因子分析数学模型说课材料

合集下载

因子分析 PPT课件

因子分析  PPT课件

同时假定随机向量 X 满足以下模型: X 1 a11F1 a12 F2 a1m Fm 1 X a F a F a F 2 12 1 22 2 2m m 2 X p a p1 F1 a p 2 F2 a pm Fm P 则称模型(3.1)为正交因子模型。
设 X ( X1 , X 2 ,
E( F ) 0 , Cov( F ) I m (即 F 的各分量方差为 1,且互不相关) 。又设 (1, 2 , , p ) 与 F 互不相关,且
2 E ( ) 0 , Cov( ) diag(12 ,2 , 2 , p )。
之因子分析
SPSS软件
• 因子分析(Factor Analysis)是多元统计 分析中处理降维问题的一种重要方法。变 量的共线性很多是都对分析结果具有显著 的影响。所谓降维,就是独钓共线性,剩 下的,或者合并的都是线性无关的,或者 正交的,或者垂直的。
一、什么是主成分分析和因子分析?
• 主成分分析(Principal Components Analysis)也是多元统计分析中简化数据 结构(降维问题)的一种重要方法。简化 数据结构是指将某些较复杂的数据结构通 过变量变换等方法使相互依赖的变量变成 互不相关的;或把高维空间的数据投影到 低维空间,使问题得到简化而损失的信息 市的实证 设施建设情况。
案例1
• 中国统计年鉴,2005,各地区城市市政设施数据。 变量有: • City—城市名称; • X1—年末实有道路长度(公里); • X2—年末实有道路面积(万平方公里); • X3—城市桥梁(座); • X4—城市排水管道长度(公里); • X5—城市污水日处理能力(万立方米); • X6—城市路灯(盏);

因子分析方法ppt课件

因子分析方法ppt课件

10
因子分析数学模型中几个相关概念
举例说明:
11
12
因子分析的五大基本步骤
第一步:因子分析的前提条件
由于因子分析的主要任务之一是对原有变量进行浓缩,即将 原有变量中的信息重叠部分提取和综合成因子,进而最终实 现减少变量个数的目的。因此它要求原有变量之间应存在较 强的相关关系。否则,如果原有变量相互独立,相关程度很 低,不存在信息重叠,它们不可能有共同因子,那么也就无 法将其综合和浓缩,也就无需进行因子分析。本步骤正是希 望通过各种方法分析原有变量是否存在相关关系,是否适合 进行因子分析。
2
因子分析的基本模型
因子分析模型中,假定每个原始变量由两部分组成: 共同因子和唯一因子。 共同因子是各个原始变量所共有的因子,解释变 量之间的相关关系。
唯一因子顾名思义是每个原始变量所特有的因子, 表示该变量不能被共同因子解释的部分。原始变量 与因子分析时抽出的共同因子的相关关系用因子负 荷表示。
18
第四步:决定因素与命名
• 转轴后,要决定因素数目,选取较少因素 层面,获得较大的解释量。在因素命名与 结果解释上,必要时可将因素计算后之分 数存储,作为其它程序分析之输入变量。
19
第五步:计算各样本的因子得分
• 因子分析的最终目标是减少变量个数,以 便在进一步的分析中用较少的因子代替原 有变量参与数据建模。本步骤正是通过各 种方法计算各样本在各因子上的得分,为 进一步的分析奠定基础。
因子分析方法
1
因子分析的基本概念
因子分析的概念 就是在尽可能不损失信息或少损失信息的情况下,将多个变量减少为 少数几个潜在的因子。也就是用少数几个因子来描述许多指标或因素之 间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方 法 主成分分析(Principal component analysis): 是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标 变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相 关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少 变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信 息。 两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降 低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子 分析的一个特例

第08章_因子分析

第08章_因子分析

C o vX ( i F,j )aij D( X i ) D F (j )
C o vX ( i F,j
)
那么,从上面的分析,我们知道对于标准化后的 X i , aij 是 X i 与 Fj 的相关系数,它一方面表示 X i 对 Fj 的依赖程度,绝对值 越大, 密切程度越高; 另一方面也反映了变量 X i 对公共因子 Fj 的相对重要性。了解这一点对我们理解抽象的因子含义有非常 重要的作用。
* 2* t 2 ,
,
* * m tm )
(t1*
* t2 ,
* 1 * , tm ) 0
0 * m
第四节 公因子重要性的分析
一 因子旋转
二 因子得分
一、因子旋转
问题:可能有些变量在多个公共因子上都有较大的
载荷,有些公共因子对许多变量的载荷也不小,说
tg4 D 2 AB / p C ( A2 B 2 ) / p
其中
A ui ,
i 1 p
p
B vi
i 1
p
C (ui2 vi2 ),
Cov( X i , Fj ) Cov( aik Fk i , Fj )
k 1 m m
= Cov( = aij
a
k 1
ik
Fk , Fj ) Cov( i , Fj )
如果对 X i 作了标准化处理, X i 的标准差为 1,且 Fj 的标准差 为 1,因此
rX i , Fj
基本结构,并用少数几个“抽象”的变量来表示其基本的数 据结构。这几个抽象的变量被称作“因子”,能反映原来众 多变量的主要信息。原始的变量是可观测的显在变量,而因 子一般是不可观测的潜在变量。

因子分析的基本思想基本步骤数学模型及求解

因子分析的基本思想基本步骤数学模型及求解

一、因子分析1 因子分析的基本思想1.1 因子分析的基本出发点将原始指标综合成较少的指标,这些指标能够反映原始指标的绝大部分信息(方差),这些综合指标之间没有相关性。

1.2 因子变量的特点(1)这些综合指标称为因子变量,是原变量的重造;(2)个数远远少于原变量个数,但可反映原变量的绝大部分方差; (3)不相关性; (4)可命名解释性。

2 因子分析的基本步骤(1)确认待分析的原始变量是否适合作因子分析; (2)构造因子变量;(3)利用旋转方法使因子变量具有可解释性; (4)计算每个样本的因子变量得分。

3 因子分析的数学模型数学模型(x i 为标准化的原始变量;F i 为因子变量;k<p )111112213311221122223322331132233333112233..................k k k k k k p p p p pk k px a f a f a f a f x a f a f a f a f x a f a f a f a f x a f a f a f a f εεεε⎧=+++++⎪=+++++⎪⎪=+++++⎨⎪⎪=+++++⎪⎩ 也可以矩阵的形式表示为:X=AF+εF :因子变量; A :因子载荷阵; a ij :因子载荷;ε:特殊因子。

4 因子分析的相关概念(1)因子载荷在因子变量不相关的条件下,a ij 就是第i 个原始变量与第j 个因子变量的相关系数。

a ij 绝对值越大,则X i 与F i 的关系越强。

(2)变量的共同度(Communality)也称公共方差。

X i 的变量共同度为因子载荷矩阵A 中第i 行元素的平方和。

221kiij j h a ==∑可见:X i 的共同度反应了全部因子变量对X i 总方差的解释能力。

(3)因子变量F j 的方差贡献因子变量F j 的方差贡献为因子载荷矩阵A 中第j 列各元素的平方和21pj ij i S a ==∑可见:因子变量F j 的方差贡献体现了同一因子Fj 对原始所有变量总方差的解释能力,S j /p 表示了第j 个因子解释原所有变量总方差的比例。

第六讲因子分析

第六讲因子分析

第六讲因⼦分析第五讲因⼦分析在许多实际问题中,涉及的变量众多,各变量间还存在错综复杂的相关关系,这时最好能从中提取少数综合变量,这些综合变量彼此不相关,⽽且包含原变量提供的⼤部分信息。

因⼦分析就是为解决这⼀问题提供的统计分析⽅法。

以后,如⽆特别说明,都假定总体是⼀个p维变量:它的均值向量,协⽅差矩阵V=(ij)pp都存在。

第⼀节正交因⼦模型1.1 公共因⼦与特殊因⼦从总体中提取的综合变量:F1, F2, … , F m(m于是,我们有:变量X i的信息=公共因⼦可以表达部分公共因⼦不可表达部分这就是所谓因⼦模型。

⽬前,公共因⼦可以表达的部分由公共因⼦的线性组合表⽰。

即上⾯的因⼦模型可以写成以下的形式:1.2 正交因⼦模型设总体,均值向量,协⽅差矩阵。

因⼦模型有形式:其中m如果引⼊以下向量与矩阵:则因⼦模型的矩阵形式为:对于正交的因⼦模型,还要进⼀步要求:z1. 。

即有:公共因⼦是互相不相关的。

z2. 。

即:特殊因⼦和公共因⼦不相关。

1.3 因⼦载荷矩阵1.矩阵A称为因⼦载荷矩阵(component matrix),系数a ij称为变量X i在因⼦F j上的载荷(loading)。

由于特别,如果总体是标准化的,则有Var(X i)=1,从⽽有:于是:即变量X i在公共因⼦F j上的载荷a ij就是X i与F j的相关系数。

2.载荷矩阵的估计:主成分法。

主成分法是估计载荷矩阵的⼀种⽅法,由于其估计结果和变量的主成分仅相差⼀个常数倍,因此就冠以主成分法的名称。

在学到这⾥的时候,不要和主成分分析混为⼀谈。

主成分法是SPSS系统默认的⽅法,在⼀般情况下,这是⽐较好的⽅法。

以数据“应征⼈员”为例,按特征值⼤于1提取公共因⼦。

在⽤不同⽅法获得因⼦载荷时,公共因⼦对总体⽅差的贡献率以主成分法为最⾼:⽅法贡献率 %Principle components 81.476Maximum likelihood74.304Unweighted least squares74.485Principal axis factoring74.462Alpha factoring74.540Image factoring69.365关于主成分法的内容可参看任何⼀本多元统计分析书,例如:《应⽤多元统计分析》,⾼惠璇著,北京⼤学出版社,p301。

因子分析讲课PPT

因子分析讲课PPT

分类
• 探索性因子分析 对一无所知的问题进行探索分析 • 验证性因子分析 在一直理论的基础上,提出假设和检验
几个重要的概念
• 1.因子载荷:某个因子与某个原变量的相关 系数,主要反映该公因子对相应原变量的 贡献力的大小 • 2.变量的共同度:是衡量因子分析效果的常 用指标 • 3.特征值:公共因子的方差贡献
2.对数据要求不同(1)聚类分析并不是一种纯粹
的统计技术,其方法基本上与分布理论和显著性检 验无关,一般不从样本推断总体。在实际应用中, 许多研究者实际上是将手中的数据视为近似总体。 与其说聚类分析是一种假设检验的方法,不如说它 是一种建立假设的方法。 (2)而在判别分析中,对于分布理论非常关注, 它有一个基本假设:每一个类别都应取自一个多元 正态总体的样本,而且所有正态总体的协方差矩阵 或相关矩阵都假定是相同的,如果不满足正态总体 的假定,则需要对非正态化数据作正态化变换;如 果不满足协方差矩阵相同的假定,则可能要采用非 线性的判别函数,例如:二次判别函数等。
3、Bartlett’s(巴特利)球度检验 以原有变量的相关系数矩阵为出发点,假设相 关系数为单位矩阵,如果该检验对应的P值小于 给定的显著性水平a,则应拒绝原假设,认为原有 变量适合进行因子分析。 4、KMO检验 该统计量取值在0-1之间,越接近于1说明变量 间的相关性越强,原有变量适合做因子分析。0.9 以上表示非常合适;0.8-0.9表示合适;0.7-0.8表 示一般;0.6-0.7表示尚可;0.5-0.6表示不太合适; 0.5以下表示极不合适。
• 5. 主成分与因子的变化:当给定的协方差矩阵或 者相关矩阵的特征值唯一时,主成分一般是固定 的;而因子分析中因子不是固定的,可以旋转得 到不同的因子。 • 6. 因子数量与主成分的数量:在因子分析中,因 子个数需要分析者指定(SPSS根据一定的条件自 动设定,只要是特征值大于1的因子主可进入分 析),指定的因子数量不同而结果也不同;在主 成分分析中,成分的数量是一定的,一般有几个 变量就有几个主成分(只是主成分所解释的信息 量不等)。 • 7. 功能:和主成分分析相比,由于因子分析可以 使用旋转技术帮助解释因子,在解释方面更加有 优势;而如果想把现有的变量变成少数几个新的 变量(新的变量几乎带有原来所有变量的信息) 来进入后续的分析,则可以使用主成分分析。当 然,这种情况也可以使用因ቤተ መጻሕፍቲ ባይዱ得分做到,所以这 种区分不是绝对的。

《因子分析数学模型》课件

《因子分析数学模型》课件

总结与展望
因子分析数学模型是一种强大的数据分析工具,可以揭示变量间的潜在结构和关系,帮助决策者做出准确和可靠的 决策。 未来,随着数据科学和人工智能的发展,因子分析将在更多领域得到应用,成为决策支持和问题解决的重要手段。
参考文献
• 附录1:相关数学知识 • 附录2:实例数据和代码 • 附录3:常见因子分析软件介绍
3
最似然法(MLE)
MLE基于概率统计理论,通过最大化观测数 据与模型之间的似然函数来估计因子载荷。
主因子法(PAF)
PAF基于向量之间的相关系数,寻找具有最 大因子载荷的主要因子,从中提取对观测变 量具有最大解释力的因子。
因子分析的实例分析
数据准备及预 处理
根据特定问题的需求, 选择合适的数据集,并 对数据进行清理、转换 和标准化,以满足因子 分析的假设。
因子数的确定 和选择
根据特征值、解释度方 差贡献率、Scree图等 指标,确定最合适的因 子数,以提取最重要的 信息。
因子旋转和解 释度分析
使用旋转方法(如 Varimax、Promax等), 优化因子结构,同时通 过解释度判断模型的质 量和合理性。
结果分析和解读
对提取的因子模式进行 解释,结合领域知识和 实际情境,解读因子的 含义和影响,提出相关 建议和决策。
特征值和特征向量
特征值用于衡量因子的重要性, 而特征向量表示因子的方向和 权重。
旋转和解释度
旋转可以优化因子的解释度, 使其更易理解和解释,用以提 高模型的可解释性和可靠度。
因子分析的模型方法
1
主成分分析法(PCA)ቤተ መጻሕፍቲ ባይዱ
2
PCA通过线性变换将观测变量转化为无关变
量的线性组合,从中提取主要特征,以解释

因子分析数学模型

因子分析数学模型

因子分析数学模型一、引言因子分析是一种强大的统计方法,用于从一组变量中提取出潜在的公共因子。

这种方法在许多领域都有广泛的应用,包括社会科学、心理学、经济学和生物学等。

它的主要目标是减少数据集的维度,同时保留原始数据中的重要信息。

这种方法有助于解释变量之间的关系,揭示隐藏在数据中的结构。

本文将详细介绍因子分析的数学模型及其实现过程。

二、因子分析数学模型1、公共因子模型因子分析的公共因子模型可以表示为:X = AF + ε其中,X是观测数据矩阵,A是因子载荷矩阵,F是公共因子矩阵,ε是特殊因子矩阵。

这个模型的意思是,观测数据X可以由公共因子F和特殊因子ε加权组合而成。

公共因子代表了所有观测变量之间的共性,而特殊因子则代表了每个观测变量的独特性。

2、因子载荷矩阵因子载荷矩阵A描述了每个观测变量与公共因子之间的关系。

矩阵中的每个元素aij表示第i个观测变量在第j个公共因子上的载荷。

通过求解因子载荷矩阵,我们可以找出公共因子对观测变量的影响程度。

3、旋转矩阵在因子分析中,旋转矩阵是一种重要的工具,用于优化公共因子的解释。

旋转矩阵可以使得公共因子的解释更加直观和有意义。

常见的旋转方法包括方差最大旋转(varimax)和正交旋转(quartimax)等。

三、实现过程1、确定公共因子的数量在开始因子分析之前,我们需要确定公共因子的数量。

常见的确定公共因子数量的方法有基于特征值的方法、基于解释方差的方法以及基于碎石图的方法等。

2、求解因子载荷矩阵在确定了公共因子的数量后,我们需要求解因子载荷矩阵。

常用的求解方法有基于主成分分析的方法、基于最大似然估计的方法以及基于最小二乘法的方法等。

3、旋转因子载荷矩阵通过旋转因子载荷矩阵,我们可以优化公共因子的解释。

常见的旋转方法包括方差最大旋转和正交旋转等。

旋转后的因子载荷矩阵可以帮助我们更好地理解公共因子与观测变量之间的关系。

4、解释公共因子我们需要对提取的公共因子进行解释。

SAS讲义 第三十六课因子分析共17页word资料

SAS讲义 第三十六课因子分析共17页word资料

第三十六课 因子分析因子分析(Factor Analysis )是主成分分析的推广,它也是从研究相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。

具体地说,就是要找出某个问题中可直接测量的、具有一定相关性的诸指标,如何受少数几个在专业中有意义,又不可直接测量到,且相对对立的因子支配的规律,从而可用诸指标的测定来间接确定诸因子的状态。

一、 何为因子分析因子分析的目的是用有限个不可观察的潜在变量来解释原变量间的相关性或协方差关系。

在这里我们把不可观察的潜在变量称为公共因子(common factor )。

在研究样品时,每个样品需要检测很多指标,假设测得p 个指标,但是这p 个指标可能受到m (m <p )个共同因素的影响,再加上其他对这些指标有影响的因素。

写成数学的形式就是:⎪⎪⎩⎪⎪⎨⎧++++=++++=++++=pm pm p p p m m m m e f a f a f a X e f a f a f a X e f a f a f a X ΛΛΛΛΛ2211222221212112121111 (36.1)利用矩阵记号有111⨯⨯⨯⨯+=p m m P p e f A X(36.2)各个指标变量都受到i f 的影响,因此i f 称为公共因子,A 称为因子载荷矩阵,i e 是单变量i X 所特有的因子,称为i X 的特殊因子(unique factor )。

设1f ,2f ,…,m f 分别是均值为0,方差为1的随机变量,即m I f D =)(;特殊因子1e ,2e ,…,p e 分别是均值为0,方差为21d ,22d ,…,2p d 的随机变量,即D d d d e D p ==),,,diag()(22221Λ;各特殊因子之间及特殊因子与公共因子之间都是相互独立的,即j i e e Cov j i ≠=,0),(及0),(=f e Cov 。

因子分析课件-因素分析-详解全篇

因子分析课件-因素分析-详解全篇
④ “Extract”(抽取)选项框 A “Eigenvalues over”(特征值):后面的空 格默认为1,表示因素抽取时,只抽取特征值 大于1者,使用者可随意输入0至变量总数之间 的值。 B “Number of factors”(因子个数):选取 此项时,后面的空格内输入限定的因素个数。
共变异数矩阵 相关矩阵
B “Initial solution”(未转轴之统计量):显示 因素分析未转轴前之共同性、特征值、变异数 百分比及累积百分比。
单变量描述性统计量 未转轴之统计量
② “Correlation Matric”(相关矩阵)选项框 A “Coefficients”(系数):显示题项的相关矩 阵 B “Significance levels”(显著水准):求出前 述相关矩阵地显著水准。 C “Determinant”(行列式):求出前述相关矩 阵地行列式值。
案例 1
(5)设置因素分数:单击图1-1对话框中的“Scores…”按钮,弹出“Factor Analyze:Scores”(因素分析:因素分数)对话框。
① “Save as variable”(因素存储变量)选项框: 勾选时可将新建立的因素分数存储至数据文件
中,并产生新的变量名称(默认为fact_1、fact_2、 fact_3、fact_4等)。
直接斜交转轴法
四次方最大值法 相等最大值法 Promax转轴法
转轴后的解
因子负荷量 收敛最大迭代
图1-4 Factor Analyze:Rotation对话框
③ “Maximum Iterations for Convergence”:(收敛最大 迭代):
转轴时执行的迭代最多次 数,后面默认数字为25,表示 算法执行转轴时,执行步骤的 次数上限。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因子分析数学模型
因子分析数学模型
1、因子分析看基本思想
因子分析是一种旨在寻找隐藏在多变量数据中,无法直接观察到却影响或支配可观测变量的潜在因子,并估计潜在因子对可观测变量的影响程度,以及潜在因子之间的相关性的一种多元统计分析方法。

其基本思想是从分析多变量数据的相关关系入手,找到支配这种相关关系的少数几个相关独立的潜在因子,并通过建立起这些潜在因子与原变量之间的数量关系来预测潜在因子的状态,帮助发现隐藏在原变量之间的某种客观规律性。

因子分析和主成分分析都能起到清理多个原始变量内在结构关系的作用,但主成分分子重在综合原始变量信息,而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法。

因子分析法就是这些潜在因子的数学模型方法,它是在主成分的基础上构筑若干个意义较为明确的潜在因子,以它们为框架分析原变量,以考察原变量间的联系与区别。

2、因子分析的基本原理
3、因子分析的数学模型
假设对n例样品观测了p个指标,即,,…,,得到观测数据。

我们的任务就是从一组观测数据出发,通过分析各指标,,…,之间的相关性,找出支配作用的潜在因子,使得这些因子可以解释各个指标之间的相关性。

因子分析模型描述如下:
(1)X=(,,…,)是可观测随机变量,均值向量E(X)=0,协方差Cov(X)与相关矩阵R相等,(只要将变量标准化即可实现)。

(2)F=(,,…,)(m<=p)是不可测的向量,其均值E(F)=0,协方差矩阵Cov(F)=1,即向量的各分量是独立的。

(3)e=(,,…,)与F相互独立,且E(e)=0,e的协方差矩阵是对角矩阵,即各分量e之间是相互独立的。

则因子分析的数学模型如下:
由于该模型是针对变量进行的,各因子是正交的,所以也称为R型正交因子模型。

其矩阵形式为:X=AF+e。

其中:
X= A= F= , e=
对于因子分析,要求数据和模型满足以下假设条件:
●是均值为0、方差为1的随机变量;
●是均值为0 ,方差为常数的正太随机变量。

●,,…,不相关,且方差不同。

● Cov(F,e)=0,即F和e是相互独立的;
● D(F)=I,即,,…,不相关、均值为0方差为1.
我们把F称为X的公共因子或潜在因子,矩阵A称为因子载荷矩阵,e称为X 的特殊因子,它们是在各个变量中都出现的因子,我们可以把它们看做高维空间中所张起的相互垂直的m个坐标轴。

(i=1,2,…,p)表示影响的独特因子。

做因子载荷,它是第i个变量在第j个主因子上的负荷,或者叫做第i个变量在第j个主因子上的权,它反映了第i个变量在第j个主因子上的相对重要性。

(4)因子模型的性质
X的协方差矩阵如下:
=E(AF+e)(AF+e)'=AA'+
为了得到因子分析结果的合理解释,因子载荷矩阵A中有两个统计量十分重要,即变量公共度和潜在因子的方差贡献。

我们现在看看矩阵A的统计意义。

由因子分析数学模型的假设条件知:
i=1,2,…,m
因子载荷矩阵A中第i行元素之间平方和记为,称为变量的公共度。

即=,则有,i=1,2,…,m
是全部潜在因子对原始指标的方差所作出的贡献反映了全部潜在因子对变量的影响。

相关文档
最新文档