博弈论课后题目解析

合集下载

博弈论基础吉本斯课后习题答案

博弈论基础吉本斯课后习题答案
i如一直使用垄断价格则每个企业收益每期都一样为iac28p如在t期某企业违背了战略t1期开始双方的收益相同都为0在t期它的最大收益为ac42考虑此企业只是把价格边际上减少一点点所有的利润都归它如不违背则把以后无限期11dac28的收益贴现到t期可得1触发战略有效的条件是
Gibbons《 博 弈 论 基 础 》 习 题 解 答 ( CENET)
π1 , π1
qc
π3 ,π2
q’
π1 ,π5
π2 ,π3 π4,π4 π7 ,π6
π5 ,π1 π6 ,π7 π8 ,π8
其 中 , π5 = (a − c)2 /16 , π 6 = (a − c)2 /18 , π 7 = (a − c)2 /12 , π8 = 0 。 此 博 弈 符 合 题
Max A
U
(
I
c
(
A)
+
I
p
(
A)

V
'−1
(k
))
一阶条件:
U
'(Ic
+
B*
)[
I
' c
( A)
+
I
' p
(
A)]
=
0
由于 U 是递增又严格凹的,U ' (Ic + B*) ≠ 0
这与孩子的选择可是全家的收入最大化的一阶条件相同:
I
' c
(
A)
+
I
' p
(
A)
=
0
2.2 采用逆向归纳法,先最大化家长的收益:给定的孩子的行动 S,来选择自己的行动 B,
率 为 pi*j 。 用 反 证 法 证 明 。

博弈论基础吉本斯课后答案

博弈论基础吉本斯课后答案

博弈论基础吉本斯课后答案
一、原题
1. 什么是博弈论?
答:博弈论是一门研究决策者之间的竞争性行为的学科,它研究的是如何在竞争性环境中获得最佳结果。

它涉及到决策者之间的博弈,以及如何利用策略来获得最佳结果。

2. 什么是吉本斯博弈论?
答:吉本斯博弈论是一种研究两个或多个决策者之间的博弈的学科,它研究的是如何在竞争性环境中获得最佳结果。

它是由美国经济学家约翰·吉本斯在20世纪50年代提出的,他提出了一种新的方法来研究博弈,即使用数学模型来分析博弈的结果。

3. 吉本斯博弈论的基本概念是什么?
答:吉本斯博弈论的基本概念是博弈矩阵,它是一个表格,用来描述两个或多个决策者之间的博弈。

它由行和列组成,每一行代表一个决策者,每一列代表另一个决策者,每个单元格中的数字代表每个决策者在每种可能的结果下的收益。

4. 吉本斯博弈论中的均衡点是什么?
答:吉本斯博弈论中的均衡点是指当两个或多个决策者之间的博弈结果达到一种平衡时,每个决策者都不会有更多的收益。

这种平衡可以是一个纳什均衡,也可以是一个非纳什均衡,具体取决于博弈的结构。

博弈论各章节课后习题答案 (5)

博弈论各章节课后习题答案 (5)

第五章合作博弈1.设三人联盟博弈的特征函数v 的值是:v({i})=0,i=1,2,3;v({1,2})=2/3,v({1,3})=7/12,v({2,3})=1/2,v({1,2,3})=1。

求出该联盟博弈的核心,并用图形表示出来。

解:博弈G 的核心C(v)。

博弈G 的转归集I[N,v]为:123123123[,]{(,,)0,0,0,1}I N v x x x x x x x x x x ==≥≥≥++=若,则的充分条件为:],[),,(321v N I x x x x ∈=)(v C x ∈x 1≥0;x 2≥0;x 3≥0;x 1+x 2≥2/3;x 1+x 3≥7/12;x 2+x 3≥1/2;x 1+x 2+x 3=1由后面几个不等式得到x 1≤1/2;x 2≤5/12,x 3≤1/3.该联盟博弈的核心C(v)={(x 1,x 2,x 3)|0≤x 1≤1/2,0≤x 2≤5/12,0≤x 3≤1/3,x 1+x 2+x 3=1}核心C(v)是图中阴影区域(含边界)。

2.假设有一3人合作博弈,其特征函数为:v({1,2,3})=200,v({1,2})=150,v({1,3})=110,v({2,3})=20,v({1})=100,v({2})=10,v({3})=0。

计算该合作博弈的Shapley 值,核心,最小ε-核心,稳定集,内核和核仁。

1、Shapley 值φ1(v)=1/3(100-0)+1/6(150-10)+1/6(110-0)+1/3(200-20)=135φ2(v)=1/3(10-0)+1/6(150-100)+1/6(20-0)+1/3(200-110)=45φ3(v)=1/3(0-0)+1/6(20-10)+1/6(110-100)+1/3(200-150)=20所以该博弈的Shapley 值φ(v)=(135,45,20)2、博弈G 的核心C(v)。

博弈G 的转归集I[N,v]为:}200,0,10,100),,({],[321321321=++≥≥≥==x x x x x x x x x x v N I 若,则的充分条件为:],[),,(321v N I x x x x ∈=)(v C x ∈x 1≥100;x 2≥10;x 3≥0;x 1+x 2≥150;x 1+x 3≥110;x 2+x 3≥20;x 1+x 2+x 3=200对此可作高为200的重心三角形Δ123。

博弈论战略分析入门课后练习题含答案

博弈论战略分析入门课后练习题含答案

博弈论战略分析入门课后练习题含答案题目翻译:
1.两个人轮流选择从1到7之间的数字,不能重复选择,哪个人最后选
择7就赢了。

如果两个人都采用最优策略,第一个选择数字的人能否保证获胜?
2.有两个球队A和B,比赛规则为A队挑选一个数字k,B队猜测这个
数字是奇数还是偶数。

如果B队猜错了,A队获胜;反之,B队获胜。

如果A队更喜欢奇数,那么它们应该挑选多少奇数呢?
解答:
1.第一个选择数字的人不能保证获胜,因为第二个人可以选择数字4,
让第一个人面临两个选择:选择数字2或6。

无论哪个数字,第二个人都可以接下来选择数字3,然后赢得游戏。

所以第一个人不能获胜。

2.如果A队总是选择奇数,那么B队的最优策略是选择奇数。

因为如果
A队选择奇数,B队就获胜,如果A队选择偶数,B队有50%的机会猜对,平局的概率为25%,B队的总胜率为75%。

因此A队最好选择所有奇数,这样B 队只有50%的机会获胜。

思路解析:
1.对于第一道题,我们需要根据规则分析游戏的局面,然后确定最优策
略。

在此基础上,我们可以找到第一个人的必胜策略,或者证明无论如何第一个人都不能获胜。

2.对于第二道题,我们需要考虑两个球队的思考方式,并且理解如何最
小化选手的期望获胜率。

这也需要一些概率的基础知识。

以上就是本次博弈论战略分析入门课后练习题答案。

希望这些题目能够帮助您加深对博弈论和战略分析的理解,进一步提升您的分析能力和决策能力!
1。

博弈论习题及解答

博弈论习题及解答

※第一章绪论§1.21. 什么是博弈论?博弈有哪些基本表示方法?各种表示法的基本要素是什么?(见教材)2. 分别用规范式和扩展式表示下面的博弈。

两个相互竞争的企业考虑同时推出一种相似的产品。

如果两家企业都推出这种产品,那么他们每家将获得利润400万元;如果只有一家企业推出新产品,那么它将获得利润700万元,没有推出新产品的企业亏损600万元;如果两家企业都不推出该产品,则每家企业获得200万元的利润。

企业B推出不推出企业A推出 (400,400) (700,-600) 不推出(-600,700) (-500,-500)3. 什么是特征函数? (见教材)4. 产生“囚犯困境”的原因是什么?你能否举出现实经济活动中囚徒困境的例子?原因:个体理性与集体理性的矛盾。

例子:厂商之间的价格战,广告竞争等。

※第二章完全信息的静态博弈和纳什均衡1. 什么是纳什均衡? (见教材)2. 剔除以下规范式博弈中的严格劣策略,再求出纯策略纳什均衡。

先剔除甲的严格劣策略3,再剔除乙的严格劣策略2,得如下矩阵博弈。

然后用划线法求出该矩阵博弈的纯策略Nash均衡。

乙甲1 31 2,0 4,22 3,4 2,33. 求出下面博弈的纳什均衡。

乙L R甲U 5,0 0,8 D 2,6 4,5由划线法易知,该矩阵博弈没有纯策略Nash均衡。

由表达式(2.3.13)~(2.3.16)可得如下不等式组Q=a+d-b-c=7,q=d-b=4,R=0+5-8-6=-9,r=-1将这些数据代入(2.3.19)和(2.3.22),可得混合策略Nash均衡((),()) 4. 用图解法求矩阵博弈的解。

解:设局中人1采用混合策略(x,1-x),其中x∈[0,1],于是有:,其中F(x)=min{x+3(1-x),-x+5(1-x),3x-3(1-x)}令z=x+3(1-x),z=-x+5(1-x),z=3x-3(1-x)作出三条直线,如下图,图中粗的折线,就是F(x)的图象由图可知,纳什均衡点与β1无关,所以原问题化为新的2*2矩阵博弈:由公式计算得:。

博弈论课后习题答案

博弈论课后习题答案

博弈论课后习题答案博弈论课后习题答案博弈论是一门研究决策和策略的学科,它涉及到多个参与者之间的相互作用和决策过程。

在博弈论的学习过程中,习题是非常重要的一部分,通过解答习题可以加深对博弈论概念和原理的理解。

下面是一些常见博弈论习题的答案,希望对大家的学习有所帮助。

1. 两人囚徒困境博弈在囚徒困境博弈中,两个囚犯被关押在不同的牢房里,检察官给每人提供了一个选择:合作(合作供认)或背叛(沉默)。

如果两人都合作,那么每个人的刑期都会较短;如果两人都背叛,那么每个人的刑期都会较长;如果一个人合作而另一个人背叛,那么背叛的人将会获得较短的刑期,而合作的人将会获得较长的刑期。

答案:在囚徒困境博弈中,每个囚犯都会追求自己的最大利益。

根据博弈论的原理,无论对方选择什么,背叛都是最优策略。

因此,两人都会选择背叛,最终导致双方都获得较长的刑期。

2. 石头剪刀布博弈石头剪刀布是一种常见的博弈游戏,两个参与者同时出示石头、剪刀或布,根据两者的选择,结果会有不同的得分。

答案:在石头剪刀布博弈中,每个参与者都有三种选择,而且每种选择的胜负关系都不同。

根据博弈论的原理,最优策略是随机选择,使得对手无法预测自己的选择。

这样做可以最大程度地减少对手的获胜概率。

3. 拍卖博弈拍卖是一种常见的博弈形式,参与者通过竞价来争夺一个物品或服务。

在拍卖中,不同的拍卖规则和策略会对结果产生影响。

答案:在拍卖博弈中,最常见的策略是以自己的估值为基准进行竞价。

如果一个参与者的估值高于其他参与者,那么他可以通过竞价来获得物品或服务。

然而,如果其他参与者也有较高的估值,那么竞价将会继续上升,直到只剩下一个竞价者。

在这种情况下,最高的竞价者将会获得物品或服务,但是他需要支付他的竞价。

4. 价格战博弈价格战是一种常见的博弈形式,不同的公司通过调整价格来争夺市场份额。

在价格战中,公司的利润和市场份额会受到价格策略的影响。

答案:在价格战博弈中,最优策略取决于对手的策略和市场需求。

“博弈论”习题和参考答案与解析

“博弈论”习题和参考答案与解析

“博弈论”习题和参考答案与解析《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为()。

A. 效用B. 支付C. 决策D. 利润2.博弈中通常包括下面的内容,除了()。

A.局中人B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中()。

A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力()。

A.使行业的总利润达到最大B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是()。

A. 策略组合B. 策略C. 信息D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。

A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。

A.一报还一报的策略B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致()。

A.博弈双方都获胜B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。

A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D. 当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种()。

A.主导策略B.激发策略C.一报还一报策略D.主导策略11.关于策略式博弈,正确的说法是()。

A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵12.下列关于策略的叙述哪个是错误的():A. 策略是局中人选择的一套行动计划;B. 参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。

博弈论 课后习题答案

博弈论 课后习题答案

博弈论课后习题答案第四部分课后习题答案1. 参考答案:括号中的第一个数字代表乙的得益,第二个数字代表甲的得益,所以a表示乙的得益,而b表示甲的得益。

在第三阶段,如果,则乙会选择不打官司。

这时逆推回第二阶段,甲会选择a,0不分,因为分的得益2小于不分的得益4。

再逆推回第一阶段,乙肯定会选择不借,因为借的最终得益0比不借的最终得益1小。

在第三阶段,如果,则乙轮到选择的时候会选择打官司,此时双方得益是(a,b)。

a,0逆推回第二阶段,如果,则甲在第二阶段仍然选择不分,这时双方得益为(a,b)。

b,2在这种情况下再逆推回第一阶段,那么当时乙会选择不借,双方得益(1,0),当a,1时乙肯定会选择借,最后双方得益为(a,b)。

在第二阶段如果,则甲会选择a,1b,2分,此时双方得益为(2,2)。

再逆推回第一阶段,乙肯定会选择借,因为借的得益2大于不借的得益1,最后双方的得益(2,2)。

根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:(1),此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方a,0得益(1,0),不管这时候b的值是多少;(2),此时博弈的结果仍然012,,,ab且是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3),此时博ab,,12且弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益(a,b);(4),此时乙在第一阶段会选择借,甲在第二阶段会选择分,ab,,02且双方得益(2,2)。

要本博弈的“威胁”,即“打”是可信的,条件是。

要本博弈的“承诺”,即a,0“分”是可信的,条件是且。

a,0b,2注意上面的讨论中没有考虑a=0、a=1、b=2的几种情况,因为这些时候博弈方的选择很难用理论方法确定和预测。

不过最终的结果并不会超出上面给出的范围。

2. 参考答案:静态贝叶斯博弈中博弈方的一个策略是他们针对自己各种可能的类型如何作相应的完整计划。

最新《经济博弈论》课后答案、补充习题答案

最新《经济博弈论》课后答案、补充习题答案

房地产开发企业在选址、开发规模、目标客户定位等方面,也常常存在相互制约的问题.例如一个城市当时的住房需求约10000平方米,如果其他厂商已经开发了8 000平方米,那么你再开发5 000平方米就会导致供过于求,销售就会发生困难,但如果其他厂商只开发了不到5 000平方米,那么你开发5 000平方米就是完全合理的0读者可进一步给出更多例子,并考虑建立这些博弈问题的详细模型并加以讨论。

4.“囚徒的困境”的内在根源是什么?举出现实中徒的困境的具体例于。

“囚徒的困境”的内在根源是在个体之间存在行为和利益相互制约的博弈结构中,以个体理性和个体选择为基础的分散决策方式,无法有效地协调各方面的利益,并实现整体、个体利益共同的最优口简单地说J 囚徒的困境”问题都是个体理性与集体理性的矛盾引起的口现实中“囚徒的困境”类型的问题是很多的。

例如厂商之间的价格战、恶性的广告竞争,初等、中等教育中的应试教育等,其实都是“囚徒的困境”博弈的表现形式。

5・博弈有附些分类方法.有哪些主要的类型?学考答案:首先可根据博弈方的行为逻辑,是否允许存在有约束力协议,分为非合作博弈和合作博弈两大类匚其次可以根据博弈方的理性层次,分为完全理性博弈和有限理性博弈两大类,有限理性博弈就是进化博弈D第工是可以根据博弈过程分为静态博弈、动态博弈和重复博弈三大类。

笫四是根据博弈问题的信息结构,根据博弈方是否都有关于得益和博弈过程的充分信息,分为完全信息静态博弈、不完全信息静态博弈、完全且完美信息动态博弈、完全但不完美信息动态博弈和不完全信息动态博弈几类“第五是根据得益的特征分为零和博弈、常和博弈和变和博弈.第六是根据博弈中博弈方的数量.可将博弈分为单人博弈、两人博弈和多人博弈。

第七是根据博弈方策略的数量,分为有限博弈和无限博弈两类口6.博弈论在现代经济学中的作用和地位如何?为什么?参考答案:博弈论为现代经济学提供了一种高效率的分析工具。

博弈论在分析存在复杂交互作用的经济行为和决策问题,以及由这些经济行为所导致的各种社会经济问题和现象时,是非常有效的分析度,在揭示社会经济现象内在规律和人类行为本质特征的能力方面,都更加有效和出色Q正是因为这些特点,博弈论的产生和发展引发了一场深刻的经济学革命,使得现代经济学从方法论,到概念和分析方法体系,都发生了很大的变化。

博弈论习题解答 浙江大学

博弈论习题解答 浙江大学

xi ≤ M
0,
∑ xi > M
3
∑ 因此,对于参与人 i 来说,只要采用 xi = M − x j 都能实现自己的最大收益,也就是说,在 j≠i
∑ 该博弈中有着多个纳什均衡,所有使得 xi = M ,0 ≤ xi ≤ M 成立的战略组合都是该博弈的纯战
略纳什均衡。
7.考虑一个工作申请的博弈。两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
必须使得这四种战略的期望效用相同,因此,必须满足以下四个方程:
⎧b − d = c − a
⎪ ⎨
c

a
=
c

b
⎪⎩c − b = a − c
解得:a=b=c=d,所以 a=b=c=d=1/4。同理可得参与人 2 的战略,所以该博弈的唯一混
合策略纳什均衡是参与者以 1/4 的概率随机选择各自的四个纯战略。
1
与企业
2
提出申请。
8.考虑存在事前交流的性别战博弈。在丈夫决定去看足球还是芭蕾之前,丈夫有机会向妻子传递 以下信息:我们在足球场见面,或者我们在芭蕾馆见面。当以上信息交流完成以后,两者同时决 定去足球场还是去芭蕾馆。博弈支付如下:如果两者在足球场见面,则丈夫获得 3,妻子获得 1; 如果两者在芭蕾馆见面,则丈夫获得 1,妻子获得 3;在其他条件下两者的支付都是 0。
(3)假定甲选择企业 1 的概率为α ,选择企业 2 的概率为1− α ;乙选择企业 1 的概率为 β ,选
择企业 2 的概率为1− β ,则甲选择企业 1 的期望收益为 W1 β +W1(1− β ) ,选择企业 2 的期望收
2
益为 W 2β + W 2 (1− β ) ,由二者相等可得乙选择两个企业的概率分别为: β = 2W1−W 2 ,

博弈论习题与参考答案

博弈论习题与参考答案

1.假设古诺寡头模型中有n 个企业,令i q 代表企业i 的产量,且1n Q q q =++表示市场总产量,假设需求函数为()p Q a Q =-(其中Q a <)。

假设企业i 的成本函数为()i i i C q cq =,即没有固定成本,且边际成本为常数c ,我们假设c 小于需求函数中的常数a 。

根据古诺模型,所有企业同时做出产量决策。

求纳什均衡。

当n 趋于无穷时,将会出现什么情况? 【参考答案】第i 个企业的利润最大化问题为:**Max (,)()i i i i i i i q q a q q q cq π--=---,其中*i q -表示所有其他企业的产量之和。

注意这个式子利用了纳什均衡的定义。

由一阶条件0iiq π∂=∂,可得 **2i ia q c q ---=(1)将(1)式两侧同乘以2,再减去*i q 可得:***()i i i q a q q c -=-+-注意,在上式中***=i i q q Q -+,因此,我们有**i q a Q c =--(2)由此可知,每一个企业的最优产量都相等,因此**=i Q nq ,代入(2)式可得:*1()1i q a c n =-+ 由此可得()**1i nQ nq a c n ==-+ *11a n p c n n =+++ 因此,当n →∞时,*=p c ,即均衡价格等于边际成本,市场为完全竞争市场。

作业1 .P(q)=120-q, q=q1+q2, Ci(qi)=0, i=1,2 用反复删除严格劣势求古诺均衡。

2. 找出BOS 博弈的混合策略均衡。

r D 1-r Z3.某产品市场中只有三个企业,市场的需求函数为()p Q a Q =-,其中123Q q q q =++。

每一个企业的的成本函数为()i i i C q cq =,其中c 为常数,1,2,3i =。

企业的产量决策顺序为:(1)企业1先选择自己的产量1q ;(2)企业2和企业3观察到1q ,并同时选择2q 和3q 。

博弈论习题及其解答

博弈论习题及其解答
第三章 多元线性回归模型
一、经典多元线性回归模型
1、多元线性回归模型的一般形式
Yi = b0 + b1 X 1i + b2 X 2i + L bk X ki + U i i = 1, 2,L n
k个解释变量,n期观测值,矩阵形式为:
Y = Xb + U
其中:
Y1 1 X11 L Xk1 U1 b0 1 X12 L Xk 2 Y2 U2 b Y = X = U = b= 1 M M M M M M Y 1 X L X U b 1n kn n n k
该方程组可以写成矩阵形式如下:
X ' X b = X 'Y

求解该方程组得到:
b =

(X
'X
)
1
X 'Y
矩阵微分法
∧ ' Q = ∑e = ∑Yi Yi = ee = Y X b Y X b 2 i ∧ 2 ∧ '
= Y Y Y X b b X Y + b X X b = Y Y 2Y X b+ b X X b
= nσ u2 ( k + 1) σ u2 = ( n k 1) σ u2
所以,U的方差的无偏估计量为:
σ
∧ 2 U
e 'e = n k 1
五、拟合优度检验
1、可决系数的调整
R2 = ESS b' X ' X b n Y = 2 TSS Y 'Y n Y
2 2


2
∧ ∧ ∧ ∧ ∧ ∧ ∧ Y Y = Y 2Y Y + nY = Y 'Y nY = b' X ' X b nY ∑ i ∑ i ∑i 2 ∑Y i Y = ∑Yi 2Y ∑Y i + nY = Y 'Y nY 2 2 2

博弈论题目和参考答案

博弈论题目和参考答案

博弈论题目(参考答案)
题目:
一、两个人分蛋糕,怎么样才可以分得公平?
答案:一个先切,另一个先拿。

二、合伙人在一起做生意,为什么生意做的越好,利润越高,公司做得越大,越容易闹矛盾,甚至分家?
答案:人们对于利益分配的敏感性(收益的期待和对于损失的恐惧)会随着数额的增大而增大。

三、为什么说谈恋爱,陷入的越深,分手的代价越大?
答案:合作的收益和机会成本都会随着时间的推移而不断加大。

合作持续越长彼此投入的时间和机会成本就会越多。

博弈论课后题答案

博弈论课后题答案

博弈论课后题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--;第二章第三章PPT问题第四章第五章第六章一、用柠檬原理和逆向选择的思想解释老年人投保困难的原因。

答:“柠檬原理”是在信息不完美且消费者缺乏识别能力的市场中,劣质品赶走优质品,最后搞垮整个市场的机制。

“逆向选择”是在同样不完美信息和消费者缺乏识别能力的市场中,当价格可变时,价格和商品质量循环下降,市场不断向低端发展的机制.高龄人群的保险市场是一个典型的柠檬原理和逆向选择会起作用,从而会导致发展困难的市场。

老年人的健康情况差别很大,比年轻人之间的差别要大得多,而保险公司要了解老年人投保人的实际健康状况又很困难或成本很高,这就造成了保险公司对老年投保人健康状况的信息不完美。

则保险公司就无法根据每个老年投保人的实际健康情况确定不同的保费率,只能根据平均健康情况确定保费率。

这种平均保费率对健康情况很差的老年人是合算的,但对健康状况较好的老年人则不合算。

因此前者倾向于投保,后者则不愿意投保,这就会导致投保的老年人的平均健康情况会很差。

这使得保险公司的赔付风险大大提高,不仅不能赢利而且要亏损,从而失去经营老年保险的积极性,最终导致老年人的投保难问题。

这就是柠檬原理作用的结果。

如果允许调整保费率,那么保险公司为了避免亏损会上调保费率。

而这又会使得原来投保或者准备投保者中相对较健康的老人退出,从而投保老人的平均健康状况会变得更差。

如此循环,最终保费会升得很高而投保老人的平均健康情况则会越来越差,对市场的发展当然是很不利。

这就是逆向选择作用的结果。

二、为什么消费者偏好去大商店买东西而不太信赖走街穿巷的小商贩消费者去大商店更接近无限次重复博弈,商场提供高质量产品的概率更大,虽然个别消费者不一定能对商店以往售出商品的质量作出反应,但消费者群体肯定可以作出反应,因此大商店保持高质量符合自己的长期利益,一股会自觉保证质量,从而消费者也比较可以信任大商店的商品。

博弈论第三版课后习题答案

博弈论第三版课后习题答案

博弈论第三版课后习题答案
《博弈论第三版课后习题答案:深入理解博弈论的精髓》
博弈论是一门研究决策制定者在有限理性条件下进行决策的学科。

它不仅仅是
一门数学理论,更是一门涉及经济学、政治学、社会学等多个领域的交叉学科。

在博弈论第三版课后习题答案中,我们可以深入理解博弈论的精髓,探讨博弈
论在现实生活中的应用。

首先,博弈论的基本概念包括博弈参与者、策略、收益和信息。

在博弈论中,
参与者为决策制定者,他们根据自身利益选择不同的策略,并根据不同的策略
组合获取相应的收益。

而信息则是影响参与者决策的重要因素,不同的信息可
以导致不同的决策结果。

其次,博弈论的经典模型包括囚徒困境、合作博弈和非合作博弈等。

囚徒困境
是博弈论中最经典的模型之一,它描述了两个囚犯在被捕前是否应该合作或者
背叛的情景。

这个模型揭示了合作和背叛之间的利益冲突,以及如何在有限理
性条件下做出最优决策。

另外,博弈论在现实生活中有着广泛的应用。

在经济学领域,博弈论可以用来
分析市场竞争、价格战略和合作博弈等问题;在政治学领域,博弈论可以用来
分析国际关系、选举竞争和政策制定等问题;在社会学领域,博弈论可以用来
分析合作与冲突、社交网络和社会规范等问题。

总之,博弈论第三版课后习题答案为我们提供了深入理解博弈论的机会,它不
仅可以帮助我们理解博弈论的基本概念和经典模型,更可以帮助我们将博弈论
应用到现实生活中的各种问题中。

希望我们可以通过学习博弈论,更好地理解
和解决现实生活中的种种挑战。

“博弈论”习题参考附标准答案

“博弈论”习题参考附标准答案

“博弈论”习题参考附标准答案博弈论博弈论是研究人类决策制定和行为选择的一门学科,它涉及到多个参与者之间的冲突和利益博弈。

通过分析和建模参与者的决策过程,博弈论可以帮助我们理解和预测各种决策情况,并提供策略和解决方案。

本文将介绍几个典型的博弈论习题,并附上标准答案作为参考。

1. 囚徒困境囚徒困境是博弈论中最著名的问题之一。

假设两名囚徒被捕,检察官分别问他们是否承认自己犯罪。

如果只有一个人承认犯罪,他会得到从轻判决;如果两人都承认,他们将得到较重的判决;如果两人都否认,那么他们将得到较轻的判决。

但是,由于彼此的不信任和利益冲突,囚徒往往会选择自私的策略,即承认犯罪。

这个问题可以用一个博弈矩阵来表示:囚徒B承认囚徒B否认囚徒A承认 -5,-5 -10,0囚徒A否认 0,-10 -1,-1其中左上角的数字表示囚徒A和B都承认犯罪时的判决结果,右下角的数字表示囚徒A和B都否认犯罪时的判决结果。

通过分析博弈矩阵,可以发现最优策略是双方都选择否认犯罪。

2. 纳什均衡纳什均衡是博弈论的一个重要概念,它指的是参与者在给定其他参与者策略的情况下,无法通过单方面改变自己策略来获得更好结果的状态。

以两个司机选择路线为例,假设他们可以选择两条路线,每个司机希望自己的路线时间最短。

若两个司机都选择第一条路线,他们的到达时间相同,这是一个纳什均衡;若一个司机选择第一条路线,另一个司机选择第二条路线,他们的到达时间将不同,这不是一个纳什均衡状态。

3. 合作与背叛合作与背叛是博弈论中经常出现的主题,也是人们日常生活和商业交易中的重要决策。

例如,两个公司可以选择合作开展某项业务,也可以选择相互竞争。

合作可以带来双方共同的利益,但也需要相互信任;而背叛则是一种自私的策略,可以追求个体利益,但可能破坏双方的合作关系。

4. 平衡策略在博弈论中,平衡策略指的是使得参与者无法通过改变自己的策略来达到更好结果的策略选择。

在一些特殊的情况下,博弈存在多个平衡策略。

博弈论习题解答.doc

博弈论习题解答.doc

博弈论习题解答一、判断题1.X,只要任一博弈方单独改变策略不会增加得益,策略组合就是纳什均衡了。

2.V3.V4.X,某些情况下参与者具有先动优势,例如进入市场的博弈。

5.V6.X,逆向归纳法最基本的特征就是能排除扩展式博弈中所有不可信行为,包括不可信威胁和不可信承诺。

7.V8.X,对于零和博弈或者不满足合作条件的其他博弈来说,无限次重复博弈并不意味着效率的提局,得益不一定同。

9.V10.X,有些是故意隐瞒自己的行为。

11.X,在一个子博弈中出现的必须是完整的信息集,由于多节点信息集开始的博弈必然分割一个信息集,因此不可能是个子博弈。

12.X,不完美信息是指没有完美信息而非完全没有信息。

13.X,是因为其他参与者必然会考虑这些行为选择并作为他们自己选择行为的依据。

即使参与者自己不设定针对自己所有类型的行为选择,其他参与者也会替他考虑,弄清楚其他参与者对自己策略的判断。

14.X,仍然可能后悔,因为古玩交易的价格和利益不仅取决于古玩的实际价值和自己的估价,还取决于对方的估价和愿意接受的成交价格,因此仅仅自己做出正确的估价并不等于实现了最大的潜在利益。

15.X,不一定,因为可能消息的发送方的类型与接收方利益无关,或者消息接收方的行为与发送方的利益无关。

16.X,经济学并没有证明;教育是作为重要的信号,反映劳动力的素质。

17.V18.V19.X,纳什均衡是指在给定的别人策略情况下,博弈方总是选择利益相对较大的策略,并不保证结果是最好的。

20.X,参与者总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标。

参与者A参与者A参与人1二、计算题1.纯策略均衡解为(D, R) 参与者B设3以y的概率执行L策略,对A来说选择混合策略则有1XY +2X(1— Y)=4XY +6X(1— Y)得/ = 4〉1,这是不可能的,故无混合战略均衡。

2.由奇数定理,若使它先有两个纯战略均衡,则很可能就有另一个混合战略均衡。

博弈论基础吉本斯课后习题答案

博弈论基础吉本斯课后习题答案

∴ U2 (S + B) 会增加,因为(*)式,U2 (S + B) 增加的幅度比U1(I1 − S ) 减小的幅度大,所以
孩子的收益效用增大了,同时家长的收益效用也增大了。
2.3 根据Shaked和Sutton的研究发现,我们可以把无限博弈截开(见Gibbons教材55页),首先分
析前三阶段: 假设在第三阶段参与人1提出S,参与人2接受1-S,则解决方案为(S,1-S)。
目 要 求 , 即 ( qc , qc )是 唯 一 的 纳 什 均 衡 , 并 且 在 纳 什 均 衡 下 , 每 一 企 业 的 福 利 都 要 比 他 们 相
互合作时低,但两个企业都没有严格劣战略。 1.6
当 0 < c1, c2 < a / 2 时 , 易 求 均 衡 产 量 q1* = (a + c2 − 2c1) / 3 , q2* = (a + c1 − 2c2 ) / 3 。 而 当
时 , 生 产 qm / 2 的 一 方 的 利 润 为 π 2 = 5(a − c)2 / 48 , 生 产 qc 的 一 方 的 利 润 为
π3 = 5(a − c)2 / 36 ; 双 方 都 生 产 qc 时 , 每 一 方 的 利 润 都 为 π 4 = (a − c)2 / 9 。 以 标 准 式 表 示
如 果 有 两 个 候 选 人 , 唯 一 的 纯 战 略 纳 什 均 衡 为 x1* = x2* = 0.5 , 即 两 候 选 人 集 聚 于 中 点 , 平
分全部选票。下面简单证明:无论两候选人都在中点右侧,都在中点左侧,还是分居中点 两侧,每一候选人都倾向于比另一候选人更接近中点以获得超过半数的选票,所以没有稳 定 的 均 衡 ; 都 在 中 点 时 , 每 个 人 都 有 1/2 的 胜 出 概 率 , 而 偏 离 必 定 输 掉 选 举 , 所 以 没 有 人 会 偏离中点。由此得证上述均衡为唯一的纯战略纳什均衡。 如果有三个候选人,可以用类似于上面的方法证明不存在纯战略纳什均衡:无论三个候选 人的相对位置如何,都不会形成稳定的均衡。所以题目要求的是混合纳什均衡。具体方法 请 参 见 Hotelling, H. (1929) “Stability in Competition”, Economic Journal 39: 41-57.

吉本斯《博弈论基础》课后习题答案

吉本斯《博弈论基础》课后习题答案

对 于 2 来 说 , 4(1− p*) = 2 p* + 3(1− p*) , 得 p* = 1/ 3 。
则 原 博 弈 的 混 合 战 略 纳 什 均 衡 为 : { (1/3, 2/3, 0), (2/3, 0, 1/3) }。 1.12 按 照 1.11 的 解 法 , 可 得 混 合 战 略 纳 什 均 衡 为 : { (2/3, 1/3), (3/4, 1/4) }。 过 程 略 。 1.13 此博弈有两个纯战略纳什均衡、一个混合战略纳什均衡。 纯 战 略 纳 什 均 衡 为 :( 向 企 业 1 申 请 , 向 企 业 2 申 请 );( 向 企 业 2 申 请 , 向 企 业 1 申 请 )。 混合战略纳什均衡为:
{ } ((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 )) ,((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 ))
1.14
证 明 : 在 混 合 战 略 纳 什 均 衡 中 , 参 与 人 i 的 混 合 战 略 为 pi* , 其 中 选 择 第 j 个 纯 战 略 sij 的 概
目 要 求 , 即 ( qc , qc )是 唯 一 的 纳 什 均 衡 , 并 且 在 纳 什 均 衡 下 , 每 一 企 业 的 福 利 都 要 比 他 们 相
互合作时低,但两个企业都没有严格劣战略。 1.6
当 0 < c1, c2 < a / 2 时 , 易 求 均 衡 产 量 q1* = (a + c2 − 2c1) / 3 , q2* = (a + c1 − 2c2 ) / 3 。 而 当
为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

;第二章
第三章
PPT问题
第四章
第五章
第六章
一、用柠檬原理和逆向选择的思想解释老年人投保困难的原因。

答:“柠檬原理”是在信息不完美且消费者缺乏识别能力的市场中,劣质品赶走优质品,最后搞垮整个市场的机制。

“逆向选择”是在同样不完美信息和消费者缺乏识别能力的市场中,当价格可变时,价格和商品质量循环下降,市场不断向低端发展的机制.
高龄人群的保险市场是一个典型的柠檬原理和逆向选择会起作用,从而会导致发展困难的市场。

老年人的健康情况差别很大,比年轻人之间的差别要大得多,而保险公司要了解老年人投保人的实际健康状况又很困难或成本很高,这就造成了保险公司对老年投保人健康状况的信息不完美。

则保险公司就无法根据每个老年投保人的实际健康情况确定不同的保费率,只能根据平均健康情况确定保费率。

这种平均保费率对健康情况很差的老年人是合算的,但对健康状况较好的老年人则不合算。

因此前者倾向于投保,后者则不愿意投保,这就会导致投保的老年人的平均健康情况会很差。

这使得保险公司的赔付风险大大提高,不仅不能赢利而且要亏损,从而失去经营老年保险的积极性,最终导致老年人的投保难问题。

这就是柠檬原理作用的结果。

如果允许调整保费率,那么保险公司为了避免亏损会上调保费率。

而这又会使得原来投保或者准备投保者中相对较健康的老人退出,从而投保老人的平均健康状况会变得更差。

如此循环,最终保费会升得很高而投保老人的平均健康情况则会越来越差,对市场的发展当然是很不利。

这就是逆向选择作用的结果。

* * 二、为什么消费者偏好去大商店买东西而不太信赖走街穿巷的小商贩?
消费者去大商店更接近无限次重复博弈,商场提供高质量产品的概率更大,虽然个别消费者不一定能对商店以往售出商品的质量作出反应,但消费者群体肯定可以作出反应,因此大商店保持高质量符合自己的长期利益,一股会自觉保证质量,从而消费者也比较可以信任大商店的商品。

对于走街穿巷的流动性强的小商贩,无论是个别消费者还是消费者群体,与他们的博弈可能都是一次性而非重复的,且不易起诉,因此消费者无法对他们售出商品的质量作出反应,从而也就缺乏保证小商贩商品质量的机制,消费者当然不太可能信任走街穿巷小商贩的商品质量,除非是常年在同一地方推销的小商贩。

相关文档
最新文档