E物质的磁性
第二章 磁学性能
电子的自旋运动产生自旋磁矩,电子自旋磁矩大小为
eh s s 2s B 2mc
式中,s为电子自旋磁矩角动量。
电子自旋磁矩在外磁场方向上的分量恰为一个玻 尔磁子,即 sz=B
式中,符号取决于电子自旋方向,一般取与外磁 场方向z一致的为正,反之为负。
原子中电子的轨道磁矩和电子的自旋磁矩构成了 原子固有磁矩,即本征磁矩。理论计算证明,如
反映磁化强度随磁场变化的速率。 量纲为1,其值可正、 可负,它表征物质本身的磁化特性。
将磁矩p放入磁感应强度为B的磁场中,它将受到磁场力的 作用而产生转矩,其所受力矩为L=p×B
此转矩力图使磁矩 p处于势能最低的方向。磁矩与外加磁场 的作用能称为静磁能。处于磁场中某方向的磁矩,所具有的 静磁能为 E= -p · B 在讨论材料的磁化过程和微观磁结构时,经常要考虑磁 体中存在的几种物理作用及其所对应的 能量,其中包括静磁 能。单位体积中的静磁能,即静磁能密度EH EH = -M· B = -MHcos 式中,为磁化强度M与磁场强度H的夹角。通常静磁能密度 EH在习惯上简称为静磁能。
抗磁体的磁化率与温度无关或变化极小。
凡是电子壳层被填满了的物质都属于抗磁性物质。 惰性气体,离子型固体(如氯化钠)等; 共价键的碳、硅、锗、硫、磷等通过共有电子而填满了 电子层,故也属于抗磁性物质; 大部分有机物质属于抗磁性物质。 金属中属于抗磁性物质的有铋、铅、铜、银等。
三、顺磁性
• 材料的顺磁性来源于原子的固有磁矩。
磁滞:从饱和磁化状态A点降低磁 场H时,磁感应强度B将不沿着原 磁化曲线下降而是沿AC缓慢下降。 剩余磁感应强度:当外磁场降为0 时,得到不为零的磁感应强度Br 矫顽力:将B减小到零,必须加的 反向磁场-Hc
铁磁性和亚铁磁性Ferri的种类...
=2m
r
洛伦兹力=-eB e0H
离心力的增加应该等于磁场增加引起的洛伦兹力(Lorentz force) 。
2m
r
e0H
既拉莫进动:
L
r
e0
2m
H
I ef e 2 r
a.弱抗磁体
从电磁学环路定律可知
EZ ds
2 rEZ
r20
dH dt
这里EZ是沿着切线上的电场,r是运动半径。
EZ
0
2
r
dH dt
所以电子将被加速,速度υ随着磁场增加△H,
=- eEZ t e0 rH
m
2m
外场H施加后电子的运动形状不发生变化,但是旋转轴向会与外加磁场H方
向成一定角度做拉莫进动(Larmor Precession),如图所示。拉莫运动角频
率ωL和电流I分别是:
L
r
0e
2m
H
I ef e 2 r
上述结果的前提是假设磁矩可在空间任意方向取向的,
然而从量子力学可知,在磁场中的磁矩的取向和大小是量子
化的。
gBJz
其中的Jz仅能取Jz=J,J-1,,,,-(J-1),-J。所以磁矩的平均 也只能对这些取向按以下形式进行:
M
Ng B
J Jz J
Jz
exp
gB
kT
HJ z
J Jz J
exp
2) 顺磁体 Paramagnetism
虽然大多数物质具有抗磁性,但含有铁族元素, 稀土元素的化合物,以及大多数金属,合金的磁化强 度与外界的磁场方向的平行,大小与磁场成正比。
M 0H 40H emu cm3 M
κ>0
M 4
磁学基础知识
磁现象及磁学物理量
pm
0 m
pe ql
pm qm l
m
iS
电偶极矩 磁偶极矩 磁矩
0 : 真空磁导率
4 107 H / m (SI )
1 (CGS)
磁化强度M 磁极化强度J
M
m
V
J
p
V
J 0M
(ESU)
kC kA c2
(EMU) 电流的定义式
CGS单位制(cm, g, s):高斯和韦伯发展起来
磁矩:emu(electric magnetic unit)
1emu 1Biot1cm2 10 A 1cm2 103 Am2
磁化强度M:高斯(G)
1G
1emu 1cm3
原子磁矩的来源: 电子自旋和电子运动
0
抗磁性
交换作用 拉莫尔进动
交换作用
交换作用是一种量子力学效应,
Eij 2Ji j Si S j
Ji j 称为交换积分
我们把这种交换作用等价为磁场Hm,称之为外斯分子场。
分子场的数量级大约在1000T左右! 交换作用是一种短程相互作用。
Ji j 0 铁磁性
(1 sin2 )
2
K sin2 c
一维纳米线:
K
0
M
2 s
2
Em
0
M
2 s
4
sin2
感生各向异性 磁场感生各向异性
应力感生各向异性
Ku
3 2
E磁性物理的基础-磁畴与技术磁化
H d NI
N称为退磁因子。对于形状规则的样品,N由样品 的几何形状和大小来决定。对于一个椭球样品, 在直角坐标系中,磁化强度在三个轴方向上的分 量为Ix ,Iy ,Iz , 则退磁因子N为 Hdx=-NxIx ,Hdy=-NyIy ,Hdz=-NzIz Nx+Ny+Nz=1 ( 4 [ CGS ] ) ( 4/3 ) ( 2 ) ( 4 ) 对于球形样品:a=b=c , Nx=Ny=Nz=N0=1/3 对于长园柱样品:a≫b=c,Nx=0,Ny=Nz=1/2 对于极薄园盘样品:a≪b,c,Ny=Nz=0,Nx=1
二、磁畴的形成
在铁磁体中,交换作用使整个晶体自发磁化到饱和,磁化强度的方向沿着晶体 内的易磁化轴,这样就使铁磁晶体内交换能和磁晶各向异性能都达到极小值。但 因晶体有一定的大小与形状,整个晶体均匀磁化的结果,必然产生磁极,磁极的 退磁场,增加了退磁能(1/2)NIS2。 例如对一个单轴各向异性的钴单晶。( a )图是整个晶体均匀磁化,退磁场能 最大( 如果设Is103高斯,则退磁能106尔格/厘米3 )。从能量的覌点出发,分为 两个或四个平行反向的自发磁化的区域( b ),( C )可以大大减少退磁能。 如果分为n个区域(即n个磁畴),能量约可减少 1/n,但是两个相邻的磁畴间的畴壁的存在,又增加 了一部分畴壁能。因此自发磁化区域(磁畴)的形成 不可能是无限的,而是畴壁能与退磁场能的和为极 小值为条件。 形成如图d,e的封闭畴将进一步降低退磁能,但 是封闭畴中的磁化强度方向垂直单轴各向异性方向, 因此将增加各向异性能。
U 2 JSi S j 2M B H m S j
j 1 j 1 z z
如果总共z个近邻值中有p个自旋值1/2,而q个自旋取值-1/2,则
物质的磁性与磁场效应
物质的磁性与磁场效应磁性是物质特性中的一种,指的是物质在外加磁场作用下表现出的磁性行为。
磁性的存在和磁场的效应是物质世界中一项重要的研究内容。
本文将探讨物质的磁性以及磁场对其产生的效应。
一、什么是磁性?磁性是指物质在外加磁场作用下表现出的吸铁、排斥、磁导率改变等现象。
在理论上,物质的磁性可以归结为微观电流的存在。
当物质内部存在电流时,会形成一个微小的磁矩,即磁化强度。
当外加磁场作用于物质时,磁矩会与外磁场相互作用,进而导致物质磁化。
二、物质的磁性分类根据物质对磁场的敏感程度,可将物质的磁性分为顺磁性、抗磁性和铁磁性。
1. 顺磁性:顺磁性物质在外加磁场作用下,磁矩与磁场方向相同,即被磁化,常见的有锰、铝等。
2. 抗磁性:抗磁性物质在外加磁场作用下,磁矩与磁场方向相反,即逆磁化,常见的有铜、银等。
3. 铁磁性:铁磁性物质在外加磁场作用下,磁矩与磁场方向相同,且磁矩较大,常见的有铁、镍等。
三、磁场对物质的效应磁场对物质的效应主要表现在磁介质、磁导体和磁远效应三个方面。
1. 磁介质:磁介质是能够产生磁化的物质。
当一个磁介质置于外加磁场中时,其分子或原子的磁矩会与外磁场相互作用,导致磁介质整体磁化。
这种磁化可以消失,即磁介质在去除外磁场的作用下,会恢复到原始状态。
磁介质常用于电磁设备中,如磁铁、磁卡、磁带等。
2. 磁导体:磁导体是对磁场具有强烈响应的物质。
当一个磁导体置于外加磁场中时,由于其导电性能,电子会受到洛伦兹力的作用,产生电流,进而产生磁场。
这个磁场与外磁场相互作用,导致磁导体内部的电子运动受到限制,进而产生电磁阻力,这就是磁场对磁导体的效应。
磁导体广泛应用于电动机、发电机等设备中。
3. 磁远效应:磁远效应是指磁场作用于物质后,在物质内部产生一系列的电磁效应。
例如在变压器中,磁场作用于铁芯上,产生感应电流,进而导致铁芯内部磁场的改变,实现电能传输和转换。
四、物质的磁性与应用物质的磁性不仅仅是一种自然现象,也是工程技术和科学研究的基础。
物质的磁性
物质的磁性
1物质的磁性
物质的磁性是指物质对磁场的反应能力,是理解物质结构和性质的重要体现。
从根本上讲,一个物质的磁性取决于它的原子的构成,原子的构成又取决于它的每个原子的电子的构型。
自古以来,物质的磁性一直被认为是影响物理和化学性质的重要因素,是研究化学性质和物理性质的一个核心内容。
1.1物质的磁性来源
早期,物质的磁性是由看不到的磁子的粒子性质以及电带的位置引起的。
此外,磁性也可以由由电子的自旋导致的。
科学家认为,电子在原子轨道上运动时,电子的積極性及自旋的存在,会令原子具有磁性。
另外,原子的结构以及原子的相互作用也会影响物质的磁性。
1.2物质的磁性相互作用
物质的磁性在微观与宏观方面都发挥着极其重要的作用。
在微观层面,物质的磁性会影响到原子分子的结构和电子的运动,从而影响到原子分子的化学反应;在宏观层面,物质的磁性会面对磁场而产生磁力,控制物质的形态结构,同时也影响到热效应,力学效应与化学反应。
总之,物质的磁性是统计物质结构与性质的重要性质之一,影响着物质在磁场中对有效力矢量的响应,影响物理性质和化学性质,与物质的结构有着直接联系,在物理与化学领域均占据着重要地位。
大学物理 第十五章 磁介质的磁化
临界温度Tc。在Tc以上,铁磁性完全消失而 成为顺磁质,Tc称为居里温度或居里点。不 同 的 铁 磁 质 有 不 同 的 居 里 温 度 Tc 。 纯 铁 : 770ºC,纯镍:358ºC。
居里
装置如图所示:将悬挂着的镍片移近永 久磁铁,即被吸住,说明镍片在室温下 具有铁磁性。用酒精灯加热镍片,当镍 片的温度升高到超过一定温度时,镍片 不再被吸引,在重力作用下摆回平衡位 置,说明镍片的铁磁性消失,变为顺磁 性。移去酒精灯,稍待片刻,镍片温度 下降到居里点以下恢复铁磁性,又被磁 铁吸住。
第15章 磁介质的磁化
§15.1 磁介质的磁化 磁化强度矢量 §15.2 磁场强度 有磁介质时的安培环路定理 §15.3 铁磁质 §15.4 磁路定理
作业:练习册 选择题:1 — 5 填空题:1 — 6 计算题:1 — 4
1
§1 磁介质的磁化 磁化强度矢量
1. 磁介质 磁介质:实体物质在磁场作用下呈现磁性,该物体称磁介质。 磁化:磁介质在磁场中呈现磁性(在磁场的作用下产生附加 磁场)的现象称为磁化。
B B0 B
I
I
磁介质
抗磁质: r 1, B B0
B与B0 反方向,
如氮、水、铜、银、金、铋等。
I
I
铁磁质: r 1, B B0 B与B0 同方向,
如铁、钴、镍等,
超导体是理想的抗磁体。
B0 B
3
2.分子电流模型和分子磁矩
原子中电子参与两种运动:自
pm B
旋及绕核的轨道运动,对应有轨道
矢量和为零。
极化、位移极化。
4
加外磁场时 : M Pm B
B B0 B
当外磁场存在时,各分子固有磁矩受磁场力矩的作用,或
磁场的磁势能与磁场强度
磁场的磁势能与磁场强度磁场是物理学中重要的概念之一,对于物体的运动和相互作用有着重要的影响。
磁场的磁势能和磁场强度是研究磁场性质的重要指标,本文将围绕这两个概念展开讨论。
一、磁场的基本概念磁场是指周围带有磁性物质的区域内存在的力场。
磁场通常由磁铁或电流所产生,根据磁感线的方向可以分为南北极。
磁场是矢量场,它具有方向和大小,可以用磁场强度来表示。
二、磁场的磁势能磁场中存在磁势能,指的是物体在磁场中由于运动而具有的能量。
磁场的磁势能与物体的位置有关,当物体在磁场中发生位移时,磁势能的大小会发生变化。
磁场中的物体具有磁性,受到磁场的作用力,类似于重力对物体的作用。
当物体由低势能区域移动到高势能区域时,它会受到磁场的吸引力;而当物体由高势能区域移动到低势能区域时,会受到磁场的排斥力。
磁场中的磁势能可以用以下公式来计算:E = -m · B其中,E表示磁势能,m表示磁矩,B表示磁场强度。
根据这个公式可以看出,磁势能的大小与磁矩和磁场强度有关。
三、磁场强度的定义和计算磁场强度是磁场的物理量,用H表示,是指单位磁场中所含的能量的大小。
磁场强度的计算公式为:H = B/μ0其中,B表示磁感应强度(也称磁感度),μ0表示真空中的磁导率。
磁场的强弱可以通过磁场强度来计量,磁感应强度B和磁场强度H之间的关系是通过磁导率来确定的。
在相同的磁场中,磁感应强度和磁场强度的数值大小是不同的,但它们之间存在着确定的关系。
四、磁场的应用与意义磁场在现实生活中有着广泛的应用,尤其是在电磁技术和磁共振成像方面。
磁场的作用可以使电流通过导线产生磁感应强度,从而实现电能到机械能的转换。
在磁共振成像中,利用磁场和射频场相互作用的原理,可以对人体组织进行非侵入式的成像,具有高分辨率和无辐射的优势。
同时,磁场也广泛应用于电动机、发电机和变压器等电磁设备中,提高了电能转换的效率和稳定性。
五、总结磁场的磁势能和磁场强度是研究和描述磁场性质的重要指标。
大学物理物质磁性
电子绕原子核作轨道运动——轨道磁矩
电子有自旋
——自旋磁矩
分子磁矩 —— 所有电子磁矩的总和
分子磁矩可以用一个等效的圆电流来表示。
抗磁质 Pm 0
p m
无外场作用时,对外不显磁性
I
顺磁质 Pm 0
无外场作用时,由于热运动,对外也不显
磁性
2、磁介质的磁化
顺磁质磁化机理——来自分子的固有磁矩
无外磁场: ——未磁化状态
讨论
对于各向同性 介质,在外磁场不太强的情况下 B μ 0μ rH μ H
一定条件下,可用安培环路定理求解磁场强度, 然后再求解磁感应强度。
例 一无限长载流直导线,其外包
I
围一层磁介质,相对磁导率
R1
r 1
求 磁介质中的磁感应强度
i2 '
R2
i1'
r
解 根据磁介质的安培环路定理
LHdl H2r I
加外磁场:
分子固有磁矩受外磁场的作用
分子磁矩沿外磁场方向排列
产生附加的磁场
B0
B1'
抗磁质磁化机理 ——电子轨道在外磁场作用下发生变化
无外磁场: 分子中每个的轨道磁矩和自旋磁矩的矢量和 不为零, 但分子的固有磁矩等于零,所以不显磁性。
f当外场方向与P分m子(磁矩Pm方) 向相同B时0
Pm
电子轨道半径不变
10.7 物质的磁性
一、磁介质的分类
1、磁介质 能够磁化的物质称作磁介质
2、介质的磁化 电介质放入外场 E 0
磁介质放入外场 B 0
E
E0
E
'
E
E
0
B B0 B
B ' 的方向,随磁介质的不同而不同。
磁场的磁势能与磁场强度关系
磁场的磁势能与磁场强度关系磁场是物理学中常见的概念,它是指空间中某一点受到磁力作用的能力。
磁场的存在使得磁物体受到磁力的作用,同时也可以储存能量,这种能量就是磁势能。
本文将详细探讨磁场的磁势能与磁场强度之间的关系。
一、磁场的概念与磁场的形成磁场是由电流产生的,当电流通过导线时,就会在导线周围形成一个磁场。
磁场存在于磁体周围,并对周围的磁性物质产生作用。
根据电磁感应定律,磁场也可以通过变化的电场来形成。
二、磁场的磁势能磁场的磁势能是指物体在磁场中由于相对位置的变化而具有的能量。
当带有磁性的物体从一个位置移动到另一个位置时,它所具有的磁势能也会发生改变。
磁势能是由于磁体的磁性以及磁场强度而决定的。
三、磁场强度的定义与性质磁场强度是指磁场在空间中的强弱程度,通常用B表示。
磁场强度与磁场的力线有关,力线越密集,说明磁场强度越大。
磁场强度的单位是特斯拉(T)。
四、磁势能的计算计算磁势能需要考虑磁场强度以及物体在磁场中受力移动的情况。
对于一个点磁场中的磁体,其磁势能可以通过以下公式计算:E = -m·B其中,E表示磁势能,m表示磁体的磁矩,B表示磁场强度。
五、磁势能的性质与应用磁势能具有几个重要的性质。
首先,磁势能与磁体的磁矩有关,磁矩越大,磁势能也越大。
其次,磁势能可以相互转化为其他形式的能量,例如动能、电能等。
最后,磁势能可以用于储存能量和进行能量传输,例如在电动机、变压器等设备中广泛应用。
六、磁势能与动能的转化磁势能可以通过物体在磁场中受力移动而转化为动能。
当一个磁体从一个位置移动到另一个位置时,它所具有的磁势能会减少,而动能则会增加。
这种转化关系可以通过磁体的质量、速度以及磁场强度来描述。
七、磁场的能量密度磁场的能量密度是指磁场单位体积内所具有的能量。
能量密度可以通过磁场强度和磁场的能量计算得出。
能量密度在物理学中有重要的应用,例如对于磁体中的能量储存和能量传输等方面。
八、磁场的能量守恒磁场的能量是可以守恒的,即在磁场中能量的转化和传递过程中总能量保持不变。
磁介质概述
附加磁矩ΔPm。
5
P
m ,e
v
P
m ,e
dP e
T
(1)轨道磁矩为 P 的电子的进动:
P
m ,e
设电子轨道运动的磁矩为 P ,因为电 m ,e
e
子 量
带Pe负与电磁、矩所P以m,e电反子方向运(动如的图轨)道。角
动
B 0
电子的进动
在外磁场作用 下、电子受磁力矩 T P B
m,e
0
根据角动量定理,此力矩等于电子轨道角动量
3
二、弱磁物质的磁化机制
1 、 分子磁矩:
pm
i S
各个电子绕核转动的轨道圆电流--轨道磁矩 电子绕自转轴转动的自旋圆电流--自旋磁矩 矢量和
若把分子看成一个整体,这种分子电流具有的磁矩,称为分 子固有磁矩或称分子磁矩,用Pm表示。
顺磁物质:轨道磁矩与自旋磁矩相互加强形成分子磁矩P
抗
磁
物
质:轨道磁
IS
s
is
l
2、磁化电流与磁化强度的关系
利用充满顺磁质的长直载流螺线管可以证明,其顺磁质表
面单位长度圆形磁化电流(即磁化电流密度)Js=M、M为顺磁
质内磁化强度大小。
证明如下: 设磁介质横截面积s、长度l,介质表面单位长度
圆形磁化电流Js。则在长度l上圆形磁化电流Is=Js·l,因此在磁介
质总体积s·l上磁化电流的总磁矩为
而只有 B 0(H M ) 成立。
2、存在“磁滞现象”(如:在外场撤除后有剩磁):
3、居里温度: 对应于每一种铁磁物质都有一个临界温度(居里点),超过
这个温度,铁磁物质就变成了顺磁物质。如铁的居里温度为 1034K。
多种材料的磁导率
非铁磁性物质的μ近似等于μ0。
而铁磁性物质的磁导率很高,μ>〉μ0。
铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。
空气的相对磁导率为1。
00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0。
99990、0.999979、0.999982。
铁粉心磁导率10左右材料以优良的频率特性和阻抗特性良好的温度特性是雷达和发射机滤波用电感器最佳材料;磁导率33材料最适合在几十A到上百A的大电流逆变电感器,如果对体积和温升要求不高,可以使用其做频率底于50KHz的开关电源输出电感器,APFC电感器;磁导率75材料是做差模电感器和频率在20K左右的滤波电感器储能电感器的高性价比材料。
铁镍50该材料最适合用做差模电感器但是价格很高,由于原来国内能做铁镍钼的厂家做的铁镍钼性能很差,所以一些开关电源厂家和军工客户都使用铁镍50材料做储能电感器,其实这是错误的选择,因为这种材料的损耗仅好于铁粉心,是铁硅铝的2倍左右,是铁镍钼的三倍左右,但是该材料同样磁导率下,直流叠加特性好于铁硅铝材料,虽然它的Bs值达14000Gs,但是由于磁滞回线的形状不一样,所以它的直流叠加特性并不好于铁镍钼材料(只是原来国内能做的厂家做的性能较差)。
铁硅铝高性价比材料,是铁粉心的替代品(不包括低磁导率铁粉心)。
铁镍钼价格与铁镍50相当(我公司),损耗最低材料,频率特性最好的材料,如果将您正在使用的国内公司的铁镍50材料换成我公司的铁镍钼材料将大大提高您的模块效率。
不信您可以索要样品适用 .四种金属磁粉心性能和价格对比金属磁粉心与铁氧体材料应用对比应用之功率变压器粉心铁镍钼磁粉心铁镍50磁粉心铁硅铝磁粉心5k~200k5k~50k5k~200k—55~200—55~200-55~200环型极限外径到φ63。
材料的磁学性能
Ed
M
0 Hd dM
M NMdM 1 NM 2
0
2
2、铁磁质自发磁化的机理(铁磁质的自发磁化理论)
1)Wiss 铁磁性假说 分子场假说:铁磁质内部存在很强的分子场,在该分子场的作用下,原子磁
矩趋向于同方向平行排列 磁畴假说:铁磁质内分布有若干原子磁矩同向平行排列的小区域(磁畴),
各磁畴的磁化方向随机分布,彼此抵消,整体对外不显磁性
(l s j )i J 或
ji ( li si ) J
i
i
③原子序数在32~82之间,为两种混合耦合方式
3d 过渡族金属、 4f 稀土金属及其合金主要为 L-S 耦合
二、物质的磁化特性及磁介质分类
1、抗磁性(diamagnetic) 0 ,10-6~10-4数量级,与H、T无关的常数
亚铁磁Fe3O4中,Fe2+和 Fe3+的自旋磁矩的排列
1、铁磁质的磁化特性
1)磁化曲线和磁位能
第一阶段:磁化强度随外磁场缓慢增 加;撤除外磁场,磁化强度恢复为原 始值(可逆磁化) 第二阶段:磁化强度随外磁场快速增 加;去除外磁场,磁化强度不能完全 恢复至原始状态(不可逆磁化或有剩 磁) 第三阶段:磁化强度又随外磁场缓慢 增加并趋于饱和状态
顺磁 铁磁 亚铁磁 反铁磁
三、顺磁性及其物理本质 主要由各原子或离子实的磁矩 J 和各自由电子的自旋磁矩 s 在外磁场中的
取向过程造成
原子或离子实磁矩的顺磁性:
磁场H中的磁位能: EH J 0H J 0H cos
T 温度下磁矩数量: n exp( EH kBT ) +d之间的磁矩数量: n 2 sind
特点是:凡电学量如q、I、E、P、D等都采用CGSE制单位,凡磁学量如B、M、H等都采用 CGSM 制单位;电容率ε和磁导率μ都是无量纲的纯数
磁感应强度
10
2.下列说法正确的是( D ) A. 磁场中某处磁感应强度的大小,等于长为L通以电流I 的一小段导线放在该处时所受磁场力F与IL乘积的比值 B.同一根导线,通有相同的电流,受到磁场力大的地方 磁感应强度大 C.因为B=F/IL,所以磁场中某处的磁感应强度的大小与 放在该处的导线所受磁场力F的大小成正比,与IL的大小 成反比 D.磁场中某处磁感应强度的大小与放在磁场中的通电导线 的长度、电流大小及所受磁场力的大小均无关
F
a
O A
F b
I
a O
B
F
b a
IO C
F ab
b
I OD
I
13
5.磁场中放一根与磁场方向垂直的通电导线,它的电流强
度是2.5 A,导线长1 cm,它受到的作用力为5×10-2 N,则
这个位置的磁感应强度是多大?如果把通电导线中的电流
强度增大到5 A,这一点的磁感应强度应是多大?该通电导
线受到的作用力是多大?
磁问场题方:向磁。感应强度的大小能否从小磁针受力的
情况来研究?
否。因为N极不能单独存在.小磁针静止时是所 受的合力为零,因而不能用测量N极受力的大小来确定
磁感应强度的大小。
4
思考:
磁场不仅能对磁体有作 用力,还对通电导体有作用力。 能否用很小一段通电导体来 检验磁场的强弱?
将一段很短的通电导线 垂直放入磁场中,通电导线 将受到磁场的作用力。
结论:电流越大,通电导线受力越大
ቤተ መጻሕፍቲ ባይዱ
FI
(2)然后保持电流不变,改变导线通电部分的长度。
L F 2L 2F 3L 3F
磁通量的表达式
磁通量的表达式
磁通量是物理学中研究物质的磁性的重要参量,它可以表示磁场在一个特定方向上通过一个特定表面所存在的磁矩量。
它是物质磁性的重要参量,可以用来衡量一个物体的磁能,也可以用来研究物体在磁场作用下的变化。
磁通量的表达式可以用矢量格式来表示,即:ϕ=∫E·ndS
其中,ϕ表示磁通量,E为磁场强度,ndS为表面积的单位向量。
磁通量的物理意义是描述磁场通过一个特定的表面时,磁场线穿过表面的磁矩量。
它可以用来衡量磁场的强度,也可以用来衡量磁场中能量的大小。
磁通量可以用来衡量一个物体在磁场作用下的变化情况,从而可以用来研究物体的磁性特性。
磁通量可以用来研究物体的磁性特性,如磁矩、磁密度、磁阻等。
它也可以用来研究物体在磁场作用下的变化情况,如在磁场中物体的偏移或振动等。
此外,磁通量还可以用来研究物体的磁能,这是一种重要的物理参量。
磁通量的表达式是研究物质磁性的重要参量,它可以用来衡量物体在磁场作用下的变化情况,也可以用来衡量物体的磁能。
在磁场作用下,磁通量可以表示磁场在一个特定方向上穿过一个特定表面时磁矩量的大小,从而可以用来研究物质的磁性特性。
磁矩 单位
磁矩单位
磁矩:描述载流线圈或微观粒子磁性的物理量。
平面载流线圈的磁矩定义为m=ise。
式中,i为电流强度、s为线圈面积、e为与电流方向成右手螺旋关系的单位矢量。
概述:
磁矩就是磁铁的一种物理性质。
处在外磁场的磁铁,可以感受到力矩,使得其磁矩沿外磁场的磁场线方向排序。
磁矩可以用矢量则表示。
磁铁的磁矩方向从磁铁的指南极指向指北极,磁矩的大小依赖于磁铁的磁性与量值。
不只是磁铁具备磁矩,载流电路、电子、分子或行星等等,都具备磁矩。
科学家至今尚未辨认出宇宙中存有存有磁单极子。
一般磁性物质的磁场,其泰勒展开的多极展开式,由于磁单极子项目恒等于零,第一个项目是磁偶极子项、第二个项目是磁四极子(quadrupole)项,以此类推。
磁矩也分为磁偶极矩、磁四极矩等等部分。
从磁矩的磁偶极矩、磁四极矩等等,可以分别计算出磁场的磁偶极子项目、磁四极子项目等等。
随着距离的增远,磁偶极矩部分可以显得越加关键,沦为主要项目,因此,磁矩这术语时常用以暗指磁偶极矩。
有些教科书内,磁矩的定义与磁偶极矩的定义相同。