数值分析第四版第四章数值积分与数值微分精品PPT课件
数值分析-第4章 数值积分和数值微分
![数值分析-第4章 数值积分和数值微分](https://img.taocdn.com/s3/m/464e8c12227916888486d7a6.png)
A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析(李庆杨第四版)Cht4 数值积分和数值微分
![数值分析(李庆杨第四版)Cht4 数值积分和数值微分](https://img.taocdn.com/s3/m/4ab5003d6f1aff00bfd51e88.png)
1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,,n), 则有
| In ( f ) In ( ~f ) |
n
wk
[
f
(
xk
)
~fk
].
定义3
若
0,
k 0
0,只要
f (xk )
~fk
(k
0,,n), 就有
| In ( f ) In ( ~f ) |
n
其中系数l (l 1,2,)与h无关.
T
( h) 2
I
1
h2 4
2
h4 16
l
h 2l
2
.
T1(h)
4T (h) T (h)
2
3
I
1h4 2h6 .
T1( h2)
I
1
h4 16
2
h6 64
.
T2 (h)
16T1(
h) 2
T1(h)
15
I
1h6
2h8
.
( 4.7) ( 4.8) ( 4.9)
1 8
2
1 3
0.000434 .
RS
I
S4
1 2880
1 4
4
1 5
0.27110-6.
作业 P159, 6.
§4 龙贝格求积算法
一、梯形公式的递推化(变步长求积法)
把区间[a,b]作n等分得n个小区间[xi , xi1],
h ba,则 n
复合梯形公式
Tn
n1h [
i02
f
(xi )
具有相应的收敛性和稳 定性.
复合柯特斯求积公式
数值分析Cht4数值积分和数值微分
![数值分析Cht4数值积分和数值微分](https://img.taocdn.com/s3/m/e8a17c762f60ddccdb38a040.png)
x
j
)dx.
(1.7)
定理1
求积公式
ab f
( x)dx
n
wk
fk至少具有n次代数精度
k 0
它是插值型求积公式.
四、求积公式的余项
若求积公式
b
f (x)dx
a
n
wk fk的代数精度为m, 则其余项
k 0
R[ f ]
b
f (x)dx
a
n
wk fk Kf (m1) (),
k 0
a,b.
定义2 在求积公式(1.3)中, 若
lim
n
n
wk
k 0
f
( xk
)
ab
f
(x)dx,
h0
其中h max(xi xi1),则称求积公式(1.3)是收敛的.
1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,, n), 则有
| In ( f ) In ( ~f ) |
12
(a,b).
2. 中矩形公式的余项
b f (x)dx f (a b)(b a), 代数精度为1.
a
2
K
1 2
1
3
(b3
a3)
(b
a)
a
2
b
2
(b
a)3 24
中矩形公式的余项 : R[ f ] (b a)3 f ''(),
24
(a,b).
五、求积公式的收敛性和稳定性
wk fk
k 0
1 1 (m 1)! m
2
(bm2
am2 )
n k 0
wk
数值分析课件第4章数值积分与数值微分
![数值分析课件第4章数值积分与数值微分](https://img.taocdn.com/s3/m/b01aec7a492fb4daa58da0116c175f0e7cd119c8.png)
森(simpson)公式(又称为抛物形求积公式),即
S b a [ f (a) 4 f (a b) f (b)].
6
2
上页 下页
n = 4 时的牛顿-柯特斯公式就特别称为柯特斯公 式. 其形式是
上页 下页
4.1.1 数值求积的基本思想
由积分中值定理, 对连续函数f(x), 在区间[a, b]
内至少存在一点,使
I
b
a
f
(x)d
x
(b
a)
f
(
)
只要对平均高度 f() 提供一种近似算法, 便可相应
地获得一种数值求积方法. 即所谓矩形公式.
几何图形见书p119.
上页 下页
例如, 用区间[a, b]两端点的函数值 f(a)与f(b)的
nn
(t j)dt
0 jk
(k=0,1,,n)
则 Ak (b a)Ck(n) , 于是得求积公式
n
In (b a) Ck(n) f ( xk )
k0
称为n 阶牛顿-柯特斯 (Newton-Cotes)公式, Ck(n) 称 为柯特斯系数。
显然, 柯特斯系数与被积函数 f (x) 和积分区间
如为了构造出上面的求积公式,原则上是一个 确定参数xk和Ak的代数问题.
上页 下页
4.1.3 插值型求积公式
设给定一组节点 a x0 x1 xn1 xn b
且已知f(x)在这些节点上的函数值 f(xk), 则可求得f(x)
的拉格朗日插值多项式(因为Ln(x)的原函数易求)
n
Ln ( x) f ( xk )lk ( x) 则 f (x)Ln(x)
k0
如果对任I给n( 小f )正 I数n(ε~f>)0, 只n 要Ak误[ f差( x|δkk)|充 ~f分k ]小就 ,有
数值分析课件 第4章 数值积分与数值微分
![数值分析课件 第4章 数值积分与数值微分](https://img.taocdn.com/s3/m/8c25087e8e9951e79b89275b.png)
第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()ba f x dx Fb F a =-⎰ 似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算以数据表形式给出时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-=等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分24111ln11arc 1)arc 1)xdxxtg tg C++=+⎡⎤+++-+⎣⎦⎰对于上述这些情况,都要求建立定积分的近似计算方法—数值积分法。
1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。
由积分中值定理:对()[,]f x C a b∈,存在[,]a bξ∈,有()()()baf x dx b a fξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a-而高为()fξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()fξ。
我们将()fξ称为区间[,]a b上的平均高度。
这样,只要对平均高度()fξ提供一种算法,相应地便获得一种数值求积分方法。
如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b a T f a f b -=+ (1.1)便是我们所熟悉的梯形公式(图4-2)。
数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分
![数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分](https://img.taocdn.com/s3/m/02b3347cbe23482fb4da4c97.png)
( x a )( x b ) d x a
b
[ a , b ].
(2) f ( x) C [a, b], 则 辛 普 森 公 式 的 截 断 差 误 为:
f ()b a b 2 R ( x a )( x ) ( x b ) d x S a 4 ! 2
b ab a 4 ( 4 ) ( ) f ( ), 180 2
n 1
I k 求出积分值Ik,然后将它们累加求和,用 作为所求积分 I的近 k 0 似值。
h I f ( x ) dx f ( x ) dx f ( x ) f ( x ) k k 1 a x k 2 k 0 k 0 h f ( x ) 2 ( f ( x ) f ( x ) ... f ( x )) f ( x ) 0 1 2 n 1 n 2
记
1 S f ( a ) 4 f ( x ) 2 f ( x ) f ( b ) 1 n k k 2 6 k 0 k 1
n 1 n 1
称为复化辛普森公式。
18
类似于复化梯形公式余项的讨论,复化辛普森公式的求 积余项为
R s h f 2880 ba
1
4.3 复化求积公式
问题1:由梯形、辛普森和柯特斯求积公式余项,分析随着求 积节点数的增加,对应公式的精度是怎样变化? 问题2:当n≥8时N—C求积公式还具有数值稳定性吗?可用增 加求积节点数的方法来提高计算精度吗? 在实际应用中,通常将积分区间分成若干个小区间, 在每个小区间上采用低阶求积公式,然后把所有小区间上 的计算结果加起来得到整个区间上的求积公式,这就是复 化求积公式的基本思想。常用的复化求积公式有复化梯形 公式和复化辛普森公式。
数值分析4数值积分与数值微分
![数值分析4数值积分与数值微分](https://img.taocdn.com/s3/m/ade6e52731b765ce04081450.png)
第4 章4数与数微数值积分与数值微分本章内容411.1 光波的特性4.1 引言4.2 Newton-Cotes 公式1.2 光波在介质界面上的反射和折射4.3 Romverg 算法4.4Gauss 1.3 光波在金属表面上的反射和折射4.4 Gauss 公式4.5 数值微分2本章要求主要内容:机械求积、牛顿柯特斯公式、龙贝格算法、高斯公式、•—数值微分。
•基本要求–(1)了解数值微分公式的导出方法及常用的数值微分公式。
–(2) 掌握数值积分公式的导出方法,截断误差;理解代数精度的概念,会用待定系数法。
–(3) 掌握梯形求积公式,抛物线求积公式,牛顿-柯特斯公式的构造及使用,并会应用公式求积分。
(4)熟悉复化梯形公式复化辛普生公式–(4) 熟悉复化梯形公式,复化辛普生公式。
–(5) 会用龙贝格积分法。
–(6) 了解高斯型求积公式的概念及导出方法,能构造简单问题的高精度求积公式,会使用常见的几种高斯型求积公式进行计算。
积公式会使用常见的几种高斯型求积公式进行计算•重点、难点重点牛顿柯特斯公式–重点:牛顿-柯特斯公式;–难点:代数精度的概念。
3414114.1 引言4.1.1 数值求积的基本思想一、问题,d)(∫=b a xxfI数学分析中的处方法由微积分学基本定当如何求积分数学分析中的处理方法:由微积分学基本定理,当f(x)在[a, b]上连续时,存在原函数F(x),牛顿-莱布尼茨(Newton-Leibniz)公式:).()(d)(aFbFxxf ba−=∫但有时用上面的方法计算定积分有困难但有时用上面的方法计算定积分有困难。
441N-L4.1 引言N L公式失效的情形:这时,N-L公式也不能直接运用。
因此有必要研究问题即用数值方法计算定积分因此,有必要研究数值积分问题,即用数值方法计算定积分的近似值.541二、构造数值积分公式的基本思想4.1 引言、构造数值积分公式的基本思想问题:点ξ的具体位置一般是不知道的,因而难以准确算出的值,怎么办?f(ξ)641采用不同的近似计算方法从而得到各种不同的4.1 引言)对f(ξ)采用不同的近似计算方法,从而得到各种不同的数值求积公式。
数值积分和数值微分ppt课件
![数值积分和数值微分ppt课件](https://img.taocdn.com/s3/m/f06a5f10bf23482fb4daa58da0116c175f0e1ead.png)
5.2.2 数值微分
设函数 f(x)在[a,b]上可导,已知 f(x)在 x j 的函数 值 y j f (x j ) ( j 0,1,, n) , a x0 x1 xn b . 如果 f(x)的解析表达式未知,问如何近似计算 f(x)在 某点 x=c 处的导数?特别是如何近似计算 f(x)在 x0, x1,, xn 的导数?
y4
未 知 函 数 f(x)
y3
已知结点
线 性 插 值 函 数 S41(x)
y2
y1
y0
y
0
x0
x1
x2
x3
x4
x
图5.9 复化梯形求积公式示意图
5.2.1 数值积分
容易求得
b a
Sn1
(
x)dx
的值为
1 n
Tn 2 j1 x j x j1 y j1 y j
(5.2.1)
如果划分 a x0 x1 xn b 将区间[a,b] n 等分,
b]为n等分,分点为 xk x0 kh k = 0, 1, 2,…, n
2)在区间 [xk, xk+1]上使用以上求积公式求得Ik 3)取和值,作为整个区间上的积分近似值。 这种求积方法称为复化求积方法。
j
值 y j f (x j ) ( j 0,1,, n) , a x0 x1 xn b ,
5.2.2 数值微分
先考虑简化的问题:设划分 a x0 x1 x2 b 将 区间[a,b]二等分,记 h (b a) 2 ,已知 f(x)在 x j 的函
数值 y j f (x j ) (j=0,1,2). 记
L2 (x) c1(x x1)2 c2 (x x1) c3 是由结点 (x j , y j ) (j=0,1,2)确定的至多二次插值多项
数值分析第四章数值积分-69页精选文档
![数值分析第四章数值积分-69页精选文档](https://img.taocdn.com/s3/m/e074f85f01f69e31433294a4.png)
x
m k
1 m 1
b m 1 a m 1
由上面代数精度条件确定求积公式可分两种情形:
1. 若事先给定求积节点xk(k=0,…,n),例如被积函数以表的形式 给出时xk确定,可令m=n,由上式确定n+1个系数Ak即可---待定系数法和插值法。
2. 若xk和Ak都可选择,令m=2n +1,确定xk和法Ak ---Gauss法
求积系数,与被
b
n
积函数无关
f (x)dx
a
Ak f(xk)
k0
求积节 点
像这样,将积分用若干节点上被积函数值的线性组合来表示
的数值积分公式称为机械求积公式。
求积误差
b
n
R[f] f(x)dx a
Akf(xk)
k0
机械型求积公式的构造归结为,确定求积节点xk和求积系
Case 1---方法1
Case 1---方法2 §1 插值型求积 公式
插值型积分公式
/*interpolatory quadrature*/
思 路
利用插值多项式
Pn(x)f(x)则积分易算。
在[a, b]上取 a x0 < x1 <…< xn b,做 f 的 n 次插值
n
多项式 Ln(x) f(xk)lk(x),即得到 k0
数Ak,使在某种意义下精确度较高。总之,要解决三个问 题:
1. 精确度的度量标准;
2. 如何构造具体的求积公式;
3. 具体求积公式构造出来后,误差如何估计?
问题1
定义:代数精度
若某个求积公式对次数 m 阶的多项式准确成立,而对 m+1 阶 的 多 项 式 不 一 定 准 确 成 立 。 即 对 应 的 误 差 满 足 : R[ Pk ]=0 对任意 k m 阶的多项式成立,且 R[ Pm+1 ] 0 对某 个 m+1 阶多项式成立,则称此求积公式的代数精度为 m 。
第四章 数值积分与数值微分
![第四章 数值积分与数值微分](https://img.taocdn.com/s3/m/b370abf084254b35eefd34a5.png)
寻找一个足够精度的简单函数p(x)代替f(x) ,于是
有 a
b
f ( x)dx p( x)dx,把p(x)取成插值多项式,
a
b
则可得到插值型求积公式。
设给定节点 a x0 x1 x2 xn b
并已知这些节点上的函数值 f ( xk ) (k 0,1,, n)
当求积系数由 Ak
l ( x)dx
a k
b
所唯一确定时,所得的求积公式称为插值型求 积公式。 Remark:由截断误差可知,插值型求积公式 至少具有n次代数精度。
2018/11/17 17
二. Newton-cotes公式
h (b a) n 将[a,b]分为n等份, 取节点 xk a kh(k=0,1,…,n)
a a a
m a0 Ak a1 Ak xk am Ak xk k 0 k 0 k 0
2018/11/17 5
n
n
n
求积公式的代数精确度(续)
b
a
dx Ak
n
b
a
xdx Ak xk
k 0 n
b
a
x dx Ak x
m k 0
k 0
3
2018/11/17 12
三.收敛性与稳定性
Ak f ( xk ) f ( x)dx (lim R[ f ] 0), 如果 lim a n h 0
b n
( xi xi 1 ),则称该求积公式是收敛的。 其中 h max 1 i n
k 0
n
如果求积公式对舍入误差不敏感(误差能够控 制),则称该求积公式是稳定的。
数值积分和数值微分课件
![数值积分和数值微分课件](https://img.taocdn.com/s3/m/dc07fff3a8114431b90dd8f0.png)
一般地,欲使求积公具 式有m 次代数精度,只要令对 它于 f(x) 1,x,,xm 都能准确成立。
利用代数精度的概念求求积公式的代数精确度
梯 形 公 式 (T b f (x) dx [ f (a) f (b)] (b a))
a
2
令f (x) 1, x,....
当f (x) 1, 左 边
xk a kh 构造出的插值型求积公式
n
In (b a)
C(n) k
f
( xk
),
k 0
称为 牛顿 - 柯特斯公式(Newton- Cotes公式),
C(n) k
称为 柯特斯系数.
作变换x a th,则有
C(n) k
h ba
n n t j dt 0 j0 k j
jk
(1)nk
定理1 形如 (1)式的求积公式至少有n次代数精度的充分必要条件是, 它是插值型的。
如果求积公式是插值型的,按 (2) 式,对于次数不超过n 的多项式
f(x),其余项 R[f] 等于零,因而这时求积公式至少具有n 次代数精度。
反之,如果求积公式 (1) 至少具有 n 次代数精度,则它必定是
插值型的。事实上,这时公式 (1) 对于特殊的n 次多项式 插值基
二、复化梯形公式
将区间[a, b] 等分为 n 个小区间[xk , xk1],其中分点
xk
a kh,
(h
b a ,k n
0,1,, n),
并在每个小区间上应用梯形公式, 则得复化梯形公式
I
b
n1
f (x)dx
a k 0
xk 1 xk
f
(x) dx
h 2
n1
[f
数值分析第四章数值积分与数值微分
![数值分析第四章数值积分与数值微分](https://img.taocdn.com/s3/m/1aab4d486edb6f1aff001ff6.png)
称 f 为区间 a , b 的平均高度.
3、求积公式的构造
若简单选取区间端点或中点的函数值作为平均高度,则 可得一点求积公式如下:
左矩形公式: Iffaba
中矩形公式: Iff a2bba
右矩形公式: Iffbba
左矩形公式: Iffaba
0
0
上述积分称为第二类椭圆积分。
WhatI’st’tshseo Ocorimgipnlaelx that funwcteiocnan?!not
get it.
2. 有些被积函数其原函数虽然可以用初等函数表示成有限 形式,但表达式相当复杂,计算极不方便. 例如函数:
x2 2x2 3
并不复杂,但它的原函数却十分复杂:
(i) 对所有次数≤m次的多项式 Pm (x,)有
R (P m ) I(P m ) In(P m ) 0
(ii)存在m+1次多项式 Pm1(x),使得
R (P m 1 ) I(P m 1 ) In (P m 1 ) 0
上述定义中的条件(i),(ii)等价于:
( i )R ( x k ) I ( x k ) I n ( x k ) 0 ,( 0 k m )
f x xn1 的余项为零。
由于 f x xn1,所以 fn1xn1!
即得
R(f)hn2 n n (tj)dt 0
j0
引进变换 t u n ,因为 n 为偶数,故 n 为整数,
2
2
于是有
n
R(f)hn2
2 n
2
n (unj)du
且每个波纹以近似 2 英寸为一个周期. 求制做一块波纹瓦所需
铝板的长度L.
这个问题就是要求由函数 f xsinx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
n
b
R( f ) f (x)dx a
在a,b内存在一点 ,使得
b
I ( f ) f (x)dx (b a) f ( )
a
f ?
称 f 为 f x 在区间 a,b上的平均高度.
3、求积公式的构造
➢ 若简单选取区间端点或中点的函数值作为平均高度,则 可得一点求积公式如下:
左矩形公式: I f f ab a
中矩形公式:Biblioteka nAk b ak 0
n
k 0
Ak xk
1 2
b2 a2
n
k 0
Ak
xk m
1 m 1
bm1 am1
§2 插值型求积公式
一、定义
在积分区间 a,b上,取 n 1个节点 xi , i 0,1, 2,..., n
作f x 的 n 次代数插值多项式(拉格朗日插值公式):
2 式(两点求积公式)
I f f a f b b a
2
y
f b
f a Oa
f x
bx
➢
若取三点,a,b, c
ab 2
并令 f
f
a4 f
c
f
b
6
则可得Simpson公式(三点求积公式)
I f b a f a 4 f c f b
6
➢ 一般地 ,取区间 a,b 内 n 1 个点xi,i 0,1, 2,..., n
2. 有些被积函数其原函数虽然可以用初等函数表示,但表达 式相当复杂,计算极不方便.
例如函数:
x2 2x2 3
并不复杂,但它的原函数却十分复杂:
1 x 2 2x 2 3 3 x 2x 2 3 9 ln( 2 x 2x 2 3 )
4
16
16 2
3. f x没有解析表达式,只有数表形式:
R(Pm1 ) I (Pm1 ) I n (Pm1 ) 0
上述定义中的条件(i),(ii)等价于:
(i) R(xk ) I (xk ) In (xk ) 0, (0 k m)
(ii) R(xm1) 0
注:梯形公式与中矩形公式都只具有1次代数精度。
一般的,若要使求积公式(1)具有m次代数精度,则只要 使求积公式对f (x) = 1,x,x2,…, xm 都准确成立,即
由微积分学我们知道,所求的弧长可表示为:
L 48 1 ( f ' (x))2 dx 48 1 (cos x)2 dx
0
0
上述积分称为第二类椭圆积分。
WhatI’t’s tshseo Ocorimgipnlaelx that funwcetiocnan?!not
get it.
类似的,下列函数也不存在由初等函数表示的原函数: sin x 2 , cos x 2 , sin x , 1 , 1 x3 , ex2 x ln x
x 12 3
f x 4 4.5 6
45 8 8.5
原来通呵过呵原…函这数就来需计要积 算积分分有的它数的值局方限法性来。帮
那…忙…啦。
怎么办呢?
二、数值积分的基本思想
1、定积分的几何意义 y
f x
b
I ( f ) f (x)dx
a
oa
bx
2、数值积分的理论依据
依据积分中值定理, 对于连续函数 f x ,
实际问题
1.
的原函数
不能用初等函数表示
建筑上用的一种铝制波纹瓦是用一种机器将一块平 整的铝板压制而成的.
假若要求波纹瓦长4英尺, 每个波纹的高度(从中心线)为1英寸, 且每个波纹以近似 英寸为一个周期. 求制做一块波纹瓦所需
铝板的长度L.
这个问题就是要求由函数
给定的曲线,
从 x0到
英寸间的弧长L.
I
f
f
a
2
b
b
a
右矩形公式: I f f bb a
左矩形公式: I f f ab a
y
f x
f a Oa
bx
中矩形公式:
y
I
f
f
a
b 2
b
a
f x
f
a
2
b
O
a
ab b x
2
右矩形公式: I f f bb a
y
f x
f b
O
a
bx
➢ 若取 a, b 两点,并令 f f a f b ,则可得梯形公
处的高度 f xi ,i 0,1,..., n
通过加权平均的方法近似地得出平均高度 f
这类求积方法称为机械求积:
b
n
f (x)dx (b a)
a
i f (xi )
i0
或写成:
求积节点
b
n
f (x)dx
a
Ak f (xk )
k 0
数值积分公式
求积系数
记
n
In ( f ) Ak f (xk ) k 0
n j0
b a
l
j
(
x)dx
f
(
x
j
)
b
a Rn (x)dx
取
b
n
b
f (x)dx
a
f (x j ) a l j (x)dx
Aj
j0
Aj
b a
n (x xi ) dx i0 ( x j xi )
由 节点 决定,
与 f x无关。
i j
二、截断误差与代数精度
1、截断误差
称为数值 求积公式
(1)
b
n
R( f ) I ( f ) In ( f ) a f (x)dx Ak f (xk ), (2)
k 0
称为求积公 式余项(误
差).
构造或确定一个求积公式,要解决的问题包括:
(i) 确定求积系数 Ak 和求积节点 xk;
(ii) 确定衡量求积公式好坏的标准; (iii) 求积公式的误差估计和收敛性分析.
n
Ln ( x) lk ( x) f ( xk ) k 0
则有
f (x) Ln (x) Rn (x)
其中,
Rn (x)
f (n1) ( )
(n 1)!
wn1
(
x)
n
wn1(x) (x x j ) j0
为插值余项。
于是有:
b
b
b
a f (x)dx a Ln (x)dx a Rn (x)dx
三、求积公式的代数精度
n
定义4.1:称求积公式 In ( f ) Ak f (xk ) 具有m次代数精度,如 k 0 果它满足如下两个条件:
(i) 对所有次数≤m次的多项式 Pm (x,)有
R(Pm ) I (Pm ) I n (Pm ) 0
(ii)存在m+1次多项式 Pm1 (x),使得
第四章
数值积分 与数值微分
§1 引 言
一、数值积分的必要性
本章主要讨论如下形式的一元函数积分
b
I ( f ) f (x)dx
a
在微积分里,按Newton-Leibniz公式求定积分
b
I ( f ) a f (x)dx F (b) F (a)
要求函数 f x 的原函数 F x
☞ 有解析表达式; ☞ 为初等函数.