2014年四川泸州中考数学模拟试题及答案

合集下载

四川省泸州市中考数学试题doc

四川省泸州市中考数学试题doc
祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能
够取得好成绩,为祖国奉献力量!祝福您及家人身体健康、万事如意、阖
家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!
2.计算 x2•x3 的结果为( ) A.2x2 B.x5 解答:解:原式=x2+3
C.2x3D.x6=x5. 故选:B. 点评:本题考查了同底数幂的乘法,底数不变指数相加是解题关键. 3.如图的几何图形的俯视图为( )
A.外切
B.相交
C.内含
D.内切
解答:解:∵O1O2=8cm,⊙O1 以 1cm/s 的速度沿直线 l 向右运动,7s 后停止运动, ∴7s 后两圆的圆心距为:1cm, 此时两圆的半径的差为:3﹣2=1cm, ∴此时内切, 故选 D. 点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根 据圆心距和两圆的半径确定答案. 11.如图,在直角梯形 ABCD 中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC 的平分线分别 交 AD、AC 于点 E,F,则 的值是( )
A.30°
B.60°
C.120°
D.150°
解答:解:由等边△ABC 得∠C=60°, 由三角形中位线的性质得 DE∥BC, ∠DEC=180°﹣∠C=180°﹣60°=120°, 故选:C. 点评:本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半. 6.已知实数 x、y 满足 A. ﹣2 B.2 +|y+3|=0,则 x+y 的值为( ) C.4 D. ﹣4
解答:
解:∵
+|y+3|=0,
∴x﹣1=0,y+3=0; ∴x=1,y=﹣3, ∴原式=1+(﹣3)=﹣2 故选:A. 点评:本题考查了非负数的性质:几个非负数的和为 0 时,这几个非负数都为 0. 7.一个圆锥的底面半径是 6cm,其侧面展开图为半圆,则圆锥的母线长为( ) A.9cm B.12cm C.15cm D.18cm 解答: 解:圆锥的母线长=2×π×6× =12cm,

初中数学四川省泸州市数学中考模拟考试题及参考答案word版.docx

初中数学四川省泸州市数学中考模拟考试题及参考答案word版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:5的倒数为A.B.5 C. D. -5试题2:计算的结果为A.B.C. D.试题3:如右下图所示的几何图形的俯视图为A.B.C. D.试题4:某校八年级(2)班6名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是A.38 B.39 C.40 D.42试题5:评卷人得分如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为A.30°B.60°C.120° D.150°试题6:已知实数、满足,则的值为A.-2 B.2 C.4 D.-4试题7:一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为A.9 cm B.12 cm C.15 cmD.18 cm试题8:已知抛物线与轴有两个不同的交点,则函数的大致图像是A.B.C. D.试题9:“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离(千米)与汽车行驶时间(小时)之间的函数图像,当他们离目的地还有20千米时,汽车一共行驶的时间是A.2小时B.2.2小时C.2.25小时 D.2.4小时第9题第10题试题10:如图,⊙,⊙的圆心,都在直线上,且半径分别为2cm,3cm,.若⊙以1cm/s的速度沿直线向右匀速运动(⊙保持静止),则在7s时刻⊙与⊙的位置关系是A.外切B.相交C.内含 D.内切试题11:如图,在直角梯形ABCD中,DC//AB,∠DAB=90°, AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是A.B.C. D.试题12:如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a )(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是A.4 B.C. D.分解因式:= .试题14:使函数有意义的自变量的取值范围是 .试题15:一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为 .试题16:如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G,给出下列命题:①若,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是;④若,则k=1.其中正确的命题的序号是(写出所有正确命题的序号).计算:试题18:化简:试题19:如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.试题20:某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t (单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按,,,分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元。

泸州市2014中考数学试题

泸州市2014中考数学试题

泸州市二〇一四年高中阶段学校招生考试数学试卷(考试试间:120分钟,试卷满分120分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.5的倒数为A.15B.5C.15-D.5-2.计算23x x⋅的结果为A.22x B.22x C.22x D.22x 3.如右下图所示的几何图形的俯视图为A.B.C.D.4.某校八年级(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是A.38B.39C.40D.425.如图,等边ABC△中,点D、E分别为边AB、AC的中点,则DEC∠的度数为A.30 B.60 C.120 D.1506.已知实数x、y30y+=,则x y+的值为A.2-B.2C.4D.4-7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为A.9cm B.12cm C.15cm D.18cm8.已知抛物线221y x x m=-++与x轴有两个不同的交点,则函数myx=的大致图象是A.B.C.D.9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是A.2小时B.2.2小时C.2.25小时D.2.4小时第5题图AB CD E10.如图,⊙1O 、⊙2O 的圆心1O 、2O 都在直线l 上,且半径分别为2cm 、3cm ,128cm O O =.若⊙1O 以 1cm /s 的速度沿直线l 向右匀速运动(⊙2O 保持静止),则在7s 时刻⊙1O 与⊙2O 的位置关系是A .外切B .相交C .内含D .内切11AC BC ⊥,AC BC =,ABC ∠的平分12112二、填空题(本大题共4小题,每小题3分,共12分) 13.分解因式:2363a a ++= . 14.使函数1(1)(2)y x x =-+有意义的自变量x 的取值范围是 .15.一个平行四边形的一条边长为3,则它的面积为. 16.如图,矩形AOBC 的顶点坐标分别为A 动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数ky x=的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G ,给出下列命题: ①若4k =,则OEF △的面积为83;②若218k =,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是012k <≤; ④若2512DE EG ⋅=,则1k =. 其中正确的命题的序号是 (写出所有正确命题的序号). 三、(本大题共3小题,每题6分,共18分) 170214sin 60(2)()2π-+++ .18.化简:221()a ba b b aa b -÷+--.第11题图AB C D E F19.如图,正方形ABCD 中,E 、F 分别为BC 、CD 上的点,且AE ⊥BF ,垂足为点G . 求证:AE=BF .四、(本大题共2小题,每题7分,共14分) 20.某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t (单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按02t <≤,23t <≤,34t <≤,4t ≥分为四个等级,并分别用A 、B 、C 、D 表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:各种等级人数占调查总人数的百分比统计图(1)求出x 的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足24t <≤的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率. 五、(本大题共2小题,每题8分,共16分). 21.某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件.已知生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B 产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A 、B 两种产品总利润为y 元,其中A 种产品生产件数是x .(1)写出y 与x 之间的函数关系式;(2)如何安排A 、B 两种产品的生产件数,使总利润y 有最大值,并求出y 的最大值.22.海中两个灯塔A 、B ,其中B 位于A 的正东方向上,渔船跟踪鱼群由西向东航行,在点C 处测得灯塔A 在西北方向上,灯塔B 在北偏东30 方向上,渔船不改变航向继续向东航行30海里到达点D ,这是测得灯塔A 在北偏西60 方向上,求灯塔A 、B 间的距离.(计算结果用根号表示,不取近似值).GF A B C ED第19题图第22题图C DA B23.已知1x ,2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两实数根.(1)若12(1)(1)28x x --=,求m 的值;(2)已知等腰ABC △的一边长为7,若1x ,2x 恰好是ABC △另外两边的边长,求这个三角形的周长. 六、(本大题共2小题,每小题12分,共24分)24.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AC 和BD 相交于点E ,且2DC C EC A =⋅.(1)求证:BC CD =;(2)分别延长AB ,DC 交于点P ,过点A 作AF ⊥CD 交CD 的延长线于点F ,若PB=求DF 的长.25.如图,已知一次函数112y x b =+的图象l 与二次函数22y x mx b =-++的图象'C 都经过点(0,1)B 和点C ,且图象'C 过点(2A .(1)求二次函数的最大值;(2)设使21y y >成立的x 取值的所有整数和为s ,若s 是关于x 的方程13(1)013x a x ++=--的根,求a 的值;(3)若点F 、G在图象'C DE 在线段BC 上移动,EF 与DG 始终平行于y 轴,当四边形DEFG 的面积最大时,在x 轴上求点P ,使PD PE +最小,求出点P 的坐标.A参考答案二.填空题(本题共4小题,每小题3分,共12分).13.23(1)a+;14.21x x>-≠且;15.16.②④.三.(本大题共3个小题,每小题6分,共18分).)17.解:原式414=+=5.18.解:原式()()()()a ab b aa b a b a b a b b⎡⎤--=-⨯⎢⎥+-+-⎣⎦()()b b aa b a b b-=⨯+-1a b=-+.19.证明:∵AE⊥BF,∴90BAE ABF∠+∠= ,在正方形ABCD中,90ABF CBF∠+∠= ,∴BAE CBF∠=∠,∴在BAE△和CBF△中,BAE CBFAB BCABE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BAE CBF≅△△,∴AEBF=.三.(本大题共2个小题,每小题7分,共14分).)20.解:(1)10045101530x=---=,补全条形统计图如图所示;(2)该校共有学生2500人,估计每周课外阅读时间量满足24t<≤的人数为:2500⨯(30﹪+10﹪)=1000(人);(3)树状图如图所示:13212321121221312312由图知,共有20种不同情况,其中符合的有12种.∴123205P==21.解:(1)因为A种产品生产件数是x,所以生产B 种产品(50)x-件,根据题意的:7001200(50)y x x=+⨯-即50060000y x=-+;GFAB CED第19题图(2)依题意得:94(50)380310(50)290x x x x +-≤⎧⎨+-≤⎩,解这个不等式组,得3036x ≤≤,且x 是整数,在50060000y x =-+中,y 随x 的增大而减小,因此,当x 取最小值时,y 有最大值, 故生产A 种产品30件,B 种产品20件获利最大, 最大利润为:500306000045000y =-⨯+=(元).22. 解:作AE ⊥DC ,交CD 的延长线于点E ,过点C 作CF AB ⊥,垂足为F , ∵45ACE ∠= ,∴ACE △为等腰直角三角形, ∴AE CF CE AF ===,∴灯塔A 、B 间的距离是(30+海里.23. 解:(1)∵1x ,2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两实数根,∴1222x x m +=+,2125x x m =+, ∵12(1)(1)28x x --=,∴1212()270x x x x -+-=,22240m m --=,解得6m =,或4m =-,∵一元二次方程222(1)50x m x m -+++=的两实数根, []222(1)4(5)8160m m m ∆=-+-+=-≥,∴2m ≥, ∴6m =;(2)①若7是ABC △的一腰长,则7是方程222(1)50x m x m -+++=的一个实数根.∴22727(1)50m m -⨯+++=, ∴214400m m -+=, ∴4m =,或10m =,当4m =时,方程为210210x x -+=,解得17x =,23x =,等腰三角形的周长为7+7+3=17; 当10m =时,方程为2221050x x -+=,解得17x =,215x =,BADC第22题图∵7715+<,所以此时ABC △不存在,②若7是ABC △的底边长,则222(1)50x m x m -+++=有两相等实数根,∴8160m ∆=-=,∴2m =, ∴123x x ==,∵337+<,此时不能构成三角形,综上,符合题意的等腰△ABC 的周长为17.24.(1)证明;∵2DC CE CA =⋅,∴DC CACE DC=, ∵DCE ACD ∠=∠, ∴CDE CAD △△,∴DAC BDC ∠=∠,又DAC DBC ∠=∠, ∴DBC CDB ∠=∠, ∴BC =CD ;(2)解:连接OC ,∵ DCBC =,∴OC BD ⊥, 又∵AB 是⊙O 的直径,∴AD BD ⊥, ∴//OC AD ,∴PADPCB ∠=∠,又∵P P ∠=∠, ∴PAD PCB△△,∵//OC AD ∵AF DF ⊥,AC BC ⊥,∴ACB F ∠=∠,又∵ABC ADF ∠=∠, ∴ABC ADF △△,A25.解:(1)∵112y x b =+过点(0,1)B ,∴1b =,∵图象'C过点(2A ,∴2(2(210m -++=, 解得m =4,∴2224125y x x x =-++=--+(),∴二次函数的最大值为5;(2)由1112y x =+与2241y x x =-++联立 ,得711(,)24C ,结合图象l 与图象'C 得使21y y >成立的x 的取值范围是702x <<, 满足21y y >的x 的取值的所有整数和为6s =, ∵6是方程13(1)013x a x ++=--的根, ∴136(1)0163a ++=-- ∴a =17;(3)过点D 作D M x ⊥轴,垂足为点M ,过点E 作EN x ⊥轴,垂足为点N,过点D 作DH EN ⊥轴,垂足为点,过点D 作BI DM ⊥轴,垂足为点I , 设点001(,1)2D x x +,∵BID DHE △△=,∴2DH =,1EH =,∴点E 的坐标为001(2,2)2E x x ++,又点G 的坐标为22000(,41)E x x x -++,点F 的坐标为200(2,5)F x x +-+, ∴22000001741(1)22GD x x x x x =-++-+=-+,∴220000115(2)322EF x x x x =-+-+=--+,∴四边形DEFG 的面积:2200001171()[()(3)22222S EF DG DH x x x x =+⨯=-++--+⨯,200233x x =-++,∵DE 在线段BC 上移动,∴000722x x >⎧⎪⎨+<⎪⎩,∴点0302x <<,∴当034x =时,四边形DEFG 的面积有最大值, 此时点311(,)48D ,点1119(,)48E , 设E 关于x 轴的对称点为1119(,)48E '-, 连接PE ',则PE PE '=,PD PE PD PE DE ''++≥≥,当且仅当D 、P 、E 共线时取等号, 又直线DE '的解析式为:1589832y x =-+,当0y =时,点P 的坐标为89(,0)60.H 第25题图。

数学:中考2014年各地数学试题解答 四川绵阳、四川泸州

数学:中考2014年各地数学试题解答 四川绵阳、四川泸州

四川省绵阳市2014年中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•绵阳)2的相反数是()C.D.2A.﹣2B.考点:相反数分析:利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.解答:解:2的相反数是﹣2.故选:A.点评:此题主要考查了相反数的概念,正确把握定义是解题关键.2.(3分)(2014•绵阳)下列四个图案中,属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称的概念和各图形的特点即可求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(3分)(2014•绵阳)下列计算正确的是()A.a2•a=a2B.a2÷a=a C.a2+a=a3D.a2﹣a=a考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则,同底数幂的乘法与除法的知识求解即可求得答案.解答:解:A、a2a=a3,故A选项错误;B、a2÷a=a,故B选项正确;C、a2+a=a3,不是同类项不能计算,故错误;D、a2﹣a=a,不是同类项不能计算,故错误;故选:B.点评:本题主要考查合并同类项的法则,同底数幂的乘法与除法的知识,熟记法则是解题的关键.4.(3分)(2014•绵阳)若代数式有意义,则x的取值范围是()A.x<B.x≤C.x>D.x≥考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,3x﹣1≥0,解得x≥.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(3分)(2014•绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()A.B.C.D.考点:几何概率.分析:根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.解答:解:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的,故其概率为.故选:A.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.6.(3分)(2014•绵阳)如图所示的正三棱柱,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图是从物体正面看所得到的图形求解.解答:解:从几何体的正面看所得到的形状是矩形.故选B.点评:本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.(3分)(2014•绵阳)线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E (4,7),则点Q(﹣3,1)的对应点F的坐标为()A.(﹣8,﹣2)B.(﹣2,﹣2)C.(2,4)D.(﹣6,﹣1)考点:坐标与图形变化-平移分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P 点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,4)的对应点为E(4,7),∴P点是横坐标+5,纵坐标+3得到的,∴点Q(﹣3,1)的对应点N坐标为(﹣3+5,1+3),即(2,4).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,个点的变化规律都相同.8.(3分)(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.40海里B.40海里C.80海里D.40海里考点:解直角三角形的应用-方向角问题.分析:根据题意画出图形,进而得出PA,PC的长,即可得出答案.解答:解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.点评:此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.9.(3分)(2014•绵阳)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形考点:命题与定理.分析:根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.(3分)(2014•绵阳)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤考点:一元一次不等式的应用分析:根据最大的降价率即是保证售价大于等于成本价相等,进而得出不等式即可.解答:解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,整理得:100n+mn≤100m,故n≤.故选:B.点评:此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.11.(3分)(2014•绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()A.B.C.D.考点:勾股定理;三角形的面积;三角形三边关系;等腰三角形的性质.分析:设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,再根据题意列出关于x、n、y的方程组,用n表示出x、y的值,由三角形的三边关系舍去不符合条件的x、y的值,由n是正整数求出△ABC面积的最小值即可.解答:解:设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,得或,解得或,∵2×<(此时不能构成三角形,舍去)∴取,其中n是3的倍数∴三角形的面积S△=××=n2,对于S△=n2=n2,当n≥0时,S△随着n的增大而增大,故当n=3时,S△=取最小.故选:C.点评:本题考查的是三角形的面积及三角形的三边关系,根据题意列出关于x、n、y的方程组是解答此题的关键.12.(3分)(2014•绵阳)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是()A.=B.=C.=D.=考点:切线的性质;平行线的判定与性质;三角形中位线定理;垂径定理;相似三角形的判定与性质专题:探究型.分析:(1)连接AQ,易证△OQB∽△OBP,得到,也就有,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得,所以A正确.(2)由△OBP∽△OQB得,即,由AQ≠OP得,故C不正确.(3)连接OR,易得=,=2,得到,故B不正确.(4)由及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP得,故D不正确.解答:解:(1)连接AQ,如图1,∵BP与半圆O于点B,AB是半圆O的直径,∴∠ABP=∠ACB=90°.∵OQ⊥BC,∴∠OQB=90°.∴∠OQB=∠OBP=90°.又∵∠BOQ=∠POB,∴△OQB∽△OBP.∴.∵OA=OB,∴.又∵∠AOQ=∠POA,∴△OAQ∽△OPA.∴∠OAQ=∠APO.∵∠OQB=∠ACB=90°,∴AC∥OP.∴∠CAP=∠APO.∴∠CAP=∠OAQ.∴∠CAQ=∠BAP.∵∠ACQ=∠ABP=90°,∴△ACQ∽△ABP.∴.故A正确.(2)如图1,∵△OBP∽△OQB,∴.∴.∵AQ≠OP,∴.故C不正确.(3)连接OR,如图2所示.∵OQ⊥BC,∴BQ=CQ.∵AO=BO,∴OQ=AC.∵OR=AB.∴=,=2.∴≠.∴.故B不正确.(4)如图2,∵,且AC=2OQ,AB=2OB,OB=OR,∴.∵AB≠AP,∴.故D不正确.故选:A.点评:本题考查了切线的性质,相似三角形的判定与性质、平行线的判定与性质、垂径定理、三角形的中位线等知识,综合性较强,有一定的难度.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2014•绵阳)2﹣2=.考点:负整数指数幂分析:根据负整数指数幂的运算法则直接进行计算即可.解答:解:2﹣2==.故答案为:.点评:本题主要考查负整数指数幂,幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.14.(4分)(2014•绵阳)“五一”小长假,以生态休闲为特色的绵阳近郊游倍受青睐.假期三天,我市主要景区景点人气火爆,据市旅游局统计,本次小长假共实现旅游收入5610万元,将这一数据用科学记数法表示为 5.61×107元.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将5610万元用科学记数法表示为:5.61×107.故答案为:5.61×107.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)(2014•绵阳)如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=20°.考点:平行线的性质;等边三角形的性质分析:延长CB交直线m于D,根据根据两直线平行,内错角相等解答即可,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠α.解答:解:如图,延长CB交直线m于D,∵△ABC是等边三角形,∴∠ABC=60°,∵l∥m,∴∠1=40°.∴∠α=∠ABC﹣∠1=60°﹣40°=20°.故答案是:20.点评:本题考查了平行线的性质,等边三角形的性质,熟记性质并作辅助线是解题的关键,也是本题的难点.16.(4分)(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)考点:正多边形和圆分析:根据题意得出△COW≌△ABW,进而得出图中阴影部分面积为:S扇形OBC 进而得出答案.解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC 是解题关键.17.(4分)(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.18.(4分)(2014•绵阳)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2014=1﹣.考点:规律型:图形的变化类分析:观察图形的变化发现每次折叠后的面积与正方形的关系,从而写出面积和的通项公式.解答:解:观察发现S1+S2+S3+…+S2014=+++…+=1﹣,故答案为:1﹣.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.三、解答题(共7小题,满分90分)19.(16分)(2014•绵阳)(1)计算:(2014﹣)0+|3﹣|﹣;(2)化简:(1﹣)÷(﹣2)考点:二次根式的混合运算;分式的混合运算;零指数幂.专题:计算题.分析:(1)根据零指数幂和分母有理化得到原式=1+2﹣3﹣2,然后合并即可;(2)先把前面括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.解答:解:(1)原式=1+2﹣3﹣2=﹣2;(2)原式=÷=•=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和分式的混合运算.20.(12分)(2014•绵阳)四川省“单独两孩”政策于2014年3月20日正式开始实施,该政策的实施可能给我们的生活带来一些变化,绵阳市人口计生部门抽样调查了部分市民(每个参与调查的市民必须且只能在以下6种变化中选择一项),并将调查结果绘制成统计图:种类ABCDEF变化有利于延缓社会老龄化现象导致人口暴增提升家庭抗风险能力增大社会基本公共服务的压力环节男女比例不平衡现象促进人口与社会、资源、环境的协调可持续发展根据统计图,回答下列问题:(1)参与调查的市民一共有2000人;(2)参与调查的市民中选择C 的人数是400人;(3)∠α=54°;(4)请补全条形统计图.考点:条形统计图;统计表;扇形统计图.分析:(1)根据A 类的有700人,所占的比例是35%,据此即可求得总人数;(2)利用总人数乘以对应的比例即可求解;(3)利用360°乘以对应的比例即可求解;(4)利用总人数乘以对应的比例求得D 类的人数,然后根据(1)即可作出统计图.解答:解:(1)参与调查的市民一共有:700÷35%=2000(人);(2)参与调查的市民中选择C 的人数是:2000(1﹣35%﹣5%﹣10%﹣15%﹣15%)=400(人);(3)α=360°×15%=54°;(4)D的人数:2000×10%=200(人).点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)(2014•绵阳)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.考点:一次函数的应用.分析:(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的儿童票金额;优惠方案②:付款总金额=(购买成人票金额+购买儿童票金额)×打折率,列出y关于x的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.解答:解:(1)按优惠方案①可得y1=20×4+(x﹣4)×5=5x+60(x≥4),按优惠方案②可得y2=(5x+20×4)×90%=4.5x+72(x≥4);(2)因为y1﹣y2=0.5x﹣12(x≥4),①当y1﹣y2=0时,得0.5x﹣12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多.②当y1﹣y2<0时,得0.5x﹣12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案①付款较少.③当y1﹣y2>0时,得0.5x﹣12>0,解得x>24,当x>24时,y1>y2,优惠方案②付款较少.点评:本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.22.(12分)(2014•绵阳)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)根据三角形的面积公式即可求得m的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,则方程=nx+2有两个不同的解,利用根的判别式即可求解.解答:=×1×m=1,解:(1)由已知得:S△AOB解得:m=2,把A(1,2)代入反比例函数解析式得:k=2;(2)由(1)知反比例函数解析式是y=,则=nx+2有两个不同的解,方程去分母,得:nx2+2x﹣2=0,则△=4+8n>0,解得:n>﹣且n≠0.点评:本题综合考查反比例函数与方程组的相关知识点.先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.23.(12分)(2014•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O 上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=,AE=3,求AF的长.考点:切线的性质分析:(1)首先连接OC,由OC=OA,=,易证得OC∥AE,又由过点C作⊙O的切线交AB的延长线于D点,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,AE=3,然后连接OF,可得△OAF为等边三角形,继而求得答案.解答:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵=,∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE且⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵tan∠CBA=,∴∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.点评:此题考查了切线的性质、直角三角形的性质、等边三角形的判定与性质以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(12分)(2014•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.考点:四边形综合题.分析:(1)由矩形的性质可知△ADC≌△CEA,得出AD=CE,DC=EA,∠ACD=∠CAE,从而求得△DEC≌△EDA;(2)根据勾股定理即可求得.(3))有矩形PQMN的性质得PQ∥CA,所以,从而求得PQ,由PN∥EG,得出=,求得PN,然后根据矩形的面积公式求得解析式,即可求得.解答:(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CED中∴△DEC≌△EDA(SSS);(2)解:如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)解:如图2,由矩形PQMN的性质得PQ∥CA∴又∵CE=3,AC==5设PE=x(0<x<3),则,即PQ=过E作EG⊥AC于G,则PN∥EG,∴=又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=∴=,即PN=(3﹣x)设矩形PQMN的面积为S则S=PQ•PN=﹣x2+4x=﹣+3(0<x<3)所以当x=,即PE=时,矩形PQMN的面积最大,最大面积为3.点评:本题考查了全等三角形的判定和性质,勾股定理的应用,平行线分线段成比例定理.25.(14分)(2014•绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先由抛物线的顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,再将M(﹣2,)代入,得=a(﹣2+1)2+,解方程求出a的值即可得到抛物线的解析式;(2)先求出抛物线y=﹣x2﹣x+与x轴交点A、B,与y轴交点C的坐标,再根据勾股定理得到BC==2.设P(﹣1,m),显然PB≠PC,所以当△PBC为等腰三角形时分两种情况进行讨论:①CP=CB;②BP=BC;(3)先由勾股定理的逆定理得出BC⊥AC,连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,由轴对称的性质可知此时△QBM的周长最小,由B(﹣3,0),C(0,),根据中点坐标公式求出B′(3,2),再运用待定系数法求出直线MB′的解析式为y=x+,直线AC的解析式为y=﹣x+,然后解方程组,即可求出Q点的坐标.解答:解:(1)由抛物线顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,将M(﹣2,)代入,得=a(﹣2+1)2+,解得a=﹣,故所求抛物线的解析式为y=﹣x2﹣x+;(2)∵y=﹣x2﹣x+,∴x=0时,y=,∴C(0,).y=0时,﹣x2﹣x+=0,解得x=1或x=﹣3,∴A(1,0),B(﹣3,0),∴BC==2.设P(﹣1,m),显然PB≠PC,所以当CP=CB时,有CP==2,解得m=±;当BP=BC时,有BP==2,解得m=±2.综上,当△PBC为等腰三角形时,点P的坐标为(﹣1,+),(﹣1,﹣),(﹣1,2),(﹣1,﹣2);(3)由(2)知BC=2,AC=2,AB=4,所以BC2+AC2=AB2,即BC⊥AC.连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,∵B、B′关于直线AC对称,∴QB=QB′,∴QB+QM=QB′+QM=MB′,又BM=2,所以此时△QBM的周长最小.由B(﹣3,0),C(0,),易得B′(3,2).设直线MB′的解析式为y=kx+n,将M(﹣2,),B′(3,2)代入,得,解得,即直线MB′的解析式为y=x+.同理可求得直线AC的解析式为y=﹣x+.由,解得,即Q(﹣,).所以在直线AC上存在一点Q(﹣,),使△QBM的周长最小.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,等腰三角形的性质,轴对称的性质,中点坐标公式,两函数交点坐标的求法等知识,运用数形结合、分类讨论及方程思想是解题的关键.四川省泸州市2014年中考数学试卷一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.5的倒数为()A.B.5C.D.﹣5解答:解:5的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.计算x2•x3的结果为()A.2x2B.x5C.2x3D.x6解答:解:原式=x2+3=x5.故选:B.点评:本题考查了同底数幂的乘法,底数不变指数相加是解题关键.3.如图的几何图形的俯视图为()A.B.C.D.解答:解:从上面看:里边是圆,外边是矩形,故选:C.点评:本题考查了简单组合体的三视图,注意所有的看到的棱都应表现在俯视图中.4.某校八年级(2)班5名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是()A.38B.39C.40D.42解答:解:题目中数据共有5个,中位数是按从小到大排列后第3个数作为中位数,故这组数据的中位数是40.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数,比较简单.5.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()A.30°B.60°C.120°D.150°解答:解:由等边△ABC得∠C=60°,由三角形中位线的性质得DE∥BC,∠DEC=180°﹣∠C=180°﹣60°=120°,故选:C.点评:本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.6.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2B.2C.4D.﹣4解答:解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm解答:解:圆锥的母线长=2×π×6×=12cm,故选B.点评:本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是()A.B.C.D.解答:解:抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,∴△=(﹣2)2﹣4(m+1)>0∴函数y=的图象位于二、四象限,故选:A.点评:本题考查了反比例函数图象,先求出m的值,再判断函数图象的位置.9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时解答:解:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150x=2.25h,故选:C.点评:本题考查了一次函数的应用,利用了待定系数法求解析式,利用函数值求自变量的值.10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是()A.外切B.相交C.内含D.内切解答:解:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,故选D.点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.点评:本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解..12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.二、填空题(本大题共4小题,每小题3分,共12分.请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3=3(a+1)2.解答:解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.使函数y=+有意义的自变量x的取值范围是x>﹣2,且x≠1.解答:解:根据题意得:x+2≥0且(x﹣1)(x+2)≠0,解得x≥﹣2,且x≠1,x≠﹣2,故答案为:x>﹣2,且x≠1.点评:本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.解答:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,S=4×2=4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.16.(3分)(2014•泸州)如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).。

泸州市泸县中考数学一诊试卷含答案解析

泸州市泸县中考数学一诊试卷含答案解析

四川省泸州市泸县中考数学一诊试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)一元二次方程x2+3x=0的根为()A.﹣3 B.3 C.0,3 D.0,﹣32.(3分)在下列的银行行徽中,是中心对称图形的是()A.B. C.D.3.(3分)三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则她们拿到的贺卡是自己所写的概率是()A.B.C.D.4.(3分)若两个相似三角形的相似比为1:2,则它们面积的比为()A.2:1 B.1:C.1:4 D.1:55.(3分)二次函数y=3(x﹣2)2+5的图象的顶点坐标是()A.(2,5) B.(2,﹣5)C.(﹣2,5)D.(﹣2,﹣5)6.(3分)我们知道,国旗上的五角星是旋转对称图形,它旋转与自身重合时,至少需要旋转()A.36°B.60°C.45°D.72°7.(3分)如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A.30°B.60°C.90°D.45°8.(3分)设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.69.(3分)如图,⊙O的直径BC=12cm,AC是⊙O的切线,切点为C,AC=BC,AB与⊙O交于点D,则的长是()A.πcm B.3πcm C.4πcm D.5πcm10.(3分)如图,矩形ABCD的长和宽分别为2cm和1cm,以D为圆心,AD为半径作弧AE,再以AB的中点F为圆心,FB长为半径作弧BE,则阴影部分的面积是()A.1cm2B.2cm2C.3cm2D.4cm211.(3分)已知直角三角形的两条直角边分别为12cm和16cm,则这个直角三角形内切圆的半径是()A.2cm B.3cm C.4cm D.5cm12.(3分)若一次函数y=ax+b的图象经过一、二、四象限,则函数y=ax2+bx 的图象只可能是()A.B.C.D.二、填空题(每小题3分,共12分)13.(3分)⊙O的半径为4cm,则⊙O的内接正三角形的周长是cm.14.(3分)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为.15.(3分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.16.(3分)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.三、解答题(每小题6分,共18分)17.(6分)解方程:x(x﹣1)=4x+6.18.(6分)若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.19.(6分)如图,AE为△ABC外接圆⊙O的直径,AD为△ABC的高.求证:(1)∠BAD=∠EAC;(2)AB•AC=AD•AE四、解答题(每小题7分,共14分)20.(7分)某地为做好“精准扶贫”工作,投入资金2000万元用于异地安置,并规划投入资金逐年增加,投入资金2880万元,求到该地投入异地安置资金的年平均增长率.21.(7分)如图,在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB1C1,并直接写出点B1、C1的坐标.(2)求线段AB所扫过的图形的面积.五、解答题(每小题8分,共16分)22.(8分)二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=﹣1.(1)求函数解析式;(2)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD 的面积.23.(8分)为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?六、解答题(每小题12分,共24分)24.(12分)如图,AB为⊙O的直径,点C在⊙O上,点D为的中点,过点D 作EF∥BC,EF交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若OG⊥AD,BG平分∠ABC,试判断:①△BDG的形状;②线段AD与BD 的数量关系,并说明理由.25.(12分)如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N 为顶点的四边形是平行四边形时,请直接写出点M的坐标.四川省泸州市泸县中考数学一诊试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故选:D.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.故选:C.3.【解答】解:第一个同学的贺卡为A,第二个同学的贺卡为B,第三个同学的贺卡为C,共有(A,B,C)、(A,C,B)、(B,A,C)、(B,C,A)、(C,A,B)、(C,B,A),6种情况,她们拿到的贺卡都是自己的有:(A,B,C)共1种,故她们拿到的贺卡都是自己所写的概率=,故选:A.4.【解答】解:∵两个相似三角形的相似比为1:2,∴它们面积的比等于()2=.故选:C.5.【解答】解:∵二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),∴二次函数y=3(x﹣2)2+5的图象的顶点坐标是(2,5).故选:A.6.【解答】解:根据旋转对称图形的概念可知:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而国旗上的每一个正五角星绕着它的中心至少旋转72度能与自身重合.故选:D.7.【解答】解:∵∠BAC=30°,∴∠BOC=60°(同弧所对的圆周角是圆心角的一半).故选:B.8.【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.9.【解答】解:连接OD.∵AC是切线,∴BC⊥AC,∴∠ACB=90°,∵AC=BC,∴∠A=∠B=45°,∴∠COD=2∠B=90°,∴的弧长==3π(cm)故选:B.10.【解答】解:∵AD=1cm,AB=2cm,AB的中点是F,∴AF=BF=AB=1cm=AD,∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1(cm2).故选:A.11.【解答】解:∵直角三角形的两直角边分别为12,16,∴直角三角形的斜边是20,∴内切圆的半径为:(12+16﹣20)÷2=4.故选:C.12.【解答】解:∵一次函数y=ax+b的图象经过一、二、四象限,∴a<0,b>0,∴函数y=ax2+bx的图象只可能是D,故选:D.二、填空题(每小题3分,共12分)13.【解答】解:如图所示:∵半径为4的圆的内接正三角形,∴在Rt△BOD中,OB=4cm,∠OBD=30°,∴BD=cos30°×OB=×4=2,∵BD=CD,∴BC=2BD=4cm,即它的内接正三角形的边长为4cm,∴⊙O的内接正三角形的周长是4×3=12cm.故答案为:12.14.【解答】解:∵正六边形被分成相等的6部分,阴影部分占3部分,∴指针落在有阴影的区域内的概率为:=.故答案为:.15.【解答】解:由已知得:,即,解得:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.16.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<3三、解答题(每小题6分,共18分)17.【解答】解:x2﹣x=4x+6x2﹣5x﹣6=0(x﹣6)(x+1)=0x=6或x=﹣118.【解答】解:(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤;(2)由(1)可知a≤,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.19.【解答】证明:(1)如图,连接CE.∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD+∠B=90°.∵AE是⊙O的直径,∴∠ACE=90°.∴∠EAC+∠E=90°.又∵∠B=∠E,∴∠BAD=∠EAC;(2)在△ABD与△AEC中,,∴△ABD∽△AEC,∴=,∴AB•AC=AD•AE.四、解答题(每小题7分,共14分)20.【解答】解:设到该地投入异地安置资金的年平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:到该地投入异地安置资金的年平均增长率为20%.21.【解答】解:(1)如图所示,△AB1C1即为所求;由图可知点B1的坐标为(4,﹣2)、C1的坐标为(1,﹣3);(2)∵AB==3,且∠BAB1=90°,∴线段AB所扫过的图形的面积为=π.五、解答题(每小题8分,共16分)22.【解答】解:(1)由题意可得解得y=﹣x2﹣2x+3;(2)由题意可知:A(﹣3,0),B(1,0),C(0,3),D(﹣1,4);过D作DE⊥AB于ES四边形ABCD=S△ADE+S梯形DEOC+S△BOC=×AE×DE+×(DE+OC)×OE+×OB×OC =×2×4+×(4+3)×1+×1×3=9.23.【解答】解:(1)总人数为:12÷30%=40(人),A级占:×100%=15%,D级占:1﹣35%﹣30%﹣15%=20%;C级人数:40×35%=14(人),D级人数:40×20%=8(人),补全统计图得:(2)估计不及格的人数有:4500×20%=900(人);(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是:20%.六、解答题(每小题12分,共24分)24.【解答】(1)证明:连接OD.∵=,∴OD⊥BC,∵BC∥EF,∴EF⊥OD,∴EF是⊙O的切线.(2)解:①△BDG是等腰直角三角形;理由:∵AB是直径,∴∠A CB=∠ADB=90°,∴∠CAB+∠ABC=90°,∵=,∴GA平分∠BAC,GB平分∠ABC,∴∠GAB+∠GBA=45°,∴∠BGD=45°,∴△BDG是等腰直角三角形,②结论:AD=2BD.理由:∵OG⊥AD,∴AG=GD,∵△BDG是等腰直角三角形,∴DG=DB,∴AD=2BD.25.【解答】解:(1)∵直线y=﹣x+1与x轴交于点A,与y轴交于点B,∴A(2,0),B(0,1),∵抛物线y=﹣x2+bx+c经过A、B两点,∴,∴∴抛物线解析式为y=﹣x2+x+1,(2)①由(1)知,A(2,0),B(0,1),∴OA=2,OB=1,由(1)知,抛物线解析式为y=﹣x2+x+1,∵点P是第一象限抛物线上的一点,∴设P(a,﹣a2+a+1),((a>0,﹣a2+a+1>0),=OA×P y=×2×(﹣a2+a+1)=﹣a2+a+1∴S△POAS△POB=OB×P x=×1×a=a∵△POA的面积是△POB面积的倍.∴﹣a2+a+1=×a,∴a=或a=﹣(舍)∴P(,1);②如图1,由(1)知,抛物线解析式为y=﹣x2+x+1,∴抛物线的对称轴为x=,抛物线与x轴的另一交点为C(﹣,0),∵点A与点C关于对称轴对称,∴QP+QA的最小值就是PC=;(3)①当OB为平行四边形的边时,MN=OB=1,MN∥OB,∵点M在直线AB上,点N为抛物线上,∴设M(m,﹣m+1),∴N(m,﹣m2+m+1),∴MN=|﹣m2+m+1﹣(﹣m+1)|=|m2﹣2m|=1,Ⅰ、m2﹣2m=1,解得,m=1±,∴M(1+,(1﹣))或M(1﹣,(1+))Ⅱ、m2﹣2m=﹣1,解得,m=1,∴M(1,);②当OB为对角线时,OB与MN互相平分,交点为H,∴OH=BH,MH=NH,∵B(0,1),O(0,0),∴H(0,),设M(n,﹣n+1),N(d,﹣d2+d+1)∴,∴或,∴M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));即:满足条件的点M的坐标(1+,(1﹣))或(1﹣,﹣(1+))或(1,)或M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));。

泸州市2014年中考数学模拟试题(二)

泸州市2014年中考数学模拟试题(二)

泸州市2014年中考数学模拟试题(二)满分120分,考试时间120分钟.一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算:-1-2 =( ).A .-1B .1C .-3D .3 2.下列运算正确的是( ).A .a + a 2 = a 3B .2a + 3b = 5abC .(a 3)2 = a 9D .a 3÷a 2 = a3.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数4.函数x y 21-=有意义的自变量x 的取值范围是( ).A .x ≤21 B .x ≠21 C .x ≥21 D .x <215.将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为( ).A .75︒B .95︒C .105︒D .120︒6.王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少还要再钉上几根木条?().A .0根B .1根C .2根D .3根 7.下列关于矩形的说法,正确的是( ).A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分8 ).A .B .C .D .9.灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.请问这次采购派男女村民各多少人?( ).A .男村民3人,女村民12人B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人 10.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶 的仰角α 为45︒,小丽站在B 处(A 、B 与塔的轴心共线)测得她看塔顶的仰角β 为30︒.她们又测出A 、B 两点的距离为30米.假设她们的眼睛离头顶都为10 cm ,则可计算出塔高约为(结果精确到0.01,参考数据:2≈1.414,3≈1.732)( ).A .36.21米 B .37.71米 C .40.98米 D .42.48米 11.已知等腰梯形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于O ,∠ABD = 30︒,AC ⊥BC ,AB = 8 cm ,则△COD 的面积为( ).A .334cm 2B .34cm 2C .332cm 2D .32cm 2β α B AB12.10.(3分)(2013•广安)已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=1.下列结论:①abc>O ,②2a+b=O,③b 2﹣4ac <O ,④4a+2b+c>O 其中正确的是( )二、填空题:(本大题共4个小题,每小题3分,共12分). 13.因式分解:a 3-a = .14. 如图,在△ABC 中,D,E 分别是边AC 、BC 的中点,若DE=4, 则AB=________________。

四川省泸州市中考数学4月模拟试题(含解析)-人教版初中九年级全册数学试题

四川省泸州市中考数学4月模拟试题(含解析)-人教版初中九年级全册数学试题

某某省某某市2015届中考数学4月模拟试题一.选择题(3分每题,共36分)1.π0的值是()2.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交 B.内切 C.外离 D.内含3.下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x24.函数y=中,自变量x的取值X围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤55.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克6.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形7.甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:第1轮第2轮第3轮第4轮第5轮第6轮甲10 14 12 18 16 20乙12 11 9 14 22 16下列说法不正确的是()A.甲得分的极差小于乙得分的极差B.甲得分的中位数大于乙得分的中位数C.甲得分的平均数大于乙得分的平均数D.乙的成绩比甲的成绩稳定8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.在圆心角为120°的扇形AOB中,半径OA=6cm,则扇形OAB的面积是()A.6πcm2B.8πcm2C.12πcm2D.24πcm210.已知△AB C中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A.B. C.D.11.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2 C.:2 D.1:12.如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC 上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(3分每题,共12分)13.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)14.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=度.15.一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.16.在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是.(填序号)①AC⊥DE;② =;③CD=2DH;④ =.三.计算题(6分每题,共18分)17.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.18.化简求值:,a取﹣1、0、1、2中的一个数.19.如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.四.(7分每题,共14分)20.阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女各2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.21.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?五.(8分每题,共16分)22.马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B 在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,co s36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.23.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.六.(12分每题,共24分)24.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.25.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB 平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.2015年某某省某某市中考数学模拟试卷(4月份)参考答案与试题解析一.选择题(3分每题,共36分)1.π0的值是()【考点】零指数幂.【分析】根据零指数幂的运算法则计算即可.【解答】解:π0=1,故选:C.【点评】本题主要考查了零指数幂的运算.任何非0数的0次幂等于1.2.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交 B.内切 C.外离 D.内含【考点】圆与圆的位置关系.【专题】几何图形问题.【分析】先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,∵5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选:A.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P.外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r.3.下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A,根据合并同类项,可判断B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相乘,故C错误;D、底数不变指数相减,故D错误;故选:B.【点评】本题考查了幂的运算,根据法则计算是解题关键.4.函数y=中,自变量x的取值X围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【考点】函数自变量的取值X围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.【点评】本题考查了函数自变量的X围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于500亿有11位,所以可以确定n=11﹣1=10.【解答】解:500亿=50 000 000 000=5×1010.故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形【考点】命题与定理.【分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的梯形是等腰梯形,故错误;D、正确,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.7.甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:第1轮第2轮第3轮第4轮第5轮第6轮甲10 14 12 18 16 20乙12 11 9 14 22 16下列说法不正确的是()A.甲得分的极差小于乙得分的极差B.甲得分的中位数大于乙得分的中位数C.甲得分的平均数大于乙得分的平均数D.乙的成绩比甲的成绩稳定【考点】方差;算术平均数;中位数;极差.【分析】根据极差、中位数、平均数和方差的求法分别进行计算,即可得出答案.【解答】解:A、甲的极差是20﹣10=10,乙的极差是:22﹣9=13,则甲得分的极差小于乙得分的极差,正确;B、甲得分的中位数是(14+16)÷2=15,乙得分的中位数是:(12+14)÷2=13,则甲得分的中位数大于乙得分的中位数,正确;C、甲得分的平均数是:(10+14+12+18+16+20)÷6=15,乙得分的平均数是:(12+11+9+14+22+16)÷6=14,则甲得分的平均数大于乙得分的平均数,正确;D、甲的方差是: [(10﹣15)2+(14﹣15)2+(12﹣15)2+(18﹣15)2+(16﹣15)2+(20﹣15)2]=,乙的方差是: [(12﹣14)2+(11﹣14)2+(9﹣14)2+(14﹣14)2+(22﹣14)2+(16﹣14)2]=,∵甲的方差<乙的方差,∴甲的成绩比乙的成绩稳定;故本选项错误;故选:D.【点评】此题考查了方差,用到的知识点是极差、中位数、平均数和方差的求法,掌握方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是本题的关键.8.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】解不等式组得到解集为﹣2<x≤3,将﹣2<x≤3表示成数轴形式即可.【解答】解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选:D.【点评】考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.在圆心角为120°的扇形AOB中,半径OA=6cm,则扇形OAB的面积是()A.6πcm2B.8πcm2C.12πcm2D.24πcm2【考点】扇形面积的计算.【专题】计算题;压轴题.【分析】直接利用扇形面积公式代入求出面积即可.【解答】解:∵在圆心角为120°的扇形AOB中,半径OA=6cm,∴扇形OAB的面积是:=12π(cm2),故选:C.【点评】此题主要考查了扇形面积的计算,正确掌握扇形面积公式是解题关键.10.已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A.B. C.D.【考点】相似三角形的判定与性质;勾股定理;锐角三角函数的定义.【分析】作DE⊥AB于点E,根据相等的角的三角函数值相等即可得到===,设CD=1,则可以求得AD的长,然后利用勾股定理即可求得DE、AE的长,则BE可以求得,根据同角三角函数之间的关系即可求解.【解答】解:作DE⊥AB于点E.∵∠CBD=∠A,∴tanA=tan∠CBD====,设CD=1,则BC=2,AC=4,∴AD=AC﹣CD=3,在直角△ABC中,AB===2,在直角△ADE中,设DE=x,则AE=2x,∵AE2+DE2=AD2,∴x2+(2x)2=9,解得:x=,则DE=,AE=.∴BE=AB﹣AE=2﹣=,∴tan∠DBA==,∴sin∠DBA=.故选:A.【点评】本题考查了三角函数的定义,以及勾股定理,正确理解三角函数就是直角三角形中边的比值是关键.11.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2 C.:2 D.1:【考点】旋转的性质;全等三角形的判定与性质;勾股定理.【专题】综合题;压轴题.【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【解答】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP′===2x,∴PP′=PB=2x,解得PB=2x,∴P′A:PB=x:2x=1:2.故选:B.【点评】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P′A、P′C以及P′B长度的倍转化到同一个直角三角形中是解题的关键.12.如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC 上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】等腰直角三角形;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.【专题】压轴题.【分析】结论(1)错误.因为图中全等的三角形有3对;结论(2)正确.由全等三角形的性质可以判断;结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【解答】解:结论(1)错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论(2)正确.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,即△ABC的面积等于四边形CDOE的面积的2倍.结论(3)正确,理由如下:∵△AOD≌△COE,∴CE=AD,∴CD+CE=CD+AD=AC=OA.结论(4)正确,理由如下:∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.∵△AOD≌△COE,∴OD=OE,又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.∵∠DEO=∠OCE=45°,∠COE=∠COE,∴△OEP∽△OCE,∴,即OP•OC=OE2.∴DE2=2OE2=2OP•OC,∴AD2+BE2=2OP•OC.综上所述,正确的结论有3个,故选:C.【点评】本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.二.填空题(3分每题,共12分)13.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的性质,当k>0时,y随x的增大而增大.【解答】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.【点评】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.14.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C= 40 度.【考点】切线的性质;圆周角定理.【专题】计算题.【分析】连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到∠A=∠ODA,求出∠ODA的度数,再由∠COD为△AOD外角,求出∠COD度数,即可确定出∠C的度数.【解答】解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40【点评】此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键.15.一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014= 1005.5 .【考点】规律型:数字的变化类.【专题】规律型.【分析】分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.【解答】解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,∵2014÷3=671…1,∴a1+a2+a3+…+a2014=671×(﹣1++2)﹣1=1005.5.故答案为:1005.5.【点评】此题考查了找规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.16.在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是①③④.(填序号)①AC⊥DE;② =;③CD=2DH;④ =.【考点】相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.【分析】在等腰直角△ADE中,根据等腰三角形三线合一的性质可得AH⊥ED,即AC⊥ED,判定①正确;进而可判定③;因为△CHE为直角三角形,且∠HEC=60°所以EC=2EH,因为∠ECB=15°,所以EC≠4EB,所以不成立②错误;根据全等三角形对应边相等可得CD=CE,再求出∠CED=60°,得到△CDE为等边三角形,判定③正确;过H作HM⊥AB于M,所以HM∥BC,所以△AMH∽△ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④正确.【解答】解:∵AD∥BC,∠ABC=90°∴∠BAD=90°,又∵AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,∴AH⊥ED,即AC⊥ED,故①正确;∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴EH≠2EB;故②错误.∵由证①中已知,∠BAC=∠CAD,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵∠BCE=15°,∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,∴△CDE为等边三角形,∴∠DCH=30°,∴CD=2DH,故③正确;过H作HM⊥AB于M,∴HM∥BC,∴△AMH∽△ABC,∴,∵∠DAC=∠ADH=45°,∴DH=AH,∴,∵△BEH和△CBE有公共底BE,∴,故④正确,故答案为:①③④.【点评】此题考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握数形结合思想的应用.熟记各性质是解题的关键.三.计算题(6分每题,共18分)17.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得结果.【解答】解:原式=1﹣+2++3=6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.化简求值:,a取﹣1、0、1、2中的一个数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=•﹣=﹣=﹣,当a=2时,原式=﹣=﹣1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据等角对等边可得OB=OC,再利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等证明即可.【解答】证明:∵∠OBD=∠ODB,∴OB=OD,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.【点评】本题考查了全等三角形的判定与性质,准确识图确定出全等的三角形并求出OB=OD是解题的关键.四.(7分每题,共14分)20.阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女各2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.【考点】条形统计图;列表法与树状图法.【专题】图表型.【分析】(1)先求得在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再用该百分比乘以社区居民人数900即可;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出树状图,再根据概率公式求解.【解答】解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225(人);(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.21.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【考点】分式方程的应用;一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.五.(8分每题,共16分)22.马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B 在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】(1)过点P作PE⊥A B于点E,在Rt△APE中解出PE即可;(2)分别求出PA、PB的长,根据两船航行速度,计算出两艘船到达P点时各自所需要的时间,即可作出判断.【解答】解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=36.5°,∠PBA=45°,设PE为x海里,则BE=PE=x海里,∵AB=140海里,∴AE=(140﹣x)海里,在Rt△PAE中,,即:解得:x=60,∴可疑漂浮物P到A、B两船所在直线的距离约为60海里;(2)在Rt△PBE中,PE=60海里,∠PBE=45°,则BP=PE=60≈84.8海里,B船需要的时间为:84.8÷30≈2.83小时,在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE=60÷0.6=100海里,∴A船需要的时间为:100÷40=2.5小时,∵2.83>2.5,∴A船先到达.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.23.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.【考点】反比例函数与一次函数的交点问题;一次函数图象与几何变换.【专题】计算题;数形结合.【分析】(1)先利用反比例函数解析式y=﹣求出b=4,得到A点坐标为(﹣2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式为y=x+5;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,则直线y=x+5﹣m与反比例函数有且只有一个公共点,即方程组只有一组解,然后消去y得到关于x的一元二次函数,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:(1)把A(﹣2,b)代入y=﹣得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,即m的值为1或9.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了一次函数与几何变换.六.(12分每题,共24分)24.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;。

四川省泸州市中考数学真题试题解析版

四川省泸州市中考数学真题试题解析版

2014年四川省泸州市中考数学试卷一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.5的倒数为()A.B. 5 C.D.﹣52.计算x2•x3的结果为()A. 2x2B. x5C. 2x3D.x6【考点】同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】解:原式=x2+3=x5.故选:B.【点评】本题考查了同底数幂的乘法,底数不变指数相加是解题关键.3.如图的几何图形的俯视图为()A.B. C D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得俯视图.【详解】解:从上面看:里边是圆,外边是矩形,故选:C.【点评】本题考查了简单组合体的三视图,注意所有的看到的棱都应表现在俯视图中.4.某校八年级(2)班6名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是()A. 38 B. 39 C. 40 D.42【考点】中位数.【分析】根据中位数的定义求解,把数据按大小排列,第3个数为中位数.【详解】解:题目中数据共有5个,中位数是按从小到大排列后第3个数作为中位数,故这组数据的中位数是40.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数,比较简单.5.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()A.30°B.60°C.120°D.150°【考点】三角形中位线定理;平行线的性质;等边三角形的性质.【分析】根据等边三角形的性质,可得∠C的度数,根据三角形中位线的性质,可得DE与BC的关系,根据平行线的性质,可得答案.【详解】解:由等边△ABC得∠C=60°,由三角形中位线的性质得DE∥BC,∠DEC=180°﹣∠C=180°﹣60°=120°,故选:C.【点评】本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.6.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2 B. 2 C. 4 D.﹣4【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质,可求出m、n的值,然后将代数式化简再代值计算.【详解】解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm【考点】圆锥的计算.【分析】圆锥的母线长=圆锥的底面周长×.【详解】解:圆锥的母线长=2×π×6×=12cm,故选B.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是()A.B. C D.【考点】反比例函数的图象;抛物线与x轴的交点.【分析】根据抛物线与x轴有两个不同的交点,可得判别式大于零,可得m的取值范围,根据m 的取值范围,可得答案.【详解】解:抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,∴△=(﹣2)2﹣4(m+1)>0解得m<0,∴函数y=的图象位于二、四象限,故选:A.【点评】本题考查了反比例函数图象,先求出m的值,再判断函数图象的位置.9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A. 2小时B. 2.2小时C. 2.25小时D.2.4小时【考点】一次函数的应用.【分析】根据待定系数法,可得一次函数解析式,根据函数值,可得相应自变量的值.【详解】解:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150x=2.25h,故选:C.【点评】本题考查了一次函数的应用,利用了待定系数法求解析式,利用函数值求自变量的值.10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s 的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是()A.外切B.相交C.内含D.内切【考点】圆与圆的位置关系.【分析】根据两圆的半径和移动的速度确定两圆的圆心距的最小值,从而确定两圆可能出现的位置关系,找到答案.【详解】解:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,∴此时内切,【点评】本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.【点评】本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解..12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.【考点】垂径定理;一次函数图象上点的坐标特征;勾股定理.【分析】PC⊥轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形,由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【详解】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.二、填空题(本大题共4小题,每小题3分,共12分.请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3= .【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.使函数y=+有意义的自变量x的取值范围是.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:根据题意得:x+2≥0且(x﹣1)(x+2)≠0,解得x≥﹣2,且x≠1,x≠﹣2,故答案为:x>﹣2,且x≠1.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为.【考点】菱形的判定与性质;勾股定理的逆定理;平行四边形的性质.【分析】根据平行四边的性质,可得对角线互相平分,根据勾股定理的逆定理,可得对角星互【详解】解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,S=4×2=4.【点评】本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.16.如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x 轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是(写出所有正确命题的序号).【考点】反比例函数综合题.【分析】(1)若k=4,则计算S△OEF=≠,故命题①错误;(2)如答图所示,若,可证明直线EF是线段CN的垂直平分线,故命题②正确;(3)因为点F不经过点C(4,3),所以k≠12,故命题③错误;(4)求出直线EF的解析式,得到点D、G的坐标,然后求出线段DE、EG的长度;利用算式DE•EG=,求出k=1,故命题④正确.∵k=4,∴E(,3),F(4,1),∴CE=4﹣=,CF=3﹣1=2.∴S△OEF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△CEF=S矩形AOBC﹣OA•AE﹣OB•BF﹣CE•CF=4×3﹣×3×﹣×4×1﹣××2=12﹣2﹣2﹣=,∴S△OEF≠,故命题①错误;命题②正确.理由如下:∵k=,∴E(,3),F(4,),∴CE=4﹣=,CF=3﹣=.如答图,过点E作EM⊥x轴于点M,则EM=3,OM=;在线段BM上取一点N,使得EN=CE=,连接NF.在Rt△EMN中,由勾股定理得:MN===,∴BN=OB﹣OM﹣MN=4﹣﹣=.在Rt△BFN中,由勾股定理得:NF===.又∵EN=CE,∴直线EF为线段CN的垂直平分线,即点N与点C关于直线EF对称,故命题②正确;命题③错误.理由如下:由题意,点F与点C(4,3)不重合,所以k≠4×3=12,故命题③错误;命题④正确.理由如下:为简化计算,不妨设k=12m,则E(4m,3),F(4,3m).设直线EF的解析式为y=ax+b,则有,解得,∴y=x+3m+3.令x=0,得y=3m+3,∴D(0,3m+3);令y=0,得x=4m+4,∴G(4m+4,0).如答图,过点E作EM⊥x轴于点M,则OM=AE=4m,EM=3.在Rt△ADE中,AD=AD=OD﹣OA=3m,AE=4m,由勾股定理得:DE=5m;在Rt△MEG中,MG=OG﹣OM=(4m+4)﹣4m=4,EM=3,由勾股定理得:EG=5.∴DE•EG=5m×5=25m=,解得m=,∴k=12m=1,故命题④正确.综上所述,正确的命题是:②④,故答案为:②④.【点评】本题综合考查了函数的图象与性质、反比例函数图象上点的坐标特征、比例系数k的几何意义、待定系数法、矩形及勾股定理等多个知识点,有一定的难度.本题计算量较大,解题过程中注意认真计算.三、(本大题共3小题,每题6分,共18分)17.(6分)计算:﹣4sin60°+(π+2)0+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=2﹣4×+1+4=5.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)计算(﹣)÷.【考点】分式的混合运算.【分析】首先把除法运算转化成乘法运算,然后找出最简公分母,进行通分,化简.【详解】解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.【点评】此题主要考查了分式的混合运算,通分、因式分解和约分是解答的关键.19.(6分)如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得三角形全等,根据全等三角形的性质,可得答案.【详解】证明:∵正方形ABCD,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AGB=90°∠ABG+∠BAG=90°,∵∠ABG+∠FNC=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF.【点评】本题考查了全等三角形的判定与性质,利用了正方形的性质,直角三角形的性质,余角的性质,全等三角形的判定与性质.四、(本大题共1小题,每题7分,共14分)20.(7分)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t <4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.【考点】条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.【分析】(1)根据所有等级的百分比的和为1,则可计算出x=30,再利用A等级的人数除以它所占的百分比得到调查的总人数为200人,然后分别乘以30%和20%得到B等级和C等级人数,再将条形统计图补充完整;(2)满足2≤t<4的人数就是B和C等级的人数,用2500乘以B、C两等级所占的百分比的和即可;(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图展示所有20种等可能的结果数,其中选出的2人来自不同小组占12种,然后利用概率公式求解.【详解】解:(1)∵x%+15%+10%+45%=1,∴x=30;∵调查的总人数=90÷45%=200(人),∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),如图:(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,所以选出的2人来自不同小组的概率==.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.五、(本大题共3小题,每题8分,共16分)21.(7分)某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y 元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.【考点】一次函数的应用.【分析】(1)根据等量关系:利润=A种产品的利润+B中产品的利润,可得出函数关系式;(2)这是一道只有一个函数关系式的求最值问题,可根据等量关系总利润═A种产品的利润+B中产品的利润,可得出函数关系式,然后根据函数的性质确定自变量的取值范围,由函数y随x的变化求出最大利润.【详解】解:(1)y=700x+1200(50﹣x),即y=﹣500x+60000;(2)y=﹣500x+60000,y随x的增大而减小,当x=0时,y最大=60000,生产B种产品50件,A种产品0件,总利润y有最大值,y最大=60000元.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.22.(8分)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C 处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)【考点】解直角三角形的应用-方向角问题.【分析】根据方向角的定义以及锐角三角函数关系得出AN,NC的长进而求出BN即可得出答案.【详解】解:如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,过点A作AF⊥FD,垂足为F,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°===,解得:x=15(+1),∵tan30°=,∴=,解得:BN=15+5,∴AB=AN+BN=15(+1)+15+5=30+20,答:灯塔A、B间的距离为(30+20)海里.【点评】此题主要考查了方向角以及锐角三角函数关系,得出NC的长是解题关键.23.(8分)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.【考点】根与系数的关系;三角形三边关系;等腰三角形的性质.【分析】(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.【详解】解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.【点评】本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.六、(本大题共2小题,每小题12分,共24分)24.(12分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【分析】(1)求出△CDE∽△CAD,∠CDB=∠DBC得出结论.(2)连接OC,先证AD∥OC,由平行线分线段成比例性质定理求得PC=,再由割线定理PC•PD=PB•PA 求得半径为4,根据勾股定理求得AC=,再证明△AFD∽△ACB,得,则可设FD=x,AF=,在Rt△AFP中,求得DF=.【详解】(1)证明:∵DC2=CE•CA,∴=,△CDE∽△CAD,∴∠CDB=∠DBC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=∴PC=4又∵PC•PD=PB•PA∴PA=4也就是半径OB=4,在RT△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°∴∠FDA+∠BDC=90°∠CBA+∠CAB=90°∵∠BDC=∠CAB∴∠FDA=∠CBA又∵∠AFD=∠ACB=90°∴△AFD∽△ACB∴在Rt△AFP中,设FD=x,则AF=,∴在RT△APF中有,,求得DF=.【点评】本题主要考查相似三角形的判定及性质,勾股定理及圆周角的有关知识的综合运用能力,关键是找准对应的角和边求解.25.(12分)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.【考点】二次函数综合题.【分析】(1)首先利用待定系数法求出二次函数解析式,然后求出其最大值;(2)联立y1与y2得,求出点C的坐标为C(,),因此使y2>y1成立的x的取值范围为0<x<,得s=1+2+3=6;将s的值代入分式方程,求出a的值;(3)第1步:首先确定何时四边形DEFG的面积最大.如答图1,四边形DEFG是一个梯形,将其面积用含有未知数的代数式表示出来,这个代数式是一个二次函数,根据其最值求出未知数的值,进而得到面积最大时点D、E的坐标;第2步:利用几何性质确定PD+PE最小的条件,并求出点P的坐标.如答图2,作点D关于x轴的对称点D′,连接D′E,与x轴交于点P.根据轴对称及两点之间线段最短可知,此时PD+PE最小.利用待定系数法求出直线D′E的解析式,进而求出点P的坐标.【详解】解:(1)∵二次函数y2=﹣x2+mx+b经过点B(0,1)与A(2﹣,0),∴,解得∴l:y1=x+1;C′:y2=﹣x2+4x+1.y2=﹣x2+4x+1=﹣(x﹣2)2+5,∴y max=5;(2)联立y1与y2得:x+1=﹣x2+4x+1,解得x=0或x=,当x=时,y1=×+1=,∴C(,).使y2>y1成立的x的取值范围为0<x<,∴s=1+2+3=6.代入方程得解得a=;(3)∵点D、E在直线l:y1=x+1上,∴设D(p,p+1),E(q,q+1),其中q>p>0.如答图1,过点E作EH⊥DG于点H,则EH=q﹣p,DH=(q﹣p).在Rt△DEH中,由勾股定理得:DE2+DH2=DE2,即(q﹣p)2+[(q﹣p)]2=()2,解得q﹣p=2,即q=p+2.∴EH=2,E(p+2,p+2).当x=p时,y2=﹣p2+4p+1,∴G(p,﹣p2+4p+1),∴DG=(﹣p2+4p+1)﹣(p+1)=﹣p2+p;当x=p+2时,y2=﹣(p+2)2+4(p+2)+1=﹣p2+5,∴F(p+2,﹣p2+5)∴EF=(﹣p2+5)﹣(p+2)=﹣p2﹣p+3.S四边形DEFG=(DG+EF)•EH=[(﹣p2+p)+(﹣p2﹣p+3)]×2=﹣2p2+3p+3则有,解得∴直线D′E的解析式为:y=x﹣.令y=0,得x=,∴P(,0).【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、待定系数法、函数最值、分式方程的解、勾股定理、轴对称﹣最短路线等知识点,涉及考点众多,难度较大.本题难点在于第(3)问,涉及两个最值问题,第1个最值问题利用二次函数解决,第2个最值问题利用几何性质解决.。

泸州市2014年中考试数学模拟试题

泸州市2014年中考试数学模拟试题

泸州市2014年中考试数学模拟试题(考试时间:120分钟,试卷满分:120分)班级_______ 姓名______________ 成绩_______一、选择题(每小题3分,共36分,把每题唯一正确答案的代号填在对应答题栏内)1.-2的相反数是A.2B.21-C.-2D.21 2.某校九年级有5名同学参加射击比赛,成绩分别为7,8,9,10,8(单位:环),则这5名同学成绩的众数是A.7B. 8C.9D. 10 3.下列各式计算正确的是A.927)(a a = B.1427aa a =⋅ C.532532a a a =+ D.333)(b a ab =4.左下图为某几何体的示意图,则该几何体的主视图应为A .B .C .D .5.第六次人国人口普查数据显示:泸州市常住人口大约有4 220 000人,这个数用科学记数法表示正确的是A.51022.4⨯ B.5102.42⨯ C.61022.4⨯ D.71022.4⨯ 6.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是A.AB ∥DC ,AD ∥BCB. AB=DC ,AD=BCC.AO=CO ,BO=DOD. AB ∥DC ,AD=BC 7. 函数31--=x x y 中自变量x 的取值范围是 A .31≠≥x x 且 B .1≥x C .3≠x D . 31≠>x x 且 8.若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则实数k 的取值范围是A .1->kB . 01≠<k k 且C .01≠-≥k k 且D .01≠->k k 且 9.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为 A .cm 52 B .cm 54 C .cm cm 5452或 D .cm cm 3432或 10.设1x 、2x 是方程0332=-+x x 的两个实数根,则2112x x x x +的值为 A.5 B.-5 C.1 D.-1 11.如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE=10cm , 且tan ∠EFC=43 ,那么该矩形的周长为 A .72cm B .36cm C .20cm D .16cm 第4题图第6题图第11题图12.如图,在等腰直角△ACB=90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P .则下列结论: (1)图形中全等的三角形只有两对;(2)△ABC 的面积等于四边形CDOE 的面积的2倍; (3)CD+CE=OA ;(4)AD2+BE2=2OP •OC 。

四川省泸州市2014年中考数学试题(扫描版)

四川省泸州市2014年中考数学试题(扫描版)

参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCBCABBCDCB11题解析:易得AC 平分∠DAB , ∠AEB=67.5°,由三角形内角平分线性质定理得AEABEF BF =,故125.67tan tan +===∠︒AEABAEB 12题解析:作如图所示的辅助线,易得OC=CD=3, AP=3, AE=22,故PE=DE=1)22(322=-, PD=2,故a=PC=23+. 13.2)1(3+a 14. (21-≠≠x x 和)15题解析:∵平行四边形两条对角线互相平分;∴它们的一半分别为2和5,∵222352=+)(;∴两条对角线互相垂直,∴这个四边形是菱形,面积S=5452421=⨯⨯ 16. 17. 18. 19. 20. 21. 22. 23. 24.EDCBO PFA(2)小题解题思路:连接OC ,先证AD //OC ,由平行线分线段成比例性质定理求得PC =24,再由割线定理PA PB PD PC ⋅=⋅求得半径为4,根据勾股定理求得AC =142,再证明△AFD ∽△A CB ,得722142===CB AC FD AF ,则可设FD=x ,AF =x 7,在Rt △AFP 中,22212)26()7=++x x (,求得DF =42312-. 25题解:(1)将A 、B 代入b mx x y ++-=2,解得m =4,b =1, 即l :1211+=x y ;'C :1422++-=x x y , ∴52-22+-=)(x y ,即5max =y ;新课 标 第 一 网 (2)由1211+=x y 与1422++-=x x y 联立 ,求得C (27,411) ∴s =1+2+3=6,代入方程得03636)111(=-+-+a解得a =71;(3)作EH ⊥DG ,作D 关于x 轴的对称点'D ,连接E D '交x 轴于P ,P 即为所求坐标. 由1211+=x y 斜率得21=HE DH ,又因DE =5,故HE =2, 四边形DEFG 为梯形,要使面积最大,则GD+EF 最大,设D (x ,121+x ) ,则G (x ,142++-x x ),E ⎥⎦⎤⎢⎣⎡+++1)2(21,2x x ,F []1)2(4)2(,22++++-+x x x GD+EF =142++-x x -(121+x )+[]1)2(4)2(2++++-x x -⎥⎦⎤⎢⎣⎡++1)2(21x =3322++-x x∴当x=43时,四边形DEFG 面积最大; 即D (43,811)、E (411,819)∴'D (43,-811)∴E D y '=3299815 x令y=0,解得x=2033,∴P (2033,0)新课 标第 一 网。

初中数学四川省泸州市中考模拟 数学考试题含答案(word版).docx

初中数学四川省泸州市中考模拟 数学考试题含答案(word版).docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的绝对值为()A. B. C. D.试题2:“五一”期间,某市共接待海内外游客约人次,将用科学记数法表示为()A. B. C. D.试题3:下列各式计算正确的是()A. B. C. D.试题4:下图是一个由个相同的正方体组成的立体图形,它的左视图是()试题5:已知点与点关于原点对称,则的值为()A. B. C. D.试题6:如图,是的直径,弦于点,若,则弦的长是()A. B. C. D.试题7:下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形试题8:下列曲线中不能表示是的函数的是()试题9:已知三角形的三遍长分别为,求其面积问题,中外数学家曾经进行过深入的研究,故希腊的几何学甲海伦给出求其面积的海伦公式,其中;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式,若一个三角形的三边分别为,其面积是()A. B. C. D.试题10:如图,在矩形中,点是边的中点,,垂足为,则的值是()A. B. C. D.试题11:已知抛物线具有如下性质:给抛物线上任意一点到定点的距离与到轴的距离相等,如图,点的坐标为,是抛物线上一动点,则周长的最小值是()A. B. C. D.试题12:在一个不透明的袋子中赚够4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.试题13:分解因式:.试题14:关于的分式方程的解为正实数,则实数的取值范围是.试题15:在中,已知和分别是边上的中线,且,垂足为,若,则线段的长为.试题16:计算:试题17:如图,点在同一直线上,已知,.求证:.试题18:化简: .试题19:某单位750名职工积极参加项贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用表示,根据统计数据绘制了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这名职工捐书本数的平均数、众数和中位数;(3)估计该单位名职工共捐书多少本?试题20:某种为打造书香校园,计划购进甲乙两种规格的书柜放置新苟静的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金元;若购买甲种书柜4个,乙种书柜3个,共需资金元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金元,请设计几种购买方案供这个学校选择.试题21:如图,海中一渔船在处且与小岛相距70nmile,若该渔船由西向东航行30nmile到达处,此时测得小岛位于的北偏东方向上;求该渔船此时与小岛之间的距离.试题22:一次函数的图象经过点,且与反比例函数的图象交于点(1)求一次函数的解析式;(2)将直线向上平移10个单位后得到直线:与反比例函数的图象相交,求使成立的的取值范围.试题23:如图,⊙O与的直角边和斜边分别相切于点与边相交于点,与相交于点,连接并延长交边于点.(1)求证://(2)若求的长.试题24:如图,已知二次函数的图象经过三点. (1)求该二次函数的解析式;(2)点是该二次函数图象上的一点,且满足(是坐标原点),求点的坐标;(3)点是该二次函数图象上位于一象限上的一动点,连接分别交轴与点若的面积分别为求的最大值.试题1答案:A试题2答案:C试题3答案:B试题4答案:D试题5答案:C试题6答案:B试题7答案:D试题8答案:C试题9答案:B试题10答案:A试题11答案:C试题12答案:试题13答案:试题14答案:试题15答案:试题16答案:解:原式=9+1试题17答案: 证明:BC//EF试题18答案:试题19答案:解(1)捐D累书的人数为:补图如上(2)众数为:6 中位数为:6平均数为:试题20答案:(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:解之得:答:设甲种书柜单价为180元,乙种书柜的单价为240元.(2)设甲种书柜购买个,则乙种书柜购买()个;由题意得:解之得:因为取整数,所以可以取的值为:8,9,10即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.试题21答案:解:过点作于点,由题意得:设则:,;,即:解之得:答:渔船此时与岛之间的距离为50海里.试题22答案:(1)解:由题意得:解之得:所以一次函数的解析式为:(2)直线向上平移10个单位后得直线的解析式为:;得:;解之得:由图可知:成立的的取值范围为:试题23答案:(1)证明:与相切与点(弦切角定理)又与相切与点由切线长定理得:即:DF//AO(2):过点作与由切割线定理得:,解得:由射影定理得:试题24答案:解(1)由题意得:设抛物线的解析式为:;因为抛物线图像过点,解得所以抛物线的解析式为:即:(2)设直线与轴的交点为当时,直线解析式为:所以,点当时,直线解析式为:所以,点综上:满足条件的点有:(3):过点P作PH//轴交直线于点,设 BC直线的解析式为故:AP直线的解析式为:故:;即:所以,当时,有最大值,最大值为:.。

四川省泸州市中考数学模拟考试试题(含解析)

四川省泸州市中考数学模拟考试试题(含解析)

四川省泸州市中考数学模拟考试试题一、选择题:(本大题共12个小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.﹣2B.2C.D.﹣2.(3分)光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为()A.950×1010km B.95×1011kmC.9.5×1012km D.0.95×1013km3.(3分)下列计算正确的是()A.x4+x4=x16B.(﹣2a)2=﹣4a2C.x7÷x5=x2D.m2•m3=m64.(3分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.6.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.7.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠08.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF ∥AB,且AD:DB=3:5,那么CF:CB等于()A.3:8B.3:5C.5:8D.2:59.(3分)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.10.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A.3B.C.D.911.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①4a+2b+c<0,②2a+b <0,③b2+8a>4ac,④a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共12分)13.(3分)分解因式:16m3﹣mn2.14.(3分)已知关于x的分式方程+=1的解为负数,则k的取值范围是.15.(3分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.16.(3分)如图,已知⊙C的半径为3,圆外一定点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为.三、本大题共3个小题,每小题6分,共18分17.(6分)计算:2sin60°﹣(π﹣3.14)0+|1﹣|+()﹣1.18.(6分)化简求值:÷(1﹣),其中x=﹣1.19.(6分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.四、本大题共2个小题,每小题7分,共14分20.(7分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.21.(7分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.五、每小题8分,共16分22.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C 点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E 处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)23.(8分)如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△P AC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.六、每小题12分,共24分24.(12分)如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AD•AC=AP•BC;(3)若BC=6,tan∠F=.求⊙O的直径AC的长.25.(12分)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y 轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.参考答案与试题解析一、选择题:(本大题共12个小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.﹣2B.2C.D.﹣【分析】只有符号不同的两个数互为相反数.【解答】解:﹣的相反数是.故选:C.2.(3分)光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为()A.950×1010km B.95×1011kmC.9.5×1012km D.0.95×1013km【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9 500 000 000 000=9.5×1012,故选:C.3.(3分)下列计算正确的是()A.x4+x4=x16B.(﹣2a)2=﹣4a2C.x7÷x5=x2D.m2•m3=m6【分析】根据合并同类项法则,积的乘方和幂的乘方,同底数幂的除法、乘法分别求出每个式子的值,再判断即可.【解答】解:A、结果是2x4,故本选项错误;B、结果是4a2,故本选项错误;C、结果是x2,故本选项正确;D、结果是x5,故本选项错误;故选:C.4.(3分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出不等式组的解集,再根据数轴上不等式的解集的表示方法解答.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤1,在数轴上表示如下:.故选:B.6.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,故选:A.7.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选:B.8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF ∥AB,且AD:DB=3:5,那么CF:CB等于()A.3:8B.3:5C.5:8D.2:5【分析】由DE∥BC,可得=,再结合EF∥AB可求得,可求得CF:CB.【解答】解:∵DE∥BC,EF∥AB,∴AE:EC=AD:DB=BF:CF=3:5,∴CF:CB=5:8,故选:C.9.(3分)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选:B.10.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A.3B.C.D.9【分析】先根据垂径定理得到CE=DE,再根据圆周角定理得到∠COB=60°,然后利用含30度的直角三角形三边的关系求出CE,从而得到CD的长.【解答】解:∵CD⊥AB,∴CE=DE,∵∠COB=2∠CDB=2×30°=60°,∴OE=OC=,∴CE=OE=×=,∴CD=2CE=3.故选:A.11.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=xcm,当0≤x≤1时,M在BC边上,BM=3xcm,AN=(3﹣x)cm,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=(9﹣3x)cm,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选:A.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①4a+2b+c<0,②2a+b <0,③b2+8a>4ac,④a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∵a<0,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.二、填空题(每小题3分,共12分)13.(3分)分解因式:16m3﹣mn2=m(4m+n)(4m﹣n).【分析】直接提取公因式m,再利用平方差公式分解因式得出答案.【解答】解:16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n).故答案为:m(4m+n)(4m﹣n).14.(3分)已知关于x的分式方程+=1的解为负数,则k的取值范围是k>﹣且k≠0.【分析】先去分母得到整式方程(2k+1)x=﹣1,再由整式方程的解为负数得到2k+1>0,由整式方程的解不能使分式方程的分母为0得到x≠±1,即2k+1≠1且2k+1≠﹣1,然后求出几个不等式的公共部分得到k的取值范围.【解答】解:去分母得k(x﹣1)+(x+k)(x+1)=(x+1)(x﹣1),整理得(2k+1)x=﹣1,因为方程+=1的解为负数,所以2k+1>0且x≠±1,即2k+1≠1且2k+1≠﹣1,解得k>﹣且k≠0,即k的取值范围为k>﹣且k≠0.故答案为k>﹣且k≠0.15.(3分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.16.(3分)如图,已知⊙C的半径为3,圆外一定点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为4.【分析】先连接OP,PC,OC,根据OP+PC≥OC,OC=5,PC=3,即可得到当点O,P,C三点共线时,OP最短,根据OP=5﹣3=2,可得AB=2OP=4.【解答】解:如图,连接OP,PC,OC,∵OP+PC≥OC,OC=5,PC=3,∴当点O,P,C三点共线时,OP最短,如图,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,∵OC=5,CP=3,∴OP=5﹣3=2,∴AB=2OP=4,故答案为:4.三、本大题共3个小题,每小题6分,共18分17.(6分)计算:2sin60°﹣(π﹣3.14)0+|1﹣|+()﹣1.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣1+﹣1+2=2.18.(6分)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.19.(6分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.四、本大题共2个小题,每小题7分,共14分20.(7分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为48人,扇形统计图中D类所对应扇形的圆心角为105度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.【分析】(1)由条形统计图与扇形统计图可得七年级(1)班学生总人数为:12÷25%=48(人),继而可得扇形统计图中D类所对应扇形的圆心角为为360°×=105°;然后求得C类的人数,则可补全统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的情况,再利用概率公式即可求得答案.【解答】解:(1)∵七年级(1)班学生总人数为:12÷25%=48(人),∴扇形统计图中D类所对应扇形的圆心角为为:360°×=105°;故答案为:48,105;C类人数:48﹣4﹣12﹣14=18(人),如图:(2)分别用A,B表示两名擅长书法的学生,用C,D表示两名擅长绘画的学生,画树状图得:∵共有12种等可能的结果,抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的有8种情况,∴抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率为:=.21.(7分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,∴m=75时,W最小=1125.∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.五、每小题8分,共16分22.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C 点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E 处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF 的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.23.(8分)如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△P AC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为:列方程,求得B(4,1),于是得到,由已知条件得到,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.【解答】解:(1)将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4=,解得:b=5,k=4;(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,(3)过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴S△AOB=(1+4)×(4﹣1)÷2=,∵S△P AC=,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△P AC=OP•CD+OP•AE=OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).六、每小题12分,共24分24.(12分)如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AD•AC=AP•BC;(3)若BC=6,tan∠F=.求⊙O的直径AC的长.【分析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA≌∠POB,继而证明△P AO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论;(2)分析要证明的等式,可以看出是一个比例等式,可想到利用相似三角形来证明,找出相关相似三角形即可解决问题.(3)根据题意可确定OD是△ABC的中位线,设AD=3x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,根据勾股定理计算即可.【解答】(1)证明:连接OB,根据垂径定理的知识,得出OA=OB,∠POA≌∠POB,∴△P AO≌△PBO,∴∠PBO=∠P AO,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠P AO=90°,∴直线P A为⊙O的切线;(2)证明:∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴OD⊥AB,∴△ADO∽△ABC,又∵AD⊥PO,OA⊥P A,∴△PDA∽△POA∽△ADO,∴△ABC∽△PDA,∴,∴AD•AC=AP•BC;(3)解:∵OA=OC,AD=BD,∴OD=BC=3,设AD=3x,∵tan∠F=,∴FD=4x,则OA=OF=4x﹣3,在Rt△AOD中,OA2=OD2+AD2,即(4x﹣3)2=32+(3x)2,解得:x=,∴FD=4x=,∴FO=FD﹣OD==,∴AC=2FO=.25.(12分)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y 轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标;(2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;易求得直线BC的解析式,关键是求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解;(3)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标.【解答】解:(1)∵抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),,解得,b=﹣1.所以抛物线的解析式为,顶点D的坐标为(﹣1,).(2)设抛物线的对称轴与x轴交于点M,因为EF垂直平分BC,即C关于直线EG的对称点为B,连接BD交于EF于一点,则这一点为所求点H,使DH+CH最小,即最小为:DH+CH=DH+HB=BD=;而;∴△CDH的周长最小值为CD+DH+CH=;设直线BD的解析式为y=k1x+b1,则解得:;所以直线BD的解析式为y=x+3;由于BC=2,CE=BC=,Rt△CEG∽Rt△COB,得CE:CO=CG:CB,所以CG=2.5,GO=1.5,G(0,1.5);同理可求得直线EF的解析式为y=x+;联立直线BD与EF的方程,解得使△CDH的周长最小的点H(,);(3)设K(t,),﹣4<t<2、过K作x轴的垂线交EF于N;则KN=y K﹣y N=﹣(t+)=﹣;所以S△EFK=S△KFN+S△KNE=KN(t+3)+KN(1﹣t)=2KN=﹣t2﹣3t+5=﹣(t+)2+;即当t=﹣时,△EFK的面积最大,最大面积为,此时K(﹣,).。

四川省泸州市中考数学一模试卷

四川省泸州市中考数学一模试卷

四川省泸州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各对数中,互为相反数的是()A . ﹣(+5)和﹣5B . +(﹣5)和﹣5C . ﹣和﹣(+ )D . +|+8|和﹣(+8)2. (2分) (2018九上·富顺期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2020·资兴模拟) 某市高度重视科技创新工作,2020年计划投入6.5亿元.请将6.5亿用科学记数法记为()A . 6.5╳B . 65╳C . 6.5╳D . 0.65╳4. (2分) (2019七上·闵行月考) 如果,那么a.b的值分别为()A . 2;4B . 5;-25C . -2;25D . -5;255. (2分) (2019八上·四川月考) 若有意义,则的取值范围是()A .B .C .D . 且6. (2分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A . 30°B . 35°C . 40°D . 50°7. (2分)(2019·晋宁模拟) 一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A . 平均数B . 中位数C . 众数D . 方差8. (2分)一个六边形的内角和等于()A . 180°B . 360°C . 540°D . 720°9. (2分)在同一直角坐标系中,二次函数y=﹣x2+m与一次函数y=mx﹣1(m≠0)的图象可能是()A .B .C .D .10. (2分) (2019九下·峄城月考) 如图,已知线段OA交⊙O于点B ,且OB=AB ,点P是⊙O上的一个动点,那么∠OAP的最大值是A . 90°B . 60°C . 45°D . 30°二、填空题 (共7题;共8分)11. (1分) (2019七下·乌兰浩特期末) 36的平方根为________;的相反数________,的立方根________.12. (1分)(2011·南通) 分解因式:3m(2x﹣y)2﹣3mn2=________.13. (1分)(2019·荆州) 二次函数的最大值是________.14. (2分) (2019八下·洛阳期中) 在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则BC=________.15. (1分)(2017·南岸模拟) 如图,△ABC 内接于⊙O,连结 OA,OC,若∠ABC=50°,则∠AOC=________度.16. (1分)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为________.17. (1分) (2017九上·台州月考) 如图,抛物线与x轴正半轴交于点A(3,0)。

初中数学四川省泸州市中考模拟数学考试题考试卷及解析Word版 .docx

初中数学四川省泸州市中考模拟数学考试题考试卷及解析Word版 .docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx 题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的绝对值为【】A.7B.C.D.试题2:计算的结果为【】A. B. C. D.试题3:如左下图所示的几何体的左视图是【】A. B. C. D.试题4:截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学计数法表示为【】A. B. C. D.如图,AB∥CD,CB平分∠ABD,若∠C=40°,则∠D的度数为【】A. 90°B. 100°C. 110°D. 120°试题6:菱形具有而平行四边形不具有的性质是【】A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D. 对角线互相垂直试题7:某校男子足球队的年龄分布情况如下表:年龄(岁)13 14 15 16 17 18人数 2 6 8 3 2 1则这些队员年龄的众数和中位数分别是【】A. 15,15B. 15,14C.16,15D.14,15 试题8:如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为【】A. 65°B. 130°C. 50°D. 100°若二次函数的图象经过点(2,0),且其对称轴为,则使函数值成立的的取值范围是【】A.或B.≤≤C.≤或≥D.试题10:若关于的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是【】A. B. C. D.试题11:如图,在△ABC中,AB=AC,BC=24,tan C=2,如果将△ABC沿直线翻折后,点B落在边AC的中点E处,直线与边BC交于点D,那么BD的长为【】A.13B.C.D.12试题12:在平面直角坐标系中,点A,B,动点C在轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为【】A.2B.3C.4D.5试题13:分解因式:= .试题14:用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.试题15:设、是一元二次方程的两实数根,则的值为.试题16:如图,在矩形ABCD中,,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:①∠AEB=∠AEH ②DH=③④其中正确命题的序号是(填上所有正确命题的序号).试题17:计算:试题18:如图,AC=AE,∠1=∠2,AB=AD. 求证:BC=DE.试题19:化简:试题20:小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).频数月均用水量(单位:t)百分比2 4%12 24%10 20%12%3 6%2 4%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在,这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.试题21:某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.试题22:如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行. 当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处. 若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).试题23:如图,一次函数的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求的值.试题24:如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC 交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.试题25:如图,已知二次函数的图象M经过A(,0),B(4,0),C(2,)三点.(1)求该二次函数的解析式;(2)点G是线段AC上的动点(点G与线段AC的端点不重合),若△ABG与△ABC相似,求点G的坐标(3)设图象M的对称轴为,点是图象M上一动点,当△ACD的面积为时,点D关于的对称点为E,能否在图象M和上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形. 若能,求出点P的坐标;若不能,请说明理由.试题1答案:A.【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是7,所以的绝对值是7. 故选A.试题2答案:C.【考点】幂的乘方.【分析】根据幂的乘方运算法则计算作出判断:.试题3答案:C.试题4答案:B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵1120000一共7位,∴1120000=1.12×106.故选B.试题5答案:B.【考点】角平分线定义;平行的性质;三角形内角和定理;方程思想的应用. 【分析】∵CB平分∠ABD,∴.又∵AB∥CD,∴.又∵∠C=40°,∴二者联立. 故选B.试题6答案:D.【考点】平行四边形和菱形的性质.【分析】根据平行四边形和菱形的性质对各选项进行判断,作出选择:A.“两组对边分别平行”是平行四边形和菱形都具有的性质,选项错误;B. “两组对角分别相等”是平行四边形和菱形都具有的性质,选项错误;C. “对角线互相平分”是平行四边形和菱形都具有的性质,选项错误;D. “对角线互相垂直”是菱形具有而平行四边形不具有的性质,选项正确.故选D.试题7答案:A.【考点】众数;中位数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中15出现8次,出现的次数最多,故这组数据的众数为15.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).共有数据22个,第11个数和第12个数都是15人,所以中位数是:(15+15)÷2=15(人).故选A.试题8答案:C.【考点】圆周角定理;切线的性质;多边形内角和定理.【分析】∵∠C和∠AOB是同圆中同弧所对的圆周角和圆心角,且∠C=65°,∴∠AOB =130°.∵PA、PB分别与⊙O相切于A、B两点,∴∠PAO =∠PBO =90°.∴故选C.试题9答案:D.【考点】二次函数的图象和性质.【分析】∵二次函数的图象经过点(2,0),且其对称轴为,∴二次函数的图象开口向下,与轴的另一交点为.∴使函数值成立的的取值范围是:.故选D.试题10答案:B.【考点】一元二次方程根与系数的关系;解一元一次不等式;一次函数图象与系数的关系;整体思想和数形结合思想的应用.【分析】∵关于的一元二次方程有两个不相等的实数根,∴.根据一次函数图象与系数的关系,选项A中,与不符;选项B中,与相符;选项C中,与不符;选项D中,与不符.故选B.试题11答案:A.【考点】翻折问题;等腰三角形的性质;勾股定理;翻折对称的性质;锐角三角函数定义;方程思想的应用.【分析】如答图,过点E作EH⊥BC于点H,∵AB=AC,BC=24,∴CH=12.∵tan C=2,∴AH=24.∴根据勾股定理得.∵点E是边AC的中点,∴.设,则.∵△ABC沿直线翻折,点B落在边AC的中点E处,∴BD=DE.在中,.在中,.∴BD=DE.故选A.试题12答案:B.【考点】点的坐标;等腰三角形的判定;分类思想和数形结合思想的应用.【分析】如答图,作中垂线交轴于,则是等腰三角形;以点A为圆心,长为半径画圆交轴于则是等腰三角形;以点B为圆心,长为半径画圆与轴没有交点(因为点到轴的距离大于).∴点C的个数为3.故选B.试题13答案:.【考点】提公因式法和应用公式法因式分解.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式2后继续应用平方差公式分解即可:.试题14答案:2.【考点】圆锥和扇形的计算.【分析】∵扇形的半径为6、圆心角为120°,∴扇形的弧长为.∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得.试题15答案:27.【考点】一元二次方程根与系数的关系;求代数式的值;整体思想的应用.【分析】∵、是一元二次方程的两实数根,∴.∴.试题16答案:①③.【考点】矩形的性质;等腰(直角)三角形的判定和性质;三角形内角和定理;全等三角形的判定和性质;直角三角形斜边上的中线的判定;勾股定理;相似三角形的判定和性质;特殊元素法和方程思想的应用.【分析】①∵在矩形ABCD中,,∴不妨设,则.∵∠ADC的平分线交边BC于点E,∴是等腰直角三角形.∴.∴.∴.∴.故命题①正确.②∵是等腰直角三角形,∴.∵是等腰直角三角形,∴.∴.不难证明,∴.∴.故命题②错误.③∵,∴.∴。

2024年四川省泸州市泸县中考数学一模试卷+答案解析

2024年四川省泸州市泸县中考数学一模试卷+答案解析

2024年四川省泸州市泸县中考数学一模试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如果一个一元二次方程的根是,那么这个方程可能是()A. B. C. D.2.用配方法解方程,配方后的方程是()A. B. C. D.3.下列图形中,是中心对称图形的是()A. B.C. D.4.对于抛物线,下列说法正确的是()A.开口向上,顶点坐标:B.开口向上,顶点坐标:C.开口向下,顶点坐标:D.开口向下,顶点坐标:5.“数学课本共154页,某同学随手翻开,恰好翻到第88页”,这个事件是()A.必然事件B.不可能事件C.随机事件D.以上都不正确6.如图,AB为的直径,点C在上,,则的度数为()A.B.C.D.7.如图,将沿逆时针方向旋转到的位置,则下列说法中,不正确的是()A.点A是旋转中心B.C.是一个旋转角D.≌8.如图,正三角形ABC的边长为6cm,则它的外接圆的半径为()A.B.C.3cmD.9.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.10.抛物线与x轴有两个不同的交点,则m的取值范围是()A. B. C. D.11.在数学跨学科主题活动课上,芳芳用半径15cm,圆心角的扇形纸板,做了一个圆锥形的生日帽,如图所示.在不考虑接缝的情况下,这个圆锥形生日帽的底面圆半径是()A.3cmB.4cmC.5cmD.6cm12.已知二次函数是常数的图象与x轴没有公共点,且当时,y随x的增大而减小,则实数a的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题3分,共12分。

13.已知是方程的一个根,则实数c的值是______.14.如图,,若,,,则______.15.已知点,都在函数的图象上,则与大小关系是______填>,<或16.如图,正方形ABCD内接于,线段MN在对角线BD上运动,若的面积为,,则周长的最小值为______.三、解答题:本题共9小题,共72分。

2014四川省泸州市中考数学

2014四川省泸州市中考数学

2014年四川省泸州市高中阶段学校招生考试数 学(满分120分,考试时间120分钟)第一部分 选择题(共36分)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2014四川泸州 ,1,3分)5的倒数是( ) A.15 B.5 C. 15- D.-5 【答案】A2.(2014四川泸州 ,2,3分)计算23x x ⋅的结果为( ) A. 22x B. 5x C. 32x D. 6x【答案】B3.(2014四川泸州 ,3,3分)如右下图所示的几何体的俯视图为( )【答案】C4.(2014四川泸州 ,4,3分)某校八年级(2)班6名女同学的体重(单位:kg )分别为35,36,38,40,42,42,则这组数据的中位数是( ) A.38 B.39 C.40 D.42 【答案】B5.(2014四川泸州 ,5,3分)如图,等边△ABC 中,点D 、E 分别为边AB 、AC 的中点,则∠DEC 的度数为( )A.30°B. 60°C.120°D.150°【答案】C6.(2014四川泸州 ,6,3分)已知实数x 、y |+3|0y =,则x+y 的值为( ) A.-2 B.2 C. 4 D.-4 【答案】A7.(2014四川泸州 ,7,3分)一个圆锥的底面半径为6cm ,其侧面展开图为半圆,则圆锥的母线长为( )A.9cmB.12cmC.15cmD.18cm 【答案】B8.(2014四川泸州 ,8,3分)已知抛物线221y x x m =-++与x 轴有两个不同的交点,则函数my x=的大致图象是( )A. B. C. D.【答案】D9.(2014四川泸州 ,9,3分)“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时【答案】C10.(2014四川泸州 ,10,3分)如图, ⊙1O 、⊙2O 的圆心1O 、2O 都在直线l 上,且半径分别为2cm 、3cm ,12O O =8cm ,若⊙1O 以1cm/s 的速度沿直线l 向右匀速运动(⊙2O 保持静止),则在7s 时刻⊙1O 与⊙2O 的位置关系是( ) A.外切 B.相交 C.内含 D.内切【答案】D11.(2014四川泸州,11,3分)如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E、F,则BFEF的值是()A. 1B. 2+C. 1D.【答案】C12.(2014四川泸州,12,3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为a的值是()A.4B. 3+C.D. 3+【答案】B第二部分非选择题(共84分)二、填空题(本大题共4小题,每小题3分,满分12分.)13.(2014四川泸州 ,13,3分)分解因式:2363a a ++= . 【答案】23(1)a +14.(2014四川泸州 ,14,3分)使函数1(1)(2)y x x =-+有意义的自变量x 的取值范围是 . 【答案】x >-2且x ≠115.(2014四川泸州 ,15,3分)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为 .【答案】16.(2014四川泸州 ,16,3分)如图,矩形AOBC 的顶点坐标分别为A (0,3),O (0,0),B (4,0),C (4,3),动点F 在边BC 上(不与B 、C 重合),过点F 的反比例函数的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴交于点D 和G .给出下列命题:①若k=4,则△OEF 的面积为83;②若k=218,则点C 关于直线EF 的对称点在x 轴上;③满足题设的k 的取值范围是0<k ≤12;④若2512DE EG ⋅=,则k=1.其中正确的命题的序号是 .(写出所有正确命题的序号) 【答案】④ 三、(本大题共3个小题,每小题6分,共18分)17.(2014四川泸州 ,17,60214sin 60(()2π-︒+++.214sin 60(()2π-︒+++=1241(2)2--⨯++=212+=1+4=5.18.(2014四川泸州 ,18,6分)化简:221()a ba b a b b a-÷-+- 【答案】解:221()a b a b a b b a -÷-+-=[]()()()()a a b b aa b a b a b a b b---⋅+-+-=()()()a a b b a a b a b b ---⋅+-=()()a a b b a a b a b b -+-⋅+-=()()b b a a b a b b-⋅+-=1a b-+=1a b -+.19.(2014四川泸州 ,19,6分)如图正方形ABCD 中,E 、F 分别为BC 、CD 上的点,且AE ⊥BF ,垂足为G ,求证:AE=BF .【答案】证明:∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=∠BCF=90°,∴∠BAE+∠AEB=90°. 又∵AE ⊥BF ,垂足为G ,∴∠CBF+∠AEB=90°. ∴∠BAE=∠CBF. 在△ABE 与△BCF 中BAE CBF AB BCABE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△BCF (ASA ), ∴AE=BF . 四、(本大题共2个小题,每小题7分,共14分)20.(2014四川泸州 ,20,7分)某中学积极组织学生开展课外阅读活动.为了了解本校学生每周课外阅读的时间量t (单位:小时),采用随机抽样的方法抽取部分学生进行问卷调查,调查的结果按0≤t <2,2≤t <3,3≤t <4, t ≥4分为四个等级,并分别用A 、B 、C 、D 表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图.由图中给出的信息解答下列问题:(1)求出x 的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t <4的人数;(3)在本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.【答案】解:(1)∵x%=1-45%-10%-15%=30%,∴x=30.∵90÷45%=200,∴B、C的人数分别为:200×30%=60,200×10%=20.补全统计图如下:(2)每周课外阅读时间量满足2≤t<4的人数为:2500×(30%+10%)=2500×40%=1000.(3)画树状图如下:∴P(2人来自不同小组)=123 205=.21.(2014四川泸州,21,7分)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品可获总利润是y元,其中A种产品的生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.【答案】解:(1)∵A种产品的生产件数是x,∴B种产品的生产件数是50-x,由题意得y=700x+1200(50-x)= -500x+60000.(2)由题意得94(50)380310(50)290x xx x+-≤⎧⎨+-≤⎩,解得30≤x≤36.在y= -500x+60000中,∵-500<0,∴当x=30时,总利润y有最大值,y的最大值为:-500×30+60000=-15000+60000=45000(元).五、(本大题共2个小题,每小题8分,共16分)22.(2014四川泸州 ,22,8分)海中有两个灯塔A 、B ,其中B 位于A 的正东方向上,渔船跟踪鱼群由西向东航行,在点C 处测得灯塔A 在西北方向上,灯塔B 在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D ,这时测得灯塔A 在北偏西60°方向上,求灯塔A 、B 间的距离.(计算结果用根号表示,不取近似值)【答案】解:作CE ⊥AB 于点E ,AF ⊥CD 于点F , ∴∠AFC=∠AEC =90°.∵∠FCE=90°,∠ACE=45°, ∴四边形AFCE 是正方形.设AF=FC=CE=AE=x ,则FD=x +30, ∵tan AFD FD=,∠AFD=90°,∠D=30°,∴330xx =+,解得x=15,∴AE=CE=15. ∵tan BEBCE CE∠=,∠CEB=90°,∠BCE=30°,=BE=15+∴AB=AE+BE=15+15+30.23.(2014四川泸州 ,23,8分)已知1x 、2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两个实数根.(1)若12(1)(1)28x x --=,求m 的值;(2)已知等腰△ABC 的一边长为7,若1x 、2x 恰好是△ABC 另外两边的边长,求这个三角形的周长.【答案】解:(1)∵1x 、2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两个实数根,∴122122(1)5x x m x x m +=+⎧⎨=+⎩,又∵12(1)(1)28x x --=,∴12(1)(1)x x --12121x x x x =--+1212()1x x x x =-++252(1)1m m =+-++25221m m =+--+224m m =-+=28,即22240m m --=,∴m=-4或6.又∵△22[2(1)]4(5)m m =-+-+224(1)4(5)m m =+-+22484420m m m =++--816m =->0,∴m >2,∴m=6. (2)∵m=6,∴122(1)2(61)14x x m +=+=⨯+=,∴三角形的周长为7+14=21. 五、(本大题共2个小题,每小题12分,共24分)24.(2014四川泸州 ,24,12分)如图,四边形ABCD 内接于⊙O ,AB 是⊙O 直径,AC 和BD 相交于点E ,且2DC CE CA =⋅.(1)求证:BC=CD ; (2)分别延长AB 、DC 交于点P ,过A 点作AF ⊥CD 交CD 的延长线于点F . 若PB=OB ,CD=DF 的长.【答案】解:(1)∵2DC CE CA =⋅, ∴DC CEAC CD=. 又∵∠DCE=∠ACD , ∴△DCE ∽△ACD , ∴∠CDE=∠CAD , ∴BC=CD.(2)连接OC ,作OG ⊥C D 于点G ,则DG=CG=12CD=12⨯=∵OG ⊥C D ,AF ⊥CD ,∴OG ∥AF , ∴FG OAPG OP=. ∵BC=CD , ∴OC ⊥BD .∵AB 是⊙O 直径, ∴∠ADB=90°, ∴AD ⊥BD . ∴OC ∥AD , ∴DC OACP OP=又∵PB=OB=OA ,CD=∴2OACP OA=,∴CP =122OA OA ==,∴25.(2014四川泸州 ,25,12分)如图,已知一次函数112y x b =+的图象l 与二次函数22y x mx b =-++的图象C ’都经过点B (0,1)和点C ,且图象C ’过点A (20).(1)求二次函数的最大值;(2)设使2y >1y 成立的x 取值的所有整数和为s ,若s 是关于x 的方程13(1)013x a x ++=--的根,求a 的值; (3)若点F 、G 在图象C ’上,DE 在线段BC 上移动,EF 与DG 都始终平行于y 轴,当四边形DEFG 的面积最大时,在x 轴上求一点P ,使PD+PE 最小,求出点P 的坐标.【答案】解:(1)∵一次函数112y x b =+的图象l 与二次函数22y x mx b =-++的图象C ’都经过点B (0,1)和点C , ∴b=1,∴一次函数解析式为1112y x =+. 又∵且图象C ’过点A(20),∴2(2(210m -++= 解得m=4,∴二次函数的解析式为:2241y x x +=-+, ∴二次函数的最大值为:24(1)144(1)⨯-⨯-⨯-=4164---=204--=5.(2)由211214y x y x x ⎧=+⎪⎨⎪=-+⎩+,解得72114x y ⎧=⎪⎪⎨⎪=⎪⎩(01x y =⎧⎨=⎩舍去). 结合图象可知:若2y >1y 成立的x 取值的所有整数为1、2、3, ∴它们的和为s=1+2+3=6.又∵s 是关于x 的方程13(1)013x a x ++=--的根, ∴136(1)0163a ++=--, 解得a =17. (3)设点D (x ,112x +),则点G 、E 、F 的坐标分别为G (x ,241x x -++), E (x+2,1+22x ), F (x+2,25x -+),梯形的高为2,∴四边形DEFG 的面积为: 22111{[+5(2)][1(1)]}22224x x x x x --++-+-+⨯+ 2211+5211242x x x x x =----+--+ 232+3x x +=-, ∴当332(2)4x =-=⨯-时,面积最大, 此时点D 、E 的坐标分别为(34,118),(114,198). ∴点D 关于x 轴的对称点为D’(34,118-), 设DD ’交x 轴于点M ,连接D’E 交x 轴于点P (x ,0),此时PD+PE 最小. 作EN ⊥GD 于点N ,则EN ∥PM ,∴''PM D M EN D N=.由题意得34PM x =-,3'4D M =,35'2142D N =⨯+=,EN=2,∴3344522x-=,解得1720x=.∴点P的坐标为(1720,0).。

四川省泸州市九年级数学中考模拟试卷

四川省泸州市九年级数学中考模拟试卷

四川省泸州市九年级数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016八上·九台期中) 在实数0,π,,,中,无理数的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2020·深圳) 2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A . 0.15×108B . 1.5×107C . 15×107D . 1.5×1083. (2分)(2017·东城模拟) 下列哪个几何体,它的主视图、左视图、俯视图都相同()A .B .C .D .4. (2分) (2020七下·徐州期中) 下列计算正确的是()A .B .C .D .5. (2分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2 ,则该半圆的半径为()A . (4+)cmB . 9 cmC . 4cmD . 6cm6. (2分)增城市4月份前5天的最高气温如下(单位:℃):27,30,24,30,31,对这组数据,下列说法正确的是()A . 平均数为28B . 众数为30C . 中位数为24D . 方差为57. (2分)做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A . 0.22B . 0.44C . 0.50D . 0.568. (2分) (2019八上·温州期末) 如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△B CP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A . 10B .C . 8D .9. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .10. (2分)如图,已知 ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(-2,3),则点C的坐标为()A . (-3,2)B . (-2,-3)C . (3,-2)D . (2,-3)11. (2分)(2017·磴口模拟) 如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为()A .B .C .D .12. (2分)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α,β满足+=1,则m的值为()A . ﹣3B . 1C . ﹣3 或1D . 2二、填空题 (共6题;共6分)13. (1分)(2017·菏泽) 分解因式:x3﹣x=________.14. (1分)函数y= 的自变量的取值范围是________.15. (1分) (2019七上·大埔期末) 一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.16. (1分)已知扇形的圆心角为30°,面积为㎝2 ,则扇形的弧长是________ ㎝17. (1分)观察下列各数:﹣,,﹣,,﹣,…,根据它们的排列规律写出第2015个数为________.18. (1分) (2017九上·东莞月考) 已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB中点,点E是直线AC上一点,若以C、D、E为顶点的三角形与△ABC相似,则AE的长度为________.三、解答题 (共8题;共75分)19. (5分) (2018八上·河南期中) 已知10+ =x+y,其中x是整数,且0<y<1,求x-y+ 的算术平方根.20. (5分) (2020八上·永吉期末) 先化简,然后在-2,-1,0,1中选择一个适当的数代入求值.21. (10分) (2019九上·相山月考) 如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC;(1)将△ABC向x轴正方向平移5个单位得△A1B1C1 ,(2)再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2 ,画出平移和旋转后的图形,并标明对应字母.22. (5分)(2017·马龙模拟) 如图,某人由西向东行走到点A,测得一个圆形花坛的圆心O在北偏东60°,他继续向东走了60米后到达点B,这时测得圆形花坛的圆心O在北偏东45°,已知圆形花坛的半径为51米,若沿AB的方向修一条笔直的小路(忽略小路的宽度),则此小路会通过圆形花坛吗?请说明理由.(参考数据≈1.73,≈1.41)23. (15分) (2019九上·余杭期中) 一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?24. (15分) (2019九上·腾冲期末) 为推进节能减排,发展低碳经济,深化“宜居重庆”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元,年销售量为y万件,年获利为w万元.(年获利=年销售额﹣生产成本﹣节电投资) (1)直接写出y与x间的函数关系式;(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?25. (10分) (2017八上·山西月考) 如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC ,交AB于点F)26. (10分)(2017·谷城模拟) 如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段DH的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年泸州市中考数学模拟试题及答案
一、选择题(本部分共12小题,每小题2分,共24分) 1. -2的相反数是 A. 2 B.12
-
C. 2-
D.21
2.某校七年级有5名同学参加射击比赛,成绩分别为7,8,9,10,8(单位:环)。

则这5名同学成绩
的众数是
A.7
B.8
C. 9
D. 10 3.下列各式计算正确的是
A.72
9
()a a = B.7214a a a ⋅= C.235235a a a += D.333
()ab a b = 4.左下图为某几何体的示意图,则该几何体的主视图应为
4
题图
5.第六次全国人口普查数据显示:泸州市常住人口大约有4220000人,这个数用科学记数法表示正确的是
A.5
4.2210⨯ B. 5
42.210⨯ C. 6
4.2210⨯ D. 7
4.2210⨯
6.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是 A.AB//DC,AD//BC
B.AB=DC,AD=BC
C.AO=CO,BO=DO
D.AB//DC,AD=BC
7.函数y =x 取值范围是
A.1x ≥且3x ≠
B.1x ≥
C.3x ≠
D. 1x >且3x ≠
8.若关于x 的一元二次方程2
210kx x --=
有两个不相等的实数根,则实数k 的取值范围是 A.1k >- B.
1k <且0k ≠ C. 1
k ≥-且0k ≠ D.
1k >-且0k ≠
9.
已知O 的直径CD=10cm,AB 是o
的弦,AB CD ⊥,垂足为M,且AB=8cm,则AC 的长为 A.cm B. cm C. cm 或cm
D. cm 或cm 10.设12,x x 是方程2
330x x +-=的两个实数根,则
21
12
x x x x +的值为 第6题图
A.5
B.-5
C.1
D.-1
11.如图,点E 是矩形ABCD 的边CD 上一点,把ADE ∆沿AE 对折,点D 的对称点F 恰好落在BC 一,已
知折痕AE =cm ,且3
tan 4
EFC ∠=
,那么该矩形的周长为 A.72cm B. 36cm C. 20cm D. 16cm
12.如图,在等腰直角ABC ∆中,90ACB O
∠=,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC
上,且90DOE O
∠=,DE 交OC 于点P.则下列结论: (1)图形中全等的三角形只有两对;
(2)ABC ∆的面积等于四边形CDOE 面积的2倍; (3
)CD CE +=

(4)2
2
2AD BE OP OC +=⋅.其中正确的结论有 A.1个 B.2个 C.3个 D.4个
二、填空题(本题共4小题,每小题4分,共16分.) 13.分解因式:2
4x y y -= .
14.在一只不透明的口袋中放入红球6个,黑球
15.如图,从半径为9cm 的圆形纸片上剪去
1
3
重叠),那么这个圆锥的高为 cm .16. 如图,(
)111P ,x y ,()222P ,x y ,……(P ,n
n n x y
323
P A A ∆,……1P A A n n n -∆(n 是大于或等于2的正整数),则点3P 表示).
三、(本大题共3个小题,每小题6分,共1817.计算:11()2(3.14)sin 303
π-O O
--⨯.
18.先化简:2223
(1)11
a a a a --÷---,再求值,其中a =.
第11题图
第12题图
第19题图
19.如图,已知□ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E.求证:AB=BE. 四、(本大题共2个小题,每小题7分,共14分)
20.某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛。

它们分别是演讲、唱歌、书法、绘画。

要求每位同学必须参加,且限报一项活动。

以以九年级(1)班为样本进行统计,并将统计结果绘成如下两幅统计图。

请你结合下图所给出的信息解答下列问题: (1)求出参加绘画比赛的学生人数占全班总人数的百分比?
(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?
(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?
21.某中学为提升学生的课外阅读能力,拓展学生的知识面,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个。

已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本。

(1)符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元? 五、(本大题共2个小题,每小题8分,共16分) 22.如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30O
,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上),用测角仪测得塔顶D 的仰角为75O
,且AB 间距离为40m .
(1)求点B 到AD 的距离;
(2)求塔高CD (结果用根号表示)。

23.如图,已知函数43y x =与反比例函数(0)k y x x =>的图象交于点A.将
3
y x =的图象向下平移6个单位后与双曲线k
y x
=交于点B ,与x 轴交于点C. (1)求点C 的坐标;
(2)若2OA
CB
=,求反比例函数的解析式.
24.如图,D 为O
上一点,点C 在直径BA 的延长线上,且CDA CBD ∠=∠.
(1)求证:2
CD CA CB =⋅; (2)求证:CD 是O 的切线;
(3)过点B 作O 的切线交CD 的延长线于点E ,若BC=12,2
tan 3
CDA ∠=,求BE 的长.
25.如图,在直角坐标系中,点A 的坐标为2-(,0),点B
的坐标为1-(,,已知抛物线2(0)y ax bx c a =++≠经过三点A 、B 、O(O 为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C ,使BOC ∆的周长最小。

若存在,求出点C 的坐标。

若不存在,请说明理由;
(3)如果点P 是该抛物线上x 轴上方的一个动点,那么PAB ∆是否有最大面积。

若有,求出此时P 点的坐标及PAB ∆的最大面积;若没有,请说明理由。

(注意:本题中的结果均保留根号)。

第24题图。

相关文档
最新文档