蛋白质相互作用一
蛋白蛋白相互作用结合亲和力预测

蛋白质相互作用是生物学中的重要研究课题。
蛋白质之间的相互作用可以揭示细胞内各种生物学过程的机制,如代谢途径、信号传导、细胞分化和凋亡等。
而相互作用结合亲和力预测则是对蛋白质相互作用研究的重要内容之一。
1.蛋白质相互作用的重要性蛋白质是生物体内功能最为丰富的一类生物大分子,它们参与了生物体内的几乎所有生物学过程。
蛋白质之间的相互作用更是构建了细胞内复杂的信号转导网络和调控系统。
研究蛋白质相互作用不仅对于理解细胞内的生物学过程具有重要意义,对于疾病的发生与发展也具有重要的指导作用。
2.蛋白质相互作用结合亲和力的概念相互作用结合亲和力是蛋白质相互作用的重要性质之一。
在生物体内,蛋白质之间的相互作用能够通过弱相互作用力(如范德华力、氢键)或者共价键来实现。
而蛋白质之间的相互作用结合亲和力则是描述了这种相互作用的强弱程度,通常用结合常数(Ka)或者解离常数(Kd)来表示。
3.蛋白质相互作用结合亲和力的预测方法要预测蛋白质相互作用结合亲和力,通常可以通过以下几种方法来进行:(1)实验方法:通过生物物理化学实验手段来直接测定蛋白质相互作用的结合亲和力。
这种方法的优点是结果准确可靠,但是成本较高、周期较长,并且需要有一定的实验条件和技术。
(2)生物信息学方法:通过对蛋白质序列、结构、功能等特征进行分析,利用计算方法来预测蛋白质相互作用的结合亲和力。
这种方法的优点是成本低、效率高,但是受限于计算方法的复杂性和数据的准确性。
(3)机器学习方法:利用大数据和机器学习算法,通过对已知蛋白质相互作用数据的训练,来构建模型从而预测新的蛋白质相互作用结合亲和力。
这种方法的优点是能够处理大量的复杂数据,但是需要具有一定的数据处理和机器学习算法知识。
4.蛋白质相互作用结合亲和力的应用蛋白质相互作用结合亲和力的预测对于生物医学领域具有很多应用价值。
可以通过预测蛋白质相互作用结合亲和力来设计和筛选药物靶点,开发新的蛋白质相互作用抑制剂或者激活剂;还可以通过预测蛋白质相互作用结合亲和力来分析蛋白质-蛋白质相互作用网络,揭示生物学过程的调控机制。
研究蛋白质相互作用的九种方法,写标书用得上

研究蛋白质相互作用的九种方法,写标书用得上寒风凛冽,又到了一年一度写标书的季节,你开始准备了么?在分子机制的研究中,蛋白和蛋白之间的互作研究可以说是非常经典了,研究蛋白互作的方法有很多,今天我们来介绍九种。
1、免疫共沉淀(Co-Immunoprecipitation,CoIP)CoIP其实就是两个蛋白相互的IP(免疫沉淀反应)实验,在已知蛋白B和C之间有相互作用的前提下,这种前提一般需要有一个酵母双杂实验或者Pulldown实验来作为支持。
IP就是用来验证蛋白C和蛋白B之间相互作用的。
如果在Agarose珠上的Protean A/G所结合的抗体,可以结合并拉下蛋白B,那用Western Blot即可检测出蛋白C的表达,反之亦然,通过这种相互间免疫共沉淀的实验,就可以明确地验证出,B与C之间的相互作用了。
比如这份标书:PYK2促进肝癌细胞迁移的一个新的分子机制研究:结合并磷酸化E-cadherin?(百度检索题目可查到全文)2、Pull-down实验这个实验跟免疫共沉淀实验很像,不同的是免疫共沉淀是在细胞里进行的,在众多的蛋白里,拉住A蛋白的同时,把B蛋白也给拉出来了,这还不能证明是直接的结合,很有可能是A 拉住了C,而C拉住了B,这样拉住A蛋白的同时也能把B蛋白也给拉出来。
要证明直接的结合就是Pull-down实验。
提纯所要研究的两个蛋白(一般是在BL21等菌种表达提纯),这两个蛋白带上不同的标签(提纯蛋白一般带GST或者HIIS标签),然后将他们放在同一个体系里,使用GST-beads或者NI-beads,把其中一个蛋白拉下来,用WB检测另一个蛋白的存在。
比如这份标书:恶性肿瘤的发生、发展的细胞表观遗传学机制。
(同样可以百度检索到全文)3、免疫荧光(Immunofluorescence,IF)——共定位将免疫学方法(抗原抗体特异结合)与荧光标记技术结合起来研究特异蛋白抗原在细胞内分布的方法。
由于荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位。
检测两种蛋白质之间相互作用

检测两种蛋白质之间相互作用的实验方法比较1. 生化方法●免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。
改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。
缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。
另外灵敏度不如亲和色谱高。
●Far-Western又叫做亲和印记。
将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。
缺点是转膜前需要将蛋白复性。
2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。
当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射率上升,从而导致共振角度的改变。
而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。
该技术不需要标记物和染料,安全灵敏快速,还可定量分析。
缺点:需要专门的等离子表面共振检测仪器。
3. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。
分别使结合域和激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。
缺点:自身有转录功能的蛋白会造成假阳性。
融合蛋白会影响蛋白的真实结构和功能。
不利于核外蛋白研究,会导致假隐性。
5. 荧光共振能量转移技术指两个荧光法色基团在足够近(<100埃)时,它们之间可发生能量转移的现象。
荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。
它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。
蛋白质相互作用

蛋白质相互作用的概述一、为什么要研究蛋白质相互作用二、蛋白质相互作用亲和力:K d=[A][B]/[AB]三、蛋白质相互作用的应用A、利用抗原和抗体的相互作用:Western blot,免疫共沉淀,染色质沉淀,抗体筛库B、利用已知的相互作用建立tag:GST pull down,Biotin-Avidin结合,C、直接利用蛋白质的相互作用:蛋白质亲和层析,酵母双杂交,phage display,Bait蛋白质筛表达库,蛋白质组四、相互作用的生物学意义:蛋白质间的相互作用是细胞生命活动的基础。
五、生物学功能的研究:获得功能或失去功能I、一些常用蛋白质相互作用技术•Traditional co-purification (chromatography co-purification and co-sedimentation)•Affinity chromatography:GST pull down,Epitope-tag•(co-)Immunoprecipitation•Western和Far-Western blotSurface Plasmon ResonanceTwo-Hybrid SystemFluorescence Resonance Energy Transfer (FRET)(实验过程及原理,注意事项,优缺点)III、研究实例讨论一、酵母双杂交系统作用:发现新的相互作用蛋白质;鉴定和分析已有的蛋白质间的相互作用;确定蛋白质相互作用的功能基团具体过程:见书本优点:是酵母细胞的in vivo相互作用;只需要cDNA,简单;弱的相互作用也能检测到缺点:都是融合蛋白,万一融合出新的相互作用;酵母的翻译后修饰不尽相同,尤其是蛋白质的调控性修饰;自身激活报告基因;基因库德要求比较高,单向1/3是in frame蛋白质毒性;第三者Z插足介导的相互作用;假阳性酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。
蛋白质互作

在酵母中合成的遗传相互作用 Synthetic Genetic Interactions in Yeast
Tong, Boone
蛋白质相互作用网络与蛋白质功能预测
► 对蛋白质功能的研究将成为后基因时代研究的核心
内容之一。伴随着生物信息学的迅猛发展以及基因 表达谱和蛋白质相互作用数据的激增,利用计算方 法对蛋白质功能进行预测和注释成为越来越有效的 一种手段。目前应用较为广泛的蛋白质功能预测主 要基于以下几方面:同源序列、基因组对比、系统 进化特征谱、基因表达谱数据以及蛋白质相互作用 网络等。由于基于蛋白质相互作用网络的功能预测 能整合多种数据信息,并具有从整体水平上准确预 测蛋白质功能的优点,该方法已成为蛋白质功能分 析及预测中的热点。
直接注释方法
► 直接注释方法基于:在蛋白质相互作用网络
中,距离相近的两个蛋白质更加倾向于拥有 相似的功能。而通过两蛋白质在网络中的距 离来计算并判断这两个蛋白质功能相似性有 许多的方法。 ► 邻居节点计算法(neighborhood counting) ► 图论方法(graph theoretic method) ► 马可夫随机场方法
Information Scope
Evolutionary Biology Biophysics Genetics Biochemistry Clinical Studies
Molecular Biology
Chemistry
Epidemiology
DB
Proteomics
Population Biology GenP),1999年由
UCLA的David Elsenberg实验室建立,目标 是成为一个蛋白质-蛋白质相互作用的文件 库,把关于蛋白互相作用的多样的实验信息 整合成一个容易进行查询的专一数据库。 ► DIP关注的是蛋白质配体,但是现在也包括 一些大蛋白合成物。研究人员可以免费获得 数据,并且搜索一个特殊蛋白质的相互影响 配体。
蛋白质互相作用

蛋白质互相作用蛋白质是生物体中最重要的有机物之一,它在细胞的结构和功能中起着关键的作用。
蛋白质的功能多种多样,其中一个重要的方面就是它们能够互相作用。
蛋白质互相作用是指两个或多个蛋白质之间发生的相互作用过程,这种相互作用可以是直接的物理接触,也可以是通过介导分子的参与。
蛋白质互相作用的形式多种多样,下面将介绍几种常见的蛋白质互相作用方式。
首先是蛋白质之间的结合作用。
蛋白质可以通过结合形成复合物,这种结合可以是非特异性的,也可以是特异性的。
非特异性结合是指蛋白质之间的结合是非选择性的,主要由静电相互作用和疏水作用驱动。
而特异性结合是指蛋白质之间的结合是选择性的,通过特定的结合位点进行结合。
这种结合可以是酶与底物的结合,也可以是抗体与抗原的结合。
其次是蛋白质之间的相互调节作用。
很多蛋白质在细胞内发挥作用时需要与其他蛋白质发生相互作用来调节其活性或功能。
例如,激酶与磷酸酶之间的相互作用可以调节信号转导通路的活性,从而影响细胞的功能。
另外,蛋白质可以通过与转录因子的结合来调节基因的转录水平,进而影响细胞的功能和发育。
蛋白质还可以通过互相激活或抑制来调节彼此的活性。
例如,一些酶可以通过与其他蛋白质的结合来增强其催化活性,这种现象被称为酶的激活。
另外,一些蛋白质也可以通过与其他蛋白质的结合来抑制其活性,这种现象被称为酶的抑制。
蛋白质互相作用还可以通过形成蛋白质复合物来实现信号传递。
在细胞内,许多信号分子需要通过与蛋白质的结合来传递信号,从而触发下游的信号通路。
例如,细胞表面的受体蛋白质可以通过与配体结合形成复合物,从而激活下游的信号通路,影响细胞的功能。
总的来说,蛋白质互相作用是细胞内各种生物功能的基础。
蛋白质之间的相互作用可以调节蛋白质的活性和功能,进而影响细胞的生理和病理过程。
深入研究蛋白质互相作用的机制和调控方式,对于理解细胞的功能和疾病的发生机制具有重要意义。
希望通过今天的介绍,大家对蛋白质互相作用有了更深入的了解。
蛋白质的四种相互作用

蛋白质的四种相互作用蛋白质是生物体内最重要的大分子有机化合物之一,它在维持生命活动和调节生物体各种功能上起着重要的作用。
蛋白质的功能与其结构密切相关,而蛋白质的结构主要由其内部的四种相互作用所决定。
这四种相互作用分别是氢键、离子键、范德华力和疏水作用。
氢键是蛋白质中最重要的相互作用之一。
氢键是指氢原子与电负性较高的原子间的作用力。
在蛋白质中,氢键主要是由蛋白质中的氨基酸残基之间的氢键形成的。
例如,蛋白质中的α-螺旋结构中,氢键起到了稳定螺旋结构的作用。
此外,在蛋白质的折叠过程中,氢键也起到了重要的作用,帮助蛋白质折叠成特定的三维结构。
离子键也是蛋白质中常见的相互作用之一。
离子键是指正负电荷之间的相互作用力。
在蛋白质中,离子键主要是由蛋白质中的氨基酸残基之间的氨基和羧基之间的电荷相互作用形成的。
离子键的形成可以增强蛋白质的稳定性,同时也可以在蛋白质的功能中发挥重要作用。
例如,蛋白质中的酶类分子通常通过离子键与底物结合,从而发挥催化作用。
第三,范德华力是蛋白质中相互作用的另一种重要形式。
范德华力是指分子之间由于电子云的运动而产生的瞬时偶极子,从而形成的吸引力。
在蛋白质中,范德华力主要是由蛋白质中的非极性残基之间的相互作用形成的。
范德华力在蛋白质的折叠和稳定过程中起到了重要的作用。
此外,范德华力也可以在蛋白质与其他分子之间的相互作用中发挥重要作用,例如蛋白质与配体的结合。
疏水作用也是蛋白质中重要的相互作用之一。
疏水作用是指非极性物质在水中聚集形成的力。
在蛋白质中,疏水作用主要是由蛋白质中的非极性残基在水中形成疏水核心,从而使蛋白质分子折叠成特定的三维结构。
疏水作用在蛋白质的折叠和稳定中起到了重要的作用。
此外,疏水作用也可以在蛋白质与其他分子之间的相互作用中发挥重要作用,例如蛋白质与膜脂质的相互作用。
蛋白质的四种相互作用,即氢键、离子键、范德华力和疏水作用,是蛋白质结构和功能的重要基础。
这些相互作用在蛋白质的折叠、稳定和功能中起到了重要的作用。
研究蛋白质的相互作用的方法

研究蛋白质的相互作用的方法一、酵母双杂交系统酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。
其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。
将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。
在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。
Angermayr等设计了一个SOS蛋白介导的双杂交系统。
可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。
此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。
二、噬茵体展示技术在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。
此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。
目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。
三、等离子共振技术表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。
它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。
SPR技术的优点是不需标记物或染料,反应过程可实时监控。
测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。
四、荧光能量转移技术荧光共振能量转移(FRET )广泛用于研究分子间的距离及其相互作用;与荧光显微镜结合,可定量获取有关生物活体内蛋白质、脂类、DNA 和RNA 的时空信息。
蛋白质之间的相互作用

蛋白质之间的相互作用蛋白质是生物体内最为重要的大分子之一,它们扮演着许多生命活动的关键角色,如催化酶反应、结构支持、运输分子和信号传导等。
蛋白质的功能依赖于其复杂的三维结构,而这种结构的稳定性和稳定性则取决于蛋白质之间的相互作用。
静电相互作用是蛋白质之间最主要的相互作用之一、它是两个带电物质之间的作用力,可以是正负电荷之间的吸引力或者相同电荷之间的排斥力。
蛋白质中的氨基酸可以带有正电荷(赖氨酸、精氨酸和组氨酸)和负电荷(天冬酰、谷氨酸和脯氨酸),静电相互作用可以通过正电荷和负电荷之间的吸引力来稳定蛋白质的结构。
氢键是蛋白质折叠和稳定性的另一个重要因素。
它是指两个带有部分正电荷的原子与一个带有部分负电荷的原子之间的相互作用。
氢键通常发生在蛋白质中的氨基酸残基之间,如酰胺键中的氮和羰基之间的氢键。
氢键的形成可以稳定蛋白质的二级和三级结构。
范德华力是非共价相互作用中的一种较弱力量,它是由电子间的临时偶极子的相互作用引起的。
虽然每个单个范德华力都很微弱,但当许多范德华力同时作用于蛋白质的各个部分时,它们的效果变得显著。
疏水效应也是蛋白质稳定性的重要因素。
当蛋白质折叠成稳定的结构时,非极性氨基酸通常被排斥到蛋白质的核心,与水相互作用较少。
这种相互作用可以增加蛋白质的疏水性,并促进蛋白质的稳定性。
除了非共价相互作用,蛋白质之间还可以通过共价键形成更稳定的结构。
共价键通常发生在两个半胱氨酸残基之间,形成二硫键。
二硫键的形成可以稳定蛋白质的立体构型,并增强蛋白质的稳定性。
总结起来,蛋白质之间的相互作用是蛋白质折叠、稳定和功能发挥的关键因素。
通过非共价和共价相互作用,蛋白质可以形成稳定的结构,并实现其特定的生物学功能。
深入了解蛋白质之间的相互作用对于解析蛋白质的结构和功能以及开发新的药物和治疗方法具有重要意义。
蛋白质的相互作用

蛋白质的相互作用蛋白质是生命体内重要的生物大分子,具有多种生物学功能,包括催化化学反应、传递信号和提供结构支持等。
为了完成这些功能,蛋白质必须与其他分子相互作用。
蛋白质的相互作用可以分为四类:蛋白质与蛋白质的相互作用、蛋白质与核酸的相互作用、蛋白质与小分子的相互作用以及蛋白质与膜的相互作用。
在这些相互作用中,蛋白质通常与其他分子发生非共价作用,如氢键、离子键和疏水相互作用等。
蛋白质与蛋白质的相互作用是细胞中最常见的相互作用类型之一、蛋白质与蛋白质之间的相互作用可以形成复合物,这些复合物在调节和执行细胞内的生物学功能中起着关键作用。
例如,酶与底物的结合形成酶底物复合物,从而催化化学反应。
蛋白质与蛋白质还可以发生互相激活或抑制,这在细胞信号转导过程中尤为重要。
蛋白质与核酸的相互作用也是生物体内常见的一种相互作用类型。
DNA与蛋白质之间的相互作用在基因转录和DNA复制过程中起着关键作用。
这些相互作用可以通过蛋白质与DNA的顺序特异性识别实现。
同样,RNA与蛋白质之间的相互作用在RNA的转录、剪接和翻译等过程中也起到重要作用。
这些相互作用可以通过互补配对和其他非共价作用实现。
蛋白质与小分子的相互作用是细胞内许多生物活性分子的机制。
蛋白质可以通过与小分子结合而改变其构象和功能。
举例来说,抗生素与靶标蛋白质的相互作用是通过结合并抑制细菌的生长和繁殖。
蛋白质与小分子的相互作用还广泛存在于细胞信号途径中,这种相互作用可以改变蛋白质的构象,从而影响信号传递的过程。
蛋白质与膜的相互作用是细胞内一种重要的相互作用类型。
细胞膜是由脂质双层组成的,蛋白质与膜之间的相互作用决定了细胞膜的功能。
蛋白质可以通过其跨膜区域与膜相互作用,从而在细胞内传递信号或形成通道。
蛋白质还可以通过与细胞膜的外层相互作用来参与细胞黏附和信号转导等过程。
总的来说,蛋白质的相互作用对于细胞的生理过程至关重要。
蛋白质可以通过与其他分子的相互作用来实现其功能,从而使细胞可以生长、分裂和完成各种生物学过程。
质谱分析蛋白质的相互作用

蛋白质间的相互作用存在于生物体每个细胞的生命活动过程中,互交叉形成网络,成细胞中一系列重要生理活动的基础。
其中,多数蛋白质是通过与配体分子结合或者是作为1个大的生物复合体的一部分,与细胞完整性维持、遗传物质复制、基因表达调控、信号转导、免疫应答等一系列生命过程。
研究蛋白质间相互作用的方式和程度,将有助于蛋白质功能的分析、疾病致病机理的阐明和治疗和新型药物的开发等众多难题的解决。
因此,确定蛋白质间相互作用关系、绘制相互作用图谱已成为蛋白质组学研究的热点。
近年来有许多方法被用于蛋白质相互作用的研究,酵母双杂交技术,免疫共沉淀技术,串联亲和纯化技术,化学交联技术,蛋白质芯片技术,荧光共振能量转移技术,噬菌体展示技术等。
酵母双杂交技术Fields和song等首先在研究真核基因转录调控中建立起来的,是在真核细胞中检测蛋白质与蛋白质之间的相互作用的方法。
该系统是通过两个分别称之为“诱饵蛋白”和“捕获蛋白”的融合蛋白形成一个完整的转录激活因子,从而激活报告基因的表达,通过在营养缺陷型培养基上生长或呈现显色反应来检测系统的功能。
酵母双杂交系统可在全基因组规模上进行蛋白质一蛋白质相互作用高通量的研究。
免疫共沉淀技术免疫共沉淀是利用抗原和抗体的特异性结合以及细菌的Protein A或G特异性地结合到免疫球蛋白的Fc片段的现象开发出来的方法。
其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于Agarose珠上的Protein A或G,若细胞中有与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:“目的蛋白—兴趣蛋白—抗兴趣蛋白抗体—Protein A或G”,经变性聚丙烯酰胺凝胶电泳,复合物又被分开。
然后经免疫印迹或质谱检测目的蛋白。
这种方法得到的目的蛋白是在细胞内与兴趣蛋白天然结合的,符合体内实际情况,得到的结果可信度高。
这种方法常用于测定两种目标蛋白质是否在体内结合;也可用于确定一种特定蛋白质的新的作用搭档。
蛋白质相互作用的方法

蛋白质相互作用的方法
蛋白质相互作用的方法可以分为以下几种:
1. 体外共沉淀法(Co-Immunoprecipitation):利用抗体与目标蛋白质结合后,通过共沉淀的方式来寻找与目标蛋白质相互作用的其他蛋白质。
2. 酵母双杂交法(Yeast Two-Hybrid):利用酵母细胞中的转录激活子域和靶蛋白质的相互作用来筛选相互作用蛋白。
3. 蛋白质亲和纯化法(Protein Affinity Purification):构建蛋白质相互作用的亲和纯化系统,将目标蛋白质与其他潜在相互作用蛋白质结合,并通过亲和柱等手段分离纯化相互作用蛋白质。
4. 融合蛋白技术(Fusion Protein):利用蛋白质融合技术,将目标蛋白质与报告标记或纯化标签蛋白质进行融合,通过检测标签蛋白质来确定相互作用的蛋白质。
5. 走向复合物的质谱法(Mass Spectrometry):将目标蛋白质与其他潜在相互作用蛋白质共同提取纯化,然后通过质谱分析来鉴定复合物中的蛋白质。
这些方法可以单独或组合使用来研究蛋白质的相互作用。
蛋白质互作

SH2结构域
约100个氨基酸序列,识别磷酸化的酪氨 酸及相邻的3-6个氨基酸残基。
SH3结构域
由50个氨基酸残基组成,存在于各种蛋 白激酶和衔接蛋白中,识别富含脯氨酸 的序列R/KXXPXXP或PXXPXR/K,其亲和力 与脯氨酸残基及相邻氨基酸残基组成相 关。
PH结构域
100-120个氨基酸残基组成,存在于多种 细胞骨架蛋白,蛋白激酶、PLC超家族中。
兼具结合脂类和蛋白质的能力,参与细 胞信号转导。
WW结构域
30-40个氨基酸残基组成的三股反平行β 片层结构域,含两个高度保守的色氨酸 WW而得名,识别富含脯氨酸的序列XPPXY, 参与非受体信号转导、转录调节和蛋白 质降解等过程。
PDZ结构域
由80-100个氨基酸残基组成,包含2个 α-螺旋和6个β-折叠,常以串联重复拷 贝存在,是构成支架蛋白的重要结构, 在细胞膜蛋白质的聚集中发挥重要作用。
结构域是蛋白质中折叠较为紧密且具有 一定功能的球状和纤维状的结构,以模 块方式具有多种不同功能的分子。
蛋白质相互作用结构域专指那些可以识 别其他蛋白质的特殊结构,从而介导两 个蛋白之间发生相互作用的结构域,一 般由50-100个氨基酸组成。
结构域结构域相互作用 结构域-肽段模体相互作用
protein2) SH3-SH2-SH3 NCK(noncatalytic region of tyrosine
kinase) SH3-SH3-SH3-SH2 Scaffold protein JIP-1(JNK-interacting protein1)
PPI 研究的医学意义
PPI异常可导致细胞活动失控
相互作用能力的丧失可丧失原有的正常调节。 突变也可产生新的相互作用。
蛋白质 相互作用

蛋白质相互作用
蛋白质相互作用是指两种或以上的蛋白质结合的过程。
这种结合通常是为了执行其特定的生化功能,如DNA复制、信号传递等。
在细胞中,大量的蛋白质元件组成分子机器,通过蛋白质相互作用来执行细胞内多数重要的分子过程。
蛋白质复合体是蛋白质通过长时间交互作用形成的,它们负责携带另一个蛋白质,例如从细胞质至细胞核,或反之。
此外,短暂的交互作用可以修饰另一个蛋白质,例如蛋白激酶将磷酸盐转移到目标蛋白上。
蛋白质相互作用广泛参与了生物化学、量子化学、分子动力学、讯息传递等代谢或遗传学/表观遗传学过程。
它是所有活体细胞中整个交互作用组学系
统的核心,主宰了活体细胞内几乎所有的生化反应。
蛋白质相互作用的基础是它们表面的原子尺度特征,这些特征能够与其他物质的原子尺度特征产生吸引或排斥。
如果两种蛋白质的表面特征能够精确匹配并相互吸引,它们就可以结合在一起。
这种结合需要单个原子尺度上的空间位置能匹配,比钟表齿轮的啮合还要精密得多。
以上内容仅供参考,如需更多专业信息,建议查阅相关文献或咨询生物学家。
蛋白相互作用

百泰派克生物科技
蛋白相互作用
蛋白相互作用是指两个或两个以上的蛋白质形成蛋白质复合体或多蛋白网络的现象。
单一的蛋白质难以发挥复杂的生物学功能,通常需要多个蛋白相互结合实现复杂的细胞学功能。
生物体内的蛋白质-蛋白质相互作用主要以3种形式存在:形成多亚
基蛋白质四级结构(血红蛋白4个亚基的装配)、蛋白复合体(病毒外壳)以及瞬
时蛋白质-蛋白质相互作用。
研究蛋白相互作用的方法有很多,可以分为体外和体内两类。
体外的方法主要有蛋白质亲和层析、免疫(共)沉淀、(GST)Pull down、蓝色非变性胶技术(BN-PAGE)亲和印迹、蛋白芯片、核磁共振谱分析等。
体内的分析方法包括酵母双杂交、共聚焦显微技术和流式细胞分析技术等。
百泰派克生物科技采用Thermo Fisher的Q ExactiveHF质谱平台结合Nano-LC提
供蛋白质互作分析服务技术包裹,可对IP、Co-IP样品及GST融合蛋白Pull-down
等纯化样本中的蛋白/蛋白混合物的质谱鉴定分析,欢迎免费咨询。
蛋白与蛋白相互作用的研究方法

蛋白与蛋白相互作用的研究方法引言:蛋白质是生物体内最为重要的大分子,其功能多样且复杂。
蛋白质的功能往往通过与其他蛋白质相互作用来实现。
因此,研究蛋白质与蛋白质之间的相互作用成为了生物学与生物化学领域中的重要课题。
本文将介绍一些常用的蛋白质相互作用研究方法。
一、酵母双杂交技术(Y2H)酵母双杂交技术是一种常用的蛋白质相互作用研究方法。
该技术利用酵母细胞中的转录激活子域(activation domain)和DNA结合域(DNA binding domain)的相互作用来实现蛋白质的检测。
通过将感兴趣的蛋白质A与转录激活子域融合,蛋白质B与DNA结合域融合,当蛋白质A与蛋白质B相互作用时,可以使酵母细胞中的报告基因表达,从而实现蛋白质相互作用的检测。
二、共免疫沉淀法(Co-IP)共免疫沉淀法是另一种常用的蛋白质相互作用研究方法。
该方法利用抗体与特定蛋白质结合的特异性,将目标蛋白质与其他与之相互作用的蛋白质一同沉淀下来。
通过这种方法可以鉴定蛋白质A与蛋白质B之间的相互作用。
此外,共免疫沉淀法还可以用于分析蛋白质复合物的组成及其在细胞中的定位。
三、表面等离子体共振(SPR)表面等离子体共振技术是一种实时监测蛋白质相互作用的方法。
该技术通过将其中一个蛋白质固定在金属膜上,然后将另一个蛋白质溶液流经,利用光学传感器检测蛋白质结合引起的共振角位移,从而实时监测蛋白质的结合与解离过程。
该技术能够提供蛋白质相互作用的结合动力学参数,如结合常数和亲和力等信息。
四、质谱法(MS)质谱法是一种用于鉴定蛋白质相互作用的方法。
该方法通过将蛋白质复合物分离后进行质谱分析,利用质谱仪检测蛋白质的质量与荷电量,从而鉴定蛋白质复合物中的组分。
质谱法在鉴定蛋白质相互作用中具有高灵敏度和高特异性的优势,能够提供蛋白质复合物的组成及其相对丰度等信息。
五、荧光共振能量转移(FRET)荧光共振能量转移是一种基于蛋白质相互作用的实时监测方法。
蛋白质的相互作用研究方法课件.ppt

四、Bimolecular Fluorescent Complementation
蛋白质的相互作用研究方法课件
蛋白质的相互作用研究方法课件
五、Yeast Two-Hybrid Systerm
蛋白质的相互作用研究方法课件
1.原理 酵母双杂交系统由Fields和Song等首先在研究真
蛋白质的相互作用研究方法课件
蛋白质的相互作用研究方法课件
2008年诺贝尔化学奖
蛋白质的相互作用研究方法课件
GFP主要应用: • 对活细胞中的蛋白质进行准确定位及动态观察
可实时原位跟踪特定蛋白在细胞生长、分裂、分化过 程中或外界刺激因子的作用下的时空表达, 如某种转录因 子的核转位、蛋白激酶C的膜转位等。
GFP基因与分泌蛋白基因连接后转染细胞, 可动态观察 该分泌蛋白分泌到细胞外的过程
GFP基因与定位于某一细胞器特殊蛋白基因相连,就能 显示活细胞中细胞核、内质网、高尔基体、线粒体等细胞 器的结构及病理过程。
膜蛋白的移动 (Fluorescence Recovery After Photobleaching FRAP ) • 蛋白之间的相互作用(FRET) • 报告分子 将GFP的基因连在特殊的启动子的后面,可以检 测基因表达的时间和部位。
容易检测 分子量小
Douglas Prasher was the 不需要其它底物
first person to realize the potential of GFP as a tracer molecule.
Douglas Prasher 1992 克隆了GFP基 因
蛋白质的相互作用研究方法课件
核基因转录调控中建立。 典型的真核生长转录因子, 如GAL4、GCN4、
蛋白质与蛋白质相互作用(Protein-Protein Interaction, PPI)研究方法概述

蛋白质与蛋白质相互作用(Protein-Protein Interaction, PPI)研究方法概述目前检验蛋白质之间相互作用的实验方法主要有:酵母双杂交系统(Yeast two-hybrid system)、噬菌体展示技术(Phage display)、串联亲和纯化-质谱(Tandem affinity purification-mass spectrometry, TAP-MS)以及GST pull-down。
其原理与适用范围如下:(1)酵母双杂交系统(Yeast two-hybrid system)实验原理:双杂交系统的建立基于对真核生物调控转录起始过程的认识。
细胞起始基因转录需要有转录激活因子的参与,转录激活因子在结构上是组件式的,即这些因子往往由两个或两个以上相互独立的结构域构成,其中有DNA结合结构域(binding domain,简称为BD)和转录激活结构域(activation domain,简称为AD),它们是转录激活因子发挥功能所必需的。
在酵母双杂交系统中,“诱饵”蛋白X(也就是已知的蛋白)克隆至DNA-BD载体中,表达DNA-BD/X融合蛋白;待测试蛋白Y克隆至AD载体中,表达AD/Y融合蛋白。
一旦X与Y蛋白间有相互作用,则DNA-BD和AD也随之被牵拉靠近,恢复行使功能,激活报告重组体中基因的表达。
图解:说明:其中,UAS即upstream activating sequence,上游激活序列。
适用范围:已知一种蛋白X,在体内(in vivo)筛选与其相互作用的蛋白,但前体是需预备一批可能与已知蛋白X相互作用的蛋白Y。
(2)噬菌体展示技术(Phage display)实验原理:将编码多肽的外源DNA片段与噬菌体表面蛋白的编码基因融合后,以融合蛋白的形式呈现在噬菌体的表面,被展示的多肽或蛋白可保持相对的空间结构和生物活性,导入了各种各样外源基因的一群噬菌体,就构成一个展示各种各样外源肽的噬菌体展示库。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 疏水作用力 在水介质中球形蛋白质形成立体结构时总是
趋向于将疏水基团包埋在分子内部。 不是疏水集团之间有吸引力,是疏水基团出
自避开水的需要被迫靠近。 在生理温度范围内随温度增高而增加
• 范德华氏力 极性分子或极性基团之间定向效应 极性物质和非极性物质之间诱导效应 非极性分子或基团之间的分散效应 单个力很小但数量很大
(二)合成编码随机短肽的核苷酸序列: (NNK)x或(NNS)x N=A、T、C、G K=G、T S=G、C x=氨基酸数 NNK或NNS组成32个密码代表20种氨基酸
和一个终止密码TAG 第三个硷基不用A:不出现TAA和TGA
都是简并密码 第三硷基用C或T :互为简并密码
AAG T
ATG T
AGG T
• PⅢ蛋白:
显示的蛋白或多肽 穿膜区:与噬菌体侵入有关 受体结合区:结合F菌毛 C端疏水区:锚定在噬菌体外壳
噬菌体 424个氨基酸,18氨基酸是信号肽,插入片段大,低拷贝
• PⅧ蛋白: 73个氨基酸 23个氨基酸的信号肽 1-5:可活动区,露出噬菌体表面,插入多肽 6-24:占据噬菌体表面 25-35:高度疏水区 36-50:与DNA结合,构成噬菌体内壁
分析结构和功能
四、酵母双杂交技术-蛋白质相互作用
一、酵母双杂交系统的原理 二、酵母双杂交系统的操作程序 三、酵母双杂交系统的应用 四、酵母双杂交系统的局限与发展
酵母双杂交系统(Yeast two-hybrid system) 也叫相互作用陷阱 (Interaction trap)
由Fields和Song于1989年建立
人类基因组计划结束给科学工作者极大鼓舞,同时也引 出了更多的问题:
大量涌现出的新基因,它们有什么功能?编码什么蛋白? 在生命过程中发挥什么样的作用?
这些问题靠传统的研究方法不可能解决。蛋白质组 (proteome)和蛋白质组学(proteomics)的概念就是在这 个基础上提出的。
1994年9月在意大利Marc Wilkins正式提出了蛋白质组 (proteome)的概念。用于指代特定时间一个基因组或者一 种组织产生并利用的所有蛋白质。
三、噬菌体表面显示技术-筛选结合结构域
技术建立的原理和条件: 1.抗原抗体反应 抗原抗体特异性反应通过抗原决定簇实现 抗原决定簇位于分子表面,5-7氨基酸组成 2.多肽在噬菌体表面有独立活性 3.多肽化学合成技术的日趋成熟
丝状噬菌体特点: 基因组是单链DNA,只能感染F+细菌 复制形式是双链,可用于基因操作和转化 有5种结构蛋白: PⅢ通过与F菌毛结合感染细菌 PⅧ与噬菌体的成熟和稳定有关
• 蛋白质功能确定: 研究蛋白质的功能,蛋白质相互作用 酵母杂交技术 噬菌体展示技术 RNA干扰技术
• 蛋白质功能研究: 噬菌体表面展示技术(phage surface display) 酵母杂交技术(yeast hybridization) RNA干扰技术
• 蛋白质鉴定 双向电泳技术 质谱分析技术
• 多酶体 相关的酶彼此有机的结合在一起 丙酮酸脱氢酶:丙酮酸脱氢酶、二氢硫辛酸乙酰转移酶、二 氢硫辛酸脱氢酶
二、蛋白质间作用力
• 氢键 主链氢键:二级结构 侧链氢键:三、四级结构 表面氢键: 蛋白质间作用
• 离子键 正电荷与负电荷间的静电引力 酸性氨基酸和碱性氨基酸多在球形蛋白质的表面, 解离的带电基团互相吸引 和溶液的盐浓度有关
多肽种类=206,肽库必须足够大
肽库的筛选
受体蛋白 生物素标记
生物素—受体蛋白 噬菌体肽库
生物素—受体蛋白—多肽噬菌体
滴定板微量 链亲和素
生物素—受体蛋白—多肽噬菌体 链亲和素 滴定板
洗去未结合噬菌体
酸洗脱 插入特定多肽的噬菌体
•
鉴定
插入特定多肽噬菌体 提DNA 测序
由DNA序列推测多肽氨基酸序列 合成多肽
高拷贝,插入的片段小
技术操作 (一)噬菌体载体:
1. 噬菌体载体 由噬菌体基因组改造而成 含有完成噬菌体生命周期全部遗传成分 一种抗生素遗传标记 一对限制酶切点
2.噬菌粒 噬菌体和质粒的杂合体 质粒的复制子和抗性基因 噬菌体的PⅢ基因或PⅧ基因及基因间隔区 间隔区有单链DNA合成和包装信号 感染细菌后需辅助噬菌体协助包装
ACG T
8X4=32密码 终止密码TAG 第三个硷基不用A:不出现TAA和TGA
都有简并密码 第三个碱基:A和G是简并密码随机部分(NNK)6,N:等量4种碱基 K:等量G/T两种碱基
两侧加酶切位点 经PCR扩增 酶切合成的基因片段 (2)载体酶切,与合成基因重组,转化 (3)细菌培养 (4)在培养液中收集噬菌体颗粒
蛋白质相互作用的研究技术
• 蛋白质:结构蛋白 功能蛋白
• 生命基本过程是功能蛋白质在时空上 有序和协调作用的结果
• 从研究单一蛋白质的结构与功能关系 发展为研究蛋白质间的相互作用
一、蛋白质相互作用的种类
• 分子或亚基的聚合 四级结构蛋白质亚基间的互相聚合 聚合的亚基是固定不变的 聚合靠氢键、疏水作用力等次级键
用于研究细胞内蛋白质与蛋白质间的 相互作用。
(一)、酵母双杂交技术原理
酵母双杂交系统的建立基于对真核生物转 录激活因子结构与功能的认识
真核生物转录激活因子
DNA结合结构域 转录激活结构域
• 分子杂交 同工酶亚基间的聚合 聚合的亚基是可变的 聚合靠次级键
• 分子识别 蛋白质之间普遍存在的专一性结合作用 抗体与抗原、酶与底物、配体与受体 结合局部构像相嵌互补,必要时局部构像发生变化 局部有相应的化学基团产生足够结合力
• 分子自我装配 在特定条件下生物大分子自动装配成具有生物活性的细胞器 或病 蛋白质鉴定: 双向电泳结果找出差异蛋白质电 对差异点蛋白质: 分子量及等电点分析 western blot或者免疫共沉淀等技术初步鉴
定蛋白质种类 质谱技术分析蛋白质的氨基酸序列 在数据库中比对确定蛋白质的家族归属。
• 蛋白质的修饰: 真核生物蛋白质翻译后会进行修饰: 磷酸化 乙酰化 糖基化 这些修饰是调节蛋白质功能的重要方式