指数与指数函数的复习教案
指数与指数函数的复习教案
指数与指数幂的运算教学目的:1、理解分数指数幂和根式的概念;2、掌握分数指数幂和根式之间的互化;3、掌握分数指数幂的运算性质;教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质; 教学难点:分数指数幂及根式概念的理解一、复习什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(nthroot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n用.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的4次方根为2±,275-的27-的4次方根不存在.小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.根据n次方根的意义,可得:n a=n a=a n的n a=一定成立吗?通过探究得到:n a=n为偶数,,0 ||,0a aaa a≥⎧==⎨-<⎩|8|8==-=-=小结:当n再在绝对值算具体的值,这样就避免出现错误:例题:求下列各式的值(1)(1)(2)(3)(4)分析:当n||a=,然后再去绝对值.n=是否成立,举例说明.课堂练习:1.求出下列各式的值(1)a≤21,a a=-求的取值范围.3三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时分数指数幂的运算1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅==(),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a >0① 1025a a === ②842a a ===③1234a a === 1025a a ===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数的指数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a ==> 12(0)b b ==>54(0)c c ==>*(0,,1)m na a n N n =>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)m na a m n N =>∈正数的负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)m nm naa m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n mmmma a a a a =⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r s a a a a r s Q +⋅=>∈ (2)()(0,,)r S rs a a a r s Q =>∈ (3)()(0,0,)r r r a b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则P 该如何理解?为了解决这个问题,引导学生先阅读课本P 62——P 62.所以,的近似值从小于的方向逼近.向逼近,所以,.一般来说,无理数指数幂(0,)p a a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈3.例题 (1).求值 解:① 2223323338(2)224⨯====② 1112()21222125(5)555--⨯--====③ 5151(5)1()(2)2322----⨯-===④334()344162227()()()81338-⨯--===(2).用分数指数幂的形式表或下列各式(a >0)解:117333222a a a aa +=⋅==228222333a a a a a +⋅==421332()a a ====分析:先把根式化为分数指数幂,再由运算性质来运算. 课堂练习:补充练习:1. 计算:122121(2)()248n n n ++-⋅的结果2. 若13107310333,384,[()]n a a a a a -==⋅求的值小结:1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.例1.计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b-÷-(2)31884 () m n-分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的.整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式=211115326236 [2(6)(3)]a b+-+-⨯-÷-=0 4ab =4a(2)原式=318884()() m n-=23m n-例2.(P61例5)计算下列各式(1)(22(a>0)分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式=111324 (25125)25-÷=231322 (55)5-÷=2131 3222 55---=1655-= 5(2)原式=125222362132a aa a a--===⋅小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数. 课堂练习:化简:(1)2932)-(2(3)归纳小结:1.熟练掌握有理指数幂的运算法则,化简的基础.2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.指数函数及其性质指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .提问:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)24y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2x y =的图象再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2xy =的图象.从图中我们看出12()2xxy y ==与的图象有什么关系?通过图象看出12()2xxy y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x xx x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看x y a =(a >1)与xy a =(0<a <1)两函数图象的特征.xx问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系. 5.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,x f f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.课堂练习:P 68 练习:第1,2,3题补充练习:1、函数1()()2x f x =的定义域和值域分别是多少?2、当[1,1],()32x x f x ∈-=-时函数的值域是多少?解(1),0x R y ∈>(2)(-53,1)例2:求下列函数的定义域:(1)442x y -= (2)||2()3x y =分析:类为(1,0)x y a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .3.归纳小结1、理解指数函数(0),101x y a a a a =>><<注意与两种情况。
高中数学_指数与指数函数单元复习教学设计学情分析教材分析课后反思
指数函数单元复习教材分析:指数函数是学生对指数幂与基本初等函数的初始认识,是高中数学的基础,是刻画现实世界变化规律的重要模型.本节课是学生在已掌握了指数幂基本运算与指数函数的图像与性质的基础上,运用所学知识来解决一些实际问题,培养学生数学应用意识.为后面对数与对数函数和幂函数的学习打下坚实的基础,有助于后面类比法数学思想的实施.教学目标:(一)知识目标1、理解根式的概念与表示方法.了解指数函数模型背景及实用性、必要性.2、使学生正确理解分数指数幂的概念,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算.3、理解并掌握指数函数及其图象的性质,并能熟练解决相关问题.(二)能力目标1. 培养学生基本的运算能力.2.培养学生观察分析、抽象概括能力和归纳总结能力.3.培养学生数形结合、辩证思维和动手实践的能力.4.培养学生应用函数思想方法解决实际问题的能力.(三)价值目标1.培养学生积极学习、刻苦钻研的学习毅力等良好的意志品质.2.培养学生观察分析、抽象概括能力、数形结合、归纳总结能力和实践与探索能力.3.学会理论联系实际,学以致用,在解决实际问题的过程中,逐步理解、认识函数思想方法,了解数学的应用.复习指导:1.熟练掌握指数的运算是学好该部分知识的基础,较高的运算能力是得分的保证,所以熟练掌握这一技能是重中之重.2.本节复习,还应结合具体事例了解指数函数的模型,利用图象掌握指数函数的性质.重点解决:(1)指数幂的运算:(2)指数函数的图象和性质.教学重点:指数幂的运算、指数函数的图象和性质.教学难点:指数函数的图象和性质的应用教学方法:自主与分小组讨论结合. 教学过程:1.指数函数:叫做指数函数,其中x是自变量.2.指数函数的图象和性质:解析式xy a=定义域R值域()0,+∞图象1>a10<<a函数值函数的图象恒过_______点. 当0>x时,当0<x时,当0>x时,当0<x时,单调性在()+∞∞-,上是___函数.在()+∞∞-,上是___函数.奇偶性师:以幻灯片的形式展示给学生.生:完成空白部分的填写师生:共通对填写的结果辨别,修改错误之处.让学生重新回顾指数函数的图象及其性质,为其应用做好准备,让学生展示填写结果,让学生有自主参与课堂的意识.3分钟群策群力底数对图象的影响1>a时,图象像一撇,且在y轴右侧a越大,图象越靠近y轴(如图1);01a<<时,图象像一捺,且在y轴左侧a越小,图象越靠近y轴(如图2)思考: xy a=与xay-=的图象有何关系?师:以幻灯片的形式将问题展示给学生生:小组讨论出结果,以小组形式将结果展示出来师生:共同修正结果,做出总结.复习指数函数的图象后,让学生用数形结合的思想解决该问题,同时强调特例法在数学中的应用.3分钟xOy1y=1y=O xy学以致用:(一) 指数与指数幂的运算部分例1.(1)计算:1200.2563433721.5()82(23)()63-⨯-+⨯+⨯-[解题思路] 根式的形式通常写成分数指数幂后进行运算.[解析]原式1111113633344222()1(2)2(23)()242711033=⨯+⨯+⨯-=+⨯=(2)化简46394369)()(a a ⋅的结果为A .a16B .a8C .a4D .a 2[解题思路]根式有多重时,按从内到外的顺序化简牛刀小试:计算:()1 )0,0(3224>>⋅-b a ab b a(2)12112133265····a b a b a b---⎛⎫ ⎪⎝⎭(二)指数函数与性质部分 1)定义的考查:例2.函数y =(a 2-3a +3)a x是指数函数,则有( )A .a =1或a =2B .a =1C .a =2D .a >0且a≠1 分析:主要考察指数函数的定义xy a =中系数为“1”.练习:指数函数y =f (x )的图象经过点(2,4),那么f (2)·f (4)=________关于y 轴对称方法 总结 主要方法:(1)指数方程,指数不等式:常要转化为同底数的形式,再利用指数函数的单调性求解;(2)确定与指数有关的函数的单调性时,常要注意针对底数进行讨论;(3)要注意运用数形结合思想解决问题.师:提出问题 生:讨论总结出结果 师生:共同对所总结方法补充完整,得到最终结果.通过总结让学生对所学知识有一个整体认识1分钟2)定义域与值域的应用例3.函数12-=x y 的定义域为 ,值域为注:定义域是使表达式有意义的x 的取值范围,值域求解时结合图象或函数单调性. 练习:求函数12xy = 的定义域与值域 3)图象的考察: 例4.(1)函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如右图所示,则函数g (x )=a x+b 的图象是 ( A )注:图象的关键是底与“1”的大小决定图象的单调情况.练习:函数y =2-x的图象是图中的( )4)单调性的应用: 类型一:比较大小例5. 比较下列各数的大小(按从小到大的顺序排列)5353537.0,7.0,7.1===-c b a练习: 比较大小 (1)2.05.05.0,5.0 ② 3 33类型二:解不等式例6.不等式282133x x --⎛⎫> ⎪⎝⎭的解集为注:解指数不等式应将两侧化成同底指数,利用单调性得出指数部分的大小.练习:求不等式2741x x a a -->中的x 的取值范围5)过定点问题例7. 函数y =a x +2(a >0且a ≠1)的图象经过的定点坐标是( ) A .(0,1) B .(2,1) C .(-2,0) D .(-2,1) 注:指数函数恒过定点(0,1),指数型函数的图象是将指数函数图象平移的结果,定点也随着移动而移动,也可以采取变量替换的思想去计算.练习:函数12x y a-=+(0,1)a a >≠且的图象恒过定点_________.6)底数大小对图象位置的影响:例8. 如图所示是指数函数的图象,已知a 的值取2,43,310,15,则相应曲线C 1,C 2,C 3,C 4的a 依次为________.注:先用“1”分类,同类的再结合底的大小与图象和坐标轴距离的关系得出结论.设计意图:在进行完基本内容的复习后,针对每个知识点给出对应的例题和练习题,让学生学会知识点的应用,同时加深对知识的理解,让学生有个“理论联系实际”的过程. 本节小结:1)指数幂运算要化成分数指数幂的形式,利用运算法则运算,多重根式要从內至外依次展开.2)有关指数函数的问题要结合图象作出思考,即数形结合数学思想的应用. 作业: 必做题:1.计算43(22)的结果是( ) (A)22(B)2 (C) 2 (D)2 2 2.若点(a,9)在函数y=3x的图象上,则a 的值为( ) (A)3 (B)2 (C)-2 (D)123.设a=22.5,b=2.50,c=()2.5,则a,b,c 的大小关系是( ) (A)a>c>b(B)c>a>b (C)a>b>c(D)b>a>c4.(广州)定义运算a ⊕b =⎩⎪⎨⎪⎧aa ≤b b a >b,则f (x )=2x⊕2-x的图象是( )5.已知函数f(x)=2x-2,则函数y=|f(x)|的图象可能是( )6.()1xf x a b =+-(0a >,且1a ≠)的图经过第二、三、四象限,则一定 A .010><<b a 且 B .01>>b a 且 C .010<<<b a 且 D .01<>b a 且 选做题:1. 若指数函数()xf x a =在[]1,1-上的最大值与最小值的差是1,求a 的值2.4()42xx f x =+,若01a <<,试求下列式子的值:(1)()(1)f a f a +-;(2)1231000()()()()1001100110011001f f f f +++⋅⋅⋅+3. 已知定义域为R 的函数f(x)=22xxb a -+是奇函数. (1)求a,b 的值.(2)用定义证明f(x)在(-∞,+∞)上为减函数.(3)若对于任意t ∈R,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的范围.设计意图:在分层教学的需求下,习题分必做和选做,适合因材施教的要求.照顾到全体同学的需求,既让能力较差学生跟得上,也让学有余力的同学“吃得饱”.学情分析本节的学习内容是普通高中新课程标准实验教科书《数学必修1》(人教A 版)第二章每一节指数函数的单元复习课.函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中.而指数函数作为重要的基本初等函数之一,是高中所研究的第一种函数,指数函数的学习有助于加深学生对函数概念的理解,也有助于理解函数的应用价值.同时指数函数的学习也为今后研究其他函数提供了可供借鉴的方法和模式,指数函数在高中数学知识体系中起到了承上启下的作用,在整个高中数学课程中占有重要的地位.教学对象是刚步入高中的学生,学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算以及指数函数的图像与性质的基础上展开复习的.虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但对函数的研究方法虽然在初中的基础上有所进步,但对函数的掌握与应用仍然不熟练.通过本节的教学,让学生在初步掌握指数函数的基础上进一步加深对指数函数的理解.通过本节学习,学生为后面用类比法学习对数函数、幂函数等其它函数奠定更为坚实的基础.学生课前根据《导学案》内容,回顾学过的知识,对于基础较差同学,要求掌握基本的定义公式及图像与性质,会解决较容易的题目,并通过向基础较好的同学学习、探讨,巩固基础的同时,提高自己的能力;基础较好的同学负责几个基础较差的同学的学习掌握情况,在掌握基本的定义公式及图像与性质的基础上,通过给同学讲解,发现自己的不足.效果分析通过本节复习情况来看,学生掌握情况普遍较好,通过学生的评测练习的解答情况来看,大部分学生对指数幂的运算及指数函数的图像与性质的掌握情况良好.练习都是对于基础内容的考查,大部分学生解答情况良好.指数幂的运算部分,在讲解之前,部分学生根据预习可以做出正确答案,但缺少数学思想的归纳,甚至有些同学得出错误的结论.在讲解后,学生重新思考修改,对本类题型有了新的认识,从例题到思考题做的效果都很好.指数函数的定义部分练习,由于形式固定,计算不复杂,全体同学一起通过,没有出现错误;但在定义域与值域的考察题上,小数同学缺乏变量替换的意识,使值域计算错误;图象复习部分,基本图像学生都会,但针对题目,需一步转化过程,少数同学转化出现问题,使该题错误,究其原因,是对图像形成缺少理解.单调性的三个应用掌握情况良好,在本部分也相对应做出总结,学生更进一步理解内容并更好地应用;图像过定点问题,题目较简单,做的效果良好,但也让学生了解除了平移的思想还有变量替换的思想更适合于该种题型.在评测练习的答题情况中, 1,2,3,6,7,8,9,10题做的很好,没有出现错误。
指数与指数函数复习教案
指数函数要求①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型.1 根式根式的概念:符号表示备注如果xn=a,那么x叫做a的n次方根n>1且n属于N+ 当n为奇数时,正数的n次方根是一个正数()零的n次方根是零负数的n次方根是一个负数当n为偶数时。
正数的n次方根有两个,()负数没有偶次方根他们互为相反数两个重要公式:1()备课笔记2()2 分数指数幂1 正数的正分数指数幂是()2 正数的负分数指数幂是()3 0的正分数指数幂是0,0的复分数指数幂无意义4 有理指数幂的运算性质:ar。
as=ar+s (a>0,r,s属于Q)(ar)s=ars (a>0,r,s属于Q)(ab)r= ar as (a>0,b>0,r属于Q)3 指数函数的定义:y=ax (a>0 且a不等于1)叫指数函数,定义域:实数集R性质1 y>0图像经过(0,1)非奇非偶函数a>1,当x>0时,y>1;当x<0时,0<y<1a>1,y=ax为增函数,0<a<1时,y=ax为减函数画指数函数y=ax图像,应抓住3个关键点:(1,a),(0,a),(-1,1/a)熟记指数函数y=10x,y=2x,y=(1 / 10)x,y=(1 /2)x在同一坐标系中图像的相对位置4 指数函数的类型及解法(在指数里含有未知数的方程叫指数方程)指数方程的可解类型可分为 1 形如af(x)=ag(x)(a>0 且a不等于1)化为f(x)=g(x)求解2形如af(x)=bg(x)(a>0 ,b>0且a,b均不等于1)的方程,两边同时取对数3 形如a2x+b。
ax+c=0的方程,换元法求解5 指数函数的有关复合函数问题1 函数y= af(x)的定义域与f(x)的定义域相同2 求y= af(x)的值域:先确定f(x)的值域,再根据指数函数的值域,单调性求解3 求单调性先分析,再求解。
高三 一轮复习 指数及指数函数 教案
指数与指数函数1.根式的性质(1)(n a )n =a .(2)当n 为奇数时n a n =a ;当n 为偶数时n a n =⎩⎪⎨⎪⎧a (a ≥0),-a (a <0). 2.有理数指数幂(1)幂的有关概念:①正分数指数幂:a m n=n a m (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:a -m n =1a m n=1n a m (a >0,m ,n ∈N *,且n >1). ③0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质:①a r a s =a r +s (a >0,r ,s ∈Q );②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ).3.指数函数的图像与性质y =a x a >1 0<a <1 图像定义域R 值域 (0,+∞)性质 过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图像和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.[试一试]1.化简[(-2)6]12-(-1)0的结果为________.2.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________.1.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(a 2x +b ·a x +c ≤0)的指数方程或不等式,常借助换元法解决.2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论.[练一练]1.函数y =1-⎝⎛⎭⎫12x 的定义域为________.2.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.考点一指数幂的化简与求值 求值与化简:(1)⎝⎛⎭⎫2350+2-2·⎝⎛⎭⎫214-12-(0.01)0.5; (2)56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12; (3)(a 23·b -1)-12·a -12·b 136a ·b 5[类题通法]指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.考点二指数函数的图像及应用[典例] (1)(2013·苏锡常镇一调)已知过点O 的直线与函数y =3x 的图像交于A ,B 两点,点A 在线段OB 上,过点A 作y 轴的平行线交函数y =9x 的图像于点C ,当BC ∥x 轴时,点A 的横坐标是________.(2)已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________个[类题通法]指数函数图像的画法及应用(1)画指数函数y =a x (a >0,a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解.[针对训练]1.(2013·徐州摸底)已知直线y =a 与函数f (x )=2x 及g (x )=3·2x 的图像分别相交于A ,B 两点,则A ,B 两点之间的距离为________.2.方程2x =2-x 的解的个数是________.考点三 指数函数的性质及应用[典例] 已知f (x )=a a 2-1(a x -a -x )(a >0,且a ≠1). (1)判断f (x )的奇偶性;(2)讨论f (x )的单调性.在本例条件下,当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围.[类题通法]利用指数函数的性质解决问题的方法求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.[针对训练]已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.(3)若f (x )的值域是(0,+∞),求a 的值.[课堂练通考点]1.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于________.2.已知f(x)=3x-b(2≤x≤4,b为常数)的图像经过点(2,1),则f(x)的值域是________.3.函数y=8-23-x(x≥0)的值域是________.4.已知正数a满足a2-2a-3=0,函数f(x)=a x,若实数m,n满足f(m)>f(n),则m,n的大小关系为________.5.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,则a 的值为________.[课下提升考能]第Ⅰ组:全员必做题1.(2013·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图像恒过点A ,则A 点的坐标为________.2.函数y =⎝⎛⎭⎫13x 2 的值域是________.3.(2014·南京二模)如图,过原点O 的直线与函数y =2x 的图像交于A ,B 两点,过点B 作y 轴的垂线交函数y =4x 的图像于点C ,若AC 平行于y 轴,则点A 的坐标是________.4.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系为________.。
(完整word版)高三数学一轮复习指数与指数函数教案
浙江省衢州市仲尼中学高三数学一轮复习教案:指数与指数函数教材分析:本节在根式的基础上将指数概念扩充到有理指数幂,并给出了有理指数幂的运算性质 在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法. 学情分析:学生基础较为薄弱,大部分学生知道运算性质,但是运用却不灵活。
关键是对知识理解的不够透彻。
只有在理解的基础上,通过运算,才能使学生熟练掌握本节知识。
教学目的:1.理解分数指数幂的概念.2.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化. 教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解. 教学过程: 一、知识梳理:1.根式的定义2.根式的运算性质:①当n 为任意正整数时,(n a )n=a.②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a .⑶根式的基本性质:n m npmp a a =,(a ≥0) 用语言叙述上面三个公式:⑴非负实数a 的n 次方根的n 次幂是它本身.⑵n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变. 3.引例:当a >0时 ①5102552510)(a a a a===②3124334312)(a a a a === ③32333232)(a a a ==④21221)(a a a ==上述推导过程主要利用了根式的运算性质,整数指数幂运算性质(2).因此,我们可以得出正分数指数幂的意义.4.正数的正分数指数幂的意义n m nm a a= (a >0,m ,n ∈N *,且n >1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定. 规定:(1)nm nm aa1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.5.有理指数幂的运算性质: a r ·a s =a r +s (a r )s =a rs(a >0,r ,s ∈Q )(a ·b )r =a r ·b r(a >0,b >0,r ∈Q )二、讲解例题:例1求值:4332132)8116(,)41(,100,8---. 解:422)2(8232332332====⨯827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--课内练习求下列各式的值: (1)2523(2)2732(3)(4936)23(4)(425)23-(5)432981⨯(6)23×35.1×612解:(1)23223)5(25==53=125 (2)233323323)3(27⨯===32=9(3)34321676)76()76(])76[()4936(33323223223=====⨯(4)125852)52()25()25(])25[()425(333323223223======-⨯--(5)41324432442123244213224432)33(3333])3[(3981⨯=⨯=⨯=⨯=⨯⨯⨯=66141324143333)3()3(=⨯=⨯(6)23×35.1×612=2×321×(23)31×(3×22)61=2×321×331×231×361×231=(2×231-×231)×(321×331×361)=231311+-×3613121++=2×3=6要求:学生板演练习,做完后老师讲评.例2计算下列各式:433225)12525)(2();0()1(÷->a aa a分析:(1)题把根式化成分数指数幂的形式,再计算 (2)题先把根式化成分数指数幂的最简形式,然后计算 解:课内练习:用分数指数幂表示下列各式:65653221223212322)1(a a a a a a a a a ===•=•--.555555555555)55(5)12525)(2(412545125412341324123413241233243-=-=-=÷-÷=÷-=÷---(1)32x (2)43)(b a +(a+b>0) (3)32)(n m - (4)4)(n m -(m>n) (5)56q p ⋅(p>0) (6)mm 3解:(1) 3232x x = (2) 4343)()(b a b a +=+ (3) 3232)()(n m n m -=-(4) 244)()(n m n m -=-=(m-n)2 (5) 2532526215656)()0(q p q p q p p q p ⋅==⋅=⋅φ (6)252133m mm m m =⋅=-要求:学生板演练习,做完后老师讲评.三、小结本节课要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质. 四、课后作业:1.用分数指数幂表示下列分式(其中各式字母均为正数)(C)(1)43a a ⋅(2)a a a (3)322b a ab +(4)4233)(b a +解:(1)43a a ⋅=12741314131a aa a ==⋅+(2) a a a =[a ·(a ·a 21)21]21=a 21·a 41·a 81=a 87814121a =++(3)322b a ab +=(ab 2+a 2b )31(4)4233)(b a +=(a 3+b 3)42=(a 3+b 3)212.求下列各式的值:(C) (1)|2|21(2)(4964)21-(3)1000043-(4)(27125)32-解:(1)12121=(112)21=11212⨯=11(2)(4964)21-=(2278)21-=(78))21(2-⨯·(78)-1=87(3)1000043-=(104)43-=10)43(4-⨯=10-3=0.001(4) (27125)32-=(3335)32-=[(35)3] 32-=(35))32(3-⨯=(35)-2=259._______5则.25,45已知).2(;)12(3256)71(027.0.)1(计算:(B).320143231===-+-+----y x y x4.化简: (A) (1)3327-a a÷31638a a -÷313--a a ;(2).11111333233++-++----a a a a a a a a 解:(1)原式=312327)(-•aa ÷2131638)(a a•-÷323432312)(--÷÷=aa a a =1.(2)原式=)1()1()1(11)(1)(1)31(1)1(313231313131331312313313231+----+=++-++----a a a a a a a a a a a a a 31a ==3a.板书设计指数幂的概念与性质1.正分数指数幂意义 例题一: 例题二:a nm =n ma (a >0,m ,n ∈N*,n >1)2.规定 (1)anm -=nm a1(a >0,m ,n ∈N *,n >1),。
高中数学复习教案:指数与指数函数
第五节 指数与指数函数[考纲传真] 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.3.体会指数函数是一类重要的函数模型.1.根式n 次方根概念 如果x n =a ,那么x 叫作a 的n 次方根,其中n >1,n ∈N *表示 当n 是奇数时,a 的n 次方根x =na当n 是偶数时,正数的n 次方根x =±n a ;负数没有偶次方根0的任何次方根都是0,记作n0=0根式概念 式子n a 叫作根式,其中n 叫作根指数,a 叫作被开方数性质 (na )n =a当n 为奇数时,na n =a当n 为偶数时,na n=|a |=⎩⎨⎧a ,a ≥0-a ,a <02.(1)分数指数幂①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质 ①a r ·a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a xa >10<a <1图象定义域 R 值域(0,+∞) 性质(0,1) 过定点当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1; x <0时,y >1在R 上是增函数在R 上是减函数[常用结论]指数函数的图象与底数大小的关系如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)4(-4)4=-4.( ) (2)(-1) 24=(-1) 12=-1. ( ) (3)函数y =2x-1是指数函数.( )(4)若a m <a n (a >0且a ≠1),则m <n . ( )[答案] (1)× (2)× (3)× (4)×2.化简[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .9 B [原式=(26) 12-1=8-1=7.]3.(教材改编)若函数f (x )=a x (a >0,且a ≠1)的图象经过点P ⎝ ⎛⎭⎪⎫2,12,则f (-1)等于( )A.22 B. 2 C.14D .4B [由题意知12=a 2,所以a =22,所以f (x )=⎝ ⎛⎭⎪⎫22x,所以f (-1)=⎝ ⎛⎭⎪⎫22-1= 2.]4.函数y =a x -a (a >0,且a ≠1)的图象可能是( )A B C DC [令y =a x -a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.] 5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (1,2) [由题意知0<2-a <1, 解得1<a <2.]指数幂的化简与求值1.A.⎝ ⎛⎭⎪⎫n m 7=n 7m 17 B.12(-3)4=3-3 C.4x 3+y 3=(x +y )34 D.39=33D [39=(913)12=916=313=33,故选D.]2.若a >0,b >0,则化简=________.ab -1 [原式===ab -1.]3.化简-10(5-2)-1+3π0+59=________.-16 [原式=⎝⎛⎭⎪⎫82723+50012-105-2+3+59 =49+105-10(5+2)+3+59 =-16.]4.若x 12+x -12=3,则=________.25[由x 12+x -12=3得x +x -1+2=9. 所以x +x -1=7.同理由x +x -1=7可得x 2+x -2=47.x 32+x -32=(x 12+x -12)(x +x -1-1)=3×6=18. 所以[规律方法] 指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解题. 易错警示:运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.指数函数的图象及应用【例1】 (1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)已知函数f(x)=3+a2x-4的图象恒过定点P,则点P的坐标是________.(3)若曲线y=|3x-1|与直线y=k只有一个公共点,则实数k的取值范围为________.(1)D(2)(2,4)(3){0}∪[1,+∞)[(1)由f(x)=a x-b的图象可以观察出函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.(2)令2x-4=0得x=2,且f(2)=4,则点P的坐标为(2,4).(3)函数y=|3x-1|的图象是由函数y=3x的图象向下平移一个单位后,再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,函数图象如图所示.当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点.][规律方法]指数函数图象应用的4个技巧(1)画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)函数y=xa x|x|(a>1)的图象大致是()A B C D(2)函数f(x)=2|x-1|的图象是()A B C D(3)已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.(1)B (2)B (3)⎝ ⎛⎭⎪⎫0,23 [(1)y =⎩⎨⎧a x ,x >0,-a x ,x <0,又a >1,故选B.(2)函数f (x )=2|x -1|的图象可由y =2|x |的图象向右平移1个单位得到,故选B. (3)①当0<a <1时,如图①,所以0<3a <2,即0<a <23; ②当a >1时,如图②,而y =3a >1不符合要求.图① 图②所以0<a <23.]指数函数的性质及应用►考法1 比较指数式的大小【例2】 已知a =343,b =925,c =12113,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <bA [因为a =343=923>925=b ,c =12113=1123>923=a ,所以c >a >b .故选A.] ►考法2 解简单的指数方程或不等式 【例3】 (1)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)(2)已知实数a ≠1,函数f (x )=⎩⎨⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(1)C (2)12 [(1)当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a-7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).故选C.(2)当a <1时,41-a =21,解得a =12;当a >1时,代入不成立.故a 的值为12.]►考法3 与指数函数有关的函数的值域或最值问题【例4】 (1)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.(2)已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.(1)-32 (2)52[(1)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎨⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.(2)y =12(2x )2-3·2x +5.令t =2x ,由0≤x ≤2得1≤t ≤4,又y =12t 2-3t +5=12(t -3)2+12, ∴当t =1时,y 有最大值,最大值为52.] ►考法4 复合函数的单调性、值域或最值【例5】 函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间是________,值域是________.(-∞,1] ⎝ ⎛⎭⎪⎫14,+∞ [令u =-x 2+2x +1,则u =-(x -1)2+2.又y =⎝ ⎛⎭⎪⎫12u 在R 上是减函数,则函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间为函数u =-x 2+2x +1的增区间.由此函数f (x )的单调递减区间为(-∞,1].因为u ≤2,则f (x )≥⎝ ⎛⎭⎪⎫122=14,即函数f (x )的值域为⎣⎢⎡⎭⎪⎫14,+∞.] [规律方法]应用指数函数性质综合的常考题型及求解策略常考题型 求解策略比较幂值的大小 (1)能化成同底数的先化成同底数幂再利用单调性比较大小.(2)不能化成同底数的,一般引入“1”等中间量比较大小解简单指数不等式 先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致(1)(2019·信阳模拟)已知a =⎝ ⎛⎭⎪⎫35-12,b =⎝ ⎛⎭⎪⎫35-14,c =⎝ ⎛⎭⎪⎫32-34,则a ,b ,c 的大小关系是( )A .c <a <bB .a <b <cC .b <a <cD .c <b <a(2)(2019·长春模拟)函数y =4x +2x +1+1的值域为( ) A .(0,+∞) B .(1,+∞) C .[1,+∞) D .(-∞,+∞)(3)已知函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,则a 的取值范围为________.(4)函数y =2-x 2+2x的值域为________.(1)D (2)B (3)[6,+∞) (4)(0,2] [(1)c =⎝ ⎛⎭⎪⎫32-34=⎝ ⎛⎭⎪⎫278-14,则⎝ ⎛⎭⎪⎫35-13>⎝ ⎛⎭⎪⎫35-14>⎝ ⎛⎭⎪⎫278-14,即a >b >c ,故选D. (2)y =4x +2x +1+1=(2x )2+2·2x +1, 令t =2x ,则t >0,∴y =t 2+2t +1=(t +1)2>1,故选B.(3)由题意知,函数u=-x2+ax+1在区间(-∞,3)上单调递增,则a2≥3,即a≥6.(4)-x2+2x=-(x-1)2+1≤1,则0<y≤2.即函数y=2-x2+2x的值域为(0,2].]。
指数函数复习教案
指数函数复习教案
一、教学目标:
1.复习指数函数的定义和性质;
2.掌握指数函数的图像和性质;
3.能够解决与指数函数相关的实际问题。
二、教学过程:
1.复习与导入(10分钟)
通过提问学生复习指数函数的定义和性质,例如:
a.什么是指数函数?指数函数的定义是什么?
b.指数函数的性质有哪些?
c.指数函数的图像特点是什么?
2.指数函数的图像(20分钟)
a.讲述指数函数的图像特点,如何根据函数的性质绘制出图像;
b.通过几个例子带领学生观察和绘制指数函数的图像。
3.指数函数的运算性质(20分钟)
a.讲述指数函数的运算性质,如何进行指数函数的加减乘除运算;
b.通过一些例题让学生巩固运算性质。
4.指数方程与指数不等式(30分钟)
a.讲述如何解决指数方程和指数不等式;
b.通过一些例题辅助讲解,并与学生共同解决一些实际问题。
5.应用题(20分钟)
a.提供一些与指数函数相关的实际问题,让学生尝试解决;
b.学生自主讨论解题思路,然后与全班分享和交流。
6.总结与扩展(10分钟)
a.对本节课的复习进行总结,强调重点内容;
b.提出一些拓展问题,引导学生深入学习和思考。
三、学生评价:
1.能够准确地回答老师的提问,复习指数函数的定义和性质;
2.能够观察并绘制指数函数的图像,掌握其图像特点;
3.能够灵活运用指数函数的运算性质进行相关运算;
4.能够解答和解决与指数函数相关的实际问题;
5.对指数函数有一定的了解和兴趣,能够进一步自主学习和拓展。
高三数学第一轮复习 指数与指数函数教案 文
指数与指数函数一、知识梳理:1、分数指数幂与无理指数幂(1)、如果,那么x就叫做a的n次方根,其中n>1,且;当n是正奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,当n是偶数时,正数的n次方根有两个,这两个是互为相反数,负数没有偶次方程,0的任何次方根都是0(2)、叫根式,n叫根指数,a叫被方数。
在有意义的前提下,=,当n为奇数时,=a ;当n是偶数时,=| a |(3)、规定正数的正分数指数幂的意义是= (a>0,m,n1),正数的负分数指数幂的意义为= (a>0,m,n1),0的正分数指数幂是0,0的负分数指数幂没有意义。
(4)、一般地,无理数指数幂(a>0,k是无理数),是一个确定的实数。
2、指数幂的运算性质= (a>0,r,s)==3、指数数函数及性质(1)指数函数的定义:(2)、指数函数的图象及性质图象的性质主要指①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。
指数函数不具有奇偶性与周期性,从而,指数函数最为重要的性质是单调性,对单调性的考查,一方面是利用自变量的大小比较函数值的大小,反映在题目上就上比较大小,另一方面是利用函数值的大小比较自变量的大小,反映在题目上就是解不等式。
二、题型探究[探究一]、根式、指数幂的运算例1:计算:(1).40.062 5+254-(π)0-3278;(2).a1.5·a-1.5·(a-5)0.5·(a0.5)3(a>0).解析:(1)原式=0.5+52-1-32=12.(2)原式=a1.5-1.5-2.5+1.5=a-1=1 a .[探究二]、利用指数函数的单调性比较大小 例2:已知,试用“<”或“>”填入下列空格: ; ( ; ( ; ; ( ([探究三]、利用指数函数的单调性解方程不等式问题 例3:解关于x 的不等式[探究四]、考察指数函数的图象的变换例4:已知函数 存在实数a, b(a<b) ,满足, 的取值范围。
人教版高一复习教案 指数与指数函数(教师用)
暑假复习第三讲 指数与指数函数教学目标:掌握指数运算(高考要求A )及指数函数的有关概念(高考要求B ). 教学重难点:熟悉指数运算,掌握指数函数图像性质及其应用。
教学过程: 一.知识要点: 1.指数运算(1) 根式的定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。
即若a x n =,则x 称a 的n 次方根()1*∈>N n n 且, ① 当n 为奇数时,n a 的次方根记作n a ;②当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n 。
(2)根式性质:①a a n n =)(;②当n 为奇数时,a a n n =;③当n(0)||(0)a a a a a ≥⎧==⎨-<⎩。
(3)幂运算法则:①∈⋅⋅⋅=n a a a a n ( N *) ②)0(10≠=a a ;n 个 ③∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N *且)1>n 。
(4)幂运算性质: ①r a a a a sr s r ,0(>=⋅+、∈s Q );②r a a a s r s r ,0()(>=⋅、∈s Q ); ③∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。
(注)上述性质对r 、∈s R 均适用。
2.指数函数:(1) 指数函数定义:函数)1,0(≠>=a a a y x 且称指数函数,函数的定义域为R ;函数的值域为),0(+∞; (2)函数图像及性质:①指数函数的图象都经过点(0,1),且图象都在第一、二象限;②当10<<a 时函数为减函数,当1>a 时函数为增函数。
③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于y 轴对称。
高三数学高考考前复习指数与指数函数教案
学习必备欢迎下载第二章指数函数与对数函数及函数的应用一、知识网络基本初等函数 ( Ⅰ )函数的应用指数函数对数函数幂函数函数的零点整数指数幂函数与方程定义有理指数幂指数对数运算性质二分法无理指数幂指数函数对数函数函数模型及其应用互为反函数几类不同增长的函数模型定义定义用已知函数模型解决问题图像与性质图像与性质建立实际问题的函数模型二、课标要求和最新考纲要求1、指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
2、对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3、知道指数函数y a x与对数函数y log a x 互为反函数(a>0,a≠1)。
4、函数与方程(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
(2)理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数 .5、函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征。
知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
(3)能利用给定的函数模型解决简单的实际问题。
指数与指数函数教案
指数与指数函数教案教案标题:指数与指数函数教案教案目标:1. 理解指数的概念和基本性质;2. 掌握指数运算的基本法则;3. 理解指数函数的定义和特点;4. 能够应用指数函数解决实际问题。
教学重点:1. 指数的定义和基本性质;2. 指数运算的基本法则;3. 指数函数的定义和特点。
教学难点:1. 指数函数的应用问题解决。
教学准备:1. 教材:包含有关指数和指数函数的相关知识的教材;2. 教具:计算器、白板、彩色粉笔等。
教学过程:一、导入(5分钟)1. 引入指数的概念,通过实例解释指数的含义和作用;2. 提问学生对指数的了解程度,激发学生的学习兴趣。
二、讲解指数的定义和基本性质(15分钟)1. 讲解指数的定义,包括底数、指数和幂的概念;2. 介绍指数的基本性质,如指数为0时的计算规则、指数为正数时的计算规则等;3. 通过例题演示指数运算的基本法则。
三、指数运算练习(15分钟)1. 给学生分发练习题,要求他们完成指数运算的计算和简化;2. 引导学生互相讨论解题思路和方法;3. 随堂检查学生的练习成果,及时纠正错误。
四、讲解指数函数的定义和特点(15分钟)1. 介绍指数函数的定义,包括指数为变量的函数形式;2. 解释指数函数的特点,如增长率、图像特征等;3. 通过图像展示指数函数的变化规律。
五、指数函数应用实例分析(15分钟)1. 给学生提供一些实际问题,要求他们运用指数函数解决;2. 引导学生分析问题,建立数学模型;3. 鼓励学生互相交流和分享解题思路。
六、小结与拓展(10分钟)1. 总结指数与指数函数的重点内容和学习要点;2. 提出一些拓展问题,激发学生进一步思考;3. 鼓励学生自主学习相关知识,拓宽数学视野。
教学反馈:1. 教师及时纠正学生在课堂上的错误,解答学生提出的问题;2. 教师评价学生的参与度和学习成果;3. 学生填写教学反馈表,反馈课堂教学的效果和自身的学习感受。
教学延伸:1. 布置相关练习作业,巩固学生的学习成果;2. 鼓励学生使用计算器和其他工具进行指数函数的实际计算;3. 推荐相关参考书籍和网站,供学生进一步学习。
必修1第二章指数和指数函数教案(7个课时)
(2)5x 4,5y 2,则52xy _______
练 2、用分数指数幂的形式表示下列各式(a>0)
7
(1) 3 a2 a3
(2) 3 a8 3 a15
不
解:(1)原式=a
7 2
1 3
31
a 23
7
a6
1
a2
2
a3;
练
(2)原式=a
(
8 ) 3
1 2
15 1
讲
an
1 an
(a 0)
5
观察归纳,讲授新课
观察以下式子,并总结出规律: a >0
10
① 5 a10 5 (a2 )5 a2 a 5
②
8
a8 (a4 )2 a4 a2
12
③ 4 a12 4 (a3 )4 a3 a 4
10
④ 5 a10 5 (a2 )5 a2 a 5
a3 2
45
a 3 2
7
a6.
不
讲
7
教学内容
第3课 (单元)
主题
分数指数幂及其性质 2
1 课时
1、理解分数指数幂的概念;
教
知识 与技能
2、掌握分数指数幂和根式之间的互化;
3、掌握分数指数幂的运算性质.
学
过 程 从整数指数幂到分数指数幂,再推广到无理指数幂,将指数范围扩充到实数,
目 与方法 进而学习分数指数幂以及指数幂的性质.
图象特征函数性质轴正负方向无限延伸函数的定义域为r图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为r自左向右图象逐渐上升自左向右图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1学习目标
《指数函数》的优秀教案
《指数函数》的优秀教案•相关推荐《指数函数》的优秀教案(精选7篇)作为一名人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
教案应该怎么写才好呢?下面是小编整理的《指数函数》的优秀教案,欢迎大家分享。
《指数函数》的优秀教案篇1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题;教学重点:指数函数的性质的应用;教学难点:指数函数图象的平移变换.教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:(1);(2);(3);(4).小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:(1);(2);(3);(4).小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律.例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.例4求函数的最小值以及取得最小值时的x值.小结:复合函数常常需要换元来求解其最值.练习:(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;(2)函数y=2x的值域为;(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.三、小结1.指数函数的性质及应用;2.指数型函数的定点问题;3.指数型函数的草图及其变换规律.四、作业:课本P55—6,7.五、课后探究(1)函数f(x)的定义域为(0,1),则函数的定义域为。
《指数函数》复习课教案
《指数函数》复习课教案指数函数复课教案一、教学目标1. 了解指数函数的定义和性质。
2. 掌握指数函数的图像特点和变化规律。
3. 学会求解指数函数的基本问题,如解方程、求导等。
二、教学内容1. 指数函数的定义和性质介绍。
2. 指数函数的图像绘制和分析。
3. 指数函数的基本问题解决方法。
4. 指数函数与其他函数的关系。
三、教学过程1. 指数函数的定义和性质介绍- 介绍指数函数的定义和表示方法。
- 讲解指数函数的增长与衰减性质。
- 引导学生理解指数函数的图像特点。
2. 指数函数的图像绘制和分析- 指导学生通过给定函数表达式,绘制指数函数的图像。
- 分析指数函数图像的特点,如增长趋势、渐近线等。
- 提醒学生观察指数函数图像的反比关系。
3. 指数函数的基本问题解决方法- 解释如何求解指数方程。
- 带领学生通过例题练,掌握求解指数方程的步骤和技巧。
- 讲解指数函数求导的基本方法。
4. 指数函数与其他函数的关系- 比较指数函数与线性函数、二次函数等其他函数的特点和差异。
- 引导学生分析指数函数与其他函数之间的关系。
- 鼓励学生探索指数函数在实际问题中的应用。
四、教学资源1. PowerPoint幻灯片:包含指数函数的定义、性质介绍、图像绘制和分析的内容。
2. 白板、彩色笔:用于举例和讲解。
3. 课堂练题:用于学生的课堂练和讨论。
五、教学评估1. 课堂练:通过课堂练检验学生对指数函数的理解和应用能力。
2. 课堂讨论:鼓励学生提问、交流,并评估他们的思维能力和分析能力。
3. 作业评估:布置作业并对学生的作业进行批改和评分。
六、教学延伸1. 鼓励学生进一步研究和探索指数函数的应用领域。
2. 推荐相关的参考书和互联网资源,供学生深入研究和拓展知识。
七、教学反思- 教师反思教学过程中的不足和可以改进的地方。
- 学生反馈和评价收集,以便优化教学方案。
以上为《指数函数》复习课教案,希望能够帮助学生更好地理解和掌握指数函数的相关知识和应用能力。
指数函数的复习教学设计
指数函数的复习教学设计———西安市东元路学校肖有福2011.11.22指数函数的复习教学设计一:教材分析:1:教材的地位和作用:北师大师范大学出版社《普通高中课程标准实验教科书》3.3“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。
作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究,深入研究。
2:课时划分:指数函数的教学在《大纲》中共分两个课时完成。
“指数函数”的教学共分两个课时完成。
按照大纲的教学意图第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。
而本节课是第三课时。
能够利用指数函数的图象与性质解决一些相关的问题的问题。
“指数函数”二:学情分析通过前一阶段的教学,学生对函数和图象的认识已有了一定的认知结构,主要体现在三个层面:知识层面:学生在已初步掌握了函数的基本性质和简单的指数运算技能。
能力层面:学生在初中已经掌握了用描点法描绘函数图象的方法,通过第一章集合与函数的概念后初步具备了数形结合的思想。
情感层面:学生对数学新内容的学习有相当的兴趣和积极性。
但探究问题的能力以及合作交流等方面发展不够均衡.三:教学目标:1、知识技能目标:能够利用指数函数的图象与性质解决一些相关的问题的问题。
2、过程方法目标:强调数型结合,转化的思想方法;培养函数的思想方法和意识。
3、情感态度,价值观目标:以积极的热情投入到课堂学习中,养成严谨的数学思维习惯。
四:教学重点,难点:指数函数的图象与性质的综合应用。
五:教法选择:通过运用多媒体的教学手段,引领学生主动应用指数函数性质,体会学习数学规律的方法,体验成功的乐趣.1、本节课采用的教学方法有:启发探究式,合作交流式2、采用这些方法的理论根据:新课程标准要求我们在教学中应充分体现“教师为主导,学生为主体”这一教学原则。
高三数学一轮复习精品教案1:指数与指数函数教学设计
2.4指数与指数函数1.根式的性质 (1)(na )n =a .(2)当n 为奇数时na n =a ; 当n 为偶数时na n=⎩⎪⎨⎪⎧a a ≥0,-a a <0.2.有理数指数幂 (1)幂的有关概念:①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1).②负分数指数幂:a -m n =1a m n =1na m (a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质: ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图像与性质1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图像和性质跟a 的取值有关,要特别注意区分a >1或0<a <1. 『试一试』1.化简『(-2)6』12-(-1)0的结果为________.『答案』72.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 『解析』由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. 『答案』(-2,-1)∪(1,2)1.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(a 2x +b ·a x +c ≤0)的指数方程或不等式,常借助换元法解决.2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论. 『练一练』 1.函数y =1-⎝⎛⎭⎫12x 的定义域为________.『答案』『0,+∞)2.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是『0,2』,则实数a =________. 『解析』当a >1时,f (x )=a x -1在『0,2』上为增函数, 则a 2-1=2,∴a =± 3.又∵a >1,∴a = 3. 当0<a <1时,f (x )=a x -1在『0,2』上为减函数又∵f(0)=0≠2,∴0<a<1不成立.综上可知,a = 3.『答案』3求值与化简:(1)⎝⎛⎭⎫2350+2-2·⎝⎛⎭⎫214-12-(0.01)0.5;(2)56a13·b-2·(-3a-12b-1)÷(4a23·b-3)12;(3)a23·b-1-12·a-12·b136a·b5『解析』(1)原式=1+14×1249⎛⎫⎪⎝⎭-121100⎛⎫⎪⎝⎭=1+14×23-110=1+16-110=1615.(2)原式=-52a16-b-3÷(4a23·b-3)12=-54a16-b-3÷(a13b32-)=-54a-12-·b23-.=-54·1ab3=-5ab4ab2.(3)原式=111133221566·a b a ba b--=a-111326---·b115236-+.『备课札记』『类题通法』指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.『典例』 (1)(2013·苏锡常镇一调)已知过点O 的直线与函数y =3x 的图像交于A ,B 两点,点A 在线段OB 上,过点A 作y 轴的平行线交函数y =9x 的图像于点C ,当BC ∥x 轴时,点A 的横坐标是________. (2)已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式有________个『解析』 (1)设A (x 0,3x 0),由AC 平行于y 轴,则C (x 0,9x 0).又因为BC 平行于x 轴,则B (2x 0,9x 0).因为O ,A ,B 三点共线,所以x 0·9x 0=2x 0·3x 0,得3x 0=2,所以x 0=log 32. (2)函数y 1=⎝⎛⎭⎫12x 与y 2=⎝⎛⎭⎫13x 的图像如图所示.由⎝⎛⎭⎫12a =⎝⎛⎭⎫13b 得,a <b <0或0<b <a 或a =b =0. 故①②⑤可能成立,③④不可能成立. 『答案』 (1)log 32 (2)2『备课札记』 『类题通法』指数函数图像的画法及应用(1)画指数函数y =a x (a >0,a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解.『针对训练』1.(2013·徐州摸底)已知直线y=a与函数f(x)=2x及g(x)=3·2x的图像分别相交于A,B两点,则A,B两点之间的距离为________.『解析』由题意知A,B两点之间的距离与a无关,即为定值.不妨设a=3,则由3·2x=3知x B=0.由2x=3知x A=log23,故AB=x A-x B=log23.『答案』log232.方程2x=2-x的解的个数是________.『解析』方程的解可看作函数y=2x和y=2-x的图像交点的横坐标,分别作出这两个函数图像(如图).由图像得只有一个交点,因此该方程只有一个解.『答案』1『典例』已知f(x)=aa2-1(a x-a-x)(a>0,且a≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性.『解析』(1)函数f(x)的定义域为R,关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.(2)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a-x为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x为减函数.所以f(x)为增函数.故当a>0且a≠1时,f(x)在定义域内单调递增.『解析』由(2)知f(x)在R上是增函数,所以在区间『-1,1』上为增函数.所以f (-1)≤f (x )≤f (1). 所以f (x )min =f (-1)=aa 2-1(a-1-a )=a a 2-1·1-a 2a=-1. 所以要使f (x )≥b 在『-1,1』上恒成立,则只需b ≤-1. 故b 的取值范围是(-∞,-1』.『备课札记』 『类题通法』利用指数函数的性质解决问题的方法求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决. 『针对训练』已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3. (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值. (3)若f (x )的值域是(0,+∞),求a 的值. 『解析』(1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1. (3)由指数函数的性质知, 要使y =⎝⎛⎭⎫13g (x )的值域为(0,+∞). 应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ). 故a 的值为0.『课堂练通考点』1.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于________. 『解析』由f (a )=3得2a +2-a =3, 两边平方得22a +2-2a+2=9,即22a +2-2a=7,故f (2a )=7.『答案』72.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图像经过点(2,1),则f (x )的值域是________. 『解析』由f (x )过定点(2,1)可知b =2,因f (x )=3x -2在『2,4』上是增函数,f min (x )=f (2)=1,f max (x )=f (4)=9. 『答案』『1,9』3.函数y =8-23-x (x ≥0)的值域是________. 『解析』∵x ≥0,∴-x ≤0,∴3-x ≤3, ∴23-x ≤23=8,∴8-23-x ≥0,∴函数y =8-23-x 的值域为『0,+∞). 『答案』『0,+∞)4.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.『解析』∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=a x 在R 上递增,由f (m )>f (n ),得m >n . 『答案』m >n5.函数f (x )=a x (a >0,且a ≠1)在区间『1,2』上的最大值比最小值大a 2,则a 的值为________.『解析』当a >1时,f (x )=a x 为增函数,在x ∈『1,2』上, f (x )最大=f (2)=a 2,f (x )最小=f (1)=a . ∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时,f (x )=a x 为减函数,在x ∈『1,2』上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2. ∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.『答案』12或32。
高考数学一轮复习 指数与指数函数教案
山东省泰安市肥城市第三中学高考数学一轮复习指数与指数函数教案负数没有偶次方根两个重要公式.有理数指数幂(1)幂的有关概念在x 轴 . 当x 逐渐增大时逐渐增大时,定义域2、化简)41()3)(2(324132213141-----÷-b a b a b a =24bnD (0a > ( B )6.若,221=+-x x 则=+-33xx 102 。
7. 知函数26112()x x y -+=考试题形式出现,也可能与方程、不等式等知识积结合出现在解答题中。
41(1)-2答案(1)④(2)0<a<1,b<0 (3)1个()()2x上的单f(x)=2^x/(4^x+1)=1/(2^x+1/2^如下图中曲线分别、、比较下列各题中两个值的大小:B.的解析式;C.精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
指数函数复习课教案
指数函数复习课教案
教学目标
- 理解指数函数的概念和性质
- 学会利用对数将指数方程、指数不等式转换为对数方程、对数不等式,并解决相关问题
- 学会运用指数函数及其图像的相关知识对实际问题进行分析和解决
教学内容
1. 指数函数的概念及性质
2. 对数函数的概念及性质
3. 指数方程与对数方程的互相转化
4. 指数不等式与对数不等式的互相转化
5. 指数函数的图像及其变换
教学过程
1. 引入
通过一个生活实例(比如:化学反应速率和温度关系)引出指数函数。
2. 概念及性质
讲解指数函数的概念、幂次、指数律等知识点,并通过例题进行巩固。
3. 对数函数的概念及性质
引出对数概念,阐述其定义、性质及基本公式。
4. 指数、对数方程及不等式的互相转化
区分指数方程和指数不等式的概念,详细讲解其解题方法,然后引入对数方程及对数不等式的概念及解题方法。
5. 指数函数的图像及其变换
通过绘制指数函数图像和对数函数图像,引导学生研究图像的基本性质及变换。
6. 练
通过一些例题进行巩固,然后引导学生自主练,及时互相讨论和总结。
教学评估方式
通过课堂练和测试考察学生是否掌握了指数函数的相关知识点,并评估学生的思维能力和综合素质。
教学反思
教学中,应重视在引入实例和概念时切实增强学生的兴趣和吸
引力,同时让学生灵活运用知识点解决实际问题,并在练习和测试
中及时总结和反馈,以提高教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数与指数幂的运算教学目的:1、理解分数指数幂和根式的概念;2、掌握分数指数幂和根式之间的互化;3、掌握分数指数幂的运算性质;教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质; 教学难点:分数指数幂及根式概念的理解一、复习什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(nthroot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n用.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的4次方根为2±,275-的27-的4次方根不存在.小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.根据n次方根的意义,可得:n a=n a=a n的n a=一定成立吗?通过探究得到:n a=n为偶数,,0 ||,0a aaa a≥⎧==⎨-<⎩|8|8==-=-=小结:当n再在绝对值算具体的值,这样就避免出现错误:例题:求下列各式的值(1)(1)(2)(3)(4)分析:当n||a=,然后再去绝对值.n=是否成立,举例说明.课堂练习:1.求出下列各式的值(1)a≤21,a a=-求的取值范围.3三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时分数指数幂的运算1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅==(),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a >0① 1025a a === ②842a a ===③1234a a === 1025a a ===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数的指数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a ==> 12(0)b b ==>54(0)c c ==>*(0,,1)m na a n N n =>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)m na a m n N =>∈正数的负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)m nm naa m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n mmmma a a a a =⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r s a a a a r s Q +⋅=>∈ (2)()(0,,)r S rs a a a r s Q =>∈ (3)()(0,0,)r r r a b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则P 该如何理解?为了解决这个问题,引导学生先阅读课本P 62——P 62.所以,的近似值从小于的方向逼近.向逼近,所以,.一般来说,无理数指数幂(0,)p a a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈3.例题 (1).求值 解:① 2223323338(2)224⨯====② 1112()21222125(5)555--⨯--====③ 5151(5)1()(2)2322----⨯-===④334()344162227()()()81338-⨯--===(2).用分数指数幂的形式表或下列各式(a >0)解:117333222a a a aa +=⋅==228222333a a a a a +⋅==421332()a a ====分析:先把根式化为分数指数幂,再由运算性质来运算. 课堂练习:补充练习:1. 计算:122121(2)()248n n n ++-⋅的结果2. 若13107310333,384,[()]n a a a a a -==⋅求的值小结:1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.例1.计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b-÷-(2)31884 () m n-分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的.整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式=211115326236 [2(6)(3)]a b+-+-⨯-÷-=0 4ab =4a(2)原式=318884()() m n-=23m n-例2.(P61例5)计算下列各式(1)(22(a>0)分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式=111324 (25125)25-÷=231322 (55)5-÷=2131 3222 55---=1655-= 5(2)原式=125222362132a aa a a--===⋅小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数. 课堂练习:化简:(1)2932)-(2(3)归纳小结:1.熟练掌握有理指数幂的运算法则,化简的基础.2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.指数函数及其性质指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .提问:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)24y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2x y =的图象再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2xy =的图象.从图中我们看出12()2xxy y ==与的图象有什么关系?通过图象看出12()2xxy y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x xx x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看x y a =(a >1)与xy a =(0<a <1)两函数图象的特征.xx问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系. 5.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,x f f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.课堂练习:P 68 练习:第1,2,3题补充练习:1、函数1()()2x f x =的定义域和值域分别是多少?2、当[1,1],()32x x f x ∈-=-时函数的值域是多少?解(1),0x R y ∈>(2)(-53,1)例2:求下列函数的定义域:(1)442x y -= (2)||2()3x y =分析:类为(1,0)x y a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .3.归纳小结1、理解指数函数(0),101x y a a a a =>><<注意与两种情况。