2007第五届小学数学希望杯六年级第二试试题及答案

合集下载

(完整word版)第五届希望杯六年级一试试题+答案详解

(完整word版)第五届希望杯六年级一试试题+答案详解

第五届小学“希望杯”全国数学邀请赛六年级 第1试2007年3月18日 上午8:30至10:00亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分。

1. 已知31::1.2,:0.75:,:____.(22a b b c c a ===那么写成最简单的整数比) 2. 11111111(1)(1)(1)(1)(1)(1)(1)(1)23456789_____.0.10.20.30.40.50.60.70.80.9--------=++++++++ 3. 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的三个数的和相等。

那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。

6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。

由图可知, 我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。

7.小红和小明帮刘老师修补一批破损图书。

根据图3中信息计算,小红和小时一共修补图书______本。

8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,古代合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。

完成这项工程共用______天。

9.甲、乙两车分别从A 、B 两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A 、B 距离的13多50千米时,与乙车相遇.A 、B 两地相距______千米。

三角形等高模型与鸟头模型:知识例题精讲

三角形等高模型与鸟头模型:知识例题精讲

三角形等高模型与鸟头模型板块一三角形等高模型我们已经知道三角形面积的计算公式:三角形面积二底X鬲一2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,爲越大(小儿三角形面积也就越大(小):如果三角形的高不变,底越大(小),三角形面积也就越大(小):这说明当三角形的面积变化时,它的底和商之中至少有一个要发生变化.但是,当三角形的底和离同时发生变化时,三角形的面积不一定变化.比如当鬲变为原来的3倍,底变为原来的丄,则三角形面积与原来的一3样.这就是说:一个三角形的面积变化与否取决于它的鬲和底的乘积,而不仅仅取决于爲或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等离的两个三角形面积相等:②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的离之比:如左图§ :S2 =a・b③夹在一组平行线之间的等积变形,如右上图;反之,如果SgCD=SgCD,则可知直线43平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形):⑤三角形面积等于与它等底等商的平行四边形面积的一半;⑥两个平行四边形鬲相等,面积比等于它们的底之比:两个平行四边形底相等,面积比等于它们的鬲之比.【例1]你有多少种方法将任意一个三角形分成:(1) 3个面积相等的三角形;⑵4个面积相等的三角形; ⑶6个面积相等的三角形•【例2】如图,BD长12厘米,DC长4厘米,B. C和D在同一条直线上.(1)求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?A【例3】如右图,创芳和CDEF 都是矩形,M 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的 面积是—平方厘米.BFC【例4】如图,长方形ABCD 的面积是56平方厘米,点E 、F. G 分别是长方形ABCD 边上的中点,H 为 血边上的任意一点,求阴影部分的面积.【例7】如右图,E 在AD ±, AD 垂直BC, AD = \2厘米,DE = 3厘米.求三角形ABC 的面积是三角形 EBC 面积的几倍?E. F 、G 为各边中点,H 为AD 边上任意一点•问阴影部分面F. G 为各边中点,H 为血边上任意一点,问阴影部分面积是【例5]长方形ABCD 的面积为36 c 卅, 【例6】长方形ABCD 的面积为36, £> 多少?A【例8】如图,在平行四边形ABCD 中,EF 平行AC,连结3厶AE. CF 、防 那么与△ BEC 等积的三角形 一共有哪几个三角形?【例9】(第四届”迎春杯”试题)如图,三角形ABC 的面积为1,其中AE = 3AB 9 BD = 2BC ,三角形 BDE 的面积是多少?【例10】 (2008年四中考题)如右图,AD = DB, AE = EF = FC,已知阴影部分面积为5平方厘米,AABC 的面积是 _______ 平方厘米.【例11】 如图ABCD 是一个长方形,点厶F 和G 分别是它们所在边的中点.如果长方形的面积是36【例12】 如图,大长方形由面积是12平方厘米.24平方厘米、36平方厘米.48平方厘米的四个小长 方形组合而成.求阴影部分的面积.DC = 2BD, CE = 3AE 9三角形ADE 的面积是20平方厘米,三角12c nV^Acw : 48cm 2【例13】 如图,三角形ABC 中,形ABC 的面积是多少? CA【例14】 (2009年第七届”希望杯”二试六年级)如图,在三角形ABC 中.已知三角形ADE.三角形DCE.三角形BCD 的面积分别是89, 28, 26.那么三角形D 处的面积是 _________________ ・【例15] (第四届《小数报》数学竞赛)如图,梯形ABCD 被它的一条对角线BD 分成了两部分.三角 形BDC 的面积比三角形ABD 的面积大10平方分米.已知梯形的上底与下底的长度之和是15分 米,它们的差是5分米.求梯形ABCD 的面积.A _______ D图中的面积为15cnr,线段OB 的长度为OD 的3倍,求梯形ABCD 的面积.【解析】在MBD 中,因为S^=15cm 2,且OB = 3OD,所以有=丄心*3 = 5cm‘. 因为aABD 和A ACD 等底等商,所以有S “购=S*G ・从而Sgm = 15cnr ,在^BCD 中,S 昨.=3S 的” =45cnr ,所以梯形面积:15+ 5+ 15+ 45 = 80( cnr )・【例18] (第三届“华杯赛”初赛试题)一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的15%,黄色三角形面积是21mr.问:长方形的面积是多少平方厘米?【例16] 【例17]【例19】 O 是长方形ABCD 内一点,已知AOBC 的面积是5cnr , \OAB 的面积是2cnf ,求的面积是多少?【例20】 如右图,过平行四边形ABCD 内的一点P 作边的平行线Ed GH,若APBD 的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PG4E 的面积大多少平方分米?如右图,正方形ABCD 的面积是20,正三角形MPC 的面积是15,求阴影的面积.【例22】 在长方形ABCD 内部有一点O,形成等腰A4OB 的面积为16.等腰近C 的面积占长方形面积的18%,那么阴影A4OC 的面积是多少?【例23】 (2008年“陈省身杯”国际青少年数学邀请赛六年级)如右图所示,在梯形ABCD 中,E 、F 分别是其两腰AB 、CD 的中点,G 是EF 上的任意一点,已知AAZX7的面积为15cnr t 而 7AfiCG 的面积恰好是梯形ABCD 面积的丄,则梯形ABCD 的面积是 cm 2.20 --------------------------------------------------【例21】 DA D【例24】 如图所示,四边形与AEGF 都是平行四边形,请你证明它们的面积相等.【例25】 如图,正方形ABCD 的边长为6, A£=1.5, CF = 2・长方形EFGH 的面积为.如图,ABCD 为平行四边形,EF 平行AG 如果△ ADE 的面积为4平方厘米・求三角形CDF【例27] 图中两个正方形的边长分别是6厘米和4厘米,则图中阴彩部分三角形的面积是多少平方厘【例28】 如图,有三个正方形的顶点D 、G 、K 恰好在同一条直线上,其中正方形GFEB 的边长为 10厘米,求阴影部分的面积.【例26】的面积•【例29】(2008年”华杯赛”决赛)右图中,和CGEF是两个正方形,AG和CF相交于已知CH等于CF的三分之一,三角形的面积等于6平方厘米,求五边形MGEF的面积.【例30】(第八届小数报数学竞赛决赛试题)如下图,E、尸分别是梯形初仞的下底BC和腰仞上的点,DF = FC,并且甲.乙、丙3个三角形面积相等.已知梯形ABCD的面积是32平方厘米.求图中阴影部分的面积.【例31】如图,已知长方形ADE”的面积16,三角形伽的面积是3,三角形ACF的面积是4,那么三角形ABC的面积是多少?如图,在平行四边形ABCD中,BE = EC, CF = 2FD •求阴影面积与空白面积的比.【例32】【例33】(第七届”小机灵杯”数学竞赛五年级复赛)如图所示,三角形初C中,D是边的中点,E是AC边上的一点,且AE = 3EC . O为DC与BE的交点.若ACEO的面积为a平方厘米,^BDO的面积为b平方厘米.且是2.5平方厘米,那么三角形ABC的面积是平方厘米.A【例34】如图,在梯形ABCD中,AD:BE = 4:39 BE: EC = 2:3.且AfiOE的面积比44OD的面积小10平方厘米.梯形ABCD的面积是 _________ 平方厘米.【例35】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13, 35, 49.那么图中阴影部分的面积是多少?A D【例36】图中是一个各条边分别为5厘米.12厘米、13厘米的直角三角形.将它的短直角边对折到斜边上去与斜边相重合,那么图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?【例37】如图,长方形ABCQ的面积是2平方厘米,EC = 2DE, F是QG的中点.阴影部分的面积是多少平方厘米?【例38】(2007年六年级希望杯二试试题)如图,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道= DC.^AD = 2DE .则两块地ACF和CFB的面积比是【例39】(2008年第一届”学而思杯”综合素质测评六年级2试)如图,BC = 45, AC = 21, AABC 被分成9个面积相等的小三角形,那么DI + FK = __________ •【例40】(2007年人大附中分班考试题)已知ABC为等边三角形,面积为400, D、E、F分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)【例41】(2009年四中入学测试题)如图,已知CD = 59 DE = 1 , EF = 15, FG = 6,线段AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是______________ ・【例42】(2008年仁华考题)如图,正方形的边长为10,四边形EFGH的面积为5,那么阴影部分的面积是________ •【例43】(2008年走美六年级初赛)如图所示,长方形ABCD内的阴影部分的面积之和为70, AB = 8, AD=\59四边形EFGO的面积为______________ ・【例44】 (清华附中分班考试题)如图,如果长方形ABCD 的面积是56平方厘米,那么四边形M/VPQ的面积是多少平方厘米?【例45】 (2008年日本第12届小学算术奥林匹克大赛初赛)如图,阴彫部分四边形的外接图形是边长为10cm 的正方形,则阴影部分四边形的面积是 _________ cm'.如图,三角形AE/「的面积是17, DE 、3厂的长度分别为11、3.求长方形ABCQ 的面积.【例47】 (2008年第二届两岸四地华罗庚金杯数学精英邀请赛)如图,长方形ABCD 中,AB = 67 9BC = 30. E. F 分别是佔、BC 边上的两点,BE+BF =49.那么,三角形DEF 面积的最小值 是 ・【例48] (2007首届全国资优生思维能力测试)ABCD 是边长为12的正方形,如图所示,P 是内部任意一点,BL=DM=4. BK = DN = 5,那么阴影部分的面积是 _______________ ・【例46】 D Q 3 C【例49】如图所示,在四边形ABCD中,E, F, G, H分别是ABCD各边的中点,求阴影部分与四边形P0RS的面积之比.【例50】如图.四边形ABCD 中,DE\EF\FC = 3\2A , BG:GH: AH =3:2:\9 AD:BC = 1:2,已知四边形ABCD的面积等于4,则四边形EFHG的面积二_____________________________ ・【例51】(2008年日本小学算数奥林匹克大赛决赛)有正三角形ABC,在边加、BC. C4的正中间分别取点厶、M、N ■在边AL、BM . C7V上分别取点P.R,使厶P = MQ = NR,当PM 和他、PM和QN、QN 和他的相交点分别是X、Y. Z时,使XY = XL.这时,三角形X8的面积是三角形ABC的面积的几分之几?请写出思考过程・【例52】如图:已知在梯形初CD中,上底是下底的彳,其中F是BC边上任意一点,三角形AME.三角形BMF .三角形NFC的面积分别为14、20、12.求三角形NDE的面积.【例53】如图,已知ABCD是梯形,AD // BC 9AD:BC = \:2S M = 24cnr ,求^AOF的面积・【例54】(2009年迎春杯决赛高年级组)如图,ABCD是一个四边形,M . N分别是加、CD的中点.如果比45M、与ADSN的面积分别是6、7和&且图中所有三角形的面积均为整数,则四边形ABCD的面积为___________________ .板块二鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形・共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在△ABC中,DE分别是A5AC上的点如图⑴(或D在34的延长线上.E在AC上), 则S△遊:S△遊=(AB x AC): (AD x AE)图⑴如图在ZV1BC 中.分别是AB.AC ±的点,且AD:AB = 2:5 , A£:AC = 4:7 ,【例55】s 厶初E =16平方厘米,求△ABC 的面积.【例56】 如图在ZVIBC 中,D 在必的延长线上,E 在AC 上,且仙:AD = 5:2.【例57】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,AF = 2CF 9三角形AF£(图中阴影部 分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【例58】 已知△DEF 的面积为7平方厘米,BE = CE.AD = 2BD 、CF =3AF,求ZVIBC 的面积・【例59】 如图,三角形MC 的面积为3平方厘米,其中AB:BE = 2:5, BC: CD = 3:2,三角形BDE 的面积是多少?【例60】 (2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,AE = 1/1C,3CF = -BC.三角形DEF 的面积为 __________ 平方厘米.3求△ABC 的面积.【例61】 如图,己知三角形ABC 面积为1 ,延长至D,使BD = AB :延长BC 至使 CE = 2BC ;延长C4至F,使AF= 3AC,求三角形QEF 的面积・【例62】 如图,平行四边形ABCD, BE = AB 9 CF = 2CB , GD = 3DC , HA = 4AD ,平行四边形【例63】 如图,四边形EFGH 的面积是66平方米,EA = AB 9 CB = BF , DC = CG 9 HD = DA 9求 四边形ABCD 的面积.【例64】 如图,将四边形ABCD 的四条边加、CB. CD 、AD 分别延长两倍至点E. F . G .H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 _______________IJA【例65】如图,在心眈中,延长加至D,使叫初,延长BC至使CE^BC, F是AC 的中点,若△ABC的面积是2,则血矿的面积是多少?【例66】如图,S AABC=1, BC = 5BD, AC=4EC9DG = GS = SE, AF = FG •求S^C5 .如图所示,正方形ABCD边长为8厘米,E是AD的中点,"是CE的中点,G是3厂的中点.三角形ABG的面积是多少平方厘米?A ED【例67】【例68】四个面积为1的正六边形如图摆放,求阴影三角形的面积.。

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。

2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。

3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案(满分120分;时间120分钟)一、填空题(每题5分;共60分)1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根.解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根.4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________.(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66.(66可以表示成0到11的和)5、十进制计数法;是逢10进1;如141022410⨯+⨯=;15106103365210⨯+⨯+⨯=;计算机使用的是二进制计数法;是逢2进1;如22101111121217=⨯+⨯+⨯=;2231011001020212112=⨯+⨯+⨯+⨯=;如果一个自然数可以写成m 进制数m 45;也可以写成n 进制数n 54;那么最小的m =_______;n =________.(注:4434421an n a a a a a 个⨯⋅⋅⋅⨯⨯⨯=)解析:4m+5=5n+4;也就是说4(m-1)=5(n-1);如果m-1=5;n-1=4;则m=6;n=5;但此时n进制中不能出现数字5;如果m-1=10;n-1=8;则m=11;n=9;符合题意.6、我国除了用公历纪年外;还采用干支纪年;根据图2中的信息回答:公历1949年按干支纪年法是____________年.解析:干支纪年法60年一循环;1949+60=2009;而2009年是己丑年;所以1949年是己丑年7、盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球;为了保证有5次摸出的结果相同;则至少需要摸球__________次.解析:每次摸出的结果可能是两个球颜色相同;有3种可能;或颜色不同;也有3种可能;共6种可能.最不利情况是每种可能各出现4次;则再摸一次就保证有5次相同;6×4+1=258、根据图3中的信息回答;小狗和小猪同时读出的数是___________.解析:相当于分别从1和1002处以2:5的速度比进行相遇问题;(1002-1)÷7×2+1=2879、图4中的阴影部分的面积是__________平方厘米.( 取3)解析:分别连接两个正方形的"\"的对角线;发现它们平行;所以阴影部分的面积就等于一个扇形的面积;为15×15×3÷4=168.7510、甲、乙两人合买了n 个篮球;每个篮球n 元.付钱时;甲先乙后;10元;10元地轮流付钱;当最后要付的钱不足10元时;轮到乙付.付完全款后;为了使两人所付的钱数同样多;则乙应给甲________元.解析:总共价格为2n 元;最后乙付说明2n 的十位数字为奇数;所以个位为6;乙最后一次付了6元;应该给甲2元11、某代表队共有23人参加第16届广州亚运会;他们按身高从高到低排列;前5位队员的平均身高比前8位队员的平均身高多3厘米;后15位队员的平均身高比后18位队员的平均身高少0.5厘米.那么前8位队员的平均身高比后15位队员的平均身高多_______厘米.解析:前5位队员的平均身高比前8位队员的平均身高多3厘米;也就是说;加入第6~8名后;平均身高减少了3厘米;因此第6~8名的平均身高比前5名的平均身高少3÷3×8=8厘米.第9~23位队员的平均身高比第6~23位队员的平均身高少0.5厘米;也就是说;加入第6~8名后;平均身高增加了0.5厘米;因此第6~8名的平均身高比第9~23名的平均身高多0.5÷3×18=3厘米.因此;前8名的平均身高比第9~23名的平均身高多8-3+3=8厘米12、甲、乙、丙三人同时从A 地出发到B 地;他们的速度的比是12:5:4;其中甲、乙两人步行;丙骑自行车;丙可以带一人同行(速度保持不变).为了使三人在最短的时间内同时到达B 地;则甲、乙两人步行的路程之比是___________.解析:根据对称性;丙先带谁没有区别.设先带甲;返回接乙.设乙步行的路程为x ;丙骑车返回的路程为y ;甲步行的路程为z .乙比骑车从A 地到B 地多用时间(5x -12x );甲比骑车从A 地到B 地多用时间(4z -12z );丙比骑车从A 地到B 地多用时间122y .三人同时到达即这三个相等时;5x -12x =4z -12z =122y ;求得x :y :z =10:7:7;所求路程比为7:10二、解答题(每题15分;共60分)13、一辆汽车从甲地开往乙地;若车速提高%20;可提前25分钟到达;若以原速行驶100千米;再将车速提高%25;可提前10分钟到达;求甲乙两地的距离.解析:车速提高20%;也就是变成原来的56;则时间变成原来的65;减少25分钟;原定时间为25×6=150分钟;车速提高25%;也就是变成原来的45;则时间变成原来的54;减少10分钟;则这段路程的原定时间为10÷5=50分钟.因此;原速行驶100千米需要150-50=100分钟;距离为150÷100×100=150千米14、如图5;在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体;容器内盛有m 升水时;水面恰好经过圆柱体的上底面.如果将容器倒置;圆柱体有8厘米露出水面.已知圆柱体的底面积是正方体底面积的81;求实心圆柱体的体积. 解析:两次的空白部分体积相等;而第二次的空白部分的横截面积为第一次的87811=-;所以第一次的空白部分的高度为第二次的87;即7厘米.正方体的底面积为20×20=400平方厘米;所以圆柱体的底面积为400÷8=50平方厘米;高度为20-7=13厘米;体积为50×13=650立方厘米15、有8个足球队进行循环赛;胜队得1分;负队得0分;平局的两队各得0.5分.比赛结束后;将各队的得分按从高到低排名后发现:各队得分互不相同;且第二名的得分与最后四名所得的总分一样多.求这次比赛中;取得第二名的队的得分.解析:全胜的队得7分;而最后四队之间赛6场至少共得6分;所以第二名的队得分至少为6分.如果第一名全胜;则第二名只输给第一名;得6分;如果第二名得6.5分;则第二名6胜1负;第一名最好也只能是6胜1负;与题目中得分互不相同不符.所以;第二名得分为6分16、将两个不同的自然数中较大的数换成他们的差;称为一次操作;如此继续下去;直到这两个数相同为止.如对20和26进行这样的操作;过程如下:(20;26)→(20;6)→(14;6)→(8;6)→(2;6)→(2;4)→(2;2)(1)对45和80进行上述操作.(2)若对两个四位数进行上述操作;最后得到的相同数是17.求这两个四位数的和的最大值.解析:(45,80)→(45,35)→(10,35)→(10,25)→(10,15)→(10,5)→(5,5).这就是用辗转相除法求最大公约数的运算;所以两个四位数的最大公约数为17;9999÷17=588……3;所以最大的四位数是9999-3=9996;第二大的四位数是9996-17=9979;和为19975(祝各位同学学习进步!)。

2007第五届小学六年级全国数学邀请赛第1试和第2试及答案解析

2007第五届小学六年级全国数学邀请赛第1试和第2试及答案解析

2007第五届小学“希望杯”全国数学邀请赛六年级 第1试2007年3月18日 上午8:30至10:00亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分。

1. 已知31::1.2,:0.75:,:____.(22a b b c c a ===那么写成最简单的整数比) 2.11111111(1)(1)(1)(1)(1)(1)(1)(1)23456789_____.0.10.20.30.40.50.60.70.80.9--------=++++++++ 3. 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的 三个数的和相等。

那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。

6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。

由图可知, 我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。

7.小红和小明帮刘老师修补一批破损图书。

根据图3中信息计算,小红和小时一共修补图书______本。

8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,古代合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。

完成这项工程共用______天。

9.甲、乙两车分别从A 、B 两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A 、B 距离的13多50千米时,与乙车相遇.A 、B 两地相距______千米。

(完整word版)2007第五届小学数学希望杯六年级第二试试题及答案,推荐文档

(完整word版)2007第五届小学数学希望杯六年级第二试试题及答案,推荐文档

第五届小学“希望杯”全国数学邀请赛六年级第2试3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测 4月份甲、乙、丙三种品牌彩电的销售量将分别增长 5%, 10%和2O %。

根据预测,甲、丙两种品牌彩电4月份的销售量之和为 _______ 台。

定的整数)。

如果14 2 3,那么3416 . 丄 的整数部分是1 1 1 1 2005 2006200720087 •在一次动物运动会的 60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为 5分钟。

请问,小鸭在这项比赛中用时 ______ 分钟。

8 . 2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4X 15天是星期 _______ 。

9 •将16个相同的小正方体拼成一个体积为16立方厘米的长方体, 表面涂上漆,然一、填空题(每小题5分,共60分。

) 1.小华拿一个矩形木框在阳光下玩, 她看到矩形木框在地面上形成的影子不可能是图中的 ② 2 .气象台预报“本市明天降水概率是 。

(填序号) ①本市明天将有 80%的地区降水。

③明天肯定下雨。

80%”。

对此信息,下列说法中正确的是②本市明天将有80%的时间降水。

④明天降水的可能性比较大。

3.将一块正方形纸片沿对角线折叠一次, 个圆洞,再展开正方形纸片,得到下图中的 然后在得到的三角形的三个角上各挖去 。

(填序号)4 .下图是华联商厦 O5 .对于非零自然数后分开,则3个面涂漆的小正方体最多有________ 个,最少有________ 个。

10 .已知n 个自然数之积是2007,这n 个自然数之和也是 2007,那么n 的值最大是O11 .如图,三角形田地中有两条小路 AE 和CF,交叉处为D,张大伯常走这两条小路,他知道DM DC 且AD= 2D 巳则两块田地 ACF 和 CFB 的面积比是A 、B 两地相对开出,两车第一次在距 A 地32千米处相遇,B 、A 两地后,立即沿原路返回,第二次在距 A 地64千米处千米。

希望杯六年级近五年真题汇编

希望杯六年级近五年真题汇编

希望杯目录真题希望杯简介 (Ⅰ)近三年真题分析 (Ⅱ)2014 第 12 届希望杯六年级第 1 试试题 (1)2013 第 11 届希望杯六年级第 1 试试题 (3)2012 第 10 届希望杯六年级第 1 试试题 (5)2011 第 9 届希望杯六年级第 1 试试题 (7)2010 第 8 届希望杯六年级第 1 试试题 (9)2014 第 12 届希望杯六年级第 2 试试题 (11)2013 第 11 届希望杯六年级第 2 试试题 (13)2012 第 10 届希望杯六年级第 2 试试题 (15)2011 第 9 届希望杯六年级第 2 试试题 (17)2010 第 8 届希望杯六年级第 2 试试题 (19)参考答案2014 第 12 届希望杯六年级第 1 试试题分析 (21)2013 第 11 届希望杯六年级第 1 试试题分析 (23)2012 第 10 届希望杯六年级第 1 试试题分析 (25)2011 第 9 届希望杯六年级第 1 试试题分析 (27)2010 第 8 届希望杯六年级第 1 试试题分析 (29)2014 第 12 届希望杯六年级第 2 试试题分析 (31)2013 第 11 届希望杯六年级第 2 试试题分析 (33)2012 第 10 届希望杯六年级第 2 试试题分析 (35)2011 第 9 届希望杯六年级第 2 试试题分析 (37)2010 第 8 届希望杯六年级第 2 试试题分析 (39)希望杯简介“希望杯”全国数学邀请赛的主办单位“希望杯”是由中国科学技术协会普及部、中国优选法统筹法与经济数学研究会、《数理天地》杂志社、中青在线、华罗庚实验室等主办的全国性数学竞赛.“希望杯”全国数学邀请赛的宗旨鼓励和引导中小学生学好数学课程中最主要的内容,适当地拓宽知识面;启发他们注意数学与其它课程的联系和数学在实际中的应用;激励他们去钻研和探究;培养他们科学的思维能力、创新能力和实践能力;树立他们为振兴中华而努力成才的自信.“希望杯”全国数学邀请赛的命题原则试题内容不超出现行数学教学大纲,不超出教学进度,贴近现行的数学课本,源于课本,高于课本.题目活而不难,巧而不偏;既大众化又富于思考性和启发性.力求体现科学思维之美,寓科学于趣味之中,将知识、能力的考察和思维能力的培养结合起来.“希望杯”全国数学邀请赛的参赛对象初、高中一、二年级学生和小学四、五、六年级学生.每年举行一次,为一届.每次举行两试,三月中旬第 1 试,考1.5小时;四月中旬第 2 试,考 2 小时.“希望杯”全国数学邀请赛的赛前准备杯赛的备考其实非常简单,做到以下两点,希望杯获奖轻松惬意:1.利用寒假做完希望杯 100 题和希望杯历年真题;2.春季再做一遍;3.结合一试的试题,有针对性的准备二试.希望杯全国数学邀请赛的评奖希望杯会设置全国奖项和深圳地区奖项其中含金量最高的是全国一二等奖,整个深圳市也就 20 个左右的名额;而全国三等奖就有好几百个,具体规则如下:根据希望杯的评奖规则,全国一二等奖在赛区内统一标准,按照初赛人数的约千分之三评定.全国三等奖按报名单位初赛人数和规定比例评定,由报名单位按照下述要求评定:1.各单位获奖总指标(一二三等奖):中学每满 30 人初赛给一个指标,不足 30 人不给;小学每满 20 人初赛给一个指标,不足 20 人不给.若评出人数多于计划指标,组委会将按照从后到前的顺序去掉多出指标.2.各单位评奖时应当按照复赛分数由高到低的原则,赛分数相同时按初赛成绩排序.3.各单位指标可在小学内部中学内部调剂使用,得在二者之间调剂.4.凡是列入全国一二等奖推荐名单的,提供该生的一试试卷和二试试卷,奖励等级由全国组委会统一确定.深圳地区奖项设置有特、一、二、三等奖,2014 年 2000 多名进入二试的学生中,有 120 个特等奖,400 个一等奖,所有进入二试的选手至少能获三等奖!!近三年真题分析“希望杯”题型涉及内容广泛,为了更好备战2015年“希望杯”,我们需要对历年考试情况有一个详细了解。

小学数学位值原理

小学数学位值原理

位值原理知识框架位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答重难点(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5.【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.【答案】66岁【巩固】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】 设为ab ,即101102b a a b +++=,整理得1981a b =+,3,7a b ==,两位数为37 【答案】37【例 3】 几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】 肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】 小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】 设小明出生那年是,则1+9+a +b =95-10a -b从而11a +2b =85在a ≥8时,11+2b >85;在a ≤6时,11a +2b ≤66+2×9=84,所以必有a =7,b =4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】 一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的 倍.【考点】简单的位值原理拆 【难度】3星 【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】 令这个三位数为0a b ,则由题意可知,10067()a b a b +=+,可得2a b =,而调换个位和百位之后变为:0100102b a b a b =+=,而3a b b +=,则得到的新三位数是它的各位数字之和的102334b b ÷=倍.【巩固】 一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】 abc cba -个位是7,明显a 大于c ,所以10+c -a =7,a -c =3,所以他们的差为297【答案】297【例 5】 三位数abc 比三位数cba 小99,若,,a b c 彼此不同,则abc 最大是________【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与cba 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,-=+--=-=,5ab ba a b b a a b(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】 一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星 【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】 设这个两位数是ab ,则100a+b=8(10a+b)-1,化为20a+1=7b ,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】 一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设第一个2位数为10a +b ;第二个为10b +a ;第三个为100a +b ;由题意:(100a +b )-(10b +a )=( 10b +a )-(10a +b ) ;化简可以推得b =6a ,0≤a ,b ≤9,得a =1,b =6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】 abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd —abc —ab —a =1787,则这四位数abcd = 或 .【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259推知b =2;则222+11c +d =259,11c +d =37进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】 有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位 数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所 有这样的6个三位数中最小的三位数为139.【答案】139【例 11】 有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 方法三:设两位数为x ,则有(10x +1)-(100+x )=414,解得:x =57.【答案】57【巩固】 有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设三位数为x ,则有(6000+x )+(10x +6)=9999,解得:x =363.【答案】363课堂检测【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】如果把数码5加写在某自然数的右端,则该数增加1111A,这里A表示一个看不清的数码,求这个数和A.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设这个数为x,则10x+5-x=1111A,化简得9x=1106A,等号右边是9的倍数,试验可得A=1,x=1234.【答案】A=1,x=1234复习总结(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答家庭作业【作业1】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分【难度】3星【题型】解答【解析】设这个巧数为ab,则有ab+a+b=10a+b,a(b+1)=10a,所以b+1=10,b=9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】a,b,c分别是09中不同的数码,用a,b,c共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】由a,b,c组成的六个数的和是222()⨯++.因为223422210a b c++>.a b c>⨯,所以10若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6。

希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]

希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。

2.900000-9=________×99999。

3.=________。

4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。

5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。

6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A的小数点向右移动两位,得到数B。

那么B+A是B-A的________倍。

(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。

则三个面涂漆的小正方体有________块。

13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。

14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。

B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。

希望杯第届小学六年级全国数学竞赛题及解答

希望杯第届小学六年级全国数学竞赛题及解答

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.∙2×1.∙2∙4+1927=________. 4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A 的小数点向右移动两位,得到数B 。

那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。

则三个面涂漆的小正方体有________块。

13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。

希望杯复赛数论题大合集(涵括历年数论题及详细解析)

希望杯复赛数论题大合集(涵括历年数论题及详细解析)

奇数与偶数质数与合数约数与倍数1.(2006年希望杯第四届四年级二试第7题,4分)一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。

但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到个桃子。

解答:56的因数有1,2,4,7,8,14,28,56,其中只有4和8相差4,所以最后有猴子8只,每只猴子分到56÷8=7个桃子。

2.(2007年希望杯第五届四年级二试第4题,5分)在224⨯=,6636⨯=,……等这些算是⨯=,5525⨯=,339⨯=,4416中,4,9,16,25,36,……叫做完全平方数。

那么,不超过2007的最大的完全平方数是_________。

解:45×45=2025;44×44=1936,所以最大的是1936.整除3.(2008年希望杯第六届四年级二试第15题)连续写出从1开始的自然数,写到2008时停止,得到一个多位数:1234567891011……20072008,请说明:这个多位数除以3,得到的余数是几?为什么?【分析】因为连续3个自然数可以被3整除,而且最后一个自然数都是3的倍数,因为2007是3的倍数,所以12345678910112007是3的倍数,又因为12345678910112007200812345678910112007000020071=++,所以123456789101120072008除以3,得到的余数是1。

余数4. (2004年希望杯第二届四年级二试第15题,6分)小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人。

那么一起做游戏的小朋友至少有 人。

【答案】这个数除以3余2,除以4余3,除以5余4,那么加上一个人这些小朋友的数量能整除3、4、5,3×4×5=60,那么小朋友至少59人5. (2008年希望杯第六届四年级二试第3题)一个三位数除以36,得余数8,这样的三位数中,最大的是__________。

六年级希望杯历届真题

六年级希望杯历届真题

总部地址:长沙市天心区劳动西路 245 号恒力卡瑞尔大厦五楼(贺龙体育馆南门) 3 思齐官网:
读名校 上思齐
【解析】:
如图,连结 DF、CF,那么显然△DHG 与△DHF 同底等高,两者面积相等,我们容易 知道又四边形 BCFD 是平行四边形,由蝴蝶定理可知△DHF 与△BHC 面积相等,那么 阴影部分的面积恰好为正方形 ABCD 的 a 一半即 18 平方厘米。 13.圆柱体的侧面展开,放平,是边长分别为 10 厘米和 12 厘米的长方形,那么这个圆 柱体的体积是________立方厘米。(结果用 π 表示) 【解析】:分两种情况进行分析,若圆柱体的高为 10 厘米,则它的底面积为 米,体积为 积为
二、 解答题(每小题 10 分,共计 40 分)
16.国际统一书号 ISBN 由 10 个数字组成,前面 9 个数字分成 3 组,分别用来表示区域、 出版社和书名,最后一个数字则作为核检之用。核检码可以根据前 9 个数字按照一定的 顺序算得。如:某书的书号是 ISBN 7-107-17543-2,它的核检码的计算顺序是: ①7×10+1×9+0X 8+7×7+1×6+7×5+5×4+4×3+3×2=207; ②207÷11=18……9; .
【解析】:图中共有 4 个不同的数,每个数除以 3 的余数只可能有 0、1、2 三种,根据 抽屉原理可知,这 4 个数中必然至少存在一对同余的数,那么这两个数的差必然为 3 的 倍数,故不存在这样的填法。 19.40 名学生参加义务植树活动,任务是:挖树坑,运树苗。 这 40 名学生可分为甲、乙、 丙三类,每类学生的劳动效率如下表所示。如果他们的任务是:挖树坑 30 个,运树苗 不限,那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?
【解析】:比较一下甲乙丙三人运树苗与挖树坑的效率比: 甲: 20 2 10 ; 1 乙: 10 1.2 8 ; 3 3 丙: 7 0.8 8 ; 4 3 1 由于 10 8 8 ,所以安排运树苗的优先顺序为甲、丙、乙,那么挖树坑的顺序为乙、 4 3

希望杯六年年级二试试题及答案

希望杯六年年级二试试题及答案

第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()÷⨯÷⨯÷⨯⨯÷⨯÷=32435420122011201320122. 计算:1+++=1.5 3.1657.05123. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。

某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。

(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。

5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。

如:27333,33327=⨯⨯++=+,即27是史密斯数。

那么,在4,32,58,65,94中,史密斯数有个。

6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。

7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。

8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 20132013201320132013++++除以5,余数是。

(注:2013a表示2013个a相乘)1234510. 从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是152,7那么去掉的数是。

11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。

第4-12届小学“希望杯”全国数学邀请赛六年级1试

第4-12届小学“希望杯”全国数学邀请赛六年级1试

第四届小学“希望杯”全国数学邀请赛六年级第1试1.1120062008()2006200720072008⨯⨯+=⨯⨯________。

2.900000-9=________×99999。

3.=________。

4.如果a=20052006,b=20062007,c=20072008,那么a,b,c中最大的是________,最小的是________。

5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。

6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A的小数点向右移动两位,得到数B。

那么B+A是B-A的________倍。

(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。

则三个面涂漆的小正方体有________块。

13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。

14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。

希望杯六年级近五年真题汇编

希望杯六年级近五年真题汇编

希望杯目录真题希望杯简介 (Ⅰ)近三年真题分析 (Ⅱ)2014 第 12 届希望杯六年级第 1 试试题 (1)2013 第 11 届希望杯六年级第 1 试试题 (3)2012 第 10 届希望杯六年级第 1 试试题 (5)2011 第 9 届希望杯六年级第 1 试试题 (7)2010 第 8 届希望杯六年级第 1 试试题 (9)2014 第 12 届希望杯六年级第 2 试试题 (11)2013 第 11 届希望杯六年级第 2 试试题 (13)2012 第 10 届希望杯六年级第 2 试试题 (15)2011 第 9 届希望杯六年级第 2 试试题 (17)2010 第 8 届希望杯六年级第 2 试试题 (19)参考答案2014 第 12 届希望杯六年级第 1 试试题分析 (21)2013 第 11 届希望杯六年级第 1 试试题分析 (23)2012 第 10 届希望杯六年级第 1 试试题分析 (25)2011 第 9 届希望杯六年级第 1 试试题分析 (27)2010 第 8 届希望杯六年级第 1 试试题分析 (29)2014 第 12 届希望杯六年级第 2 试试题分析 (31)2013 第 11 届希望杯六年级第 2 试试题分析 (33)2012 第 10 届希望杯六年级第 2 试试题分析 (35)2011 第 9 届希望杯六年级第 2 试试题分析 (37)2010 第 8 届希望杯六年级第 2 试试题分析 (39)希望杯简介“希望杯”全国数学邀请赛的主办单位“希望杯”是由中国科学技术协会普及部、中国优选法统筹法与经济数学研究会、《数理天地》杂志社、中青在线、华罗庚实验室等主办的全国性数学竞赛.“希望杯”全国数学邀请赛的宗旨鼓励和引导中小学生学好数学课程中最主要的内容,适当地拓宽知识面;启发他们注意数学与其它课程的联系和数学在实际中的应用;激励他们去钻研和探究;培养他们科学的思维能力、创新能力和实践能力;树立他们为振兴中华而努力成才的自信.“希望杯”全国数学邀请赛的命题原则试题内容不超出现行数学教学大纲,不超出教学进度,贴近现行的数学课本,源于课本,高于课本.题目活而不难,巧而不偏;既大众化又富于思考性和启发性.力求体现科学思维之美,寓科学于趣味之中,将知识、能力的考察和思维能力的培养结合起来.“希望杯”全国数学邀请赛的参赛对象初、高中一、二年级学生和小学四、五、六年级学生.每年举行一次,为一届.每次举行两试,三月中旬第 1 试,考1.5小时;四月中旬第 2 试,考 2 小时.“希望杯”全国数学邀请赛的赛前准备杯赛的备考其实非常简单,做到以下两点,希望杯获奖轻松惬意:1.利用寒假做完希望杯 100 题和希望杯历年真题;2.春季再做一遍;3.结合一试的试题,有针对性的准备二试.希望杯全国数学邀请赛的评奖希望杯会设置全国奖项和深圳地区奖项其中含金量最高的是全国一二等奖,整个深圳市也就 20 个左右的名额;而全国三等奖就有好几百个,具体规则如下:根据希望杯的评奖规则,全国一二等奖在赛区内统一标准,按照初赛人数的约千分之三评定.全国三等奖按报名单位初赛人数和规定比例评定,由报名单位按照下述要求评定:1.各单位获奖总指标(一二三等奖):中学每满 30 人初赛给一个指标,不足 30 人不给;小学每满 20 人初赛给一个指标,不足 20 人不给.若评出人数多于计划指标,组委会将按照从后到前的顺序去掉多出指标.2.各单位评奖时应当按照复赛分数由高到低的原则,赛分数相同时按初赛成绩排序.3.各单位指标可在小学内部中学内部调剂使用,得在二者之间调剂.4.凡是列入全国一二等奖推荐名单的,提供该生的一试试卷和二试试卷,奖励等级由全国组委会统一确定.深圳地区奖项设置有特、一、二、三等奖,2014 年 2000 多名进入二试的学生中,有 120 个特等奖,400 个一等奖,所有进入二试的选手至少能获三等奖!!近三年真题分析“希望杯”题型涉及内容广泛,为了更好备战2015年“希望杯”,我们需要对历年考试情况有一个详细了解。

第五届希望杯六年级培训百题

第五届希望杯六年级培训百题

2009年第五届六年级“希望杯”培训试题1、211⨯+321⨯+431⨯+…+200720061⨯= 。

2、(1+20021+20041+20061)×(20021+20041+20061+20081)-(1+20021+20041+20061+20081)×(20021+20041+20061) 3、(220071×3.6+353×720072006)÷43÷534、从21+41+61+81+101+121 中去掉 和 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 。

6、20031200412005120061200711±±±±的整数部分是 。

(分母中只有加号)7、已知除法算式:12345678910111213÷31211101987654321,它的计算结果的小数点后的前三位分别是 。

8、一个整数与它的倒数和等于20.05,这个数是 ,它的倒数是 。

9、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。

我 爱 希 望 杯 数 学 竞 赛 + 8 6 4 1 9 7 5 3 2 赛 竞 学 数 杯 望 希 爱 我 10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。

这个分数是 。

11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 ,最大值是 。

2007个9 2007个512、已知a 是质数,b 是偶数,且a 2+b=2008,则a+b+1= 。

13、当a =2007时,a-1,a,a+1,a+2中的合数有 个。

14、从1到30这30个自然数连乘各的末尾共 个连续的数码0.15、一个质数p ,使得p+2,p+4同时都是质数,则p1+21±p +41±p = .16、三个质数的倒数之和是20061155,则这三个质数中最大的是17、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组(a,b,c,d )共有 组。

2007年第五届希望杯五年级二试解析

2007年第五届希望杯五年级二试解析

2007年第5届希望杯5年级二试试题1.(2007年第5届希望杯5年级2试第1题,5分;第五届六年级二试第3题,5分)将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到图1中的.(填序号)2.(2007年第5届希望杯5年级2试第2题,5分)(7.88+6.77+5.66)×(9.31+10.98+10)−(7.88+6.77+5.66+10)×(9.31+10.98)= .3.(2007年第5届希望杯5年级2试第3题,5分)对于非零自然数a,b,c,规定△符号的含义:△(a,b,c)=a b ca b c+-⨯÷,那么(3,5,7)(4,6,8)∆∆= .4.(2007年第5届希望杯5年级2试第4题,5分)如下图所示的4根火柴棒形成象形汉字“口”,平移火柴棒后,下图能变成的象形汉字是右图中的.(填序号)①②③④5.(2007年第5届希望杯5年级2试第5题,5分)小芳在看一本图画书,她说:由她所说,可知这本书共有页.6. (2007年第5届希望杯5年级2试第6题,5分)某商场每月计划销售900台电脑,在5月1日至7日黄金周期间,商场开展促销活动.但5月的销售计划增加了30%,已知黄金周中平均每天销售了54台,则该商场在5月的后24天平均每天至少销售 台才能完成本月销售计划.7. (2007年第5届希望杯5年级2试第7题,5分)如下图,正方形硬纸片ABCD 的每边长20厘米,点E 、F 分别是AB 、BC 的中点,现沿图5(a )中的虚线剪开,拼成图5(b )所示的一座“小别墅”,则图5(b )中阴影部分的面积是 平方厘米.8. (2007年第5届希望杯5年级2试第8题,5分;第五届六年级二试第7题,5分)在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟.小鸭在这项比赛中用时 分钟.9. (2007年第5届希望杯5年级2试第9题,5分)在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗 棵.10. (2007年第5届希望杯5年级2试第10题,5分)小强练习掷铅球,投了5次,去掉一个最好成绩和一个最差成绩,则平均成绩为9.73米,去掉一个最好成绩,则平均成绩为9.51米,去掉一个最差成绩,则平均成绩为9.77米.小强最好成绩与最差成绩相差 米.baFEDCBA11. (2007年第5届希望杯5年级2试第11题,5分)在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 .12. (2007年希望杯第5届五年级二试第12题,5分;第五届六年级二试第12题,5分)甲、乙两车同时从A 、B 两地相对开出,两车第一次在距A 地32千米处相遇,相遇后继续行驶,各自达到B 、A 两地后,立即沿原路返回,第二次在距A 地64千米处相遇,则A 、B 两地间的距离是 千米.13. (2007年第5届希望杯5年级2试第13题,15分) 一个容器内注满了水.将大、中、小三个铁球这样操作: 第一次,沉入小球;第二次,取出小球,沉入中球; 第三次,取出中球,沉入大球.已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍.求小、中、大三球的体积比.14. (2007年第5届希望杯5年级2试第14题,15分;第五届六年级二试第14题,15分)2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中.第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完.后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?图6C BA15.(2007年第5届希望杯5年级2试第15题,15分)甲、乙、丙三人打牌.第一局,甲输给了乙和丙,使得乙、丙手中的点数都翻了一番.第二局,甲和乙赢了,从而甲、乙手中的点数翻了一番.最后一局,甲、丙获胜,两人手中的点数翻了一番.这样,甲、乙、丙三人每人都是二赢一输,并且每人手中的点数完全相等,可是甲发现自己输了100点.请问:开始时,甲手上有多少点?(每局三人的点数和保持不变)16.(2007年第5届希望杯5年级2试第16题,15分)农科所向农民推荐丰收Ⅰ号和丰收Ⅱ号两种新型良种稻谷.在田间管理和土质相同的情况下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,但Ⅱ号稻谷得米质好,价格比Ⅰ号稻谷高.已知政府对Ⅰ号稻谷的收购价是1.6元/千克.(1)当政府对Ⅱ号稻谷的收购价是多少时,在田间管理、土质和面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2)去年王伯伯在土质和面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,并且进行了相同的田间管理.收获后,王伯伯把稻谷全部卖给政府.卖给政府时,Ⅱ号稻谷的收购价为2.2元/千克,Ⅰ号稻谷的收购价不变,这样王伯伯卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元.求王伯伯去年卖给政府的稻谷共有多少千克?试题答案1.【分析】逆推法③2.【分析】原式=(7.88+6.77+5.66)×(9.31+10.98)+(7.88+6.77+5.66)×10-(7.88+6.77+5.66)×(9.31+10.98)—10×(9.31+10.98)=10×(7.88+6.77+5.66-9.31-10.98)=0.23.【分析】35717(3,5,7)35715715+-∆===⨯÷÷;4682(4,6,8)4683+-∆==⨯÷所以(3,5,7)727 (4,6,8)15310∆=÷=∆.4.【分析】观察可知③正确.5.【分析】设没看的页数为x2.4x=x+42x=30看完的页数为30+42=72页所以全书共有30+72=102页6.【分析】5月份销售计划为:900×(1+30%)=1170(台)后24天平均每天至少销售(1170-54×7)÷24=33(台)7.【分析】20×20×12×12=100(平方厘米).8.【分析】4×5-3×4=8(分钟)9.【分析】先找出两边中点数120、172.5的最大公约数为7.5草坪周长为:(345+240)÷7.5=156(棵)10.【分析】最差成绩:9.51×4-9.73×3最好成绩:9.77×4-9.73×3最好与最差相差:9.77×4-9.73×3-(9.51×4-9.73×3)= 1.04(米)11.【分析】设三个顶点为D,E,F.求D,E,F.观察容易发现,三条变的和为36即D+A+E+E+C+F+F+B+D=3618+2( D+E+F)=36所以D+E+F=912.【分析】第一次相遇时甲走了32千米第二次相遇时甲乙合走了3个全程.所以乙从第一次相遇时到第二次相遇所走得路程为第一次相遇时所走路程的2倍.乙从第一次相遇时到第二次相遇所走的路程为32+64=96千米即乙第一次相遇时所走的路程为48千米全程为48+32=80(千米).13.【分析】若将小球的体积看作3份,则中球的体积为(3+1)份大球的体积为(4+6)份所以小中大三球的体积比是3:4:1014.【分析】一台抽水机1小时的抽水量为40×(2.5-1.5)÷(5×2.5-8×1.5)=80(立方米)这池水的水量为80×8×1.5-40×1.5=900(立方米)因此开动13台抽水机抽完这池水需要900÷(80×13-40)=0.9(小时)15.【分析】设三局后每人手中都是x点根据题意列表13x-x=1008x=160于是138x=160×138=260点16.【分析】(1)收益=价格×产量,现在要想收益相等,而产量之比为:100%:80%=5:4,则价格之比应为4:5.Ⅰ号的收购价是1.6元/千克,则Ⅱ号稻谷的收购价为:1.6÷4×5=2元/千克.(2)Ⅱ号稻谷有1040÷0.2=5200(千克),所以Ⅰ号稻谷有5200÷4×5=6500(千克)所以共有5200+6500=117000(千克)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五届小学“希望杯”全国数学邀请赛
六年级 第2试
一、填空题(每小题5分,共60分。

)
1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在地面上形成的影子不可能是图中的______。

2.气象台预报“本市明天降水概率是80%”。

对此信息,下列说法中正确的是______。

(填序号)
①本市明天将有80%的地区降水。

②本市明天将有80%的时间降水。

③明天肯定下雨。

④明天降水的可能性比较大。

3.将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到下图中的______。

(填序号)
4.下图是华联商厦3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测4月份甲、乙、丙三种品牌彩电的销售量将分别增长5%,10%和2O %。

根据预测,甲、丙两种品牌彩电4月份的销售量之和为______台。

5.对于非零自然数a 和b ,规定符号⊗的含义是:b a b a m b a ⨯⨯+⨯=
⊗2 (m 是一个确定的整数)。

如果3241⊗=⊗,那么=⊗43______。

6. 200812007120061200511
+++的整数部分是______。

7.在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟。

请问,小鸭在这项比赛中用时______分钟。

8. 2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4×15天是星期______。

9.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有______个,最少有______个。

10.已知n 个自然数之积是2007,这n 个自然数之和也是2007,那么n 的值最大是______。

11.如图,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DF=DC,且AD=2DE。

则两块田地ACF和CFB的面积比是______。

12.甲、乙两车同时从A、B两地相对开出,两车第一次在距A地32千米处相遇,相遇后两车继续行驶,各自达到B、A两地后,立即沿原路返回,第二次在距A地64千米处相遇,则A、B两地间的距离是______千米。

二、解答题(本大题共4小题.每小题15分,共60分。

)要求:写出推算过程。

13.将1至8这八个自然数分别填入图中的正方体的八个顶点处的○内,并使每个面上的四个○内的数字之和都相等。

求与填入数字1的○有线段相连的三个○内的数的和的最大值。

14.2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中。

第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完。

后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?
15.根据图中的对话内容,分别求出饼干和牛奶的标价各多少元?
16.两条公路成十字交叉,甲从十字路口南1200米处向北直行,乙从十字路口处向东直行。

甲、乙同时出发10分钟,两人与十字路口的距离相等,出发后100分钟,两人与十字路口的距离再次相等,此时他们距离十字路口多少米?。

相关文档
最新文档