与双曲线的定义可得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=14,||PF 1|-|PF 2||=2, 所以⎩⎪⎨⎪⎧ |PF 1|=8,|PF 2|=6,或⎩⎪⎨⎪⎧|PF 1|=6,|PF 2|=8.又|F 1F 2|=10,∴△PF 1F 2为直角三角形,∠F 1PF 2=90°.所以△PF 1F 2的面积S =12|PF 1||PF 2|=12×6×8=24.答案:B7.[2014·清华附中月考]如图,南北方向的公路L ,A 地在公路正东2 km 处,B 地在A 北偏东60°方向2 3 km 处,河流沿岸曲线PQ 上任意一点到公路L 和到A 地距离相等.现要在曲线PQ 上某处建一座码头,向A ,B 两地运货物,经测算,从M 到A ,B 修建公路的费用都为a 万元/km ,那么,修建这两条公路的总费用最低是( )A . (2+3)a 万元B . (23+1)a 万元C . 5a 万元D . 6a 万元解析:本题主要考查抛物线的实际应用.依题意知曲线PQ 是以A 为焦点、L 为准线的抛物线,根据抛物线的定义知:欲求从M 到A ,B 修建公路的费用最低,只需求出B 到直线L 的距离即可.∵B 地在A 地北偏东60°方向2 3 km 处,∴B 到点A 的水平距离为3 km ,∴B 到直线L 的距离为3+2=5(km),那么,修建这两条公路的总费用最低为5a 万元,故选C.答案:C8.[2014·湖北省黄冈中学月考]已知F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,E 是双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围为( )A . (1,2)B . (1,2)C . (1,3)D . (1,3)解析:本题考查双曲线离心率的求法和数形结合思想的应用.∵△ABE 为等腰三角形,可知只需∠AEF <45°即可,即|AF |<|EF |⇒b 2a<a +c ,化简得e 2-e -2<0,又e >1,∴1<e <2,∴该双曲线的离心率e 的取值范围为(1,2),故选A.答案:A9.[2014·山东省济南一中月考]线段CD 的两端点分别在射线OA ,OB 上,若OA ,OB 的方程分别为y =3x (x ≥0)和y =-3x (x ≥0)且|CD |=43,则CD 的中点P 的轨迹方程是( )A . 3x 2+y 23=12 B . 3x 2-y 23=12 C .3x 2+y 23=12(3≤x ≤2) D .3x 2-y 23=12(3≤x ≤2) 解析:本题主要考查由曲线求方程.设P (x ,y ),C (x -m ,y -n ),D (x +m ,y +n ),由C ,D 分别在OA ,OB 上,及|CD |=43,得⎩⎪⎨⎪⎧y -n =3(x -m )y +n =-3(x +m )2m 2+n 2=43⇒⎩⎪⎨⎪⎧n =-3xm =-13y m 2+n 2=12⇒3x 2+y 23=12且3≤x ≤2,故选C. 答案:C10.如图所示,共顶点的椭圆①②与双曲线③④的离心率分别为e 1,e 2,e 3,e 4,其大小关系为( )A .e 1<e 2<e 3<e 4B .e 2<e 1<e 3<e 4C .e 1<e 2<e 4<e 3D .e 2<e 1<e 4<e 3解析:由椭圆、双曲线的离心率范围知0<e 1,e 2<1<e 3,e 4.由椭圆①②的圆扁情况知e 1<e 2;由双曲线③④的开口大小情况知e 4<e 3.故选C.答案:C11.抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1·x 2=-12,则m 等于( )A .32B .2C .52D .3解析:依题意k AB =y 2-y 1x 2-x 1=-1,而y 2-y 1=2(x 22-x 21),得x 2+x 1=-12,且⎝ ⎛⎭⎪⎫x 2+x 12,y 2+y 12 在直线y =x +m 上,即y 2+y 12=x 2+x 12+m ,y 2+y 1=x 2+x 1+2m ,∴2(x 22+x 21)=x 2+x 1+2m ,2[(x 2+x 1)2-2x 2x 1]=x 2+x 1+2m , 2m =3,m =32.答案:A12.[2014·陕西省西安铁一中月考]已知P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆C 的圆心的横坐标为( )A . -aB . -bC . -cD . a +b -c解析:本题考查双曲线中基本量之间的关系和三角形内切圆的性质.设△PF 1F 2的内切圆C 与三边PF 1,PF 2,F 1F 2分别切于点A ,B ,D ,由双曲线定义有|PF 2|-|PF 1|=2a ,即|PB |+|BF 2|-(|PA |+|AF 1|)=2a ,由圆的切线性质知|PA |=|PB |,|AF 1|=|DF 1|,|BF 2|=|DF 2|,所以|DF 2|-|DF 1|=2a ,又|DF 2|+|DF 1|=2c ,故|DF 2|=a +c ,圆心C 的横坐标为x 0=-a ,故选A.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.直线x +2y -2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于__________.解析:由题意知椭圆的焦点在x 轴上,又直线x +2y -2=0与x 轴、y 轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b =1,c =2,从而a =5,e =c a =255.答案:25514.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =__________. 解析:抛物线y 2=2px (p >0)的焦点坐标是(p2,0),由两点间距离公式,得(p2+2)2+(-3)2=5.解得p =4. 答案:415.[2014·福建省厦门一中期末考试]已知双曲线x 216-y 225=1的左焦点为F ,点P 为双曲线右支上一点,且PF 与圆x 2+y 2=16相切于点N ,M 为线段PF 的中点,O 为坐标原点,则|MN |-|MO |=________.解析:本题综合考查直线、双曲线与圆.设F ′是双曲线的右焦点,连接PF ′(图略),因为M ,O 分别是FP ,FF ′的中点,所以|MO |=12|PF ′|,所以|FN |=|OF |2-|ON |2=5,由双曲线的定义知|PF |-|PF ′|=8,故|MN |-|MO |=-12|PF ′|+|MF |-|FN |=12(|PF |-|PF ′|)-|FN |=12×8-5=-1.答案:-116.[2014·辽宁高考]已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.解析:设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1、F 2是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12.答案:12三、解答题(本大题共6小题,共70分)17.(10分)[2014·厦门高二检测]求与椭圆x 2144+y 2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:椭圆x 2144+y 2169=1的焦点是(0,-5)、(0,5),焦点在y 轴上,于是设双曲线方程是y 2a 2-x 2b2=1(a >0,b >0), 又双曲线过点(0,2),∴c =5,a =2, ∴b 2=c 2-a 2=25-4=21,∴双曲线的标准方程是y 24-x 221=1,实轴长为4,焦距为10,离心率e =c a =52,渐近线方程是y =±22121x .18.(12分)已知直线x -y +m =0与双曲线C :x 2-y 22=1交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解:设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 2-y 22=1,x -y +m =0得x 2-2mx -m 2-2=0(判别式Δ>0), ∴x 0=x 1+x 22=m ,y 0=x 0+m =2m ,∵点M (x 0,y 0)在圆x 2+y 2=5上, ∴m 2+(2m )2=5, ∴m =±1.19.(12分)[2014·陕西省西工大附中月考]已知F (1,0),直线l :x =-1,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP →·QF →=FP →·FQ →.(1)求动点P 的轨迹C 的方程;(2)设动直线y =kx +m 与曲线C 相切于点M ,且与直线x =-1相交于点N ,试问:在x 轴上是否存在一个定点E ,使得以MN 为直径的圆恒过此定点E ?若存在,求出定点E 的坐标;若不存在,说明理由.解:(1)设点P (x ,y ),则Q (-1,y ),由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得轨迹C :y 2=4x .(2)由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x得k 2x 2+(2km -4)x +m 2=0,由Δ=0,得km =1,从而有M (m 2,2m ),N (-1,-1m+m ),设点E (x,0),使得ME ⊥NE ,则ME →·NE →=0,即(x -m 2)(x +1)+(-2m )(1m -m )=0,即(1-x )m 2+x 2+x -2=0,得x =1,所以存在一个定点E (1,0)符合题意.20.(12分)[2014·安徽师大附中月考]已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2,其中O 为原点,求k 的取值范围.解:(1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2.又因为a 2+b 2=c 2,所以b 2=1, 故双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1得(1-3k 2)x 2-62kx -9=0,由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,即k 2≠13且k 2<1. ①设A (x A ,y A ),B (x B ,y B ),则 x A +x B =62k 1-3k 2,x A x B =-91-3k2,由OA →·OB →>2得x A x B +y A y B >2, 而x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2 =(k 2+1)×-91-3k 2+2k ×62k 1-3k 2+2=3k 2+73k 2-1, 于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解此不等式得13<k 2<3.②由①、②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1). 21.(12分)[2014·江苏高考]如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.解:设椭圆的焦距为2c ,则F 1(-c ,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2.因为点C (43,13)在椭圆上,所以169a 2+19b 2=1.解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b . 所以点A 的坐标为(2a 2c a 2+c 2,b (c 2-a 2)a 2+c2).又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为(2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2).因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·(-b c )=-1.又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55. 22.(12分)[2014·大纲全国卷]已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得x 0=8p.所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2.所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),|AB |=m 2+1|y 1-y 2|=4(m 2+1). 又l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4my -4(2m 2+3)=0.设M (x 3,y 3)、N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故MN 的中点为E (2m 2+2m 2+3,-2m ),|MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于MN 垂直平分AB ,故A 、M 、B 、N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2, 即4(m 2+1)2+(2m +2m )2+(2m 2+2)2=4(m 2+1)2(2m 2+1)m 4.化简得m 2-1=0,解得m =1或m =-1. 所求直线l 的方程为x -y -1=0或x +y -1=0.。

人教版高中数学选修一第二单元《直线和圆的方程》测试题(答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试题(答案解析)

一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k 的取值范围是(,[1,)-∞⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,23.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b +的最小值为( ) A .72B .4C .1D .54.我国东南沿海一台风中心从A 地以每小时10km 的速度向东北方向移动,离台风中心15km 内的地区为危险地区,若城市B 在A 地正北20km 处,则B 城市处于危险区内的时间为( )小时. A .0.5 B .1 C .1.5 D .25.过点()引直线l 与曲线y =A ,B 两点,O 为坐标原点,当OA OB ⊥值时,直线l 的斜率等于( ).A .3B .3-C .3±D 6.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=07.已知M (3,),N (-1,),F (1,0),则点M 到直线NF 的距离为( )A B .C .D .8.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( ) A .8 B .4C .24D .16 9.已知1122(,),(,)A x y B x y 是不同的两点,点(cos ,sin )C θθ,且11,33OA OC OB OC ⋅=⋅=,则直线AB 与圆221x y +=的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能10.设点M 为直线2x =上的动点,若在圆22:3O x y +=上存在点N ,使得30OMN ∠=︒,则M 的纵坐标的取值范围是( )A .[1,1]-B .11,22⎡⎤-⎢⎥⎣⎦C .[22,22]-D .22,22⎡⎤-⎢⎥⎣⎦11.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( ) A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=二、填空题13.在平面直角坐标系xOy 中,过圆1C :22()(4)1x k y k -++-=上任一点P 作圆2C :22(1)1x y ++=的一条切线,切点为Q ,则当PQ 取最小值时,k =______.14.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.15.光线沿直线30x y -+=入射到直线220x y -+= 后反射,则反射光线所在直线的方程为___________________.16.已知直线3x +4y -12=0与x 轴,y 轴相交于A ,B 两点,点C 在圆x 2+y 2-10x -12y +52=0上移动,则△ABC 面积的最大值和最小值之差为________.17.如图,已知圆22:16,,O x y A B +=是圆O 上两个动点,点(2,0)P ,则矩形PACB 的顶点C 的轨迹方程是___________.18.三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形,则a 的取值集合是__________.19.已知直线y x b =+与曲线2x 1y =--恰有两个交点,则实数b 的取值范围为______.20.已知圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______.三、解答题21.如图,已知圆22:4O x y +=和点()2,2A ,由圆O 外一点(),P a b 向圆O 引切线PQ ,Q 为切点,且PQ PA =.(1)求证:3a b +=; (2)求PQ 的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程. 22.已知直线2:(24)30l a a x ay -+--=.(1)若直线l 过点(1,0)A ,试写出直线l 的一个方向向量; (2)若实数0a ≠,求直线的倾斜角α的取值范围.23.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 24.已知直线:3470l x y +-=.(1)若直线m 与直线l 平行,且直线m 过点(2,5)P -,求直线m 的方程;(2)若点C 坐标为10,3⎛⎫- ⎪⎝⎭,过点C 的直线与直线l 垂直,垂足为M ,求点M 的坐标. 25.如图,已知圆()()221:112C x y -++=,圆()()222:215C x y +++=,过原点O 的直线l 与圆1C ,2C 的交点依次是,,P O Q .(1)若2OQ OP =,求直线l 的方程;(2)若线段PQ 的中点为M ,求点M 的轨迹方程. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率. 【详解】 倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,3][1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误.故选:C. 【点睛】关于直线的倾斜角与直线斜率之间的关系需要注意:(1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大;(3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.C解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5,故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.3.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.B解析:B 【分析】建立直角坐标系,过点B 作BC AF ⊥,交AF 于点C ,以点B 为圆心,15为半径的圆交AF 于点E ,F ,连接BE ,BF ,利用勾股定理求出BC 的值,进而求出EF 的值,再结合台风中心的运动速度即可求出B 城市处于危险区内的时间.【详解】以A 为原点,正北方向为纵轴正方向,正东方向为横轴正方向,建立如图所示直角坐标系,因为台风中心从A 地以每小时10km 的速度向东北方向移动, 所以运动轨迹所在直线AF 与坐标轴成45角,设以点B 为圆心,15为半径的圆交AF 于点E ,F ,连接BE ,BF 过点B 作BC AF ⊥,交AF 于点C ,在等腰Rt ABC △中,20AB =,20BC ==,在Rt BCE 中,BC =,15BE =,5CE ∴=,210EF CE ∴==,台风中心从A 地以每小时10km 的速度向东北方向移动,且当台风中心在线段EF 上时B 城市处于危险区内,B ∴城市处于危险区内的时间为110EF=小时, 故选:B .【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.5.A解析:A 【分析】方法一:利用AOB 的面积,求点到直线的距离,再求直线的斜率;方法二:设直线方程20kx y k -+=,利用点到直线的距离求弦长以及面积,利用三角形的面积取得最大值时,求直线的斜率.. 【详解】方法一:根据三角形的面积公式和圆的弦的性质求解. 由于21y x =-,即()2210x y y +=≥,直线l 与()2210x y y +=≥交于AB 两点,如图所示,11sin 22ACB S AOB =∠≤△,且当90AOB ∠=︒时, AOBS取得最大值,此时2AB =,点O 到直线l 的距离为22, 则30OCB ∠=︒,所以直线l 的斜角为30°,则斜率为33. 方法二:由21y x =-,得()2210x y y +=≥.所以曲线21y x =-表示单位圆在x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合, 则01k <<,直线l 的方程为(02y k x -=+,即20kx y k -+=. 则原点O 到l 的距离221k d k =+,l 被半圆截得的半弦长为222221111k k k k ⎛⎫--= ⎪ ⎪++⎝⎭则()()22222222211111ABO kk k k S k k k--==+++△()()()22222216141k k k-+++-=+()22246211k k =-+-++令211t k =+,则3462ABO S t t =-+-△, 当3t 4=,即21314k =+时,ABO S 有最大值为12.此时由21314k =+,解得3k =. 故选:A 【点睛】思路点睛:本题考查直线与圆的位置关系,本题第一种方程,重点是分析几何关系,即点到直线的距离后就可知道斜率,第二种方程,重点是由条件可知当OA OB ⊥时,此时AOB 的面积最小,即用斜率k 表示面积,求最值,得到直线的斜率. 6.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.7.B解析:B 【分析】首先利用题中所给的点N (-1,,F (1,0),求出直线NF 的方程,之后利用点到直线的距离公式求得结果. 【详解】易知NF 的斜率kNF 的方程为y(x -1),+y=0. 所以M 到NF.故选:B. 【点睛】思路点睛:该题考查的是有关点到直线的距离的问题,解题思路如下:(1)根据题意首先求出直线的方程,可以先求斜率,利用点斜式求,也可以直接利用两点式求;(2)之后利用点到直线的距离公式直接求结果.8.A解析:A 【分析】根据题意,得到四边形PAOB 的面积22PAOS S PA ===只需求PO 最小值,进而可求出结果. 【详解】因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =所以四边形PAOB 的面积的最小值为8=. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2PAOS =求面积最值问题,转化为定点到线上动点的最值问题,即可求解.9.C解析:C 【分析】根据题意,可知直线BC 与OC 垂直,且点O 到直线AB 的距离为13,与圆的半径比较大小得到直线与圆的位置关系.【详解】因为(cos ,sin )C θθ,所以点C 在圆221x y +=上,根据圆的对称性,可知C 点取圆上的任意点都可以,不妨设(1,0)C , 因为11,33OA OC OB OC ⋅=⋅=,所以,OA OB 在OC 上的投影均为13,如图所示:所以有直线AB 与OC 垂直,且O 到直线AB 的距离为113<, 所以直线AB 与圆221x y +=的位置关系是相交, 故选:C. 【点睛】思路点睛:该题所考查的是有关直线与圆的位置关系的判定,在解题的过程中注意: (1)判断直线与圆的位置关系的关键点是圆心到直线的距离与半径的关系; (2)根据向量数量积的定义式,求得线之间的关系,从而判断出结果.10.C解析:C 【分析】在OMN 22223M y +=,从而得到()223sin 4M y ONM=±∠-ONM ∠的取值范围,求出M y 的取值范围,即可得解; 【详解】解:设()2,M M y ,在OMN 中,由正弦定理得sin sin OM ONONM OMN=∠∠因为30OMN ∠=︒,3ON =22232312M y +== 整理得()223sin 4M y ONM=±∠-由题意知0150ONM ︒<∠<︒,所以(]sin 0,1ONM ∠∈,所以sin 1ONM ∠=时,M y 取得最值,即直线MN 为圆22:3O x y +=的切线时,M y 取值最值,所以22,22M y ⎡⎤∈-⎣⎦故选:C【点睛】本题考查直线与圆的综合应用,解答的关键转化到OMN 中利用正弦定理计算,考查转化思想;11.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.12.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.二、填空题13.【分析】首先画出相应的图形根据切线的性质得到对应的垂直关系利用勾股定理得到线段之间的关系从而将问题转化再应用圆上的点到定点的距离的最小值在什么位置取得从而求得结果【详解】由方程可得圆C1C2的圆心坐解析:32【分析】首先画出相应的图形,根据切线的性质,得到对应的垂直关系,利用勾股定理得到线段之间的关系,从而将问题转化,再应用圆上的点到定点的距离的最小值在什么位置取得,从而求得结果. 【详解】由方程可得圆C 1,C 2的圆心坐标分别为(),4k k -+,()1,0-,半径都是1. 如图,因为PQ 为切线,所以2PQ C Q ⊥,由勾股定理,得221PQ PC =-PQ 最小,则需2PC 最小,显然当点P 为12C C 与1C 的交点时,2PC 最小,此时,2121PC C C =-,所以当12C C 最小时,2PC 就最小,()2222123251(4)2617222C C k k k k x ⎛⎫=++-+=-+=-+ ⎪⎝⎭ 当32k时,12C C 最小,得到PQ 最小, 故答案是:32. 【点睛】该题考查的是有关直线与圆的位置关系,切线长的求法,勾股定理,两点间距离公式,二次函数的最值,以及数形结合的思想.14.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7).【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.15.【分析】求得直线与直线的交点的坐标然后求出直线上的点关于直线的对称点的坐标进而可求得直线的方程即为反射光线所在直线的方程【详解】联立解得则直线与直线的交点为设直线上的点关于直线的对称点为线段的中点在 解析:730x y --=【分析】求得直线30x y -+=与直线220x y -+=的交点A 的坐标,然后求出直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点C 的坐标,进而可求得直线AC 的方程,即为反射光线所在直线的方程. 【详解】联立30220x y x y -+=⎧⎨-+=⎩,解得14x y =⎧⎨=⎩,则直线30x y -+=与直线220x y -+=的交点为()1,4A .设直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点为(),C a b , 线段BC 的中点3(,)22a b M -在直线220x y -+=上,则322022a b-⨯-+=,整理得220a b --=.直线220x y -+=的斜率为2,直线BC 与直线220x y -+=垂直,则213ba ⋅=-+,整理得230ab ++=.所以,220230a b a b --=⎧⎨++=⎩,解得1585a b ⎧=⎪⎪⎨⎪=-⎪⎩,即点1(,55)8C -.所以,反射光线所在直线的斜率为8457115ACk +==-, 因此,反射光线所在直线的方程为()471y x -=-,即730x y --=. 故答案为:730x y --=. 【点睛】运用点关于直线的对称点的坐标的求解是解题关键.16.15【分析】根据直线3x +4y-12=0可求得的坐标及利用圆心到直线的距离求出点C 到直线的距离的最小值和最大值利用面积公式可求得结果【详解】令得令得所以A (40)点B (03)∴|AB|=5由x2+y解析:15 【分析】根据直线3x +4y -12=0可求得,A B 的坐标及||AB ,利用圆心到直线的距离求出点C 到直线AB 的距离的最小值和最大值,利用面积公式可求得结果. 【详解】令0y =得4x =,令0x =得3y =,所以A (4,0),点B (0,3), ∴|AB |=5,由x 2+y 2-10x -12y +52=0得22(5)(6)9x y -+-=, 所以圆的半径为3,圆心为(5,6), 圆心(5,6)到直线AB 的距离d ==275, 所以点C 到直线AB 的距离的最小值为2712355-=,最大值为2742355+=, 所以ABCS的最大值为14252125⨯⨯=,最小值为1125625⨯⨯=, 所以△ABC 面积的最大值和最小值之差为21615-=. 故答案为:15 【点睛】关键点点睛:利用圆心到直线的距离求出点C 到直线AB 的距离的最小值和最大值是解题关键.17.【分析】设点连接交于可写出的坐标再在直角中利用勾股定理列方程可得xy 的关系式即顶点的轨迹方程【详解】设点如图连接交于由矩形可知为的中点连接在直角中则即整理得所以顶点的轨迹方程是故答案为:【点睛】关键 解析:2228x y +=【分析】设点(,)C x y ,连接,AB PC 交于M ,可写出M 的坐标,再在直角OMB △中,OM MB ⊥,利用勾股定理列方程可得x, y 的关系式,即顶点C 的轨迹方程.【详解】设点(,)C x y ,如图连接,AB PC 交于M ,由矩形PACB 可知M 为PC 的中点,2,22x y M +⎛⎫⎪⎝⎭,PM MB = 连接,OB OM ,在直角OMB △中,OM MB ⊥,则22222OB OM BM OM MP =+=+即2222221622222x y x y +++⎛⎫⎛⎫⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,整理得2228x y +=,所以顶点C 的轨迹方程是2228x y += 故答案为:2228x y +=【点睛】关键点睛:本题考查求轨迹方程,解题的关键是求谁设谁,设点(,)C x y ,然后再利用图像的几何关系找到x, y 的关系式,即求得轨迹方程,考查学生的直观想象能力与运算求解能力,属于中档题.18.【分析】由题意可知直线与另外两条直线分别平行或三条直线交于一点由此可求得实数的取值【详解】由于三条直线不能围成三角形则直线与另外两条直线分别平行或三条直线交于一点(1)直线与直线平行则解得;(2)直解析:1,3,63⎧⎫-⎨⎬⎩⎭【分析】由题意可知直线350ax y +-=与另外两条直线分别平行或三条直线交于一点,由此可求得实数a 的取值. 【详解】由于三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形, 则直线350ax y +-=与另外两条直线分别平行或三条直线交于一点. (1)直线350ax y +-=与直线10x y ++=平行,则35111a -=≠,解得3a =; (2)直线350ax y +-=与直线280x y -+=平行,则35218a -=≠-,解得6a =-; (3)若三条直线交于一点,联立10280x y x y ++=⎧⎨-+=⎩,解得32x y =-⎧⎨=⎩,所以直线10x y ++=,280x y -+=交于点()3,2-,由题意可知,点()3,2-在直线350ax y +-=上,可得3650a -+-=,解得13a =. 因此,实数a 的取值集合为1,3,63⎧⎫-⎨⎬⎩⎭.故答案为:1,3,63⎧⎫-⎨⎬⎩⎭. 【点睛】由三线不能确定三角形问题的求解,除了考虑直线平行外,同时也不能忽略三线交于一点这种情况的讨论.19.【分析】由曲线方程可知其曲线为半圆进而画出曲线来要使直线与曲线恰有两个交点可以通过数形结合分析得解【详解】曲线有即表示一个半圆(单位圆左半部分)如图当直线经过点点时求得;当直线和半圆相切时由圆心到直 解析:)1,2⎡⎣【分析】由曲线方程可知其曲线为半圆,进而画出曲线来,要使直线与曲线恰有两个交点,可以通过数形结合分析得解. 【详解】曲线2x 1y =--有即221x y +=(0)x ,表示一个半圆(单位圆左半部分).如图,(0,1)A 、(1,0)B -、(0,1)C -,当直线y x b =+经过点B 、点A 时,01b =-+,求得1b =; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12=,求得2b =,或2b =-(舍去),故要求的实数b 的范围为12b <, 故答案为:)1,2⎡⎣【点睛】易错点睛:本题在把方程2x 1y =--化简找其对应的曲线时,容易漏掉0x ≤,从而把曲线的范围扩大为整个单位圆,导致结果出错.在把方程转化时,一定要注意变量范围的等价性.20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是 解析:5 【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离2266521d ==+,设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=, ∴max 5||,365OQ ==故答案为:53. 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)证明见解析;(2)22;(3)22331762222x y ⎛⎫⎛⎫-+-=- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)在Rt OPQ 中,利用勾股定理和PQ PA =可构造关于,a b 的等量关系,整理即可得到结论;(2)利用两点间距离公式可整理得到2265PQ a a =-+,结合a 的范围,根据二次函数的性质可求得最小值;(3)根据(1)中结论可知P 在直线30x y +-=上移动,由圆的性质知圆心到直线距离即为min OP ,根据题意可知所求半径最小的圆与圆O 相外切,由此确定min r ,结合P 点坐标可确定所求圆的方程. 【详解】 (1)连接OP ,PQ ∵为圆O 的切线,OQ PQ ∴⊥,在Rt OPQ 中,222OQ PQ OP +=,又PQ PA =,222OQ PA OP ∴+=, 即()()2222422a b a b +-+-=+,整理可得:4412a b +=,3a b ∴+=. (2)由(1)知:()()()()222222221265PQ PA a b a a a a ==-+-=-+-=-+(),P a b 在圆O 外,224a b ∴+>,即()2234a a +->,解得:a R ∈,∴当32a =时,PQ 取得最小值,则min 929522PQ =-+=. (3)由(1)知:3a b +=,则P 在直线30x y +-=上移动, 圆心O 到直线30x y +-=的距离33222d -==,即min 322OP =, 若以P 为圆心作圆,与圆O 有公共点,则其中半径最小的圆与圆O 相外切,此时圆的半径2r OP =-,min 22r ∴=-. 由30y x x y =⎧⎨+-=⎩得:3232x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP 取最小值时,33,22P ⎛⎫ ⎪⎝⎭, ∴所求圆的方程为:223317222x y ⎛⎫⎛⎫-+-=- ⎪ ⎪⎝⎭⎝⎭【点睛】结论点睛:本题考查直线与圆、圆与圆位置关系的综合应用,解题关键是能够根据两圆有公共点,确定两圆相外切时,所求圆的半径最小;求解圆的半径的过程中,涉及到圆上的点到与圆相离的直线上的点的距离的最小值的求解,若圆心到直线距离为d ,圆的半径为r ,则:圆上的点到与圆相离的直线上的动点之间距离的最小值为:d r -;最大值为:d r +. 22.(1)直线l 的一个方向向量为(1,3);(2)arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)将A 代入直线l 方程求a ,写出直线方程即可得l 的方向向量; (2)由直线方程得斜率42k a a=+-,讨论a 并利用基本不等式求k 的范围,进而可得倾斜角的范围. 【详解】(1)把(1,0)A 代入直线l 的方程,得2210a a -+=,解得1a =,此时直线l 的方程为330x y --=,故直线l 的一个方向向量为(1,3);(2)因为0a ≠,所以直线l 的斜率22442a aa a k a-+=+-=,∴当0a >时,4222k a a+-≥==当且仅当2a =时等号成立; 当0a <时,4)()]22[(6a ak +--≤---=-=当且仅当2a =-时等号成立;综上有(,6][2,)k ∈-∞-+∞,可得倾斜角arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】 结论点睛: 直线0ax by c的方向量为(,)b a -或(,)b a -.倾斜角α与斜率k 的关系:tan k α=或arctan k α=.23.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 24.(1)34140x y +-=;(2)(1,1)M . 【分析】(1)通过平行设出直线方程,代入(2,5)P -即可;(2)过点C 10,3⎛⎫- ⎪⎝⎭的直线与直线l 垂直,可得004310x y --=,加上M 在直线上,联立求交点即可. 【详解】(1)因为直线m 与直线l 平行,设直线m :340(7)x y a a ++=≠-, 将点(2,5)P -代入得:14a =-,所以直线m :34140x y +-=.(2)设()0,0M x y ,则001433CMy k x ⎛⎫-- ⎪⎝⎭==,即004310x y --=①, 又M 在直线l 上,所以003470x y +-=②,①②联立得:0011x y =⎧⎨=⎩,所以(1,1)M .【点睛】本题主要考查直线的一般式的平行关系与垂直关系,正确写出解析式是处理此题的关键. 25.(1)0y =或4y x =;(2)2220x y x y +++=(挖去点33,22⎛⎫-- ⎪⎝⎭和36,55⎛⎫- ⎪⎝⎭). 【分析】(1)设直线l 的方程为:y kx =,结合圆的几何关系和勾股定理,分别求出11,22OQ OP ,再结合2OQ OP =代值求解即可; (2)联立直线与圆方程分别求出,P Q 坐标,结合中点坐标公式求出M 坐标,消参即可求解M 的轨迹方程 【详解】解:(1)设直线l 的方程为:y kx =,12,C C 到直线l 的距离为12,d d .由条件=221243d d -=,所以2243⨯-=,整理,得240k k -=,解得0k =或4k =, 所以直线l 的方程为:0y =或4y x =;(2)设:l y kx =;则由()()22215y kx x y =⎧⎪⎨+++=⎪⎩消去y ,得()()221240k x k x +++=, 解得122240,1k x x k+==-+.其中2k ≠-, 所以()222424,11k k k Q k k +⎛⎫+-- ⎪++⎝⎭, 由()()22112y kx x y =⎧⎪⎨-++=⎪⎩消去y ,得()()221220k x k x ++-=, 解得342220,1kx x k -==+,其中1k ≠,所以()222222,11k k k P k k -⎛⎫- ⎪++⎝⎭,设(),M x y ,则()22211211k x k k k y k +⎧=-⎪+⎪⎨+⎪=-⎪+⎩①②,将y k x =代入①式消去k ,得:2220x y x y +++=,又1k ≠且2k ≠-, 代入①②求得33,22⎛⎫-- ⎪⎝⎭和36,55⎛⎫- ⎪⎝⎭, 故点M 的轨迹方程为:2220x y x y +++=(挖去点33,22⎛⎫-- ⎪⎝⎭和36,55⎛⎫- ⎪⎝⎭). 【点睛】方法点睛:本题考查由直线与圆的位置关系求直线方程,求动点轨迹方程,常用以下方法:(1)直线与圆的位置关系求直线方程或弦长问题常结合几何关系求解,即l =l 为弦长,r 为圆的半径,d 为弦心距;(2)求动点轨迹方程大多数题采用直接法,设法表示出所求点坐标,再消参即可;也可采用代换法,将所求点坐标代入已知方程化简求解(适用于所求点与已知方程存在直接联系的情况).26.(1)320x y ++=;(2)22(2)8x y -+=;(3)20x y -+=或20x y ++=. 【分析】(1)求出直线AC 的斜率后可得直线AC 的方程.(2)求出点A 的坐标,结合圆心坐标可求圆的半径,从而可得圆的方程. (3)利用点到直线的距离为半径可求切线的斜率,从而可得所求的切线的方程. 【详解】 (1)0AT AB ⋅=,AT AB ∴⊥,又T 在AC 上,AC AB ∴⊥,ABC ∴为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,∴直线AC 的斜率为3-, 又点()1,1T -在直线AC 上,AC ∴边所在直线的方程为13(1)y x -=-+,即320x y ++=.(2)AC 与AB 的交点为A ,∴由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,BM MC =,()2,0M ∴为Rt ABC 斜边上的中点,即为Rt ABC 外接圆的圆心,又||r AM === 从而ABC 外接圆的方程为22(2)8x y -+=.。

人教A版高中数学(选修1-1)单元测试-第二章

人教A版高中数学(选修1-1)单元测试-第二章

2—=1上的一点M 到焦点F 1的距离为2, N 是MF 1的中点,O 为原点,则|0N|等于二•填空题:本大题共 4小题,每小题6分,共24分。

2 26•椭圆5x ky -5的一个焦点是(0,2),那么k 二 7.椭圆的焦点在y 轴上,一个焦点到长轴的两端点的距离之比是 1 : 4,短轴长为8,则椭圆的标准方程是 __________________ .2 2 &已知点(0, 1)在椭圆5 + m = 1内,贝y m 的取值范围是 ______________________________________________ .W I I I2 29 •椭圆 + 2m = 1的准线平行于x 轴,则m 的取值范围是 __________________寸3m + 1 2m第二章圆锥曲线与方程单元测试A 组题(共100分) 一•选择题:本大题共 5题,每小题7分,共35分。

在每小题给出的四个选项中, 项是符合题目要求的。

1已知坐标满足方程 F(x,y)=O 的点都在曲线C 上,那么 (A )(B ) (C ) (D ) 只有曲线C 上的点的坐标都适合方程 凡坐标不适合 F(x,y)=O 的点都不在 在曲线C 上的点的坐标不一定都适合 不在曲线C 上的点的坐标有些适合F(x,y)=0 C 上 F(x,y ) =0 F(x,y ) =0,有些不合适 F(x,y ) =0 2•至俩坐标轴的距离相等的点的轨迹方程是 (A ) x - y= 0 3•已知椭圆方程为 (B) x + y=0 2m ^= 1,焦点在 (C ) |x|=|y| (D) y=|x|x 轴上,则其焦距等于 (A) 2 8- m 2(B) 2 2 2 - | m|(C ) 2 ,m 2- 8( D ) 2 | m| - 2 22x4.已知椭圆 -25(A) 2(B)4(C ) 8(D) 325.已知F 是椭 2x ~2 a= 1(a>b>0)的左焦点,P 是椭圆上的一点,PF 丄x 轴,OP // AB(O 为原点), 则该椭圆的离(A)■- 2 2(B)(C )(D)三•解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。

高二数学选修1-1第二章试卷及答案

高二数学选修1-1第二章试卷及答案

绝密★启用前考试范围:xxx;考试时间:100分钟;命题人:xxx 学校:___________姓名:___________班级:___________考号:___________注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上1、已知椭圆+=1和点P(4,2),直线l经过点P且与椭圆交于A、B两点.(1)当直线l的斜率为时,求线段AB的长度;(2)当P点恰好为线段AB的中点时,求l的方程.【答案】(1) 3 (2) y=-x+4【解析】(1)由已知可得直线l的方程为y-2= (x-4),即y=x.由可得x2-18=0,若设A(x1,y1),B(x2,y2).则x1+x2=0,x1x2=-18.于是|AB|====³6=3.所以线段AB的长度为3.(2)方法一设l的斜率为k,则其方程为y-2=k(x-4).联立消去y得(1+4k2)x2-(32k2-16k)x+(64k2-64k-20)=0.若设A(x1,y1),B(x2,y2),则x1+x2=,由于AB的中点恰好为P(4,2),所以==4,解得k=-,且满足Δ>0.这时直线的方程为y-2=- (x-4),即y=-x+4.方法二设A(x1,y1),B(x2,y2),则有两式相减得+=0,整理得k AB==-,由于P(4,2)是AB的中点,∴x1+x2=8,y1+y2=4,于是k AB=-=-,于是直线AB的方程为y-2=- (x-4),即y=-x+4.2、已知双曲线-=1的左、右焦点分别是F1、F2,若双曲线上一点P使得∠F1PF2=60°,求△F1PF2的面积.【答案】16【解析】由-=1,得a=3,b=4,c=5.由定义和余弦定理,得|PF1|-|PF2|=±6,|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°,所以102=(|PF1|-|PF2|)2+|PF1|²|PF2|,所以|PF1|²|PF2|=64,∴S△F1PF2=|PF1|²|PF2|²sin∠F1PF2=³64³=16.3、设双曲线-=1 (0<a<b)的半焦距为c,直线l过A(a,0),B(0,b)两点,且原点到直线l的距离为c,求双曲线的离心率.【答案】e=2【解析】∵直线l过点A(a,0),B(0,b),∴l的方程为+=1,即bx+ay-ab=0.∵原点到直线l的距离为c,∴=c,即ab=c2.两边平方得16a2b2=3c4,∴16a2(c2-a2)=3c4,∴3c4-16a2c2+16a4=0,即3e4-16e2+16=0.解得e2=4或e2=.∵b>a>0,∴>1.∴e2==1+>2.∴e2=4,∴e=2.4、已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A、B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.【答案】解(1)因为直线l的倾斜角为60°,所以其斜率k=tan 60°=,又F.所以直线l的方程为y=.联立消去y得x2-5x+=0.若设A(x1,y1),B(x2,y2).则x1+x2=5,而|AB|=|AF|+|BF|=x1++x2+=x1+x2+p.所以|AB|=5+3=8.(2)设A(x1,y1),B(x2,y2),由抛物线定义知|AB|=|AF|+|BF|=x1++x2+=x1+x2+p=x1+x2+3,所以x1+x2=6,于是线段AB的中点M的横坐标是3,又准线方程是x=-,所以M到准线的距离等于3+=.【解析】5、已知直线l:y=kx+1与椭圆+y2=1交于M、N两点,且|MN|=.求直线l的方程.【答案】y=x+1或y=-x+1【解析】设直线l与椭圆的交点M(x1,y1),N(x2,y2),由消y并化简,得(1+2k2)x2+4kx=0,∴x1+x2=-,x1x2=0.由|MN|=,得(x1-x2)2+(y1-y2)2=,∴(1+k2)(x1-x2)2=,∴(1+k2)[(x1+x2)2-4x1x2]=.即(1+k2) =.化简,得k4+k2-2=0,∴k2=1,∴k=±1.∴所求直线l的方程是y=x+1或y=-x+1.。

人教版A版高中数学高二版选修1-1 第2章综合检测1

人教版A版高中数学高二版选修1-1 第2章综合检测1

第二章 单元综合检测(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2D .4解析:由题意可得21m =2×2,解得m =14. 答案:A2.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0解析:∵4m 2+n 2>2,∴m 2+n 2<2,m 29+n 24<m 24+n 24<1, ∴点P (m ,n )在椭圆x 29+y 24=1的内部,∴过点P (m ,n )的直线与椭圆x 29+y 24=1有两个交点.答案:B3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,则双曲线的离心率为( )A.53 B.43 C.54D. 32解析:双曲线焦点在x 轴,由渐近线方程可得b a =43,可得e =ca =32+423=53. 答案:A4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D. x 227-y 29=1 解析:抛物线y 2=24x 的准线方程为x =-6,故双曲线中c =6. ①由双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =3x ,知ba =3, ② 且c 2=a 2+b 2.③由①②③解得a 2=9,b 2=27. 故双曲线的方程为x 29-y 227=1,故选B.答案:B5.以P (2,2)为圆心的圆与椭圆x 2+2y 2=a 相交于A ,B 两点,则AB 的中点M 的轨迹方程为( )A. xy -2x -4y =0B. xy +2x +4y =0C. xy -2x +4y =0D. xy +2x -4y =0解析:本题主要考查由曲线求方程的方法.设M (x ,y ),A (x -m ,y -n ),B (x +m ,y +n ),易知AB 的斜率必存在,又A ,B 都在椭圆上,则⎩⎪⎨⎪⎧(x -m )2+2(y -n )2=a (x +m )2+2(y +n )2=a k AB·k PM=-1⇒⎩⎪⎨⎪⎧4mx +8ny =0n m =-x -2y -2⇒x 2y =x -2y -2,即xy +2x -4y =0为所求轨迹方程,故选D. 答案:D6.已知椭圆x 2sin α-y 2cos α=1(0≤α<2π)的焦点在y 轴上,则α的取值范围是( ) A.⎝⎛⎭⎫34π,π B.⎝⎛⎭⎫π4,34π C.⎝⎛⎭⎫π2,πD. ⎝⎛⎭⎫π2,34π解析:椭圆方程化为x 21sin α+y 2-1cos α=1.∵椭圆焦点在y 轴上,∴-1cos α>1sin α>0.又∵0≤α<2π,∴π2<α<3π4.答案:D7.[2014·人大附中月考]已知F 1、F 2为双曲线的焦点,以F 1F 2为边作正三角形,若双曲线恰好平分另外两边,则双曲线的离心率为( )A. 1+3B. 1- 3C.1+32D.1-32解析:本题考查了双曲线的定义及数形结合的方法.设以F 1F 2为边的正三角形与双曲线右支交于点M ,在Rt △MF 1F 2中可得,|F 1F 2|=2c ,|MF 1|=3c ,|MF 2|=c ,由双曲线的定义有|MF 1|-|MF 2|=2a ,即3c -c =2a ,所以双曲线的离心率e =c a =23-1=3+1,故选A.答案:A8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A.125 B.65 C .2D.55解析:如图所示过点F 作FM 垂直于直线3x -4y +9=0,当P 点为直线FM 与抛物线的交点时,d 1+d 2最小值为|3+9|5=125.答案:A9.[2014·唐山统考]椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,A 、B 是C上两点,AF 1→=3F 1B →,∠BAF 2=90°,则椭圆C 的离心率为( )A. 12B.22C.32 D. 34解析:由条件AF 1→=3F 1B →,可知A 、B 、F 1三点共线.设|F 1B →|=x ,则|AF 1→|=3x ,由椭圆定义可知|AF 2|=2a -3x ,|BF 2|=2a -x ,在Rt △ABF 2中有(4x )2+(2a -3x )2=(2a -x )2,整理有:x (3x -a )=0,即3x =a ,x =a3.在Rt △AF 1F 2中有|F 1F 2|=2c ,(3x )2+(2a -3x )2=4c 2,将x =a 3代入得:a 2+(2a -a )2=4c 2,即c 2a 2=12,e 2=12,故e =22. 答案:B10.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口的直径为60 cm ,灯深40 cm ,则抛物线的标准方程可能是( )A .y 2=254xB .y 2=454xC .x 2=-452yD .x 2=-454y解析:若设抛物线的方程为y 2=2px (p >0),则抛物线过点(40,30),302=2p ·40,2p =452,所以所求抛物线方程为y 2=452x . 选项中没有y 2=452x ,但C 中的2p =452符合题意.方程不同主要是因为讨论的焦点不同. 答案:C11.[2013·北京市东城区联考]设F 1、F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A. 3x ±4y =0B. 3x +5y =0C. 5x ±4y =0D. 4x ±3y =0解析:本题主要考查双曲线的定义、等腰三角形的性质、双曲线中基本量之间的关系及应用.由题意可知|PF 2|=|F 1F 2|=2c ,所以△PF 1F 2为等腰三角形,所以由F 2向直线PF 1作的垂线也是中线,因为F 2到直线PF 1的距离等于双曲线的实轴长2a ,所以|PF 1|=24c 2-4a 2=4b ,又|PF 1|-|PF 2|=2a ,所以4b -2c =2a ,所以2b -a =c ,两边平方可得4b 2-4ab +a 2=c 2=a 2+b 2,所以3b 2=4ab ,所以4a =3b ,从而b a =43,所以该双曲线的渐近线方程为4x ±3y =0,故选D.答案:D12.[2014·昆明调研]过椭圆x 24+y 2=1的左焦点作互相垂直的两条直线,分别交椭圆于A 、C 、B 、D 四点,则四边形ABCD 面积的最大值与最小值之差为( )A. 1725B. 1825C. 1925D. 45解析:当直线AC 的斜率存在且不为0时,设直线AC :y =k (x +3),则BD :y =-1k(x+3),由⎩⎪⎨⎪⎧y =k (x +3)x 24+y 2=1消去y 得(4k 2+1)x 2+83k 2x +12k 2-4=0,设A (x 1,y 1)、C (x 2,y 2),则x 1+x 2=-83k 24k 2+1,x 1x 2=12k 2-44k 2+1,|AC |=(1+k 2)(x 1-x 2)2=4×k 2+14k 2+1,将k 换成-1k 得|BD |=4×k 2+1k 2+4,∴四边形ABCD 的面积S =12|AC |×|BD |=8(k 2+1)2(k 2+4)(4k 2+1),设k 2+1=t (t >1),则S =8(4-3t )(1+3t ),令3t =m (0<m <3),则S =8(4-m )(1+m )=8-m 2+3m +4,∵0<m <3,∴3225≤S <2;当直线AC 的斜率为0或不存在时,S =2,综上所述3225≤S ≤2,面积的最大值与最小值之差为2-3225≤1825.答案:B二、填空题(本大题共4小题,每小题5分,共20分)13.[2014·辽宁五校联考]双曲线y 24-x 22=1的离心率为________.解析:由题知c =4+2=6,a =2,所以e =c a =62.答案:6214.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点__________.解析:直线x +2=0为抛物线的准线,由于动圆恒与直线x +2=0相切,所以圆心到直线的距离等于圆心到所过定点的距离,由抛物线的定义可知,定点为抛物线的焦点(2,0).答案:(2,0)15.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点⎝⎛⎭⎫b 2,0分成3∶1的两段,则此椭圆的离心率为__________.解析:由题意,得b2+c c -b 2=3⇒b 2+c =3c -32b ⇒b =c ,因此e =ca =c 2a 2=c 2b 2+c 2=12=22. 答案:2216.[2014·河南省实验中学月考]抛物线y 2=2px (p >0)的焦点为F ,过焦点F 倾斜角为30°的直线交抛物线于A ,B 两点,点A ,B 在抛物线准线上的射影分别是A ′,B ′,若四边形AA ′B ′B 的面积为48,则抛物线的方程为____.解析:本题考查点斜式,抛物线的几何性质,直线与抛物线的位置关系及梯形的面积公式.因为抛物线的焦点为F (p 2,0),所以直线AB 的方程为y =33(x -p2),代入y 2=2px (p >0),整理得,x 2-7px +p 24=0.设A (x 1,y 1),B (x 2,y 2),则由方程的根与系数之间的关系得x 1+x 2=7p ,x 1·x 2=p 24,y 1-y 2=33(x 1-x 2),又四边形AA ′B ′B 是梯形,其面积为48,所以12(x 1+x 2+p )|y 1-y 2|=48,即12(x 1+x 2+p )|33(x 1-x 2)|=36(x 1+x 2+p )(x 1+x 2)2-4x 1x 2=48,解得p 2=3,p =3,故抛物线的方程为y 2=23x .答案:y 2=23x三、解答题(本大题共6小题,共70分)17.(10分)已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.解:设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 29=1. ∵M 是线段PP ′的中点,∴⎩⎪⎨⎪⎧ x 0=x ,y 0=y 2,把⎩⎪⎨⎪⎧x 0=x y 0=y2, 代入x 2036+y 209=1,得x 236+y 236=1,即x 2+y 2=36.∴P 点的轨迹方程为x 2+y 2=36.18.(12分)[2013·湖南省长沙一中期中考试]已知焦点在坐标轴上的双曲线,它的两条渐近线方程为y ±3x =0,焦点到渐近线的距离为3,求此双曲线的方程.解:设双曲线方程为y 2-3x 2=k (k ≠0), 当k >0时,a 2=k ,b 2=k 3,c 2=4k 3,此时焦点为(0,±4k 3), 由题意得3=4k 32,解得k =27,双曲线方程为y 2-3x 2=27,即y 227-x 29=1;当k <0时,a 2=-k 3,b 2=-k ,c 2=-4k3,此时焦点为(±-4k3,0), 由题意得3=-4k 2,解得k =-9,双曲线方程为y 2-3x 2=-9,即x 23-y 29=1.∴所求双曲线方程为y 227-x 29=1或x 23-y 29=1.19.(12分)已知双曲线C :x 22-y 2=1.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P 关于原点的对称点,记λ=MP →·MQ →.求λ的取值范围.解:(1)所求渐近线方程为y -22x =0,y +22x =0. (2)设P 的坐标为(x 0,y 0), 则Q 的坐标为(-x 0,-y 0),λ=MP →·MQ →=(x 0,y 0-1)·(-x 0,-y 0-1) =-x 20-y 20+1=-32x 20+2. ∵|x 0|≥2,∴λ≤-1.∴λ的取值范围是(-∞,-1].20. 已知椭圆C 的中心在原点,焦点在x 轴上,我们把过焦点且与x 轴垂直的弦叫此椭圆的通径,若已知此椭圆的通径长为22,倾斜角为π4的直线l 交椭圆C 于A ,B 两点,且线段AB 中点为(-12,14).(1)求椭圆C 方程.(2)设P ,Q 为椭圆C 上两点,且满足|OP |2+|OQ |2=34,求证:直线OP 和OQ 斜率之积的绝对值为定值.解:(1)设椭圆C 方程为x 2a 2+y 2b 2=1(a >b >0).因为直线l 倾斜角π4且过点(-12,14),所以直线l 方程为y -14=x +12,即y =x +34,由⎩⎨⎧y =x +34,x 2a 2+y 2b 2=1⇒(a 2+b 2)x 2+32a 2x +916a 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-3a 22(a 2+b 2)=-1,即a 2=2b 2,① 又求得此椭圆的通径为2b 2a =22.②由①、②,得a 2=12,b 2=14.故椭圆C 方程为2x 2+4y 2=1.(2)设P ,Q 两点的坐标分别为(x 3,y 3),(x 4,y 4),则有2x 23+4y 23=1,2x 24+4y 24=1,两式相加得2(x 23+x 24)+4(y 23+y 24)=2,由|OP |2+|OQ |2=34, ③ 得x 23+y 23+x 24+y 24=34,④由③④解得x 23+x 24=12,y 23+y 24=14. 又x 23x 24=14(1-4y 23)(1-4y 24)=14[1-4(y 23+y 24)+16y 23y 24]=4y 23y 24. 所以y 23y 24x 23x 24=14.即|k OP ·k OQ |=12,为定值.21.(12分)[2014·浙江名校联考]已知抛物线的顶点在坐标原点,以椭圆y 24+x 23=1的上焦点为焦点.(1)求抛物线的标准方程;(2)如图所示,与圆x 2+(y +1)2=1相切的直线l :y =kx +t 交抛物线于不同的两点M ,N ,若抛物线上一点C 满足O C →=λ(OM →+ON →)(λ>0),求λ的取值范围.解:(1)因为椭圆的上焦点为(0,1),所以抛物线的焦点为(0,1),抛物线的标准方程为x 2=4y .(2)因为直线l 与圆相切, 所以|t +1|1+k 2=1⇒k 2=t 2+2t .把直线方程代入抛物线方程并整理得: x 2-4kx -4t =0.由Δ=16k 2+16t =16(t 2+2t )+16t >0, 得t >0或t <-3.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k , y 1+y 2=(kx 1+t )+(kx 2+t )=k (x 1+x 2)+2t =4k 2+2t .由OC →=λ(OM →+ON →)=λ(x 1+x 2,y 1+y 2)=(4kλ,(4k 2+2t )λ),得C (4kλ,(4k 2+2t )λ). 因为点C 在抛物线x 2=4y 上,所以16k 2λ2=4(4k 2+2t )λ⇒λ=1+12k 2=1+t 2t 2+4t =1+12t +4.因为t >0或t <-3, 所以2t +4>4或2t +4<-2, 所以λ的取值范围为(12,1)∪(1,54).22.(12分)设A ,B 是椭圆3x 2+y 2=λ上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆交于C ,D 两点.(1)当λ=3时,过点P (0,1)且倾斜角为π3的直线与椭圆相交于E 、F 两点,求|EF |的长;(2)确定λ的取值范围,并求直线CD 的方程. 解:(1)当λ=3时,椭圆方程为x 2+y 23=1,直线EF 方程为:y =3x +1. 设E (x 1,y 1),F (x 2,y 2),则⎩⎨⎧y =3x +1,3x 2+y 2=3,∴3x 2+3x -1=0. ∴⎩⎨⎧x 1+x 2=-33,x 1x 2=-13.∴|EF |=1+k 2|x 2-x 1|=1+3·(x 1+x 2)2-4x 1x 2=2153.(2)设直线AB 的方程为y =k (x -1)+3, 代入3x 2+y 2=λ,得(k 2+3)x 2-2k (k -3)x +(k -3)2-λ=0.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2k (k -3)k 2+3,且Δ=4[λ(k 2+3)-3(k -3)2]>0.②由N (1,3)是线段AB 的中点,得x 1+x 2=2. ∴k (k -3)=k 2+3解得k =-1代入②得λ>12.∴λ的取值范围是(12,+∞),直线CD 的方程为x -y +2=0.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高二数学选修1-1第二章测试题
————————————————————————————————作者:————————————————————————————————日期:
高二数学选修1-1第二章测试题
一、选择题
1.椭圆142
2
=+y x 的离心率为 ( ) A .
21 B .23 C . ±2
1
D .±23
2. 如果椭圆
22
110036
x y +=上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离为( ) A . 10 B . 6 C . 12 D . 14
3.双曲线19
42
2=-y x 的渐近线方程是 ( ) A .x y 2

= B .x y 3

= C .x y 4

= D .x y 9

= 4. 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )
5. 方程
11
42
2=-+-t y t x 表示的曲线为C,给出下面四个命题,其中正确命题的个数是 ①若曲线C 为椭圆,则1<t<4 ②若曲线C 为双曲线,则t<1或t>4 ③曲线C 不可能是圆 ④若曲线C 表示焦点在x 轴上的椭圆,则1<t<2
3 A.1 B.2 C.3 D.4
6. 3k >是方程
22
131
x y k k +=--表示双曲线的( )条件。

A .充分但不必要 B .充要 C .必要但不充分 D .既不充分也不必要 7.抛物线2
4(0)y ax a =<的焦点坐标是( ) A .1(
,0)4a B .1(0,)16a C .1(0,)16a -D . 1
(,0)16a
8.过点(0,2)与抛物线2
8y x =只有一个公共点的直线有( ) A .1条 B .2条 C .3条 D .无数多条
9.设12,F F 为双曲线2
214
x y -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F PF ∆的面积是( ) A .1 B .
2 C .
3 D .2
10.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为
3
1
,则椭圆的方程是( ) A.1442x +1282y =1 B.362x +202y =1 C.322x +362y =1 D.362x +32
2
y =1 11.双曲线22a x -22
b
y =1的两条渐近线互相垂直,那么它的离心率为( )
A.2
B.3
C.2
D.
2
3 12.动圆C 经过定点F(0,2)且与直线y+2=0相切,则动圆的圆心C 的轨迹方程是( )
A.x 2
=8y
B.y 2
=8x C.y=2
D.x=2
13.与曲线
1492422=+y x 共焦点,而与曲线164362
2=-y x 共渐近线的双曲线方程为 A .19
1622=-x y B .19
162
2=-y x C .
116
92
2=-x y D .
116
92
2=-y x 14. 若椭圆22221(0)x y a b a b +=>>的离心率是32,则双曲线22
221x y a b
-=的离心率是( )
A .
5
4
B .
52
C .
3
2
D . 54
15.椭圆2
2
1x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )
A .
1
4
B .
1
2
C . 2
D .4 16. 若双曲线192
2=-m
y x 的渐近线l 方程为x y 35±
=,则双曲线焦点F 到渐近线l 的距离为 ( ) A .2
B .14
C .5
D .25
17.“ab <0”是“方程ax 2+by 2=c 表示双曲线”的 ( )
(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )非充分非必要条件 二、填空题
18.过点P(-2, -4)的抛物线的标准方程为
19、已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段AB 的中点坐标是 20、在抛物线y=x 2
上的点___________处的切线倾斜角为
4
π 21.椭圆x 2+4y 2=16被直线y =x +1截得的弦长为 . 三、解答题
22.已知双曲线的中心在原点,焦点为F 1()022,-,F 2(0,22),且离心率32
4
e =,求双曲线的标准方程.
23.设21,F F 分别为椭圆C :)0(122
22>>=+b a b
y a x 的左右两个焦点,椭圆上的点A (1,23)到2
1,F F 两点的距离之和等于4,求:①写出椭圆C 的方程和焦点坐标②过1F 且倾斜角为30°的直线,交椭圆于A,B 两点,求△AB 2F 的周长
24.已知抛物线顶点在原点,焦点在y 轴上,抛物线上一点M (a , 4)到焦点的距离等于5,求抛物线
的方程和a 值。

20.已知定点A (1,0),定直线l : x=5,动点M (x,y ) (1)若M 到点A 的距离与M 到直线l 的距离之比为
5
5
,试求M 的轨迹曲线C 1的方程;
(2)若曲线C 2是以C 1的焦点为顶点,且以C 1的顶点为焦点,试求曲
线C 2的方程;
25.已知圆的方程x 2+y 2=25,点A 为该圆上的动点,AB 与x 轴垂直,B 为垂足,点P 分有向线段BA 的比λ=2
3
.(1)求点P 的轨迹方程并化为标准方程形式(2写出轨迹的焦点坐标和准线方程.
26.已知动点P 与平面上两定点(2,0),(2,0)A B -连线的斜率的积为定值12
-. (Ⅰ)试求动点P 的轨迹方程C.
(Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3
2
4时,求直线l 的方程.
23.①14
22
=+y x ,F (±3,0)②周长为4a =8 24.抛物线方程为:y x 42=,a=±4 26.解:设点(,)P x y ,则依题意有
1
222
y y x x ⋅=-+-, 整理得.1222=+y x 由于2x ≠±,所以




线
C




2
21(2).2
x y x +=≠± (Ⅱ)由
.04)21(:.
1,122222
=++⎪⎩
⎪⎨⎧+==+kx x k y kx y y x 得消去解得x 1=0, x 2=212,(214x x k k +-分别为M ,N 的横坐标)由
,234
|214|
1||1||2
2212=++=-+=k
k k x x k MN .1:±=k 解得 所以直线l 的方程x -y +1=0或x +y -1=0。

相关文档
最新文档