初三数学_函数及其图象专题复习教案

合集下载

【2014】(包头专版)中考数学复习方案专题课件_第5单函数及其图象【新课标人教版】

【2014】(包头专版)中考数学复习方案专题课件_第5单函数及其图象【新课标人教版】

二、三、四象限 ______________
考点聚焦
包考探究
第2节┃考点聚焦
考点3
两条直线的位置关系
直线l1:y=k1x+b1 和直线l2:y=k2x+ b2位置关系
相交
k1≠k2 l1和l2相交 ________
l 和l2平行 k______________ 1=k2,b1≠b2 1
平行
考点聚焦
一、二、三象限 _______________
y随x增 大而增大
一、三、四象限 ________________
考点聚焦
包考探究
第2节┃考点聚焦
函数
字母 取值
图象
经过的象限
函数性质
k<0, y=kx b>0 +b (k≠0) k<0, b<0,
一、二、四象限 ______________
y随x增 大而减小
类型一、坐标平面内点的坐标特征
例 1 [2012•扬州] 在平面直角坐标系中,点P(m,m-2)在 m>2 . 第一象限,则m的取值范围是________
考点聚焦
包考探究
第1节┃包考探究
解 析
由第一象限内点的坐标的特点可得 解得m>2.
m>0, m-2>0,
考点聚焦
包考探究
第1节┃包考探究
常量 与变 量
定义 关系
函数 的概 念
函数 定义 函数 值
一般地,在某个变化过程中,如果有两个变量x与y, 对于x的每一个确定的值,y都有唯一确定的值与之对 应,我们称x是自变量,y是x的函数 对于一个函数,如果当自变量x=a时,因变量y=b, 那么b叫做自变量的值为a时的函数值
考点聚焦

专题15 二次函数的图象及其性质(课件)2023年中考数学一轮复习课件(全国通用)

专题15 二次函数的图象及其性质(课件)2023年中考数学一轮复习课件(全国通用)

知识点梳理
知识点2:二次函数的图象和性质
1. 二次函数的图象:
二次函数的图象是一条关于 x b 对称的曲线,这条曲线叫抛物线.
2a
( 顶1点)是二(次函b 数,y=4aacx2+b2b)x+.c当(aa≠>00)的时图,象抛是物抛线物的线开,口抛向物上线,的函对数称有轴最是小直值线;当x a<20ba时,,
知识点梳理
知识点1:二次函数的概念
3. 用待定系数法求二次函数的解析式:
(1)若已知抛物线上三点Байду номын сангаас标,可设二次函数表达式为y=ax2+bx+c. (2)若已知抛物线上顶点坐标或对称轴方程,则可设顶点式:y=a(x-h)2+k,其 中对称轴为x=h,顶点坐标为(h,k). (3)若已知抛物线与x轴的交点坐标或交点的横坐标,则可采用两根式(交点式): y=a(x-x1)(x-x2),其中与x轴的交点坐标为(x1,0),(x2,0).
中考数学一轮复习
15 二次函数的图象及其性质
中考命题说明
考点
课标要求
考查角度
二次函数的 通过对实际问题情境的分析确定 常以选择题、填空题的形式考查二
1 意义和函数 二次函数的表达式,并体会二次 次函数的意义和函数解析式的求法,
表达式 函数的意义.
部分地市以解答题的形式考查.
①会用描点法画出二次函数的图 常以选择题、填空题的形式考查二
知识点2:二次函数的图象和性质
典型例题
C、∵二次函数对称轴是直线 x b = 1 , 2a 2
∴C错误; D、∵3(x+1)(2-x)=3x, ∴-3x2+3x+6=3x, ∴-3x2+6=0, ∵b2-4ac=72>0, ∴二次函数y=3(x+1)(2-x)的图象与直线y=3x有两个交点, ∴D正确; 故选:D.

初中函数图像优质课教案

初中函数图像优质课教案

初中函数图像优质课教案知识与技能:1. 了解一次函数、正比例函数、反比例函数的定义和性质。

2. 学会用描点法、解析法画出一次函数、正比例函数、反比例函数的图像。

3. 能够分析实际问题,选择合适的函数模型。

过程与方法:1. 通过观察、实验、探究等方法,发现一次函数、正比例函数、反比例函数的图像特点。

2. 学会用数形结合的思想方法分析函数问题。

情感态度价值观:1. 培养学生的团队合作精神,提高学生解决实际问题的能力。

2. 培养学生对数学的兴趣,激发学生学习函数的积极性。

二、教学内容:1. 一次函数的定义和性质。

2. 正比例函数的定义和性质。

3. 反比例函数的定义和性质。

4. 用描点法、解析法画一次函数、正比例函数、反比例函数的图像。

5. 实际问题中的函数模型选择。

三、教学过程:1. 引入:通过生活中的实例,引导学生思考函数的概念和作用。

2. 讲解:讲解一次函数、正比例函数、反比例函数的定义和性质,引导学生通过实验、观察发现函数图像的特点。

3. 实践:让学生动手用描点法、解析法画出一次函数、正比例函数、反比例函数的图像,培养学生的动手能力。

4. 应用:分析实际问题,让学生选择合适的函数模型,培养学生的应用能力。

5. 总结:通过总结,使学生对一次函数、正比例函数、反比例函数的概念、性质和图像有更深刻的理解。

四、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究。

2. 利用现代教育技术,如多媒体、网络等资源,提高教学效果。

3. 注重个体差异,因材施教,让每个学生都能在课堂上得到锻炼和发展。

4. 创设生动活泼的课堂氛围,鼓励学生积极参与,培养学生的创新精神。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、思维品质和合作能力。

2. 作业完成情况:检查学生对函数概念、性质和图像的理解和应用能力。

3. 实践报告:评估学生在实际问题中选择合适的函数模型的能力。

4. 学生自评、互评和他评:了解学生的学习情况,提高学生的自我认知和评价能力。

初三数学总复习函数及其图象相关定理

初三数学总复习函数及其图象相关定理

初三数学总复习教案(五)函数及其图象相关定理1. 一一对应:① 数轴上的点与实数一一对应。

② 坐标平面上的与有序实数对一一对应。

2.特殊位置的点的坐标特征:① 横坐标上的点⇔纵坐标为零。

② 纵坐标上的点⇔横坐标为零。

③ 平行于x 轴的直线上的点⇔纵坐标相等。

④ 平行于y 轴的直线上的点⇔横坐标相等。

⑤ 第一、三象限角平分线上的点⇔横、纵坐标相等[设A 点的坐标为(x,y )有x=y].⑥ 第二、四象限角平分线上的点⇔横、纵坐标互为相反数[设A 点的坐标为(x,y )有x= - y].2. 每一象限内点的坐标特征:设A (x,y )有① 第一象限内的点⇔x >0,y >0.② 第二象限内的点⇔x <0,y >0.③ 第三象限内的点⇔x <0, y <0.④ 第四象限内的点⇔x >0, y <0.3. 设平面上点A (x A ,y A ),点B (x B ,y B ):① AB 在x 轴上或平行于x 轴⇔AB=|x A - x B |。

② AB 在y 轴上或平行于y 轴⇔AB=|y A - y B |。

③ 点A 到原点的距离⇔OA=22A A y x +。

④ 平面上任意两点AB 的距离⇔AB=22)()(B A B A y y x x -+-。

4. 对称的点的坐标特征:① 点P (a,b )关于x 轴的对称点的坐标P 1(a,-b )。

即:点P 、P 1关于x轴对称⇔横坐标相同、纵坐标互为相反数。

② 点P (a,b )关于y 轴的对称点的坐标P 2(-a,b )。

即:点P 、P 2关于x轴对称⇔纵坐标相同、横坐标互为相反数。

③ 点P (a,b )关于原点对称的点的坐标P 3(-a,-b )。

即:点P 、P 3关于原点对称⇔横、纵坐标均互为相反数。

5.函数:设在一个变化过程中有两个变量x 、y ,对于x 的每一个值,y 都有唯一的值与它相对应,则y 叫做x 的函数。

其中x 是自变量。

6.函数的表示方法:解析法、图像法、列表法。

初三数学复习--九下 二次函数图象及其性质

初三数学复习--九下 二次函数图象及其性质

课题:二次函数图象及其性质一、课标与教材分析(一)课标要求:1、通过对实际问题的分析,体会二次函数的意义2、通过二次函数的图像了解二次函数的性质3、会用配方法将数字系数的二次函数的表达式化为2=-+的形式,()y a x h k 并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单的实际问题。

4、会用二次函数的图像求一元二次方程的近似解二、知识网络a>0三、学情分析:二次函数是中考必考内容,也是中考的重点内容,学生在学习的过程中往往出现对各个知识点的孤立的理解,不能将这些知识点有机地结合起来进行综合分析,在复习教学中要通过系统的分析、训练解决这一问题,帮助学生提高分析问题、理解问题、解决问题的能力。

本节课考点较多,涉及题目应分类整理,注意方法的总结与指导。

四、教学目标:知识技能:1、理解二次函数的概念2、掌握二次函数的图像和性质3、会画出二次函数的图像,求二次函数的关系式4、能灵活运用二次函数的有关性质解决实际问题数学思考:1、体会函数的模型思想2、经历借助图像思考问题的过程,初步建立几何直观问题解决:学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题。

情感态度:体会数学的实际应用价值。

五、教学重点、难点:会灵活运用二次函数的图像和性质解决数学问题六、教学方法与媒体:七、教学过程:【基础知识梳理】1.一般地如果y= (a、b、c是常数,a≠0)那么y叫做x的二次函数.2. 二次函数2=-+的图像和性质()y a x h ka>03. 二次函数c=2用配方法可化成()k+bxy+ax-=2的形式,其中h=y+axhk= .4. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.5. 二次函数c bx ax y ++=2中c b a ,,及b 2-4ac 的符号的确定.6.在抛物线y= ax 2+bx+c 中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号.则a 0, b 0, c 0,ac b 42- 0, a +b +c 0,a -b +c 0; 【基础知识诊断】1. 下列函数中,不是二次函数的是( )A.222y x x =+;B.213xy x =-++;C.221y x x =-+; D.()22y x x x =-+ 2. 将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 3. 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .4.二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)5.二次函数y=ax 2+bx+c 的图象如图所示, 则a 0, b 0, c 0,ac b 42- 0, a +b +c 0,a -b +c 0;【精典例题】例1 (2012•常州)已知二次函数y=a(x-2)2+c(a>0),当自变量x3、0时,对应的函数值分别:y1,y2,y3,,则y1,y2,y3的大小关系正确的是()A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3 D.y3<y1<y2例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)例3 (2012•玉林)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是()A.①② B.①③ C.②④ D.③④【当堂训练】一、选择题(每小题有四个选项,只有一个选项是正确的.)1.抛物线4y的顶点坐标是()22-=xA.(1,-2) B.(0,-2) C.(1,-3) D.(0,-4)2.对抛物线y = -x2+2x-3而言, 下列结论正确的是( )A. 与x轴有两个交点B. 开口向上C. 与y轴的交点坐标是(0, 3)D. 顶点坐标是(1, -2)3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,•则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()A.1个B.2个C.3个D.4个4.(2012四川巴中)对于二次函数y2(x1)(x3)=+-,下列说法正确的是().A. 图象的开口向下B. 当x>1时,y随x的增大而减小C. 当x<1时,y随x的增大而减小D. 图象的对称轴是直线x=-15.(2011安徽芜湖)二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( ).二、填空题1.抛物线y =2x 2+4x+5的对称轴是x=_________2.抛物线432-+=x x y 与y 轴的交点坐标是 ,与x 轴的交点坐标是 .3.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 .4.(2012江苏苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+1的图象上,若x 1>x 2>1,则y 1 y 2.5. (2011山东日照)如图,是二次函数 y =ax 2+bx +c (a ≠0)的图象的一部分, 给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0.其中正确的命题是 .(只要求填写正确命题的序号)提升训练一、选择题(每小题有四个选项,只有一个选项是正确的.)(-2,1. (2011山东潍坊)已知一元二次方程20(0)ax bx c a ++= >的两个实数根1x 、2x 满足124x x +=和123x x =,那么二次函数2(0)y ax bx c a =++ >的图象有可能是( )2. (2012山东济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是 A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =-1时,y 的值大于1D .当x =-3时,y 的值小于03. (2010湖北孝感)如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①ac <0;②a+b=0;③4ac -b 2=4a ;④a+b+c <0.其中正确的个数是( ) A. 1 B. 2 C. 3D. 44.(2012•河北)如图,抛物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论: ①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4;④2AB=3AC ; 其中正确结论是( )A .①② B .②③ C .③④ D .①④5.(2012•德阳)设二次函数y=x 2+bx+c ,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A .c=3B .c ≥3C . 1≤c ≤3D .c ≤3二、填空题1.(2011江苏扬州)如图,已知函数xy 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x3+=0的解为2.(2012•玉林)二次函数y=-(x-2)2+94的图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有 个(提示:必要时可利用下面的备用图画出图象来分析).3.(2012•长春)在平面直角坐标系中,点A 是抛物线y=a (x-3)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .4.(2012•孝感)二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc <0; ②a-b+c <0; ③3a+c <0; ④当-1<x <3时,y >0. 其中正确的是 (把正确的序号都填上).x2平移得到抛物线m,抛物线m经过点A 5.(2012•广安)如图,把抛物线y=12x2交于点(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12Q,则图中阴影部分的面积为.三、解答题1.(2011·贵阳)如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A (3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标.若把条件x>0,y>0去掉,则会有几个满足条件的点D?1x2+bx-2与x轴交于A、B两点,与y 2. (2011贵州安顺)如图,抛物线y=2轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.3.(2012北京市)已知二次函数23=++++在x0=和x2=时的函数值相y(t1)x2(t2)x2等。

二次函数及其图象和性质(一)教案

二次函数及其图象和性质(一)教案

教学过程一、复习预习我们已经学了一次函数,请大家回忆一下1.一次函数的定义2.一次函数的图像①画图②待定系数法求解析式3.一次函数的性质本节课我们将继续学习二次函数,请同学们先来看我们手里的课本复页.二、知识讲解提问:在式子2510060000y x x =-++中,y 是x 的函数吗?若是,与我们以前学过的函数相同吗?若不相同,那是什么函数呢?答案:根据函数的定义,可知y 是x 的函数,与以前学过的一次函数不同,猜想它是二次函数。

该式子的特征是①含两个变量x (自变量)、y (因变量);②式子右边有三项:二次项、一次项、常数项,最高次项是2次。

1.二次函数定义:一般地,形如2y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做x 的二次函数. 注意:定义中只要求二次项系数a 不为零(必须存在二次项),一次项系数b 、常数项c 可以为零。

2.二次函数基本形式: 2y a x =的图像性质: 画图步骤(1)列表:画二次函数的图象,必须先配方找到顶点,再将x 取五个数,正中取顶点,向两边平均取点;(2)描点:根据表格中每个(,)x y 的实数对,在坐标系中描出相应的点;(3)连线:按照从左到右的顺序沿着各点用平滑的线连起来。

2y a x c =+的性质:上加下减()2y a x h =-的性质: 左加右减()2y a x h k =-+的性质: 左加右减,上加下减注意:(1)a 的绝对值越大,抛物线的开口越小.(2)理解并掌握平移的过程,由2y ax c =+,()2y a x h =-的图象与性质及上下平移与左右平移的规律:将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律:概括成八个字“左加右减,上加下减”. 考点/易错点1定义中只要求二次项系数a 不为零(必须存在二次项),一次项系数b 、常数项c 可以为零。

中考数学函数及其图象复习教案

中考数学函数及其图象复习教案

中考数学函数及其图象复习教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2O y x-1-2-3-3-2-1231132(+,-)(+,+)?(-,-)(-,+)⎪⎩⎪⎨⎧) b - , a - () b , a - ()b - , a (第三篇 函数及其图象专题九 平面直角坐标系一、考点扫描 一、平面直角坐标系1. 坐标平面上的点与有序实数对构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征。

4. 点P (a ,b )关于 对称点的坐标5、两点之间的距离6、线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A则2,2210210y y y x x x +=+=二、函数的概念1、概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。

2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义 3.函数的表示方法; (1)解析法 (2)列表法(3)图象法 二、考点训练1、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2、点P (-1,-3)关于y 轴对称的点的坐标是( )(A )(-1,3) (B )(1,3) (C )(3,-1)(D )(1,-3)3、(2005年重庆市)点A (m-4,1-2m )在第三象限,则m 的取值范围是( ) A .m>12B .m<4C .12<m<4 D .m>44、(2006年怀化市)放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,图(1)、图(2)分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了________千克.”5、菱形边长为6,一个内角为120°,它的对角线与两坐标轴重合,则菱形四个顶点的坐标分别是6、(2006年南京市)在平面直角坐标系中,ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧原点轴轴y x 21212211P P )0()0()1(x x x P x P -=, , ,, 21212211P P )0()0()2(y y y P y P -=, ,,,22122121222111)()()()()3(y y x x P P y x P y x P -+-=,,,,(第6题) (第7题)7、(2006年长春市)如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′,•若点A的坐标为(a,b),则点A′的坐标为()A.(a,-b) B.(b,a) C.(-b,a) D.(-a,b)8、(2006年贵阳市)小明根据邻居家的故事写了一道小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y•表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,•那么下面的图象与上述诗的含义大致吻合的是()三、例题剖析1、(06年益阳)在平面直角坐标系中,点A、B、C 的坐标分别为A(-•2,1),B(-3,-1),C(1,-1).若四边形ABCD为平行四边形,那么点D的坐标是________.2、(2006年绍兴市)如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2006次,点P依次落在点P1,P2,P3,P4,…P2006的位置,则P2006的横坐标X2006=_______.3、(2006年茂名市)如图,在平面直角坐标系XOY中,直角梯形OABC,BC∥AO,A(-2,0),B(-1,1),将直角梯形OABC绕点O顺时针旋转90°后,点A、B、C分别落在A′、B′、C′处.请你解答下列问题:(1)在如图直角坐标系XOY中画出旋转后的梯形O′A′B′C′.(2)求点A旋转到A′所经过的弧形路线长.4、(2006年烟台市)先将一矩形ABCD置于直角坐标系中,使点A•与坐标系中原点重合,边AB、AD分别落在x轴、y轴上(如图1),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B的坐标为______,点C•的坐标为_______.四、综合应用1、2006年常州市)在平面直角坐标系中描出下列各点A(2,1),B(0,1),C(-4,3),D(6,3),并将各点用线段依次连接构成一个四边形ABCD.(1)四边形ABCD是什么特殊的四边形?(2)在四边形ABCD内找一点P,使得△APB、△BPC、△CPD、△APD•都是等腰三角形,请写出P点的坐标.34专题十 一次函数及反比例函数其应用一、考点扫描 1、一次函数(1)、一次函数及其图象如果y=kx+b (k ,b 是常数,k ≠0),那么,y 叫做x 的一次函数。

初中数学函数图像教案模板(共4篇)

初中数学函数图像教案模板(共4篇)

初中数学函数图像教案模板(共 4 篇)第1 篇:初中函数数学教案函数初中数学教案教学目标:1:是学生分清楚变量与常量,以及会判断哪些量是变量2:理解函数的概念,分清自变量以及应变量,同时会判断一个变量是不是另一个的函数, 3:能从实际题目中抽象出函数关系,并且会列出函数解析式 4:理解函数的定义域,并会求函数的定义域,以及函数值 5:理解函数的记号y f(x)教学重点: 1:函数的概念2:由题目写出函数解析式以及会求定义域和函数值教学难点:1:函数的概念2:函数的本质:一个变量取定一个值,另一个变量有且只有唯一的一个值与之对应 3:函数的记号:y f(x)教学过程1:量、数、数量在物理中我们学过很多“量”,比如说:质量,长度,重量,面积,体积,密度,速度,路程,时间等等很多,而“量”是表示事物的某些属性,比如:质量同时我们用“数”来表示“量”的大小,将“数”与“度量单位”合在一起就是“数量”,比如说:一个物体质量为 5kg,一个圆的半径是 5cm 等等 2:变量与常量请同学们看课本 52 页的问题 1 题中的 r0 是一个不变的值,而 r 和 a 都是可以取不同的值,正如我们以前学的用字母表示数,这个字母可以表示不同的数,它是一个变化的,不是确定的。

而这样的在我们的研究过程中,可以取不同数值的量叫做“变量”,与之相对的保持数值不变的量叫做“常量”(或常数)a2 此题中我们可以得到:r r0 (米),我们可以看出 r 与 a 是有关系的,也就是说在 a 在变化时 r 也在变化,当 a 确定时,r 也随之确定,即:r 与 a 之间存在一种依赖关系。

同学们再看 53 页的问题 2 请同学回答问题 3如图等腰直角三角形 ABC,其中∠C=90°,AB=10cm,E 为BC 上一点,设 BE 等于x,求阴影部分的面积 y,并求 x 的取值范围3:函数的概念通过三个问题我们引出函数的概念:一般地,设在一个变化过程中有两个变量 x、y,如果在变量 x 的允许取值范围内,变量 y 随着x 的变化而变化,且对于 x 的每一个值,y 都有唯一的值与它对应,那么我们就说,变量 y 是变量 x 的函数.X 称为自变量,y 称为应变量(因变量),我们知道问题 1,2,3 中的两个变量就是一种函数关系。

中考一轮复习教案之函数及其图象

中考一轮复习教案之函数及其图象

1专题十一次函数及反比例函数其应用1、反比例函数(1) 反比例函数及其图象如果)0,(≠=kkxky是常数,那么,y是x的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K>0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y随x的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。

3.待定系数法先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式二、考点训练1、若函数y=(m2-1)x235m m+-为反比例函数,则m=________.2、若一次函数y=2x222m m--+m-2的图象经过第一、第二、三象限,则m= .3、(2006年常德市)已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=•的图象上的三点,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y2<y3<y14、已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为()5、(2006年威海市)如图,过原点的一条直线与反比例函数y=kx(k<0)的图像分别交于A、B两点,若A点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(-b,-a) D.(-a,-b)(第5题)(第6题)6、(06年长春市)如图,双曲线y=8x的一个分支为()A.① B.② C.③ D.④7、如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0的解集是()A.x>0 B.x>2 C.x>-3 D.-3<x<28、(2006年贵阳市)函数y1=x+1与y2=ax+b的图象如图所示,•这两个函数的交点在y轴上,那么y1、y2的值都大于零的x的取值范围是_______.9、(2005年杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限10、(2006年绍兴市)如图,一次函数y=x+5的图象经过点P(a,b)和点Q(c,d),•则a(c-d)-b(c-d)的值为________.11、(2006年重庆市)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是________.12、(2006年安徽省)一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________.三、例题剖析1、(2006年南京市)某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x≤40和x≥40时y与x之间的关2系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?2、(2006年吉林省)小明受《乌鸦喝水》故事的启发,• 利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm ; (2)求放入小球后量筒中水面的高度y (cm )与小球个数x (个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?3、(06年烟台市)如图,一次函数y=kx+b 的图象与反比例函数y=m x图象交于A (-2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.4、(2006年重庆市)如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是_________.5、(2006年伊春市)某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程;加工过程中,当油箱中油量为10升时,•机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y (升)与机器运行时间x (分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y (升)与机器运行时间x (分)之间的函数关系式(不必写出自变量x 的取值范围); (2)机器运行多少分钟时,第一个加工过程停止? (3)加工完这批工件,机器耗油多少升?应用与探究1、某厂从2002年起开始投入技术改进资金,经技术改进后,•某产品的生产成本不断降低,具体数据如下表:次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式; (2)按照这种变化规律,若2006年已投入技改资金5万元.①预计生产成本每件比2005年降低多少万元?②如果打算在2006年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)3专题十一 二次函数图象及其性质 一、考点扫描1、理解二次函数的概念:y=ax 2+bx+c(a,b,c 是常数,a ≠0)2、会把二次函数的一般式化为顶点式,确定图象的顶点坐标)44,2(2ab ac a b --、对称轴ab x 2-=和开口方向,会用描点法画二次函数的图象; 3、会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(x +k)2+h 的图象,了解特殊与一般相互联系和转化的思想;4、会用待定系数法求二次函数的解析式;5、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。

2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。

3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。

二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。

2. 教学难点:通过图像理解和应用二次函数的性质。

三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。

四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。

2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。

3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。

4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。

五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。

六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。

专题13 一次函数的图象及其性质(课件)2023年中考数学一轮复习(全国通用)

专题13 一次函数的图象及其性质(课件)2023年中考数学一轮复习(全国通用)

知识点2:一次函数的图象及其性质
典型例题
【例5】(2022•兰州)若一次函数y=2x+1的图象经过点(-3,y1),(4,y2),
则y1与y2的大小关系是( )
A.y1<y2
B.y1>y2
C.y1≤y2
D.y1≥y2
【解答】解:∵一次函数y=2x+1中,k=2>0, ∴y随着x的增大而增大. ∵点(-3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,-3<4, ∴y1<y2. 故选:A.
知识点2:一次函数的图象及其性质
知识点梳理
5. 一次函数图象的平移: 直线y=kx+b(k≠0,b≠0)可由直线y=kx(k≠0)向上或向下平移得到. 当b>0时,将直线y=kx向上平移b个单位长度,得到直线y=kx+b; 当b<0时,将直线y=kx向上平移|b|个单位长度,得到直线y=kx+b.
1,
2
∴A(-3,0),B(-1,2),
∴△AOB的面积 1 3 2 3 . 2
故选:B.
知识点2:一次函数的图象及其性质
典型例题
【例14】(3分)(2021•呼伦贝尔•兴安盟17/26)如图,点B1在直线l:y
1 2
x
上,
点B1的横坐标为1,过点B1作B1A1⊥x轴,垂足为A1,以A1B1为边向右作正方形
知识点2:一次函数的图象及其性质
典型例题
【例9】(2022•永州)已知一次函数y=x+1的图象经过点(m,2),则m=

【分析】由一次函数y=x+1的图象经过点(m,2),利用一次函数图象上点 的坐标特征可得出2=m+1,解之即可求出m的值. 【解答】解:∵一次函数y=x+1的图象经过点(m,2), ∴2=m+1, ∴m=1. 故答案为:1.

2014中考复习专题教学案第三章函数及其图象

2014中考复习专题教学案第三章函数及其图象

第三章 函数及其图象第十一讲:平面直角坐标系与函数【基础知识回顾】一、 平面直角坐标系:1、定义:具有 的两条 的数轴组成平面直角坐标系,两条数轴分别称 轴 轴或 轴 轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个2、有序数对:在一个坐标平面内的任意一个点可以用一对 来表示,如A (a .b ),(a .b )即为点A 的 其中a 是该点的 坐标,b 是该点的 坐标平面内的点和有序数对具有 的关系。

3、平面内点的坐标特征① P (a .b ):第一象限 第二象限第三象限 第四象限X 轴上 Y 轴上②对称点: P (a ,b )③特殊位置点的特点:P (a .b )若在一、三象限角的平分线上,则 若在二、四象限角的平分线上,则④到坐标轴的距离:P (a .b )到x 轴的距离 到y 轴的距离 到原点的距离 ⑤坐标平面内点的平移:将点P (a .b )向左(或右)平移h 个单位,对应点坐标为 (或 ),向上(或下)平移k 个单位,对应点坐标为 (或 )。

【名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论。

】二、确定位置常用的方法:一般由两种:1、 2、 。

三、函数的有关概念:1、常量与变量:在某一变化过程中,始终保持 的量叫做常量,数值发生 的量叫做变量。

【名师提醒:常量与变量是相对的,在一个变化过程中,同一个量在不同情况下可以是常量,也可能是变量,要根据问题的条件来确定。

】2、函数:⑴、函数的概念:一般的,在某个 过程中如果有两个变量x 、y ,如果对于x 的每一个确定的值,y 都有 的值与之对应,我们就成x 是 ,y 是x 的 。

⑵、自变量的取值范围:主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况②、实际问题有意义的条件:必须符合实际问题的背景⑶、函数的表示方法:通常有三种表示函数的方法:①、 法②、 法③、 法 ⑷、函数的同象:对于一个函数,把自变量x 和函数y 的每对对应值作为点的 与在平面内描出相应的点,符合条件的所有的点组成的图形叫做这个函数的同象关于y 轴的对称点关于y 轴的对称点 关于原点的对称点【名师提醒:1、在确定自变量取值范围时要注意分式和二次根式同时存在,应保证两者都有意义,即被开方数应同时分母应。

九年级数学中考复习-函数及其图像专题-二次函数的图像3教案

九年级数学中考复习-函数及其图像专题-二次函数的图像3教案

一、素质教育目标(一)知识教学点1.使学生会用描点法画出二次函数y=ax2+k与y=a(x-h的图象;2.使学生了解抛物线y=ax2+k与y=a(x-h)2的对称轴与顶点;3.了解抛物线y=ax2+k与y=a(x-h)2同y=ax2的位置关系.(二)能力训练点:1.继续通过画图的教学,培养学生的动手能力;2.培养学生观察、分析、总结的能力;3.继续向学生进行数形结合的数学思想方法的渗透.(三)德育渗透点:向学生渗透事物总是不断运动、变化和发展的观点.二、教学重点、难点和疑点1.教学重点:画出形如y=ax2+k与形如y=a(x-h的二次函数的图象;能指出上述函数图象的开口方向,对称轴,顶点坐标.因为画出函数图象,是我们研究函数性质的重要方法,只有在准确的图象启发下,我们才能正确得出函数图象的变化趋势和性质,而这些特殊二次函数问题的研究,又是我们研究一般二次函数的基础.2.教学难点:恰当地选值列表,正确地画出形如y=ax2+k和形如y=a(x-h的函数图象.因为二次函数的图象,随着我们研究越来越深入,越来越一般,画起来也就越来越复杂,而恰当地选值,是画出二次函数图象,并能使我们从图象正确得出结论的关键.三、教学步骤(一)明确目标提问:1.什么是二次函数?2.我们已研究过了什么样的二次函数?3.形如y=ax2的二次函数的开口方向,对称轴,顶点坐标各是什么?通过这三个问题,进一步复习巩固所学的知识点,同时引出本节课要学习的问题.从这节课开始,我们就来研究二次函数y=ax2+bx+c的图象.(板书)(二)整体感知复习提问:用描点法画出函数y=x2的图象,并根据图象指出:抛物线y=x2的开口方向,对称轴与顶点坐标.教师可边提问边在黑板上列出表格,同时在事先准备好的有坐标系的小黑板上画出该函数的图象,然后可以找层次较低的学生来指出抛物线y=x2的开口方向,对称轴及顶点坐标,针对学生的回答情况加以总结,评价.下面,我们来看一下如何完成下面的例题?(出示幻灯)例1 在同一平面直角坐标系内画出函数y=与y=的图象.可以由学生先选择好自变量的值列表,就列在刚才复习中画函数y=x2的图象所列的表下面.如下表:列完表之后,可以让一名同学上黑板,把这两个函数的图象画在刚才复习中画有函数y=x2的图象的小黑板上,以便于下面的比较,其他同学在练习本上完成,教师巡回指导,等上黑板的同学画完,再集中加以总结即可.然后,由学生来观察小黑板上画出的三条抛物线,让学生思考下列问题:(1)抛物线y=的开口方向,对称轴与顶点坐标是什么?(2)抛物线y=x2-1的开口方向,对称轴与顶点坐标是什么?这两个问题可以由图象直接得到,可适当找一些层次较低的学生来回答,给他们以表现的机会.(3)抛物线y=x2+1,y=x2-1与y=x2的开口方向,对称轴,顶点坐标有何异同?(4)抛物线y=x2+1,y=x2-1与y=x2有什么关系?通过这两个问题,可使学生深入理解这三条抛物线之间的联系与区别,便于学生以后分析问题.答:形状相同,位置不同.关于上述回答可继续提问:(可按学生的层次不同来选择问题的深度)①你所说的形状相同具体是指什么?答:抛物线的开口方向和开口大小都相同.②根据你所学过的知识能否回答:为何这三条抛物线的开口方向和开口大小都相同?答:因为a的值相同.通过这一问题,使学生对此类问题形成规律:抛物线的形状相同就说明a的值相同,而a的值相同就可以说抛物线的形状相同.加深学生对系数a的作用的理解.③这三条抛物线的位置有何不同?它们之间可有什么关系?先由学生思考,讨论之后,给出答案.答:若沿y轴平移,这三条抛物线可重合.④抛物线y=x2+1是由抛物线y=x2沿y轴怎样移动了几个单位得到的?抛物线y=x2-1呢?答:抛物线y=x2+1是由抛物线y=x2沿y轴向上平移1个单位得到的;而抛物线y=x2-1是由抛物线y=x2沿y轴向下平移1个单位得到的.⑤你认为是什么决定了会这样平移?答:y=ax2+k中的k的值决定了会这样平移.若k>0,则向上平移,若k<0,则向下平移.练习题1由学生独立完成,口答.下面,我们再来看一类二次函数的图象:(出示幻灯)的图象.注意:画这两个图形时,参考前面画图列表时x的取值都是关于某一个值对称的,可先让学生猜测画这两个图时x的取值各以应什么数为中间点,然后左右能对称.通过这样的训练能帮助学生以后自主考虑问题时怎样找思路.列完表之后,与例1一样处理,找一名同学板演,教师最好能事先。

初中所有函数及其图像教案

初中所有函数及其图像教案

初中所有函数及其图像教案教学目标:1. 理解函数的概念,掌握函数的性质。

2. 学会绘制常见函数的图像。

3. 能够运用函数图像解决实际问题。

教学内容:1. 函数的概念与性质2. 常见函数的图像3. 函数图像的应用教学过程:一、导入(5分钟)1. 引入函数的概念:给出函数的定义,举例说明函数的概念。

2. 引导学生思考函数的性质:单调性、奇偶性、周期性等。

二、探究常见函数的图像(15分钟)1. 正比例函数:引导学生观察正比例函数的图像,分析其特点。

2. 反比例函数:引导学生观察反比例函数的图像,分析其特点。

3. 二次函数:引导学生观察二次函数的图像,分析其特点。

4. 三角函数:引导学生观察三角函数的图像,分析其特点。

三、函数图像的应用(15分钟)1. 图像变换:引导学生学习函数图像的平移、缩放等变换方法。

2. 实际问题:给出实际问题,引导学生运用函数图像解决问题。

四、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学内容。

2. 教师批改练习题,及时反馈学生的学习情况。

五、总结与反思(5分钟)1. 让学生总结本节课所学内容,巩固知识点。

2. 教师引导学生反思学习过程,提高学生的学习效果。

教学评价:1. 学生能够理解函数的概念,掌握函数的性质。

2. 学生能够绘制常见函数的图像,并理解其特点。

3. 学生能够运用函数图像解决实际问题。

教学资源:1. 函数图像展示软件。

2. 练习题。

教学建议:1. 注重引导学生主动探究,培养学生的动手能力。

2. 注重理论联系实际,提高学生的应用能力。

3. 注重学生之间的合作与交流,培养学生的团队精神。

以上是关于初中所有函数及其图像的教案,希望对您有所帮助。

【聚焦中考】(陕西)2015中考数学总复习 第11讲 一次函数及其图象教学案

【聚焦中考】(陕西)2015中考数学总复习 第11讲 一次函数及其图象教学案

第11讲一次函数及其图象某某《中考说明》某某2012~2014年中考试题分析考点归纳考试要求年份题型题号分值考查内容分值比重考点1一次函数和正比例函数的概念————————————考点2一次函数的图象与性质1.会画一次函数的图象;2.会利用一次函数的图象求一元一次方程、二元一次方程组的解;3.根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k >0或k<0时,图象的变化情况)及一次函数图象的性质,题型为选择题,分值为3分,对于正比例函数和一次函数图象的性质,经常会与反比例函数图象的性质结合起来进行考查,预计在2015年的中考中,仍会延续以往考查方式进行考查,考生在复习时应熟练掌握本节的知识点,通过做习题多加训练,以便从容应考.1.一次函数和正比例函数概念形如函数__y =kx +b(k ,b 都是常数,且k≠0)__叫做一次函数,其中x 是自变量.特别地,当b =0时,则把函数__y =kx__叫做正比例函数.2.正比例函数y =kx 的图象过__(0,0),(1,k)__两点的一条直线.3.正比例函数y =kx 的性质(1)当k >0时,__y 随x 的增大而增大__; (2)当k <0时,__y 随x 的增大而减小__. 4.一次函数y =kx +b 的图象5.一次函数y =kx +b 的性质 过__(0,b),(-bk ,0)__的一条直线.(1)__当k >0时,y 随x 的增大而增大__; (2)__当k <0时,y 随x 的增大而减小__.6.一次函数与一元一次方程,一元一次不等式的关系(1)从数的方面看,一次函数y =kx +b(k≠0)的值为0时,相应的自变量的值为方程kx +b =0(k≠0)的__解__,一次函数y =kx +b(k≠0)的值大于(或者小于)0,相应的自变量的值为不等式kx +b >0(k≠0)(或kx +b <0,k ≠0)的__解集__.(2)从形的角度看,一次函数y=kx+b(k≠0)的图象与x轴的交点的__横坐标__就是方程kx+b=0(k≠0)的解.注意:不等式的解集有时可由对应的函数图象直接得出,不等式大于0的解集就是函数图象在x轴上方的部分的自变量的取值,不等式小于0的解集就是函数图象在x轴下方的部分的自变量的取值.7.二元一方程与一次函数的关系(1)a.任意一个二元一次方程都可化成y=kx+b的形式,即每个二元一次方程都对应一个__一次__函数,也对应一条直线;b.直线y=kx+b的每一个横、纵坐标均为这个二元一次方程__y-kx=b__的解.(2)二元一次方程组与一次函数的关系a.二元一次方程组中的每个方程可看作一个一次函数解析式;b.求二元一次方程组的解可以看作求两个一次函数__交点__的坐标.注意:一次函数y=kx+b与直线y=kx+b的联系与区别,它们的图象形状都是直线,但前者k≠0,b为任意实数,后者k,b都可以为任意实数.一个方法待定系数法是求一次函数解析式的常用方法,一般是先设待求的函数关系式(其中含有未知常数),再根据条件列出方程或方程组,通过解方程或方程组,求出未知系数,从而得到所求函数解析式的方法.即表示如下:函数解析式y=kx+b 选取解出满足条件的两定点(x1,y1)与(x2,y2)画出选取一次函数的图象:直线l两个区别(1)正比例函数和一次函数的区别正比例函数是一次函数的特殊情况,一次函数包括正比例函数.也就是说:如果一个函数是正比例函数,那么一定是一次函数,但是,一个函数是一次函数,不一定是正比例函数.(2)正比例和正比例函数的区别成正比例的两个量之间的函数关系不一定是正比例函数,但正比例函数的两个量一定成正比例.1.(2014·某某)若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是( C)A .14B .-14C .1D .-12.(2013·某某)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n ,3),那么一定有( D )A .m>0,n>0B .m>0,n<0C .m<0,n>0D .m<0,n<03.(2013·某某)根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( A )x -2 0 1 y3pA .1B .-1C .3D .-4.(2012·某某)下列四组点中,可以在同一个正比例函数图象上的一组点是( A )A .(2.-3),(-4,6)B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2, 3),(-4,6)5.(2012·某某)在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5图象交于点M ,则点M 的坐标为( D )A .(-1,4)B .(-1,2) C.(2,-1) D .(2,1)待定系数法求一次函数的解析式【例1】 (2014·某某)设一次函数y =kx +b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k ,b 的值.解:把A(1,3),B(0,-2)代入y =kx +b 得⎩⎪⎨⎪⎧k +b =3,b =-2,解得⎩⎪⎨⎪⎧k =5,b =-2,即k ,b 的值分别为5,-2【点评】 (1)k ,b 是一次函数y =kx +b 的未知系数,这种先设待求函数关系式,再根据条件列出方程或方程组,求出未知数,从而得出所求结果的方法,就是待定系数法.(2)函数中常用的方法还有代入法.1.(2013·某某)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值X围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.解:(1)直线y=-x+b交y轴于点P(0,b),由题意得b>0,t≥0,b=1+t,当t=3时,b=4,∴y=-x+4 (2)当直线y=-x+b过M(3,2)时,2=-3+b,解得b=5,5=1+t,∴t=4,当直线y=-x+b过N(4,4)时,4=-4+b,解得b=8,8=1+t,∴t =7,∵点M,N位于l的异侧,∴4<t<7 (3)t=1时,落在y轴上;t=2时,落在x轴上一次函数与一次方程、一次不等式综合问题【例2】(1)已知一次函数y=ax+b(a≠0)中,x,y的部分对应值如下表,那么关于x的方程ax+b=0的解是__x=2__.x -1 0 1 2 3 4y 6 4 2 0 -2 -4(2)若直线y=-x+b>0的解集是__x <2__.【点评】 进一步熟悉函数图象的作法,通过图象体会一次函数与一元一次方程、一元一次不等式的内在联系,提高识图能力.一次函数y =kx +b ,当y =0,则kx +b =0,得到一元一次方程,当y >0,则有kx +b >0,得到一元一次不等式.2.(2014·某某)如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x≥ax +4的解集为( A )A .x ≥32B .x ≤3C .x ≤32D .x ≥3试题 如图,O 为矩形ABCD 的中心,将直角三角板顶点与O 重合,转动三角板使两直角边始终与BC ,AB 相交,交点分别为M ,N ,如果AB =4,AD =6,OM =x ,ON =y ,则y 与x 的关系式是( )A .y =23xB .y =6xC .y =xD .y =32x错解 B剖析 此题看起来有些无从下手,易估计直角三角形顶点与矩形ABCD 的中心O 重合时,转动三角板,与矩形重合的面积不变,即S 矩形OEBF =14×4×6(即取直角三角板的特殊情形),则易错误地得到x·y =6,即y =6x .但实际上,过点O 作AB ,BC 的垂线,垂足分别为点E ,F ,如图所示.由于∠FOM+∠EOM =90°,∠EON +∠EOM=90°,所以∠EON=∠FOM ,又∠OEN =∠OFM=90°,因此△OFM∽△OEN,则ON OM =OE OF =32,即y =32x ,此时,可看出S △OEN ∶S △OFM =(OE∶OF)2=9∶4,所以,,用特殊位置、特殊值来考虑一般情形.正解 D。

函数的图像的教案

函数的图像的教案

函数的图像教案一、教学目标1. 了解什么是函数的图像。

2. 学习如何绘制函数的图像。

3. 掌握函数图像在数轴上的显示。

4. 理解函数图像与函数的关系。

二、教学准备1. 黑板、白板或投影仪2. 教学笔、粉笔或白板笔3. 教学用纸、尺子和画笔4. 函数图像的练习题三、教学步骤1. 引入函数图像的概念(5分钟)教师可以通过例子来引入函数图像的概念。

例如,让学生想象一个简单的函数,比如y = x,然后通过替换x的值来绘制对应的点。

这样学生就可以理解函数图像是由多个点构成的。

2. 解释如何绘制函数图像(10分钟)教师可以从绘制简单函数图像开始,如y = x、y = x^2等。

解释每个点的坐标表示函数的值。

教师可以使用数轴来帮助学生理解函数图像在数轴上的显示。

3. 学生实践绘制函数图像(20分钟)让学生用纸和铅笔练习绘制函数图像。

教师可以在黑板上展示一个函数,然后让学生在纸上模仿绘制。

教师要定期检查学生的进展,并提供指导和帮助。

4. 讨论函数图像与函数的关系(10分钟)教师可以与学生讨论函数图像与函数的关系。

例如,学生可以观察到函数图像的形状如何随着函数的不同而变化。

教师可以向学生提供一些函数曲线的例子,并让学生观察它们的特点和规律。

5. 练习题和作业(15分钟)教师可以提供一些练习题,让学生在课堂上完成。

这些练习题可以包括绘制函数图像、写出函数图像的方程等。

教师可以选取一些具有挑战性的问题,以鼓励学生思考和探索。

6. 总结与反馈(10分钟)教师可以对课堂内容进行总结,并回顾学生所学的知识和技能。

同时,教师可以向学生征求反馈,了解课堂教学的效果和学生的进展。

四、教学评估教师可以通过学生的练习题和作业来评估学生对函数图像的理解和掌握程度。

此外,教师也可以通过课堂表现和参与度来评估学生对相关概念的理解和运用能力。

五、拓展延伸教师可以引导学生进一步学习函数图像的概念和绘制技巧。

学生可以自主选择更复杂的函数,如三次函数、指数函数等,并学习如何绘制它们的图像。

函数的图像教案初中

函数的图像教案初中

教案:函数的图像教学目标:1. 理解函数的概念,掌握函数的表示方法。

2. 学会绘制简单的函数图像,并能分析图像的性质。

3. 能够运用函数图像解决实际问题。

教学重点:1. 函数的概念和表示方法。

2. 函数图像的绘制和分析。

教学难点:1. 函数图像的绘制和分析。

教学准备:1. 教学课件或黑板。

2. 函数图像的示例。

教学过程:一、导入(5分钟)1. 引入函数的概念,引导学生思考生活中的函数例子,如温度随时间的变化等。

2. 介绍函数的表示方法,如函数表格、解析式等。

二、新课(20分钟)1. 讲解函数图像的概念,引导学生理解函数图像是对函数值与自变量之间关系的直观表示。

2. 演示如何绘制一些简单的函数图像,如线性函数、二次函数等。

3. 引导学生通过观察函数图像,分析函数的性质,如单调性、奇偶性等。

三、练习(15分钟)1. 让学生独立完成一些函数图像的绘制,并分析其性质。

2. 引导学生运用函数图像解决实际问题,如找出函数的零点、最大值等。

四、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数图像的概念和性质。

2. 强调函数图像在实际问题中的应用价值。

教学延伸:1. 引导学生进一步学习复杂函数的图像,如三角函数、指数函数等。

2. 让学生尝试运用计算机软件绘制函数图像,提高作图能力。

教学反思:本节课通过讲解和练习,让学生掌握了函数的概念和表示方法,学会了绘制和分析函数图像。

在教学过程中,要注意引导学生观察和思考函数图像的性质,培养学生的空间想象能力。

同时,结合实际问题,让学生体验函数图像在解决问题中的作用,提高学生的数学应用能力。

人教版九年级上册数学 第22章 二次函数 全章复习 教案

人教版九年级上册数学 第22章 二次函数 全章复习 教案

第22章二次函数全章复习教案【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)20()y ax bx c a =++≠,,a b c (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题2yax bx c =++利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式例题1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式.【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即,也就是,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则,解得.∴ 抛物线的解析式为,即. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0). 把(0,0)代入关系式,得0=a(0-3)2-2,解得,∴ 抛物线的解析式为, 即.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),2(3)2y a x =--2692y ax ax a =-+-2692y ax ax a =-+-12||6x x -==29a =22(3)29y x =--22493y x x =-2(3)2y a x =--29a =22(3)29y x =--22493y x x =-把(3,-2)代入得,解得.∴ 抛物线的解析式为,即.举一反三【变式】已知抛物线(m 是常数). (1)求抛物线的顶点坐标; (2)若,且抛物线与轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得,∴,∴抛物线的顶点坐标为.(2)∵抛物线与轴交于整数点,∴的根是整数.∴.∵,∴是完全平方数.∵, ∴,∴取1,4,9,.当时,;当时,;当时,. ∴的值为2或或.∴抛物线的解析式为或或.类型二、根据二次函数图象及性质判断代数式的符号例题2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣其中正确的结论个数有( )3(36)2a ⨯⨯-=-29a =2(6)9y x x =-22493y x x =-2442y mx mx m =-+-155m <<x 0≠m 2242=--=-=mm a b x m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m )2,2(-x 02442=-+-m mx mx 2x ==±0m >2x =2m155m <<22105m <<2m2x ==±21m =2=m 24m =21=m 29m =29m =m 21296822+-=x x y x x y 2212-=22810999y x x =--A .1个B .2个C .3个D .4个【思路点拨】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y <0,可判断②;由OA=OC ,且OA <1,可判断③;把﹣代入方程整理可得ac 2﹣bc +c=0,结合③可判断④;从而可得出答案.【答案】C ;【解析】解:由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x=2,所以﹣>0,所以b >0,∴abc >0,故①正确;由图象可知当x=3时,y >0,∴9a +3b +c >,故②错误;由图象可知OA <1,∵OA=OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac ﹣b +1=0,两边同时乘c 可得ac 2﹣bc +c=0,即方程有一个根为x=﹣c ,由②可知﹣c=OA ,而当x=OA 是方程的根,∴x=﹣c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C .类型三、数形结合例题3. 已知平面直角坐标系xOy(如图所示),一次函数的图象与y 轴交于点A ,点M 在正比例函数的图象上,且MO =MA ,二次函数的图象经过点A 、M.334y x =+32y x =2y x bx c =++(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数的图象上,且四边形ABCD 是菱形,求点C 的坐标.【答案与解析】(1)一次函数,当x =0时,y =3,所以点A 的坐标为(0,3),又∵ MO =MA ,∴ M 在OA 的中垂线上,即M的纵坐标为,又M 在上,当时,x =1,∴ 点M 的坐标为.如图所示,.(2)将点A(0,3),代入中,得 ∴即这个二次函数的解析式为:.(3)如图所示,设B(0,m)(m <3),,.334y x =+334y x =+3232y x =32y =31,2⎛⎫⎪⎝⎭AM ==31,2M ⎛⎫ ⎪⎝⎭2y x bx c =++3,31.2c b c =⎧⎪⎨++=⎪⎩5,23.b c ⎧=-⎪⎨⎪=⎩2532y x x =-+25(,3)2C n n n -+3,34D n n ⎛⎫+ ⎪⎝⎭则|AB|=3-m ,,.因为四边形ABCD 是菱形,所以.所以 解得(舍去)将n =2代入,得,所以点C 的坐标为(2,2).类型四、函数与方程例题4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套.(1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000,解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得:w=(x ﹣40)(﹣4x+480)=﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.213||4D C DC y y n n =-=-5||4AD n =||||||AB DC AD ==2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩113,0;m n =⎧⎨=⎩221,22.m n ⎧=⎪⎨⎪=⎩2532y x x =-+2C y =【答案】由题意得 把②代入①得. ∵抛物线与直线只有一个公共点, ∴方程必有两个相等的实数根, ∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根; (2)写出不等式的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1) (2). (3). (4)方法1:方程的解, 即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出, 当时,直线与抛物线有两个交点,∴. 方法2:∵二次函数的图象过(1,0),(3,0),(2,2)三点, ∴ ∴ ∴ ,即, ∴. ∵ 方程有两个不相等的实数根,∴,∴.类型五、分类讨论例题5.若函数,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论.【答案】D ;【解析】由题意知,当时,,∴ .(舍去).当2x =8时,x =4.综合上知,选D .类型六、与二次函数有关的动点问题例题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.22(2)2(2)x x y x x ⎧+≤=⎨>⎩228x +=x =2>x =x =【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,≤m<0.。

初三数学总复习函数及其图象相关定理

初三数学总复习函数及其图象相关定理

初三数学总复习函数及其图象相关定理初三数学总复习教案(五)函数及其图象相关定理1. 一一对应:①数轴上的点与实数一一对应.②坐标平面上的与有序实数对一一对应.2.特殊位置的点的坐标特征:①横坐标上的点纵坐标为零.②纵坐标上的点横坐标为零.③平行于_轴的直线上的点纵坐标相等.④平行于y轴的直线上的点横坐标相等.⑤第一.三象限角平分线上的点横.纵坐标相等[设A点的坐标为(_,y)有_=y].⑥第二.四象限角平分线上的点横.纵坐标互为相反数[设A点的坐标为(_,y)有_= - y].2. 每一象限内点的坐标特征:设A(_,y)有①第一象限内的点_>0,y>0.②第二象限内的点_<0,y>0.③第三象限内的点_<0, y<0.④第四象限内的点_>0, y<0.3. 设平面上点A(_,y),点B(_,y):①AB在_轴上或平行于_轴AB=|_- _|.②AB在y轴上或平行于y轴AB=|y- y|.③点A到原点的距离OA=.④平面上任意两点AB的距离AB=.4. 对称的点的坐标特征:①点P(a,b)关于_轴的对称点的坐标P(a,-b).即:点P.P关于_轴对称横坐标相同.纵坐标互为相反数.②点P(a,b)关于y轴的对称点的坐标P(-a,b).即:点P.P关于_轴对称纵坐标相同.横坐标互为相反数.③点P(a,b)关于原点对称的点的坐标P(-a,-b).即:点P.P关于原点对称横.纵坐标均互为相反数.5. 函数:设在一个变化过程中有两个变量_.y,对于_ 的每一个值,y都有唯一的值与它相对应,则y叫做_的函数.其中_是自变量.6. 函数的表示方法:解析法.图像法.列表法.7. 一次函数一条直线y=k_+b(k,b是常数,k≠0).8. 正比例函数直线过原点y=k_(k是常数,k≠0).9. 反比例函数双曲线y=(k是常数,k≠0) y=k_(k是常数,k≠0) _y=k(k是常数,k≠0)10. 二次函数抛物线y=a_+b_+c(a.b.c是常数,且a≠0).11. 一次函数y=k_+b(k,b是常数,k≠0)的性质:①一次函数与y轴的交点为(0,b),与_轴的交点为(-,0).②k>0时y随_的增大而增大,减小而减小.从左到右在上坡.③k<0时y随_的增大而减小,减小而增大.从左到右在下坡.④b>0时直线与y轴的交点在原点的上方.⑤b<0时直线与y轴的交点在原点的下方.⑥b=0时直线经过原点.⑦直线m∥nk=k⑧直线m.n交于_轴上同一点(,0)12. 一次函数y=k_+b(k,b是常数,k≠0)的图像:① y②y__k>0, b>0图像过一.二.三象限. k>0, b=0图像过一.三象限.③ y④y__k>0, b<0图像过一.三.四象限.k<0, b>0图像过一.二.四象限.⑤y⑥y__k<0, b=0图像过二.四象限.k<0, b<0图像过二.三.四象限.13. 自变量的取值范围:①自变量所在的式子为整式时,自变量取全体实数.②自变量所在的式子含有分式时,则要求分母不为零.③自变量所在的式子含有二根式(偶次方根)时,则要求二次根式(偶次方根)的被开方数为非负数.④自变量所在的式子含有奇次方根时,则奇次方根的被开方数自变量取全体实数.14. 反比例函数的性质:①k>0图象在第一.三象限内,在每一个象限内,y随_的增大而减小.②k<0图象在第二.四象限内,在每一个象限内,y随_的增大而增大.③反比例函数图像的两个分支关于原点成中心对称.15. 二次函数y=a_+b_+c(a.b.c是常数,且a≠0)的性质,设抛物线与_轴的交点为A(_,0).B(_,0);与y轴的交点C(0,c)有:①a>0抛物线的开口方向向上.②a<0抛物线的开口方向向下.③|a|越大抛物线的开口越小; |a|越小抛物线的开口越大.④c>0抛物线与y轴的交点在原点的上方.⑤c<0抛物线与y轴的交点在原点的下方.⑥c=0抛物线过原点.⑦ a.b共同确定对称轴的位置的情况:(1)a.b同号,对称轴在y轴的左边;(2)a.b异号,对称轴在y轴的右边.简记:同号左,异号右.⑧△>0抛物线与_轴有两个交点.⑨△=0抛物线与_轴有一个交点.⑩△<0抛物线与_轴没有交点.__9322; 二次函数y=a_+b_+c=a(_++的顶点坐标为(,),对称轴为_=.__9323; a>0有:_>y随_的增大而增大; _<y随_的增大而减小.y≥有最小值.__9324; a<0有:_>y随_的增大而减小; _<y随_的增大而增大.Y≤有最大值.__9325; AB=|_-_|=.__9326; 对称轴过最低点或最高点的直线过顶点的直线(平行于y轴).__9327; 顶点横坐标对称轴所在的直线最值顶点纵坐标.16. 二次函数的三种表示方法:①y=a_+b_+c(a.b.c是常数,且a≠0).②y=a(_-h)+k(a.h.k是常数,且a≠0).③y=a(_ — _)(_ -_)(a是常数,且a≠0).17. 二次函数y=a_+b_+c(a.b.c是常数,且a≠0)的图象,设抛物线与_轴的交点为A(_,0).B(_,0),并设_<_有:① y②y③yA B _A(B) __④ y⑤⑥ yy A(B)A B _ __①△>0,a>0,b<0,c<0.y=a_+b_+c>0_<_或_>_; y=a_+b_+c<0 _<_<_.④△>0,a<0,b>0,c>0.y=a_+b_+c>0_<_<_; y=a_+b_+c<0 _<_或_>_.②△=0, a>0,b<0,c>0.y=a_+b_+c>0_≠的实数;y=a_+b_+c<0无实数解.⑤△=0, a<0,b>0,c<0.y=a_+b_+c>0无实数解;y=a_+b_+c<0_≠的实数.③△<0,a>0,b<0,c>0.y=a_+b_+c>0全体实数; y=a_+b_+c<0无实数解.⑥△<0,a<0,b>0,c<0.y=a_+b_+c>0无实数解;y=a_+b_+c<0全体实数.18. 设f(_)= a_+b_+c,一元二次方程a_+b_+c=0.的根的分布(a>0):①一根为零过原点c=0.②有一个正根和一个负根f(0)<0.③有一根大于a,一根小于af(a)<0.④有两个正根△≥0,>0, f(0)>0.⑤有两个负根△≥0,<0, f(0)>0.⑥有一个正根和一个负根,并且正根的绝对值大于负根的绝对值△≥0,>0, f(0)<0.⑦有一个正根和一个负根,并且正根的绝对值小于负根的绝对值△≥0,<0, f(0)<0.⑧两根都大于m△≥0,>m, f(m)>0.⑨两根都小于m△≥0,<m, f(m)>0.⑩一根在a.b之间,另一根在c.d之间(a_lt;b_lt;c_lt;d)f (a) >0,f (b) <0,f (c) <0,f (d) >0.__9322; 两根互为相反数对称轴为_=0b=0.19. 绝对值不等式的解法:①|_|>a(a_gt;0)__lt;-a或_ _gt; a,若a_lt;0则_取全体实数.②|_|_lt; a(a_gt;0)-a_lt;__lt;a,若a_lt;0则_无解.20.练习:①抛物线通过(1,1),(-1,3),(2,)三点,求解析式.②抛物线的顶点是(1,3),且抛物线通过点(2,1),求解析式.③抛物线通过(-2,0)与(3,0)两点,并且与y轴的交点的纵坐标为-2,求解析式.④一个一次函数的图象与一个反比例函数的图象相交于点A(1,2),此一次函数的图象还经过点B(3,2).求这两个函数的解析式.⑤已知y+5与_+3成正比例,且当_=1时,y=3.(1)求y与_的函数关系式;(2)作出此函数的图象.⑥已知抛物线y=a_+b_+c与y轴交于点C,与_轴交于点A(_,0),B(_,0)(_<_,顶点M的纵坐标为-4,若_,_是方程_-2(m-1)_+m-7的两根,且_+_=10. (1)求A.B两点的坐标; (2)求抛物线的解析式及点C的坐标;(3)在抛物线上是否存在点P,使三角形PAB的面积等于四边形ACMB的面积的2倍?若存在,求出符合条件的点的坐标若不存在,说明理由.⑦已知抛物线y=-_+2_+3与_轴的交点为A,B,与y轴的交点为C,顶点为P.(1) 求经过P,C的直线与_轴交点Q的坐标;(2) 求tan∠PQB的值.⑧已知抛物线y= _+5_+k与_轴两个交点间的距离等于3,与y轴交点为点C.直线y=k_+10与抛物线交A,B两点.求三角形ABC的面积.⑨已知二次函数y=(m+2)_-(2m-1)_+m-3.(1) 求证:无论m取任何实数,此二次函数的图象与_轴都有两个交点.(2) 当m取何值时,二次函数的图象与_轴两个交点之间的距离等于2.(3) 当m取何值时,二次函数的图象与_轴两个交点分布在y轴两侧.⑩已知抛物线y= _-(m+8)_+2 m+12,(1) 这个抛物线与_轴有几个交点?如果没有交点,请说明理由;如果有交点,能否判断交点的位置.(2) 由(1)中若能得出抛物线与_轴有两个交点A,B且与y轴交于点C,如果△ABC的面积=80,能否求出m的值?(3)抛物线顶点为点P,是否存在实数m使△APB为等腰直角三角形?如果不存在,请说明理由.如果存在,请求出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学函数及其图象专题复习教案魏县牙里中学母慧芹第10-11周共计10课时教研组意见:审批时间:一、总述函数及其图象是初中数学的重要内容。

函数与许多知识有深刻的内在联系,关联着丰富的几何知识,又是进一步学习的基础,所以,以函数为背景的问题,题型多变,可谓函数综合题长盛不衰,实际应用题异彩纷呈,图表分析题形式多样,开放、探索题方兴未艾,函数在中考中占有重要的地位。

二、复习目标1、理解平面直角坐标的有关概念,知道各象限及坐标轴上的点的坐标特征,能确定一点关于x轴、y轴或原点的对称点的坐标。

2、会从不同角度确定自变量的取值范围。

3、会用待定系数法求函数的解析式。

4、明确一次函数、二次函数和反比例函数的图象特征,知道图象形状、位置与解析式系数之间的关系。

5、会用一次函数和二次函数的知识解决一些实际问题。

三、知识要点(不属于任何象限。

(二)一次函数解析式:y = kx + b(k、b是常数,k ≠0),当b = 0时,是正比例函数。

(1)当k >0时,y 随x 的增大而增大;(2)当k <0时,y 随x 的增大而减小。

(三)二次函数1、解析式:(1)一般式:y = ax2 + bx + c (a≠0 );(2)顶点式:y = a ( x – m ) 2+ n ,顶点为(m , n);(3)交点式:y = a (x – x 1 ) ( x -x 2 ),与x 轴两交点是(x 1,0),(x 2,0)。

2、抛物线位置由a 、b 、c 决定。

(1)a 决定抛物线的开口方向:a >0开口向上;a <0开口向下。

(2)c 决定抛物线与y 轴交点的位置: ① c >0图象与y 轴交点在x 轴上方; ② c =0图象过原点;③ c <0图象与y 轴交点在x 轴下方。

(3)a 、b 决定抛物线对称轴的位置,对称轴ab x 2-=。

① a 、b 同号对称轴在y 轴左侧; ② b = 0对称轴是y 轴;③ a 、b 异号对称轴在y 轴右侧。

(4)顶点)44,2(2ab ac a b --。

(5)△= b 2-4ac 决定抛物线与 x 轴交点情况: ① △>0抛物线与 x 轴有两个不同交点;② △=0抛物线与 x 轴有唯一的公共点;③ △<0抛物线与 x 轴无公共点。

(四)反比例函数解析式:)0(≠=k xky 。

(1)k >0时,图象的两个分支分别在一、三象限,在每一象限内,y 随x 的增大而减小; (2)k <0时,图象的两个分支分别在二、四象限,在每一象限内,y 随x 的增大而增大. 四、例题选讲例1.为预防“非典”,小明家点艾条以净化空气,经测定艾条点燃后的长度y cm 与点燃时间 x 分钟之间的关系是一次函数,已知点燃6分钟后的长度为17.4 cm ,21分钟后的长度为8.4 cm 。

(1)求点燃10分钟后艾条的长度。

(2)点燃多少分钟后,艾条全部烧完。

解:(1)令 y=k ·x+b ,当 x=6 时,y=17.4,当x=21时 y=8.4,则2153+-=∴x y x y 之间的函数关系式为与6k+b=17.421k+b=8.4 解得 2153=-=bk.1510,1521105310cm y x 分钟后艾条的长为所以点燃时当=+⨯-== (2)艾条全部烧完,即y=0, 令02153=+-x ,解得:x=35, 因此,点燃35分钟后艾条全部烧完。

例2.小明从斜坡O 点处抛出网球,网球的运动曲线方程是2214x x y -=,斜坡的直线方程是x y21=,其中y 是垂直高度(米),x 是与O 点的水平距离(米)。

⑴网球落地时撞击斜坡的落点为A ,求出A 点的垂直高度,以及A 点与O 点的水平距离。

⑵求出网球所能达到的最高点的坐标。

分析: (1)∵A 点的垂直高度就是点A 的纵坐标,A 点与O 点的水平距离就是点A 的横坐标,而点A 既在抛物线上又在直线上 ∴只要解抛物线方程和直线方程联立的方程组,求得方程组的解即可。

(2)求最高点即抛物线顶点B 的坐标,只要把抛物线方程改写成顶点式,或者用顶点坐标的公式即可求出。

解:(1)由方程组⎪⎪⎩⎪⎪⎨⎧=-=x y x x y 212142解得A 点坐标(7,3.5),求得A 点的垂直高度为3.5米,A 点与O 点的水平距离为7米。

).8,4(8)4(21)1648(21)8(21214)2(22222的坐标为最高点B x x x x x x x y ∴+--=-+--=--=-=例3若点(-2,y 1),(-1,y 2),(1,y 3)都在反比例函数xy 1-=的图像上,则(A)y 1>y 2>y 3 (B)y 2>y 1>y 3 (C)y 3>y 1>y 2 (D)y 1>y 3>y 2分析:∵函数xy 1-=的图像在第二、四象限,y 随着x 的增大而增大,又第二象限的的函数 值大于第四象限的函数值 ∴y 2>y 1>y 3,选(B)例4.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50米长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米, (1)要使鸡场面积最大,鸡场的长应为多少米? (2)如果中间有n(n 是大于1的整数)道篱笆 隔墙,要使鸡场的面积最大,鸡场的长应为 多少米?解:(1)设鸡场的面积为y 米2,则宽为350x -米,即3625)25(312+--=x y 。

所以当x=25时,鸡场的面积最大。

.,25,2625)25(21,250)2(2鸡场的面积最大时所以当配方得cm x n x n y n xx y =++-+-=+-⋅=由(1)(2)结果可得出:不论鸡场中间有几道墙,要使鸡场面积最大,它的总长等于篱笆总长的一半。

例5.图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第一层、第二层、…第n 层,第n 层的小正方体的个数记为s 。

解答下列问题:(1)按照要求填表:(2)写出当n=10时,s=_____; (3)根据上表中的数据,把s 作为纵坐标,在平面直角坐标系中描出相应的各点。

(4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函数的解析式。

x···· sx(4)经观察所描各点,它们在二次函数的图像上。

设函数的解析式为S=an 2+bn+c ,由题意得:所以,n n S 21212+=.[分析]可设每周生产空调、彩电、冰箱分别为分别为x 台、y 台、z 台。

故有目标函数S=4x+3y+2z (即产值与家电的函数关系)。

在目标函数中,由于4x+3y+2z 中有三个未知数,故需消去两个未知数,得到一个一元函数,在确定这个变元的取值范围,从而可得出问题的解答。

[解]设每周生产空调器、彩电、冰箱分别为x 台、y 台、z 台。

由题意得:由①②消去z 得y=360-3x.将⑤带入①得 x+(360-3x)+z=360,即z=2x. ∵ z ≥60, ∴x ≥30.将⑤⑥代如④得S=4x+3(360-3x)+2(2x)=-x+1080.由条件⑦知,当x=30时,产值最大,且最大值为-30+1080=1050(千元) 将x=30代入⑤⑥得 y=360-90=270,z=2×30=60.答:每周应生产空调器30台,彩电270台,冰箱60台,才能使生产值最大,最大生产值为1050千元。

点评:例1是用待定系数法求一次函数的典型例子,所示不同的只是赋予了较新的背景材料,待定系数法是求函数解析式最常用的方法之一,用待定系数法解题的策略是有几个待定的系数就找几个方程构成方程组。

例2的关键是把实际问题转化为求两解析式交点的问题,以及如何求二次函数顶点的方a+b+c=14a+2b+c=3 9a+3b+c=6,解之,得⎪⎪⎪⎩⎪⎪⎪⎨⎧===02121c b a法。

例3主要是数与形的转换,历为函数图像能直观地反映函数的各种性质。

利用数形结合的思想,同学们可以开拓解题思路,设计更好的解题方案,以便迅速地找到解决问题的途径。

例4和例7是函数应用题,我们首先要从问题出发,利用量与量之间的内在联系,引进数学符号,建立函数关系式,再确定函数关系式中自变量的取值范围,利用函数性质,结合问题的实际意义,最后得出问题的解答。

例5通过请同学们观察三个立体图形,猜想探索发现规律,并把发现的规律一般化,最后用图像语言表述结果,命题经历了问题情景——建立模型——解释,应用拓展, 练习这样一个完整的解决数学问题的过程。

例6是一道比较新颖的图像信息题,不仅考察同学们的数学知识,还要有同学们有一定的文学功底,解这类题首先要读懂图形,从图中获取信息,一个一个地将条件抽象成数量关系,最后一问同学们创设的情景一定要合乎常理。

练习①函数y=中自变量x的取值范围是________.②点A(1,m)在函数y=2x的图像上,则点A关于y轴的对称的点的坐标是(_____).③若点(-2,y1),(-1,y2),(1,y3)都在反比例函数的图像上,问y1,y2,y3间存在怎样的关系?(A)y1>y2>y3 (B)y2>y1>y3 (C)y3>y1>y2(D)y1>y3>y2④正比例函数y=kx和反比例函数的图像交于M,N两点,且M点的横坐标为-2.(1)求两焦点坐标;(2)如果函数y=kx和的图像无交点,求k的取值范围.⑤设抛物线y=ax2+bx+c经过A(-1,2),B(2,-1)两点,且与y轴相交于点M.(1)求b和c(用含a的代数式表示);(2)求抛物线y=ax2-bx+c-1上横坐标与纵坐标相等的点的坐标;(3)在第(2)小题所求出的点中,由一个点也在抛物线y=ax2+bx+c上,是判断直线AM和x轴的位置关系,并说明理由.为叙述方便,下面解题过程中,把抛物线y=ax2+bx+c叫做抛物线C1, 把抛物线y=ax2-bx+c-1叫做抛物线C2.解:(1)∵抛物线C1经过A(-1,2),B(2,-1)两点,∴解得b=-a-1,c=1-2a.(2)由(1),得抛物线C2的解析式是y=ax2+(a+1)x-2a.根据题意,得ax2+(a+1)x-2a=x,即ax2+ax-2a=0 (※)∵a是抛物线解析式的二项式系数,∴a≠0.∴方程(※)的解是x1=1,x2=-2.∴抛物线C2上满足条件的点的坐标是P1(1,1),P2(-2,-2)(3)由(1)得抛物线C1的解析式是y=ax2-(a+1)x+1-2a.①当P1(1,1)在抛物线C1上时,有a-(a+1)+1-2a=1.解得这时抛物线C1得解析式是它与y轴的交点是C(0,2).∵点A(-1,2),C(0,2)两点的纵坐标相等,∴直线AC平行于x轴.②当P2(-2,-2)在抛物线C1上时,有4a+2(a+1)+1-2a=-2.解得这时抛物线C1得解析式是它与y轴的交点是C(0,).显然A,C两点的纵坐标不相等,∴直线AC与x轴相交.综上所述, 当P1(1,1)在抛物线C1上时, 直线AC平行于x轴; 当P2(-2,-2)在抛物线C1上时, 直线AC与x轴相交.小结:应用函数知识解决实际问题的具体步骤:(1)审清题意,找出影响问题解的关键变量——自变量,指出自变量的范围,并将其他相关变量用自变量表示;(2)根据条件,建立变量间的函数关系式;(3)利用函数性质,求出问题的答案。

相关文档
最新文档