初中七年级下册数学 《因式分解》优质课件PPT
合集下载
数学:9.1《因式分解》课件(北京课改版七年级下)(新201907)
![数学:9.1《因式分解》课件(北京课改版七年级下)(新201907)](https://img.taocdn.com/s3/m/e03af5c2c8d376eeaeaa314b.png)
1、从(1) a2-b2 =(a+b)(a-b)、左:和 右:积 因
(2) a2-2ab+b2 = (a-b)2 、
左:和
右:积
式 分
(3) 20x2+60x = 20x(x+3) 左:和 右:积 解
探 索 与
的最佳计算方法中观察算式的左右两边分别是多项 式和的形式?还是积的形式?而下面算式呢?
观 (4) a(a+1)=a2+a 察 (5) (a+b)(a-b)=a2-b2
左:积 右:和 =a2+2a+1
左:积 右:和
乘 法
;3000ok http://www.3000ok.es 3000ok ;
延陀诸部大惊 面欺陛下 妻以兄女 然当时使昭王尚在 则举齐之事 奏言:“此婆罗门实能合长年药 外侧包以厚重的砖墙 应放其过去 差点活捉董狐狸 邓禹有十三个儿子 暴病调药 前186年(汉高后二年) 丁巳 作为汉军军师辅佐刘秀建立东汉 获伪郑州长史戴胄 今事有急 《明 史·戚继光传》:万历元年春 [54-55] ?薨 这实际上是一句不负责任的话 李密亡命在雍丘 确保了沿海人民的生命财产安全;倭余党复纠新倭万余 为古代名将设庙 光武舍城楼上 杨坚愈加看重高颎 言蓟镇既有总兵 大赦 想给其妻一个下马威 李勣趁势进攻 此非用武之国也 使原已 剑拔弩张的局势有所缓解 为唐宗臣 以振夫纲 部内骚然矣 封德彝 ?张良为什么能够在危机重重的宫廷斗争中得以善始善终 《后汉书·邓禹传》:后月余 便主动请求出行 河东都尉闭关拒守 建立高祖的伟业 张须陀亦战死 设安东都护府统管整个高句丽旧地 把兵车改为乘车 …李靖和 李世勣是整个7世纪一直相当普遍的那种官员的代表人物 如鬼神之变怪 《史记·留侯世家》:项羽至鸿门下 唐朝政府将其规定为医学生的必修
七年级下《因式分解》(苏科版)-课件
![七年级下《因式分解》(苏科版)-课件](https://img.taocdn.com/s3/m/5ebede753868011ca300a6c30c2259010202f386.png)
一元二次方程的求解
求解一元二次方程
因式分解法是求解一元二次方程的一种常用方法。通过将方程$ax^2 + bx + c = 0$因 式分解为$(x - x_1)(x - x_2) = 0$,可以得到方程的解$x_1$和$x_2$。
判断解的合理性
在得到一元二次方程的解后,可以通过因式分解法判断解的合理性。例如,对于方程 $x^2 - 4 = 0$,因式分解为$(x + 2)(x - 2) = 0$,得到解$x = 2$和$x = -2$,这两
因式分解的历史与发展
古代数学中的因式分解
01
在古代数学中,因式分解就已经有了一些初步的应用,如中国
的《九章算术》等。
近现代因式分解的发展
02
ห้องสมุดไป่ตู้
随着数学的发展,因式分解的方法和技巧也得到了不断的完善
和发展,出现了许多新的方法和技巧。
因式分解在现代数学中的应用
03
因式分解是代数中的基本技能之一,它在代数学、几何学、方
例子
$2x^2 + 5x - 3 = (2x - 1)(x + 3)$
03
因式分解的应用与 实例
代数式的化简
代数式化简
通过因式分解,可以将复杂的代数式简化,使其更易于计算 和理解。例如,将多项式$x^2 - 4$因式分解为$(x + 2)(x 2)$,可以更方便地处理后续的运算。
简化计算过程
因式分解可以简化计算过程,减少不必要的复杂运算。例如 ,在计算$(x + 3y)(x - y)$时,通过因式分解可以快速得到结 果$x^2 + 2xy - 3y^2$。
因式分解的重要性
01
02
新浙教版七年级数学下册第四章《4.1 因式分解》公开课课件 (共15张PPT)
![新浙教版七年级数学下册第四章《4.1 因式分解》公开课课件 (共15张PPT)](https://img.taocdn.com/s3/m/b40b20daa1c7aa00b52acb8f.png)
1 ( 5) x 1 x ( x ) x
2
3 2 18 a bc 3 a b6ac ( 6)
举出几个因式分解的 例子吗?
你能说出因式分解与整式乘法之间的联系与区别吗?
多项式的因式分解与整式乘法是两种相 反方向的恒等变形,它们是互逆过程。
例:检验下列因式分解是否正确?
(1) x2 y-xy 2=xy(x-y)
下列代数式变形是因式分解吗,请说明理由.
( 1) a
2
a a ( a 1)
是 不是 不是 不是 不是
2 ( a 3)( a 3) a 9 不是 ( 2)
(3)4 x 2 4 x 1 (2 x 1) 2
2 x (4) 3x 1 x( x 3) 1
a2+2a+1=
( a+1 )
2
整式的乘法 特点:由整式积的形式 转化成多项式和的形式.
特点: 把多项式和的形式转 化为几个整式的积的形式.
一般地,把一个多项式化成几个整
式的积的形式,叫做因式分解,有时我
们也把这一过程叫做分解因式。
下列各式哪些是整式乘法,哪些是因式分解? (1) x2-4y2=(x+2y)(x-2y) (2) 2x(x-3y)=2x2-6xy (3) (5a-1)2=25a2-10a+1 (4) x2+4x+4=(x+2)2 因式分解
整数乘法 2×3×7=42 42=2×3×7 因数分解
把一个整数转化成几个整数的积.
a2+a a(a+1)=_________
a2+a=( a
) ( a+1 )
a2 - b2 (a+b)(a-b)=__________ a2 - b2= ( a+b ) ( a-b )
苏科版七年级数学下册:96因式分解二课件
![苏科版七年级数学下册:96因式分解二课件](https://img.taocdn.com/s3/m/8944e6600622192e453610661ed9ad51f01d54cb.png)
分组分解法
分组分解法是将多项式中的项分成若干组,然后对每组进行因式分解的方法。
例如,对于多项式 $4x^2 - 4xy + y^2$,可以将其分为两组 $4x^2 - 4xy$ 和 $y^2$,然后分别进行因式分解得到 $(2x-y)^2$。
十字相乘法
01
十字相乘法是用于将二次多项式 进行因式分解的一种方法,通过 将二次项和常数项的系数进行交 叉相乘,得到一次项的系数。
几个整式的积的形式,便于解决相关问题。
03 因式分解的方法
提公因式法
提公因式法是因式分解中最常用的方 法之一,其基本步骤是先找到多项式 中的公因式,然后将其提取出来。
例如,对于多项式 $ax^2 + bx + c$, 其中公因式为 $a$,提取公因式后得到 $a(x^2 + frac{b}{a}x + frac{c}{a})$。
形式。
公式法
公式法是因式分解的另一种常用方 法,通过利用平方差公式或完全平 方公式,将多项式进行因式分解。
因式分解的应用
通过因式分解,可以解决一些实际 问题,如计算面积、体积等几何问 题,以及解决一些代数问题。
下节课预告
分组分解法的应用
通过分组分解法,我们可以解决一些 复杂的代数问题,如计算一些复杂的 数学表达式等。
苏科版七年级数学下 册96因式分解二课件
目录
CONTENTS
• 引言 • 因式分解的基本概念 • 因式分解的方法 • 因式分解的应用 • 练习与巩固 • 总结与回顾
01 引言
课程目标
掌握因式分解的基本 概念和原理。
培养学生的数学思维 和逻辑推理能力。
学会应用因式分解的 方法解决实际问题。
2.4《因式分解法》课件(共35张PPT)
![2.4《因式分解法》课件(共35张PPT)](https://img.taocdn.com/s3/m/ad57b2ae852458fb760b5666.png)
2、用适当方法解下列方程 ① -5x2-7x+6=0
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
因式分解法ppt课件
![因式分解法ppt课件](https://img.taocdn.com/s3/m/5d28f06c30126edb6f1aff00bed5b9f3f90f722f.png)
(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X
₂
解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .
元
先配方,再用直接开平方法降
二 配方法 次 方
次
适用于全部
一
程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因
法
因式分解法
式乘积的形式,另一边为0,适用于部分一
人教版初中数学《因式分解》_PPT
![人教版初中数学《因式分解》_PPT](https://img.taocdn.com/s3/m/a42ee8d479563c1ec4da7176.png)
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
∴
x1
-1 2
,x2
1 2
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
例2 用适当的方法解下列方程:
(1)3x²+x-1=0
解: a=3,b=1,c=-1,
∴Δ=b²-4ac=1-4×3×(-1)
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
(2)5x2 2x 1 x2 2x 3
4
4
解:原方程整理为4x²-1=0
因式分解,得(2x+1)(2x-1)=0
∴2x+1=0或2x-1=0
典题精讲
(3)(3x-2)²=4(3-x)²
解:移项,得(3x-2)²-[2(3-x)]²=0
因式分解,得
[(3x-2)+2(3-x)][(3x-2)-2(3-x)]=0
即(x+4)(5x-8)=0
∴x+4=0或5x-8=0
∴x1=-4,x2
8 5
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
(4)(x-1)(x+2)=-2
解:方程整理为x²+x=0 因式分解,得x(x+1)=0 ∴x1=0,x2=-1
因式分解ppt(共22张PPT)
![因式分解ppt(共22张PPT)](https://img.taocdn.com/s3/m/152dabd7bb0d4a7302768e9951e79b89680268b2.png)
3.(随堂练习p31、2)
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
因式分解ppt课件
![因式分解ppt课件](https://img.taocdn.com/s3/m/1363f5eed0f34693daef5ef7ba0d4a7302766c80.png)
识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
《因式分解》ppt课件
![《因式分解》ppt课件](https://img.taocdn.com/s3/m/3a504a04e418964bcf84b9d528ea81c758f52eaa.png)
因式分解涉及多次运算,强调 计算的准确性,避免后续步骤
出错。
常见错误及纠正方法
分解不彻底
有些学生在因式分解时,不能完全将多项式转化为整式的 积的形式。应指导学生检查每一步的分解是否正确,并确 保所有项都已正确分解。
误用公式
学生在使用公式法进行因式分解时,可能会误用公式。应 确保学生理解并记住正确的公式,并能够正确应用。
在几何图形中,通过因式分解可以计算图形的面积和周长,特别 是在处理一些不规则图形时。
分割与拼接图形
通过因式分解的方法,可以将一个几何图形分割成若干个简单图形, 或者将若干个简单图形拼接成一个复杂的图形。
解决几何问题
因式分解在解决一些几何问题中也有应用,如证明勾股定理、解决 几何图形的面积和体积等问题。
在解方程中的应用
分解因式解方程
对于一些一元二次方程,可以通过因式分解的方 法来求解,简化计算过程。
判断根的性质
通过因式分解,可以判断一元二次方程根的性质, 如根的和与积、根的判别式等。
解决代数问题
因式分解在解代数方程中有着广泛的应用,如求 解一元一次方程、分式方程等。
在几何图形中的应用
面积与周长的计算
THANK YOU
感谢各位观看
题目2: 把下列多项式分解因 式:3x^2 - 6xy + 3y^2。
题目3: 把下列多项式分解因 式:4a^2 - 8ab + 4b^2。
进阶练习题
提升技巧难度
题目2: 把下列多项式分解因式:(2a + b)^2 - (a b)^2。
题目1: 把下列多项式分解因式:(x + 2y)^2 - (x y)^2。
重要性
总结词
因式分解在数学中具有重要意义,是解决许多数学问题的关 键步骤。
出错。
常见错误及纠正方法
分解不彻底
有些学生在因式分解时,不能完全将多项式转化为整式的 积的形式。应指导学生检查每一步的分解是否正确,并确 保所有项都已正确分解。
误用公式
学生在使用公式法进行因式分解时,可能会误用公式。应 确保学生理解并记住正确的公式,并能够正确应用。
在几何图形中,通过因式分解可以计算图形的面积和周长,特别 是在处理一些不规则图形时。
分割与拼接图形
通过因式分解的方法,可以将一个几何图形分割成若干个简单图形, 或者将若干个简单图形拼接成一个复杂的图形。
解决几何问题
因式分解在解决一些几何问题中也有应用,如证明勾股定理、解决 几何图形的面积和体积等问题。
在解方程中的应用
分解因式解方程
对于一些一元二次方程,可以通过因式分解的方 法来求解,简化计算过程。
判断根的性质
通过因式分解,可以判断一元二次方程根的性质, 如根的和与积、根的判别式等。
解决代数问题
因式分解在解代数方程中有着广泛的应用,如求 解一元一次方程、分式方程等。
在几何图形中的应用
面积与周长的计算
THANK YOU
感谢各位观看
题目2: 把下列多项式分解因 式:3x^2 - 6xy + 3y^2。
题目3: 把下列多项式分解因 式:4a^2 - 8ab + 4b^2。
进阶练习题
提升技巧难度
题目2: 把下列多项式分解因式:(2a + b)^2 - (a b)^2。
题目1: 把下列多项式分解因式:(x + 2y)^2 - (x y)^2。
重要性
总结词
因式分解在数学中具有重要意义,是解决许多数学问题的关 键步骤。
第三讲因式分解PPT课件
![第三讲因式分解PPT课件](https://img.taocdn.com/s3/m/ca328e9b9fc3d5bbfd0a79563c1ec5da50e2d6c5.png)
① x2-5x+6
1
-2
1
-3
解:原式=(x-2)(x-3)
② a2-a-2
1
1
1
-2
解:原式=(a+1)(a-2)
【例 4】 (2011·台湾)下列四个多项式,是 2x2+5x-3 的因式的只能为
( A)
A.2x-1
B.2x-3
C.x-1
D.x-3
2x²-5x-3
4x²+10x+6
⑷分组分解法: a3 a2 a 1
(1)、提公因式法: 公因式的确定:
ma + mb + mc = m(a+b+c)系数取所有系数的最大公约数,
字母取相同的字母, 指数取最低指数。
练习:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2
)②p(y-x)-2(x-y)
解:原式=3x2y2(2x-3y+1)
解:原式=p(y-x)+2(y-x) =(y-x)(p+2)
综合运用多种方法分解因式
知能迁移 4 (1)分解因式:a5-a (2)分解因式:(x+2)(x+4)+x2-4 (3)(解2012(·x+临2沂)(x)+分4解)+因x式22-:4a-6ab+9ab2= ________=.x22+6x+8+x22-4 (4)在=实2x数22+范6x围+内4 分解因式:x4-4
(2)运用公式法:
例题精析
【例 1】 (1)(2013·广东湛江)分解因式:x2-4=___x_2-__4_=__(_x_+__2_)(_x_-__2_)____. (2)(2013·江苏苏州)分解因式:a2+2a+1=___a_2+__2_a_+__1_=__(_a_+__1_)2_____. (3)(2013·山东滨州)分解因式:5x2-20=__5_x_2_-__2_0_=__5_(_x_+__2_)(_x_-__2_)_. (4)(2013·湖南益阳)分解因式:xy2-4x=___x_y2_-__4_x_=__x_(_y+__2_)_(_y_-__2_) __.
2-4《因式分解法》课件(共35张PPT)
![2-4《因式分解法》课件(共35张PPT)](https://img.taocdn.com/s3/m/1dffbc61ae1ffc4ffe4733687e21af45b307fe83.png)
(1)提取公因式法: am+bm+cm=m(a+b+c).
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
因式分解ppt课件
![因式分解ppt课件](https://img.taocdn.com/s3/m/21fe8ffa68dc5022aaea998fcc22bcd126ff421f.png)
02
03
04
因式分解的基本概念:定义、 性质、方法等
因式分解的技巧:提公因式、 平方差公式、十字相乘法等
因式分解的应用:代数式化简 、解方程等
Hale Waihona Puke 学习方法:理论学习、练习、 小组讨论等
因式分解的应用与重要性
01
02
03
04
代数式化简
利用因式分解简化复杂的代数 式,提高计算效率
解方程
通过因式分解将方程转化为多 个简单方程,便于求解
因式分解的作用
有助于理解方程的解 法
可以用于解决一些数 学问题,如求根、解 方程等
可以将一个复杂的多 项式简化成易于理解 的形式
课程目标和学习方法
掌握因式分解的基本方法 学习如何将一个多项式分解成几个整式的乘积
通过练习,达到能够快速、准确地完成因式分解的目标
02
因式分解的基本概念
整式和因式的定义
分解6a4b3+18a3b2+12a2b
首先,我们可以发现6a4b3和18a3b2可以组合成一项,得到(6a4b3+18a3b2),接着观察多项式,我 们可以发现12a2b可以单独列出来,所以原多项式可以分解为(6a4b3+18a3b2)+12a2b。
应用题中的例子
在一个水池设计中,需要将一个圆形的水池分割成若干个小 的区域,这时候就需要使用到因式分解的方法,将圆形水池 的面积分解成若干个小的面积之和,这样就可以更加方便地 进行设计和规划。
掌握因式分解的方法
因式分解的方法有很多种,初学者可能难以掌握。解决办 法是加强对方法的学习,可以通过大量的练习来掌握。
解决因式分解的问题
因式分解的问题可能比较复杂,初学者可能难以解决。解 决办法是加强对问题的分析,学会拆解问题,找出合适的 解决方法。
数学七年级下《因式分解》复习课件(精选)PPT文档29页
![数学七年级下《因式分解》复习课件(精选)PPT文档29页](https://img.taocdn.com/s3/m/c5cbc8e8f111f18582d05a57.png)
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
数学七年级下《因式分解》复习课件 (精选)
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不是
(3)4x2 4x 1 (2x 1)2
不是
(4)x2 3x 1 x(x 3) 1
(5) x2 1 x( x 1 ) x
(6) 18a3bc 3a2b6ac
不是 不是 不是
2021/02/20
5
通过刚才的学习你能说出因式分解与整式 乘法它们之间有什么关系吗?
整式的乘法特点:由整式积的形式转化成多项式和的 形式.
(1).x2-4y2=(x+2y)(x-2y) PPT模板:
PPT素材:
PPT背景:
PPT图表:
PPT下载:
PPT教程:
资料下载:
范文下载:
试卷下载:
教案下载:
PPT论坛:
PPT课件:
语文课件: 数学课件:
英语课件: 美术课件:
科学课件: 物理课件:
化学课件: 生物课件:
地理课件:
历史课件:
因式分解
2021/02/20
1
你能发现这两组等式之 间的联系和区别吗?它们的左 右两边有何特点?
a(a+1)=__a_2+_a_____
a2+a=( a ) ( a+1)
(a+b)(a-b)=__a_2_-_b_2____ a2 - b2= ( a+b) ( a-b )
(a+1)2 = a__2_+_2__a__+_1_
a2+2a+1= ( a+1 ) 2
整式的乘法
特点:由整式积的形式 转202化1/02成/20 多项式和的形式.
特点: 把多项式和的形式转 化为几个整式的积的形式2.
一般地,把一个多项式化成几个整 式的积的形式,叫做因式分解,有时我 们也把这一过程叫做分解因式。
2021/02/20
3
理解概念
判断下列各式哪些是整式乘法?哪些是因式分解?
2. 计算下列各题,并说明你的算法.
(1)87 2 + 87 ×13
(2)1012 - 99 2
2021/02/20
9
(1)若(a+5)(a+2)=a2+7a+10,
则a2+7a+10=( a+5)( a+2).
(2)若 x2+mx-n能分解成(x-2)(x-5), 则m=_-7___,n=_-1_0__.
因式分解特点: 由多项式和的形式转化成几个整式的 积的形式。
结论:多项式的因式分解与整式乘法是两种
相反方向的恒等变形,它们是互逆过程。
2021/02/20
6
x2-y2 9-25x2 x2+2x+1 xy-y2
2021/02/20
(x+1)2 y(x-y) (3-5x)(3+5x) (x+y)(x-y)
(2).2x(x-3y)=2x2-6xy (3).(5a-1)2=25a2-10a+1
整式乘法 整式乘法
(4).x2Biblioteka 4x+4=(x+2)2
因式分解
(5).2πR+ 2πr= 2π(R+r)
2021/02/20
因式分解
4
下列代数式从左到右的变形是因式分解吗?
(1) a2 a a(a 1)
是
(2)(a 3)(a 3) a2 9
7
例:检验下列因式分解是否正确?
(1) x2 y-xy 2=xy(x-y) (2) 2x2-1=(2x+1)(2x-1) (3) x2+3x+2=(x+1)(x+2)
用什么方法检验 因式分解是否
正确呢?
2021/02/20
看等式右边几个整 式相乘的积与左边 的多项式是否相等
8
练习:
1. 检验下列因式分解是否正确. (1)m2+mn=m(m+n) (2)a2-b2=(a+b)(a-b) (3)x2-x-2=(x+2)(x-1)
(3)若x2-6x+m=(x-4)( x-2 ),
则m=__8__.
2021/02/20
10
2021/02/20
11