基于单片机的4通道模拟信号采集与显示系统设计
数据采集系统实验报告报告
任务要求1.4路模拟量输入,输入电压范围0~5V,分辨率8位,转换时间100us,具有显示(数码管)测量结果(用10进制显示直流电压值或交流电压峰值)的功能;2.1路模拟量输出,用来分别重现4路被采信号的波形(供示波器观测)摘要本数据采集系统是基于单片机AT89C51来完成的,4路的模拟电压通过通用的8位A/D 转换器ADC0809转换成数字信号后,由单片机进行数据处理,并将处理后的数据送LED显示器显示。
再经过常用的8位D/A转换器DAC0832将数字数据转换成模拟量,供示波器观测。
一、系统的方案选择和论证根据题目基本要求,可将其划为如下几个部分:●4路模拟信号A/D转换●单片机数据处理●LED显示测量结果●D/A转换模拟量输出系统框图如图1所示:图1 单片机数据采集系统框图1、4路模拟信号A/D转换由于被测电压范围为0~5V,分辨率为8位,转换时间为100us,所以A/D转换部分,本系统选择常用的8路8位逐次逼近式A/D转换器ADC0809。
ADC0809芯片有28条引脚,采用双列直插式封装。
下面说明各引脚功能。
IN0~IN7:8路模拟量输入端。
2-1~2-8:8位数字量输出端。
ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。
ALE:地址锁存允许信号,输入,高电平有效。
START:A/D转换启动信号,输入,高电平有效。
EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。
OE:数据输出允许信号,输入,高电平有效。
当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。
CLK:时钟脉冲输入端。
要求时钟频率不高于640KHZ。
REF(+)、REF(-):基准电压。
Vcc:电源,单一+5V。
GND:地。
ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。
此地址经译码选通8路模拟输入之一到比较器。
基于单片机的信号采集系统的设计
信号采集设备广泛使用于机器健康诊断系统中用来记录、监视和诊断。机器情况数据经常由非便携式或者带导线的设备收集。对于一些重要的应用,比如危险或者遥远的地点,尤其是在航空上,提供可以方便地携带或者读取的设备是必要的。另外,机器健康诊断尤其是机床振动信号诊断经常处理低频信号,这值得关注。
本文研究一种微控制器为基础的信号采集系统,以满足信号采集的低成本和灵活模式。开发系统的主要硬件包括一台微型计算机、一个以PIC18F1320为基础的微控制器电路板以及串行通讯链接设备。EEPROM 24LC32A被用来进行存储器扩展。微型计算机运行控制程序。一旦用户在微型计算机界面上决定采样输入,信息便通过RS-232端口送往微控制器。微型计算机和微控制器通过特定的协议通信。微型计算机告知微控制器模-数转换的采样间隔、采样次数与采样通道。电路板的设计考虑了开放式结构。该系统采用了24引脚易于插拔的插座来容纳Micro-chip微控制器。微处理器将调制的信号转换成数据直接输送到微型计算机或者存储于EEPROM以便将来读取。不同的命令与反馈代表系统的不同操作。电路板通过串行电缆在采集完信号后连接到微型计算机交互,也可以即时连接和传送。 1Fra bibliotek系统硬件设计
系统的主要原理图。其中PIC18F1320控制器采用5V电源供电,支持在线串行编程,最高时钟频率达到40MHZ,通讯波特率可以自动检测。端口A是双向输入/输出复用管脚,AN0等管脚被定义成模拟输入,由用户是行采用通道的选择。总共有13个模/数转换通道且采样时间可以编程。通道输入的被测信号经过电子电路调制成符合抽控制器电气要求的信号。调制信号经过转换变成寄存器内的数据,模数转换的参考电压为+5V。电路板可以微控制器重新编程后方便地插入;同时,电路板可通过跳线设置民终端用户进行电缆连接。由于微控制器与串行电路的电气特性不同,工业标准级的MAX232芯片被使用以保证正确的数据传输(见图2)。该芯片和PIC18F1320一样适用于低功耗场合。MAX232上连接的电容采用的是电解电容,电容值为1UF。MAX232的11脚或者10脚接微控制器的USART输出端,12脚或者9脚接微控制器的USART输入端。微控制器的存储器扩展使用了32K的I2C串行EEPROM(见图3),数据可以保持200年。EEPROM的地址线A0、A1、A2被接地。串行数据线SDA和串行时钟一SCL被分别连接到微控制器的B端口相应管脚。写保护WP接+5V。
基于STM32单片机的多路数据采集系统设计毕业设计
基于STM32单片机的多路数据采集系统设计毕业设计摘要:本篇设计主要以STM32单片机为核心,设计了一个多路数据采集系统。
该系统能够实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
设计中使用了STM32单片机的AD转换功能实现模拟量信号的采集,使用GPIO口实现数字量信号的采集,通过串口与上位机进行通信。
经过实验验证,该系统能够稳定地采集多路数据,并实现远程数据传输和控制功能,具有较高的可靠性和实用性。
关键词:STM32单片机,数据采集,模拟量信号,数字量信号,上位机通信一、引言随着科技的发展,数据采集系统在工业控制、环境监测、生物医学等领域得到了广泛的应用。
数据采集系统可以将现实世界中的模拟量信号和数字量信号转换为数字信号,并进行处理和存储。
针对这一需求,本文设计了一个基于STM32单片机的多路数据采集系统。
二、设计思路本系统的设计思路是通过STM32单片机实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
该系统采用了模块化设计方法,将系统分为采集模块、显示模块和通信模块。
1.采集模块采集模块通过STM32单片机的AD转换功能实现模拟量信号的采集,通过GPIO口实现数字量信号的采集。
通过在程序中设置采样频率和采样精度,可以对不同类型的信号进行稳定和准确的采集。
2.显示模块显示模块通过LCD显示屏显示采集到的数据。
通过程序设计,可以实现数据的实时显示和曲线绘制,使得用户可以直观地观察到采集数据的变化。
3.通信模块通信模块通过串口与上位机进行通信。
上位机通过串口发送控制命令给STM32单片机,实现对系统的远程控制。
同时,STM32单片机可以将采集到的数据通过串口发送给上位机,实现数据的远程传输。
三、实验结果与分析通过实验验证,本系统能够稳定地采集多路模拟量和数字量信号,并通过串口与上位机进行通信。
系统能够将采集到的数据实时显示在LCD屏幕上,并通过串口传输给上位机。
基于单片机信号采集与回放系统的设计与实现_吴宁
基于单片机信号采集与回放系统的设计与实现*吴宁1,李斌2,柴世文3(1.兰州工业高等专科学校电气工程系,甘肃兰州730050;2.兰州石化公司研究院,甘肃兰州730060)摘要:重点介绍了一种基于89C52单片机为控制核心的信号采集与回放控制系统。
该系统结合ADC0809、DAC0832数据采集模块,实现对两路外部信号进行采集、存储及回放。
系统模拟部分主要包括信号调节电路和A/D模块等:软件部分主要由主程序和子程序模块组成,主要实现了A/D转换器的启动与及对采样数据的存储,频率及幅值的计算,按键及显示屏的控制。
该系统经过测试实验,能耗低,性价比高,具有较高的实际应用价值。
关键词:信号采集与存储;信号复现;信号调节;回放系统中图分类号:TM13文献标识码:A文章编号:1007-4414(2011)06-0121-03The design and implementation of signal acquisition and playbacksystem based on microcontrollerWu Ning1,Li Bin2,Chai Shi-wen3(1.Electrical engineering department,Lanzhou polytechnic college,Lanzhou730050,China;2.Research institute of Lanzhou petrochemical corporation,Lanzhou730060,China;3.Gansu academy of mechanical science,Lanzhou Gansu730030,China)Abstract:This paper proposed a signal acquisition and playback control system based on89C52as the control unit.The sys-tem associated with ADC0809and DAC0832to achieve the two external signal acquisition,storage and playback.The analog section of the system included signal adjusting circuit and A/D module.The function of software modules consisted of main program and subroutine.It realized the start of the A/D converter,the sampling data storage,the calculation of the frequency and amplitude,the control of the buttons and display.The system has been tested to prove low energy consumption,cost-ef-fective and high practical value.Key words:signal capture and storage;signal reproduction;signal conditioning;playback system1引言很多工业现场中的电气设备在发生故障时,由于环境限制或是故障原因复杂,无法有效对系统故障进行在线的分析和判别,如果能够记录下故障设备产生的信号,再通过网络进行专家判别,将更利于系统的快速恢复与故障排除。
基于LabVIEW的四通道温度数据采集系统的设计概要
摘要虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密地融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。
本设计是基于LabVIEW 2010开发平台而简单模拟设计的一个四通道数据采集系统,其中下位机是采用单片机模拟产生实时温度数据,上位机系统则具有数据同时采集、采集数据实时显示、存储与管理、报警系统、数据记录查看等功能,实现了四通道温度数据采集的目的。
本文首先概述了虚拟仪器技术,LabVIEW开发平台,然后简单那介绍了数据采集的相关理论,最后具体讲解了本设计的各个模块在LabVIEW 上是如何实现的。
关键字:虚拟仪器;数据采集;LabVIEWAbstractVirtual instrument(VI) combines computer science, bus technology, software engineering with measurement instrumentation technology, making use of the computer powerful digital processing ability realize most of the functions of the instrument, breaking the traditional instrument, forming the framework of a new instrument model.This design is based on LabVIEW 2010 development platform and simple simulation design of a four channel data acquisition system, including lower machine is produced by single chip microcomputer simulation real-time temperature data, PC system has data collection, data collection and real-time display, storage and management, alarm system, data record check, and other functions, realize the four channel temperature data collection purpose.This paper first summarizes the virtual instrument technology, LabVIEW development platform, and then simple that introduces the data acquisition of relevant theory, and finally to explain in detail the design of each module in LabVIEW on how it is done.Key words: Virtual Instrument; Data acquisition;LabVIEW目录摘要....................................................................................................................... - 1 -Abstract ..................................................................................................................... - 2 -目录................................................................................................................... - 3 -第一章绪论........................................................................................................... - 5 -1.1 引言......................................................................................................... - 5 -1.2 数据采集的意义和任务......................................................................... - 5 -1.3 虚拟仪器在数据采集中的应用价值..................................................... - 5 -1.4 本设计所做的工作................................................................................. - 6 -第二章设计原理................................................................................................... - 6 -2.1 数据产生................................................................................................. - 6 -2.2 串口接收................................................................................................. - 7 -2.3 分通道显示............................................................................................. - 8 -2.3.1 数据分离..................................................................................... - 8 -2.3.2 门限设置..................................................................................... - 8 -2.3.3 波形显示..................................................................................... - 9 -2.4 华氏转换................................................................................................. - 9 -2.5 报警系统............................................................................................... - 10 -2.6 数据文件存储....................................................................................... - 10 -2.6.1 建立头文件............................................................................... - 10 -2.6.2 数据TXT存储........................................................................... - 11 -2.7 记录数据读取....................................................................................... - 11 -2.8 面板设计............................................................................................... - 12 -第三章程序的调试............................................................................................. - 12 -3.1 调试结果............................................................................................... - 13 -3.1.1 波形显示................................................................................... - 13 -3.1.2 缓冲区字符串........................................................................... - 13 -3.1.3 数据存储文件........................................................................... - 13 -3.1.4 报警........................................................................................... - 14 -3.1.5 华氏转换................................................................................... - 14 -3.1.6 波形回显................................................................................... - 14 -3.2 调试问题与解决方案........................................................................... - 15 -3.2.1 字符串缓冲区........................................................................... - 15 -3.2.2文件存储................................................................................... - 15 -3.2.3 华氏转换................................................................................... - 15 -3.2.4 波形回显................................................................................... - 16 -3.3 调试心得和建议................................................................................... - 16 -第四章总结......................................................................................................... - 17 -参考文献................................................................................................................. - 18 -附录(一)单片机程序代码.................................................... 错误!未定义书签。
基于单片机的温度采集与液晶显示
1 绪论1.1 本课题研究的背景和意义温度,一个在日常生活和生产过程甚至科学实验中普遍而且重要的物理参数。
近年来,随着社会的发展和科技的进步,温度控制系统以及测温仪器已经广泛应用于社会生活的各个领域,尤其是在工业自动化控制中占有非常重要的地位。
人们通过温度计来采集温度,经过人工操作进行加热、通风和降温。
从而来控制温度,但是对于这些控制对象惯性大,滞后性严重,而且还存在有许多不定的因素,从而根本难以建立精确的数学模型。
这样不仅控制精度低、实时性差,而且操作人员的劳动强度大,并且有许多工业生产环节是人们不能直接介入的。
因此智能化已然成为现代温度控制系统发展的主流方向。
针对这一种实际情况,设计个温度控制系统,具有非常广泛的应用前景和实际意义[1]。
随着电子信息技术和微型计算机技术的飞速发展。
单片机技术也得到了飞速的发展。
尤其是在高集成度、高速度、低功耗还有高性能方面取得了巨大的进展。
使得单片机在电子产品当中的应用越来越广泛。
使用单片机对温度进行控制的技术也油然而生。
它不仅可以克服温度控制系统中存在的严重的滞后现象,同时还可以在提高采样频率的基础上很大程度的提高控制的效果和控制的精度。
并且随着技术日益发展和完善,相信越来越能显现出它的优越性。
1.2 目前国内外研究现状在国内外温度控制成了一门广泛应用于很多领域的技术。
像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等。
温度控制系统虽然在国内各行各业的应用已十分广泛,但是从温度控制器的生产角度来看,总体的发展水平仍不高。
跟美德日等先进国家相比,仍有着较大的差距。
“点位”控制和常规的PID控制器占领了成熟产品的主体份额。
但它只可以适用于一般的温度系统控制,而难于控制复杂、滞后、时变的温度控制系统。
此外,适于较高控制场合的智能化、自适应控制仪表,目前在国内还没有取得较好的研究成果。
并且,在形成商品化和仪表控制参数的自整定方面,一些先进国家虽已经有一批成熟的产品。
基于单片机的多路数据采集系统设计(3章)
基于单片机的多路数据采集系统设计摘要数据采集是指从带有模拟、数字被测单元的传感器或者其他设备中对非电量或电量信号进行自动采集,再送到上位机中进行分析和处理。
近年来,众人时刻关注着数据采集及其应用的发展和市场形势。
广大人们的关注使得数据采集系统的发展有了质的飞跃,它被广泛用于各种数字市场。
本文介绍了数据采集的相关概念和基本原理,设计了基于STM32F407的多路数据采集系统的硬件和软件的实现方法及实现过程,并经过调试完成其主要功能和主要技术指标。
硬件部分包括:主控电路、信号采集处理电路、TFT液晶显示电路、SD 卡存储电路、串口通讯电路。
实现过程是以STM32F407为控制核心,通过模数转换器,实时对输入信号进行采样,得到一串数据流,通过控制器的处理实现数据的采集和显示。
软件部分包括:信号采集分析算法、嵌入式操作系统移植、UC-GUI人机交互界面设计、文件管理系统移植。
主要实现了对采集数据的存储和分析,频率和幅值的计算,液晶屏的控制和界面显示。
程序是在keil uVision的集成开发环境中用C语言写成的,编程具有模块化的特点,因此可读性比较高,维护成本较低。
最后,用Altium designer(DXP)设计了数据采集系统的原理图,并制作了PCB电路板。
在实验室里制作了数据采集系统并进行了系统调试,经过调试,达到了所应该实现的功能和技术指标。
关键词:多路数据采集,STM32F407,液晶显示MULTI-CHANNEL DATA ACQUISITION SYSTEMBASED ON SINGLE CHIP DESIGNABSTRACTData acquisition is the automatic acquisition of non electric or electric quantity signals from sensors and other devices, such as analog and digital.In recent years, data acquisition and its application has gradually become the focus of attention. Therefore, the data acquisition system has been rapid development, it is widely used in various fields.The software part includes: signal acquisition and the embedded operating system transplant, UC-GUI man-machine interface design. Mainly realizes the storage and analysis of the collected data, calculate the frequency and am plitude of the LCD screen display and control interface. The program is written by C language in the integrated development environment KEIL uVision and modular programming makes the program readable and easy maintenance features Finally, using designer Altium to design and manufacture the digital oscilloscope circuit board PCB. In the laboratory, the digital oscilloscope has been made and the system has been debugged. After debugging, it has achieved the function and technical index that should be realized.KEY WORDS: Multi-channel data acquisition,STM32F407,liquid-crystal display目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1研究背景及其目的意义 (1)1.2国内外研究现状 (2)1.3研究的主要内容 (2)2系统总体方案设计 (4)2.1系统总体设计方案 (4)2.2系统总体框图 (4)2.3硬件系统方案设计 (4)2.3.1单片机的选择 (5)2.3.2信号衰减和放大电路 (5)2.3.3A/D模数转换器的选择 (6)2.3.4显示部分 (6)2.4软件系统方案设计 (6)2.5本章小结 (7)3硬件电路设计 (8)3.1电源部分 (8)3.2信号调理部分 (10)3.3信号采样 (12)3.4系统控制部分 (12)3.5本章小结 (14)1绪论1.1研究背景及其目的意义最近几年,众人时刻关注着数据采集及其应用的发展和市场形势。
《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文
《基于单片机和LabVIEW的多路数据采集系统设计》篇一一、引言随着科技的发展,多路数据采集系统在工业、医疗、环境监测等领域的应用越来越广泛。
为了满足多路数据的高效、准确采集需求,本文提出了一种基于单片机和LabVIEW的多路数据采集系统设计。
该系统设计旨在实现多路信号的同时采集、处理及实时监控,以适应复杂多变的应用环境。
二、系统概述本系统采用单片机作为核心控制器,结合LabVIEW软件进行数据采集和处理。
系统由多个传感器模块、单片机控制器、数据传输模块以及上位机软件组成。
传感器模块负责实时监测各种物理量,如温度、湿度、压力等,并将采集到的数据传输给单片机控制器。
单片机控制器对数据进行处理和存储,并通过数据传输模块将数据发送至上位机软件进行进一步的处理和显示。
三、硬件设计1. 传感器模块:传感器模块采用高精度、高稳定性的传感器,如温度传感器、湿度传感器等,实现对物理量的实时监测。
传感器模块的输出为数字信号或模拟信号,方便与单片机进行通信。
2. 单片机控制器:采用具有高速处理能力的单片机作为核心控制器,实现对数据的快速处理和存储。
单片机与传感器模块和数据传输模块进行通信,实现数据的实时采集和传输。
3. 数据传输模块:数据传输模块采用无线或有线的方式,将单片机控制器的数据传输至上位机软件。
无线传输方式具有灵活性高、安装方便等优点,但需要考虑信号干扰和传输距离的问题;有线传输方式则具有传输速度快、稳定性好等优点。
四、软件设计1. 单片机程序设计:单片机程序采用C语言编写,实现对传感器数据的实时采集、处理和存储。
同时,程序还需要与上位机软件进行通信,实现数据的实时传输。
2. LabVIEW程序设计:LabVIEW程序采用图形化编程语言编写,实现对单片机传输的数据进行实时处理和显示。
同时,LabVIEW程序还可以实现对数据的存储、分析和报警等功能。
五、系统实现1. 数据采集:传感器模块实时监测各种物理量,并将采集到的数据传输给单片机控制器。
基于STM32单片机的多路数据采集系统设计
基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。
基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。
本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。
设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。
其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。
2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。
其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。
具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。
-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。
-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。
-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。
实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。
在设计时要注意信号的良好地线与电源隔离。
2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。
(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。
(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。
通过ADC的DMA功能,实现数据的连续采集。
(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。
基于单片机的数据采集和无线数据传输系统设计
基于单片机的数据采集和无线数据传输系统设计一、本文概述随着信息技术的快速发展和物联网的广泛应用,数据采集和无线数据传输在各个领域都发挥着越来越重要的作用。
基于单片机的数据采集和无线数据传输系统设计,以其低成本、高效率、易扩展等特点,受到了广泛关注和应用。
本文旨在探讨基于单片机的数据采集和无线数据传输系统的设计原理、实现方法以及在实际应用中的优势与挑战。
本文将首先介绍系统的整体架构,包括数据采集模块、单片机处理模块和无线数据传输模块的设计。
然后,详细阐述各个模块的工作原理和实现技术,包括传感器选型、数据采集电路设计、单片机选型与编程、无线传输协议选择以及数据传输的稳定性与可靠性保障等。
本文还将分析该系统设计在实际应用中的性能表现,如数据传输速度、传输距离、功耗等,并通过具体案例展示其在环境监测、智能家居、工业自动化等领域的应用效果。
文章将总结该系统设计的优点与不足,并对未来发展方向进行展望,以期为相关领域的研究和实践提供有益的参考和启示。
二、单片机基础知识单片机(Microcontroller Unit,MCU)是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能集成到一块硅片上,构成一个小而完善的微型计算机系统。
单片机具有体积小、功耗低、控制功能强、扩展灵活、抗干扰能力强、性价比高等一系列优点,因此在工业控制、智能仪表、汽车电子、通信设备、家用电器、航空航天等许多领域得到了广泛应用。
单片机按照其内部结构可以分为多种类型,例如8051系列、AVR 系列、PIC系列、ARM系列等。
每种类型的单片机都有其独特的指令集、架构和外设接口,因此在使用时需要了解其具体的特性和编程方法。
在数据采集和无线数据传输系统设计中,单片机通常作为核心控制器,负责数据的采集、处理、存储和传输。
通过编程,单片机可以控制外设进行数据采集,如使用ADC(模数转换器)将模拟信号转换为数字信号,或者使用传感器接口读取传感器的输出值。
基于单片机电压采集电路设计完整版
基于单片机电压采集电路设计集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]1引言数据采集是分析模拟信号量数据的有效方法。
而实时显示数据是自动化检测系统的现实需求。
在测试空空导弹导引头的过程中,导引头的响应信号包括内部二次信号和模拟量电压信号。
检测过程中要求检测系统实时显示导引头的工作状态,显示二次电源和模拟量响应电压信号,判断导引头性能,同时保证在非常情况下人为对导引头做出应急处理,保护导引头。
对于模拟量电压信号,通常采用模数转换、事后数据标定的方法实现。
根据现实需求,研制相应检测系统可作为导引头日常维护和修理的重要工具。
这里介绍一种基于单片机和CPLD的实时数据采集显示系统设计方案。
?2系统构成该系统中待采集显示电压信号共路,动态电压范围为-~+27V。
由于这些电压信号变化频率较低,或者认为频率无变化,且检测系统只关心其电压值,所以在低采样率下就可满足系统要求。
根据需求,系统设计的采样率即显示刷新速率在1.56k/s以上。
采用单片机80C196KB和可编程逻辑器件78SLC为核心控制器,以80C196KB内部集成A/D转换器作为模数转换器实现16路电压信号的实时数据采集、显示、控制。
该系统总体设计结构框图如图1所示。
整个系统主要由信号预处理、信号选通、单片机采集、双机以及数据处理显示等构成。
其中,信号选通模块由CPLD和多路模拟选择器组成。
3系统硬件电路设计3.1信号预处理电路由于待采集电压信号输入动态范围较宽,且极性各异,对于单片机A/D转换器来说,需要调理到能够采集的电压范围闱0~5V,所以要统一调理采集信号,如图2所示。
图2中运放和1556均采用双电压供电,以提高动态信号输入范围;均采用精度为0.1%的精密型金属膜电阻,以提高电压转换精度。
在二级电压凋理过程中,MC1556同相输人端采用电路以减少长时间通电情况下温度升高对系统产生的不良影响。
南于电压跟随器具有输入阻抗大和输出驱动能力强的特点,故在预处理电路的输入端和输出端均采用电压跟随电路。
基于STM32单片机的多路数据采集系统设计毕业设计
基于STM32单片机的多路数据采集系统设计毕业设计本文将设计一种基于STM32单片机的多路数据采集系统。
该系统可以实现多个输入信号的采集和处理,在电子仪器、自动化控制、工业检测等领域具有广泛的应用前景。
首先,我们需要选择合适的STM32单片机作为系统的核心处理器。
STM32系列单片机具有低功耗、高性能和丰富的外设资源等优点,非常适合用于嵌入式数据采集系统的设计。
在选取单片机时,要考虑到系统对于处理速度、存储容量和外设接口的需求,以及预算等因素。
其次,我们需要设计合适的外部电路来连接待采集的信号源。
常用的信号源包括温度传感器、光敏电阻、加速度传感器等。
我们可以使用适当的模拟电路将这些信号转换为STM32单片机能够接收的电平。
此外,还可以考虑使用模数转换芯片来实现对多路模拟信号的高速采集。
接下来,我们需要设计软件算法来对采集到的数据进行处理。
在数据采集系统中,常见的算法包括滤波、数据压缩、数据存储等。
通过滤波算法可以去除噪声,提高信号的质量;数据压缩可以减少数据存储和传输的空间;数据存储可以将采集到的数据保存在存储介质中以供后续分析。
最后,我们需要设计用户界面以便用户能够方便地操作系统。
可以使用LCD屏幕和按键等外设来实现用户界面的设计。
用户界面应该直观简洁,提供友好的操作和显示效果,方便用户进行数据采集和系统设置。
综上所述,基于STM32单片机的多路数据采集系统设计需要考虑到硬件电路和软件算法的设计,以及用户界面的设计。
通过合理的设计和实现,可以实现多路信号的高速采集、滤波处理和存储,为电子仪器、自动化控制和工业检测等领域提供可靠的数据支持。
基于单片机的4通道模拟信号采集与显示系统
设计(论文)内容及要求:一、设计内容1、分析理解常用的单片机模拟电压测量电路系统,设计一可同时测量4路0~5V直流电压的电路,系统具有4路顺序循环采集与指定某一路采集的功能,且能通过显示出通道和电压值;2、学习Keil uVision2和proteus7电子仿真软件;3、将设计的电路通过仿真软件进行运行,并能得到正确结果;4、总结写出设计论文。
二、设计要求[1] 根据设计任务书设计内容,作出设计进度安排,写出开题报告;[2] 撰写毕业设计(论文),篇幅不少于1.5万字,图表数据完整;[3]收集查找资料,参考资料不少于六本,并于引用处标明;[4]按毕业设计(论文)规范要求,打印装订成册两本;[5]完成英语译文一篇。
三、主要参考资料[1] 谢自美. 电子线路设计*实验*测试.华中科技大学出版社.[2] 张友德等. 单片微型机原理、应用和实验.电子工业出版社.[3] 吴经国等.单片机应用技术. 中国电力出版社.[4] 李群芳.单片机微型计算机与接口技术.电子工业出版社.[5] 阉石.数字电子技术基础.高等教育出版社.[6] 黄智伟.全国大学生电子设计竞赛训练教程.电子工业出版社.[7] 周立功.单片机实验与实践.北京航空航天大学出版社.南华大学本科生毕业设计(论文)开题报告设计(论文)题目基于单片机的4通道模拟信号采集与显示系统设计(论文)题目来源其它设计(论文)题目类型软件仿真起止时间07年12月-08年5月一、设计(论文)依据及研究意义:依据:单片机I/O口的输入输出功能、AD转换原理及LCD显示原理意义:多通道的模拟信号采集与显示系统比单通道的实用范围更广二、设计(论文)主要研究的内容、预期目标:(技术方案、路线)1、主要研究内容:分析理解常用的单片机模拟电压测量电路系统,设计一可同时测量4路0~5V直流电压的电路,系统具有4路顺序采集与指定某一路采集的功能,且能通过显示屏显示出通道数的电压值。
基于STM32的多路模拟量数据采集设计
尽管现在以微机为核心的可编程数据采集与处理采集技术的发展方向得到了迅速的发展,而且组成一个数据采集系统只需要一块数据采集卡,把它插在微机的扩展槽内并辅以应用软件,就能实现数据采集功能,但这并不会对基于单片机为核心的数据采集系统产生影响。相较于数据采集板卡成本和功能的限制,单片机具多功能、高效率、高性能、低电压、低功耗、低价格等优点,而双单片机又具有精度较高、转换速度快、能够对多点同时进行采集,因此能够开发出能满足实际应用要求的、电路结构简单的、可靠性高的数据采集系统。这就使得以单片机为核心的数据采集系统在许多领域得到了广泛的应用。
20世纪90年代至今,在国际上技术先进的国家,数据采集系统已成功的运用到军事、航空电子设备及宇航技术、工业等领域。由于集成电路制造技术的不断提高,出现了高性能、高可靠的单片机数据采集系统(DAS)。数据采集技术已经成为一种专门的技术,在工业领域得到了广泛的应用。该阶段的数据采集系统采用模块式结构,根据不同的应用要求,通过简单的增加和更改模块,并结合系统编程,就可扩展或修改系统,迅速组成一个新的系统。
20世纪70年代后期,随着微型机的发展,诞生了采集器、仪表同计算机溶为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因而获得了惊人的发展。从70年代起,数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,一类是工业现场数据采集系统。
基于单片机的图像采集系统设计
目录0 前言 (1)1总体方案设计 (1)2 系统硬件设计 (3)3 软件设计 (9)3.1软件设计概述 (9)3.2程序流程图 (9)3.3子程序模块设计 (10)4系统调试及结果分析 (11)5结论及进一步设想 (14)参考文献 (14)课程设计体会 (15)附录1 元件清单 (16)附录2 系统电路图 (17)附录3 源程序 (18)基于单片机的图像采集系统刘杰薇沈阳航空航天大学自动化学院摘要:传统的工业级图像处理采集系统大多是由CCD摄像头、图像采集卡和PC机组成,虽已得到了广泛的应用,但是它具有结构复杂,成本高,体积大,功耗大等缺点。
随着单片机的迅速发展,开发一种智能控制及智能处理功能的微型图像处理采集系统成为可能,并且也克服了传统图像处理采集系统的诸多缺点。
本设计的图像采集系统采用AT89C51单片机为中心器件,利用74LS373寄存器、62256存储器。
将软、硬件有机地结合起来,使得系统能够实现对摄像头传输的图像信号的采集,并保存在外置存储芯片中。
其中软件系统采用C语言编写程序,包括延时程序、地址顺延程序等,硬件系统利用PROTEUS强大的功能来实现,简单切易于观察,在仿真中就可以观察到实际的工作状态。
关键字:单片机;图像采集;数字摄像头0前言近年来随着科技的飞速发展,单片机的应用正在不断的走向深入,同时带动着传统控制检测日新月异更新。
在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面的知识是不够的,还要根据具体的硬件结构,以及针对具体的应用对象的软件结合,加以完善。
数字图像采集由于其大数据量通常采用DSP等高速处理器来实现。
在某些领域方面图像实时性的要求并没有那么高,因此,本文采用STC89C51单片机作为控制器进行图像采集。
1总体方案设计方案一:由于C51单片机的RAM存储容量有限,而且受到C51单片机的IO工作频率的限制,直接通过C51单片机采集完整一帧的数字信号很难实现。
基于单片机的脉冲数据采集电路设计
基于单片机的脉冲数据采集电路设计朱超;孙万麟;宋莉莉【摘要】脉冲数据采集系统是以单片机AT89S52为核心的八通道数据采集系统,该数据采集系统具有结构简单、原理清晰、功耗低、可靠性高等优点,能实现对多路模拟通道信号的数据采集与处理.并将采集的数据传送A/D转换电路,将非电信号转换为模拟信号,再由模拟信号再转化为数字信号并且通过数显器显示脉冲数据从而驱动控制电机.【期刊名称】《电子设计工程》【年(卷),期】2015(023)004【总页数】4页(P158-160,164)【关键词】单片机;数据采集系统;脉冲数据;转换电路【作者】朱超;孙万麟;宋莉莉【作者单位】新疆昌吉学院物理系,新疆昌吉831100;新疆昌吉学院物理系,新疆昌吉831100;新疆昌吉学院物理系,新疆昌吉831100【正文语种】中文【中图分类】TP274+.1脉冲信号的丢失往往是造成误差的主要因素,特别是对一些非电信号的检测,比如说位移量转化为脉冲信号,而精确的测量位移然后准确的转化为脉冲数据就显得尤为重要,现阶段市场上有很多一起可以直接将脉冲数据转化为位移、速度等物理量,如数字显示器,但很少有将位移量转化为脉冲信号的,因此,我们可以设计一种可以直接将位移量转化为脉冲数据的,并且可以通过显示器显示的测量电路,这将给我们测量带来诸多便利。
1 AT89S52数据采集指标分析常见的数据采集系统提出采用上位机和下位机两层结构模式。
下位常采用单片机完成前端的多路数据采集,上位机则通常用PC机或工控机来实现系统的控制和相关的数据处理机结果显示。
有线常用RS-232或RS-485通信协议等,其上可以运行地址或数据等不同的信号类型,之间采用分时或编码的方式加以区分。
由于采用主从双MCU系统,所以这部分问题的核心在于选择什么芯片[1]。
设计要求采样八通道,精度为4位,因此可以采用8位的ADC芯片,选用RS-232串口,由于RS-232性价比高,在短距离传输稳定等优点,在本设计中完全可以满足要求。
单片机系统中的模拟信号采集与处理方法
单片机系统中的模拟信号采集与处理方法随着科技的发展,单片机系统在各个领域得到了广泛应用。
在许多应用场景中,模拟信号的采集和处理是单片机系统的基础,因此如何有效地实现模拟信号的采集和处理是单片机系统设计的重要问题。
本文将介绍几种常见的模拟信号采集和处理方法。
一、模拟信号的采集方法1. 电压分压法电压分压法是一种常用的模拟信号采集方法。
它通过将待采集的模拟信号与一个已知电阻分压电路连接,将信号的幅值限定在单片机所能接受的范围内。
通过测量分压后的电压信号,可以对原始信号进行采集。
2. 电流转换法电流转换法是另一种常见的模拟信号采集方法。
对于输入电压信号,可以通过将电压转换成相应的电流信号,再将电流信号输入到单片机系统进行采集。
这种方法可以减小信号的幅值范围,提高系统的稳定性和精度。
3. 传感器信号采集法对于一些特定的应用场景,可以直接使用传感器来采集模拟信号。
传感器是可以将物理量转换为电信号的器件,例如温度传感器、压力传感器等。
采用传感器信号采集法可以简化系统设计,提高采集的准确性。
二、模拟信号的处理方法1. 模数转换在单片机系统中,模数转换是一种常见的模拟信号处理方法。
模数转换将连续变化的模拟信号转换为离散的数字信号,方便单片机进行处理和分析。
常见的模数转换器有ADC(Analog-to-Digital Converter)和DAC(Digital-to-Analog Converter)。
2. 滤波器滤波器用于对模拟信号进行滤波处理,去除噪声和不需要的频率成分,保留感兴趣的信号。
在单片机系统中,滤波器可以采用数字滤波器或模拟滤波器。
数字滤波器可以通过算法实现,模拟滤波器则需要借助于电路元件。
3. 增益控制在某些应用中,模拟信号的幅值可能会过小或过大,需要通过增益控制方法进行调整。
增益控制可以通过模拟电路或数字算法实现。
在单片机系统中,可以使用运算放大器来实现模拟信号的放大或衰减,也可以通过数值计算来实现信号的调整。
基于单片机实现数据采集的设计
基于单片机实现数据采集的设计摘要:本论文的目的就是设计实现一个具有一定实用性的实时数据采集系统。
本文介绍了基于单片机的数据采集的硬件设计和软件设计。
数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有非常重要的作用。
数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机AT89C51 来实现,硬件部分是以单片机为核心,还包括A/D 模数转换模块,显示模块,和串行接口电路。
本系统能够对8 路模拟量,8 路开关量和1 路脉冲量进行数据采集。
被测数据通过TLC0838 进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据通过串行口MAX232 传输到上位机,由上位机负责数据的接受、处理和显示,并用LCD 显示器来显示所采集的结果。
对脉冲量进行采集时,通过施密特触发器进行整形后再送入单片机。
本文对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。
关键词:数据采集AT89C51 单片机TLC0838 MAX232TP274 :A :1003-9082 (2017) 02-0298-01前言数据采集,又称数据获取,是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。
数据采集技术广泛应用在各个领域。
近年来,数据采集及其应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,它可以广泛的应用于各种领域。
本文设计的数据采集系统,它的主要功能是完成数据采集、处理、显示、控制以及与PC 机之间的通信等。
在该系统中需要将模拟量转换为数据量,而A/D 是将模拟量转换为数字量的器件,他需要考虑的指标有:分辨率、转换时间、转换误差等等。
而单片机是该系统的基本的微处理系统,它完成数据读取、处理及逻辑控制,数据传输等一系列的任务。
本系统对数据采集系统体系结构及功能进行分析,设计并实现采用单片机为核心,扩展电源电路、复位电路、LCD 接口电路等,并配有标准RS-232 串行通信接口。
基于单片机的双通道四选一模拟信号选择器的设计
睁
圆
仑
巨
[ = > 圆
◇ 圜
图3双 四选一信号源选择 电路
图 1系 统 功 能 模 块 框 图
2 主要模块 的电路设 计
2 . 1 信 号源 选择 MC U 控 制 电路模 块 多 路模 拟 信 号选 择 器通 过 S T C 8 9 C 5 I 单 片机 芯 片控 制 ,利用 外 部按 键选 择 模拟 信 号线 路 ,单 片机 信 号源选 择控 制 电路 原 理 图如 图
1 . 2 系统功 能模 块 框图 模拟 信 号选 择器 采 用模 块化 设 计 ,主要 包括 三 个 部分 :单 片机 控 制 模块 ,信 号源选 择 控制 模块 ,液 晶显示 模块 。系统 功 能模 块框
图如 图 l 所示 :
l 信 号源 l 信 号’ 蘧 I 信号源 I 信号源 ( 1 ) ( 2 ) ( 3 ) ( 4 ) I [ l [ I I 匕>
2 所示。
其 中 ,单 片 机 的P 1 . 0 、P 1 . 1 、P 1 . 2 、P 1 . 3 为 四个 按键 信 号输 入 端 ,单 片 机 的P 0 . 0 、P 0 . 1 、P 0 . 2 接 口分 别接 到 三组 继 电器上 ,控 制
双 四选 一信 号源 选择 电路 ,选 出 一路模 拟 信号 。
2 . 2 双 四选 一信 号选 择 器 电路模 块 模拟 信 号线 路选 择 为本 设计 的核 心部 分 ,是 实现 多种 信号 输入 与输 出的关 键 ,要求 控 制信 号 要能 够控 制 多路 信 号的接 通 与切 断 , 同时 由于 需要保 持 模拟 信 号 的不 失真 ,要 求控 制信 号 不能 对模 拟 音 频信 号 产生 干扰 ,基于 以上 特 点 ,此选 择器 使 用三 组继 电器 ,可 实
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EOC CLK OE
3.4 显示部分
• 本设计的显示部分
由液晶显示器 LCD1602取代数码 管来完成。开始时 显示器将一直处于 初始状态。系统进 入工作后显示欢迎 界面,按键按下后 显示通道电压。
LCD1
LM016L
VSS VDD VEE RS RW E D0 D1 D2 D3 D4 D5 D6 D7
U1
D0 D1 D2 D3 D4 D5 D6 D7
7 8 9 10 11 12 13 14
22pF
D0 D1 D2 D3 D4 D5 D6 D7
R2 10k R3 R4 R5
KEY0
P2.7
RV5
51%
1k
KEY1
10k P2.6
20uF
C3
29 30 31 PSEN ALE EA
KEY2
10k P2.5
VSS VDD VEE
RS RW E 4 5 6 RS RW E
RP1
1 2 3 4 5 6 7 8 9
C1
1 2 3
X1
CRYSTAL
19
XTAL1
C2
22pF 18
R1
10k 9
XTAL2
RST
P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
C2
22pF 18
时钟电路 模块
R1
10k 9
XTAL2
RST
20uF
C3
29 30 31 PSEN ALE EA
按键复位 模块
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
1 2 3 4 5 6 7 8
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 AT89C51
RP1
10k
X1
CRYSTAL
U1
19 XTAL1 P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD 39 38 37 36 35 34 33 32 21 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17 D0 D1 D2 D3 D4 D5 D6 D7 RS RW E P2.3 P2.4 P2.5 P2.6 P2.7
初始化定义
中断子程序
主函数
显示子程序 • Description of the contents • Description of the contents
4.1 主流程图
开始
选择测量信号
选择转换通道
启动A/D转换
读取转换结果
数值转换
NO
转换是否结 束? YES
液晶显示
4.2 AD转换子程序
开始
KEY3
10k P2.4
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
1 2 3 4 5 6 7 8
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 AT89C51
EOC CLK OE
R6
KEY4
10k P2.3
RV1 U2
OE 9 OE VREF(-) VREF(+) ALE ADD C ADD B ADD A IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0 16 12 22 23 24 25 5 4 3 2 1 28 27 26
39 38 37 36 35 34 33 32 21 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17
D0 D1 D2 D3 D4 D5 D6 D7 RS RW E P2.3 P2.4 P2.5 P2.6 P2.7
D0 D1 D2 D3 D4 D5 D6 D7
1 2 3
4 5 6
7 8 9 10 11 12 13 14
RV5
51%
1k
RS RW E
图3-4 液晶电路
D0 D1 D2 D3 D4 D5 D6 D7
四、软件设计
利用KEIL软件和PROTEUS软件对程序进行编写、编 译、修改、仿真等,生成HEX文件后通过烧录机将程序 烧入STC89C52中。 子程序 转换子程序 主程序
1k
84%
In3
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
17 14 15 8 18 19 20 21
RV2
1k
25%
OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 EOC START CLOCK ADC0808
In2
RV3
In3 In2 In1 In0
结
束
1k
50%
EOC 7 6 10
In1
CLK
RV4
1k
23%
In0
小结
本系统仿真以及实物测试表明,系统性能良好,测 量读数稳定易读、更新速度合理,直流电压测量范 围为0-5V,最小分辨率为0.02V。但是,该系统也 存在一定程度的不足,例如: 1、输入电压易发生干扰不稳定,且驱动能力可能 存在不足, 2、输出量可用平均值算法来改善,使测量准确度 更高。 3、若能将测量的电压值实时保存,使用时将更方 便。
基于单片机的4通道模拟 信号采集与显示系统设计
导 师: 答辩人: 专 业:4通道模拟信号采集与 显示系统设计,能处理模拟信号(0~5V), 同时具有对信号进行循环采集与指定某一 通道采集的功能,通过LCD显示屏可以显 示出通道与电压值。 2.设计要求: (1)用ADC0809作为信号检测,用 STC89C52作为信号处理,用LCD1602液 晶显示屏显示设计一个数字电压表。 (2)测量范围0~5V,分辨率0.02V。
单片机 控制
显示电 压值
3.1 信号输入部分
RV1
1k
84%
In3
RV2
1k
25%
In2
由四个电位器与 电源组成信号产生部 分,为ADC0809的模 拟电压源,每个电位 器控制一路输入。
RV3
1k
50%
In1
RV4
1k
23%
In0
3.2 ADC0809系统
U2
OE 9 OE VREF(-) VREF(+) ALE ADD C ADD B ADD A IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0 16 12 22 23 24 25 5 4 3 2 1 28 27 26 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 17 14 15 8 18 19 20 21
二、系统总框图
PO
按键电路
P2
LCD1602显示 系统
复位电路
STC89C52
P1
ADC809 转换
测量电压 输入
时钟电路
三、硬件设计
由四个滑动变阻器与电源组成 信号产生部分,为ADC0809的模拟 电压源,经AD转换后数据送入单片 机。经过运算转换为数字信号后输 出在LCD屏幕上。
输入
A/D转 换
设置模拟通道
启动A/D转换
NO
转换是否结 束?
YES 输出数值处理
设计中采用中断的方式 来读取转换完成的数据 能节省CPU的资源 当系统设置好后,一旦 数据转换完成,便会进 入外部中断0,然后在 中断中读取转换的数值 ,处理数据并送至显示 屏显示输出
系统整体电路图
10k
LCD1
LM016L
输出端级 联8051
OUT8 OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 EOC START CLOCK ADC0808
8路模拟通 道的选通端 与8051级联
EOC 7 6 10
CLK
In3 In2 In1 In0
IN0~IN3 与输入 端连接
3.3 控制模块
C1
22pF