第八章微生物的遗传与变异

合集下载

准性生殖

准性生殖

第八章微生物的遗传与变异一、目的要求掌握和了解微生物遗传变异的基本规律,为培育优良品种打下良好的基础。

二、教学内容1.遗传变异的物质基础2.基因突变3.诱变育种4.基因重组5.基因工程6.菌种退化、复壮和保藏三、重点内容1.基因突变的特点和机制2.诱变育种3.原核微生物的基因生组与真核微生物的准性生殖4.菌种的保藏四、教学方法应用多媒体进行课堂教学遗传和变异是生物体的最本质的属性之一。

遗传就是指子代和亲代相似的现象;变异就是子代与亲代间的差异。

遗传保证了种的存在和延续;而变异则推动了种的进化和发展。

遗传型又称基因型,指某一生物个体所含有全部遗传因子即基因的总和。

它是一种内在潜力,只有在适当的环境条件下,通过自身的发代谢和发育,才能将它具体化,即产生表型。

表型是指某一生物体所具有的一切外表特征及内在特性的总和,是遗传型在合适环境下的具体体现。

变异是指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。

特点:①几率低(10-5--10-10);②性状的幅度大;③新性状具稳定和遗传性。

饰变是指不涉及遗传物质结构改变而只发生在转录、转译水平上的表型变化。

特点:①个体变化相同;②性状变化的幅度小;③新性状不具遗传性。

如粘质沙雷氏菌,在25℃培养时,可产生深红色的灵杆菌素,这是一种饰变,但当在37℃培养时,则不产生色素,再在25℃下培养时,又恢复产生色素的能力。

由于微生物有一系列非常独特的生物学特性,因而在研究现代遗传学和其他许多重要的生物学基本理论问题中,微生物成为最热衷的研究对象。

如:个体微小,结构简单;营养体一般都是单倍体;繁殖快;易于累积不同的中间代谢物;菌落形态可见性与多样性等。

对微生物遗传规律的深入研究,不仅促进了现代分子生物学和生物工程学的发展,而且还为育种工作提提供了丰富的理论基础,促使育种工作向着不自觉到自觉,从低效到高效,从随机到定向,从近缘杂交到远缘杂交等方向发展。

第一节遗传变异的物质基础遗传变异有无物质基础以及何种物质可承担遗传变异功能的问题,是生物学中的一个重大理论问题。

微生物的遗传与变异

微生物的遗传与变异

第八章微生物的遗传与变异[教学目的要求]掌握微生物遗传与变异的基本原理,了解微生物育种的基本技术。

[重点与难点]遗传变异的物质基础基因突变和诱变育种基因重组[教学方法与手段]讲授结合多媒体课件[教学时间]8学时[教学内容]第一节:遗传突变的物质基础一、什么是遗传与变异遗传:子代与亲代相似的现象通称为遗传。

保持物种连续性和相对稳定性,是物种存在依据。

保证了种的存在和延续.变异:是子代与亲代间的差异。

可遗传给后代,是物种发展,进化的依据。

推动了种的进化和发展。

微生物特性的改变不一定都是变异,只发生在转录、翻译水平的表型变化是不遗传的。

不是变异。

表型(phcnotype):是指遗传特性在—定环境条件下的具体表现。

微生物变异发生最快、迅速、常见。

不一定都是变异或都能遗传。

突变:是遗传物质核酸(RNA,DNA)中的核苷酸顺序发生了稳定的可遗传的变化。

(合段发生改变,而引起遗传性状改变)包括:染色体突变和基因突变。

微生物主要是基因突变。

二、DNA是遗传变异的物质基础(一)从孟德尔的粒子到DNA双螺旋结构1865(1866)年:孟德尔:发现遗传规律分离、自由组合规律1893年:Overton 发现植物细胞减数分裂。

1900年:重新发现孟德尔定律,建立遗传学。

1901年:发现X染色体。

1902年:建立细胞遗传学。

1903年W.S.Sutton,染色体的遗传行为与性状的遗传行为有着平行的关系。

1905年:Wilson 发现性染色体1905-08年:发现连锁基因。

1906年:提出性染色体。

1909年:丹麦生物学家W.L.Johannsen提出基因概念。

1910年:摩尔根(Morgan)建立基因学说。

1913年:减数分裂与孟德尔定律联系起来。

得到正确解释。

1910-27年:连锁互换。

1935年:电镜问世。

20世纪40、50年代,3个典型实验:1944年:肺炎双球菌转化。

遗传信息物质是DNA,核酸水平1952年:Watson Crick 提出DNA结构。

第八章 微生物遗传学笔记

第八章 微生物遗传学笔记
基因重组的意义:基因重组是杂交育种的理论基础。
杂交育种的优点:①由于杂交育种选用了已知性状的供体菌和受体菌作为亲本,故在方向性和自觉性方面,均比诱变育种前进了一大步。②利用杂交育种可以消除某一菌株在经过长期诱变处理后所出现的产量上升缓慢的现象
杂交育种的缺点:杂交育种的方法较复杂,目前还没有得到普遍的推广和使用,尤其在原核生物的领域中,应用转化、转导或接合等重组技术来培育可应用于生产实践上的高产菌株的例子还不多见。
2.转导:通过完全缺陷或部分缺陷噬菌体的媒介,把供体细胞的DNA小片段携带到受体细胞中,通过交换与整合,使后者获得前者部分遗传形状的现象。获得新遗传形状的受体细胞称为转导子(transductant)
3.接合(conjugation):供体菌通过性菌毛传递不同长度的单链DNA给受体菌,在后者细胞中发生交换、整合,从而使后者获得供体菌的遗传性状的现象。获得新性状的受体细胞称为接合子。
移码突变(frame-shift mutation)指诱变剂使DNA分子中的一个或少数几个核苷酸的增添(插入)或缺失,从而使该部位后面的全部遗传密码发生转录和转译错误的一类突变。
染色体畸变(chromosomal aberration)某些理化因子,如X射线等的辐射及烷化剂、亚硝酸等,除了能引起点突变外,还会引起DNA的大损伤——染色体畸变,包括以下两个方面:染色体结构上的缺失、重复、易位和倒位染色体数目的变化。
6.降解性(代谢)质粒
如假单胞菌属中发现。它们的降解性质粒可为一系列能降解复杂物质的酶编码,从而能利用一般细菌所难以分解的物质做碳源。这些质粒以其所分解的底物命名。
7.隐秘质粒:不显示任何表型效应,只能通过物理的方法检测的质粒。如酵母菌的2um质粒。
二.转座因子
插入(IS)序列、转座子(Tn)、特殊病毒(Mu噬菌体)

微生物的遗传与变异

微生物的遗传与变异


3、染色体层面 1)不同生物的染色体数目相差很大。 2)单倍体,双倍体,三倍体,多倍体。 3)部分双倍体。

4、核酸层面 DNA或RNA; DNA单链或双链; RNA单链或双链; bp(碱基对); kp(千碱基对); mp(兆碱基对)。

5、基因层面 基因:生物体内一切具有自主复制能力的最
•定向培育一般是指用某一特定环境长期处理某一 微生物培养物(群体),同时不断对它们进行移种传 代,以达到积累和选择合适的自发突变体的一种 古老的育种方法。由于自发突变的频率较低,变 异程度较轻微,所以培育新种的过程一般十分缓 慢。与诱变育种、杂交育种和基因工程技术相比 ,定向培育法带有守株待兔的被动状态。 •


•(1)用表面活性剂处理标准TMV,得到它的蛋白质; •(2)从TMV的变种HRV通过弱碱处理得到它的RNA; •(3)通过重建获得杂种病毒; •(4)证实杂种病毒的蛋白质外壳是来自TMV标准株。 •(5)杂种病毒感染烟草产生HR所特有的病斑,说明杂种病毒 的感染特性是由HRV的RNA所决定,而不是二者的融合特征 •(6)从病斑中一再分离得到的子病毒的蛋白质外壳是HR蛋白 质,而不是标准株的蛋白质外壳。以上实验结果说明杂种病 毒的感染特征和蛋白质的特性 是由它的RNA所决定,而不是 由蛋白质所决定,遗传物质是RNA。
无义突变:某碱基突变造成UAG,UAA和 UGA等终止码的出现,导致多肽链合成终 止,原功能丧失。

3、表型变化及其分离 1、营养缺陷型——是一种缺乏合成其生存所
必需的营养物,只有从周围环境或培养基中 获得这些营养或其前体物才能生长的突变型 。
2、抗药性突变型——指由于基因突变使菌株 对某种或某几种药物,特别是抗生素,产生 抗性的一种突变。

第八章-微生物的遗传变异与育种答案

第八章-微生物的遗传变异与育种答案

第七章习题答案一、名词解释1.转座因子:具有转座作用得一段DNA序列、2.普遍转导:通过极少数完全缺陷噬菌体对供体菌基因组上任何小片段DNA进行“误包”,而将其遗传性状传递给受体菌得现象称为普遍转导。

3.准性生殖:就是一种类似于有性生殖,但比它更为原始得两性生殖方式,这就是一种在同种而不同菌株得体细胞间发生得融合,它可不借减数分裂而导致低频率基因重组并产生重组子、4.艾姆氏试验:就是一种利用细菌营养缺陷型得回复突变来检测环境或食品中就是否存在化学致癌剂得简便有效方法5.局限转导:通过部分缺陷得温与噬菌体把供体得少数特定基因携带到受体菌中,并与后者得基因整合,重合,形成转导子得现象、6.移码突变:诱变剂使DNA序列中得一个或几个核苷酸发生增添或缺失,从而使该处后面得全部遗传密码得阅读框架发生改变、7、感受态:受体细胞最易接受外源DNA片段并能实现转化得一种生理状态、8、高频重组菌株:该细胞得F质粒已从游离态转变为整合态,当与F菌株相接合时,发生基因重组得频率非常高、9、基因工程:通过人工方法将目得基因与载体DNA分子连接起来,然后导入受体细胞,从而使受体细胞获得新得遗传性状得一种育种措施称基因工程。

10、限制性内切酶:就是一类能够识别双链DNA分子得特定序列,并能在识别位点内部或附近进行切割得内切酶。

11.基因治疗:就是指向靶细胞中引入具有正常功能得基因,以纠正或补偿基因得缺陷,从而达到治疗得目得。

12.克隆:作为名词,也称为克隆子,它就是指带有相同DNA序列得一个群体可以就是质粒,也可以就是基因组相同得细菌细胞群体。

作为动词,克隆就是指利用DNA体外重组技术,将一个特定得基因或DNA序列插入一个载体DNA分子上,进行扩增。

二、填空1.微生物修复因UV而受损DNA得作用有光复活作用与切除修复、2.基因组就是指一种生物得全套基因。

3.基因工程中取得目得基因得途径有 _____3_____条。

4.基因突变可分为点突变与染色体突变两种类型。

微生物的遗传与变异

微生物的遗传与变异

微生物的遗传与变异微生物是地球上最古老的居民之一,它们在地球的生态系统中发挥着重要的作用。

然而,微生物的遗传与变异特性使得它们能够适应不断变化的环境,并在这个过程中演化出新的物种。

一、微生物的遗传微生物的遗传是通过DNA或RNA等核酸分子来传递的。

这些分子中含有遗传信息,可以指导微生物的生长发育和代谢活动。

微生物的遗传具有以下特点:1、高度多样性:微生物的种类繁多,不同种类的微生物具有不同的遗传信息,因此具有高度的多样性。

2、快速进化:微生物的遗传信息可以很容易地发生突变,这使得它们能够快速适应不断变化的环境。

3、群体遗传:微生物通常以群体形式存在,它们之间的相互作用会影响群体的遗传特征。

二、微生物的变异微生物的变异是指它们的遗传特征发生变化的过程。

这些变化可能是由于环境因素(如温度、湿度、辐射等)的影响,也可能是由于DNA 复制过程中的随机错误。

微生物的变异具有以下特点:1、适应性变异:微生物在适应环境的过程中会发生适应性变异,这些变异有助于它们在特定环境中生存和繁殖。

2、突变:微生物的DNA分子在复制过程中会发生随机错误,这些错误可能导致微生物的遗传特征发生变化。

3、基因转移:微生物之间可以通过基因转移来实现遗传信息的交流,这有助于它们适应新的环境。

三、微生物遗传与变异的实际应用微生物的遗传与变异特性在许多领域都有实际应用。

例如,科学家可以利用微生物的遗传信息来开发新的药物和生物技术产品;通过研究微生物的变异机制,可以为疾病的预防和治疗提供新的思路和方法。

微生物的遗传与变异特性是它们适应不断变化的环境的重要机制之一。

通过深入研究这些特性,我们可以更好地了解微生物的生命活动和演化过程,为人类社会的发展提供更多的帮助和支持。

微生物的遗传与变异课件一、引言微生物,作为生命的基本单元,其遗传与变异的研究对于理解生命的本质和进化机制具有重要意义。

本篇文章将深入探讨微生物的遗传与变异,希望能为相关领域的学习和研究提供有益的参考。

《微生物学》主要知识点-08第八章微生物的遗传

《微生物学》主要知识点-08第八章微生物的遗传

第八章微生物的遗传概述:遗传(heredity or inheritanc® 和变异(variation)是生物体的最本质的属性之一。

遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。

变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。

基因型(ge no type某一生物个体所含有的全部基因的总和。

表型(phe no type)某一生物所具有的一切外表特征及内在特性的总和。

饰变( modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。

8.1遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。

1944年O.T.Avery等人进一步研究得出DNA是遗传因子。

S strun A2. 噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。

3.植物病毒的重建实1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV 近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。

8.2微生物的基因组结构:基因组(genome是指存在于细胞或病毒中的所有基因。

细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid )。

基因组通常是指全部一套基因。

由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。

微生物学课程习题(下)

微生物学课程习题(下)

微生物学课程习题(下)第八章微生物遗传与变异一.填空1.证明核酸是遗传物质的三个经典实验是肺炎双球菌的转化实验、T2噬菌体感染实验和植物病毒的重建实验。

2.质粒根据分子结构可有CCC型、OC型和L型三种构型。

质粒在细胞中的拷贝数也不尽相同。

有的拷贝数很少,只有一、二个拷贝,称为严紧型质粒,另一些具有较高的拷贝数,约有10个以上,称为松弛型质粒。

3.检测质粒常用的方法有提取所有胞内DNA后电镜观察、超速离心和琼脂糖凝胶电泳。

4.不同碱基变化对遗传信息的改变可分为缺失、添加、易位和倒位四种类型;常见的表型变化的突变型有营养缺陷型、抗药性突变型、条件致死突变型、形态突变型、抗原突变型和产量突变型等。

5.营养缺陷型的筛选一般要经过诱变,淘汰野生型,检出和鉴定营养缺陷型四个环节。

6.基因突变的特点为自发性、不对应性、稀有性、独立性、可诱变性、稳定性、可逆性。

7.普遍性转导可能出现的三种后果是形成转导子、流产转导和转导失败。

8.紫外线照射能使DNA相邻碱基形成胸腺嘧啶二聚体,从而导致DNA复制产生错误,用紫外线诱变微生物后应在红光或暗处条件下进行,以防止光复活现象的产生。

9.原核生物基因重组的类型主要有转化、转导、溶原性转换、接合和原生质体融合等多种,真核微生物则有有性杂交,准性杂交和原生质体融合等多种。

10.原核生物中的转座因子主要有三种类型:插入序列、转座子、转座噬菌体或前噬菌体。

11.微生物菌种保藏的原理是在干燥、避光、缺氧、缺乏营养物质和低温等环境条件下,使其处于代谢不活泼状态。

12. 能在同一细菌中并存的质粒属于不同的不亲和群,而在同一细菌中不能并存的质粒属于同一不亲和群。

三.名词解释1.微生物遗传:在一定的环境条件下,微生物的形态、结构、代谢、繁殖、毒力和对药物的敏感等性状相对稳定,并能代代相传,子代与亲代之间表现出相似性,这种现象称为遗传。

遗传可以使微生物的性状保持相对稳定,而且能够代代相传,使它的种属得以保存。

第八章微生物遗传

第八章微生物遗传

2. 噬菌体感染实验
1952年,A.D. Hershey &M. Chase 利用噬菌体感染实验 证明DNA是噬菌体的 遗传物质基础。
3. 植物病毒重建实验
1956年,H. Fraenkel-Conrat 用含RNA的烟草花叶病 毒(TMV)与霍氏车前花叶病毒(HMV)进行著名的植 物病毒重建实验,证明RNA是病毒的遗传物质。
– 特点:群体几乎所有个体发生同样变化,性状变化 幅度小,且不稳定、不可遗传。
• 野生型(wild type) :从自然界中分离到的微生
物菌株,称野生型菌株,简称野生型。
• 突变型:野生型菌株经突变后形成的带有新性状
的菌株,称突变株,或突变体、突变型。
第一节 微生物遗传的物质基础
什么是遗传的物质基础?
1)动物试验
2)细菌培养试验
3)S型菌的无细胞抽提液试验
活R菌 + S型菌的无细胞抽提液 培养皿培养大量R菌和少量S菌 说明在死的S型细菌体内可能存在某种具有遗传转化能力的物质,可 以进入R型菌细胞,使R性菌株获得表达S型荚膜性状的遗传物质。
第一证据确定DNA是遗传的物质基础
• 1944年, O.T. Avery等从热死S型菌株提 纯了几种可能的转化因子进行体外转化。
➢ 毒性区(Vir) ➢ 接合转移区(con) ➢ 复制启始区 ➢ T-DNA区
T-DNA区 毒性区(Vir)
接合转移区(con)
复制启始区
5) Ri质粒
6)
与再生根形成有关的质粒
• 与Ti 质粒相似,有Ri质粒转化的根部不形成 根瘤,仅生出可再生新植株的毛状根。
• 在基因工程中,Ri 质粒作为外源基因的载体。
或数字表示,如lacZ

第八章 微生物的遗传和变异 复习题解

第八章 微生物的遗传和变异 复习题解

第八章微生物的遗传和变异习题与题解一、填空题1、证明DNA是遗传物质的事例很多,其中最直接的证明有1928年Griffith的细菌转化实验、Avery等的1944年发表的细菌细胞抽提物的降解、转化实验和1952年Alfred等进行的35S、32P标记的T2噬菌体繁殖实验。

而1956年,H.Fraenkel-Conrat 用RNA病毒(烟草花叶病毒TMV)所进行的拆分和重建实验,证明了RNA也是遗传物质。

2、细菌在一般情况下是一套基因,即单倍体;真核微生物通常是有两套基因又称二倍体。

3、大肠杆菌基因组为双链环状的在细胞中以紧密缠绕成的较致密的不规则小体形式存在于细胞中,该小体被称为拟核。

4、酵母菌基因组最显著的特点是高度重复。

酵母基因组全序列测定完成后,在其基因组上发现了许多较高同源性的DNA重复序列,称之为遗传丰余。

5、质粒DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即CCC型、OC型和L型。

6、转座因子1)是细胞中位于染色体或质粒上能改变自身位置(如从染色体或质粒的一个位点转到另一个位点,或者在两个复制子之间转移)的一段DNA序列。

2)原核微生物中的转座因子有三种类型:插入序列(IS)、转座子(Tn)和某些特殊病毒(如Mu)。

3)转座因子可引发多种遗传变化,主要包括插入突变、产生染色体畸变、基因的移动和重排。

7、在普遍性转导中,噬菌体可以将供体细菌染色体的任何部分转导到受体细菌中;而在局限性转导中,噬菌体总是携带同样的片段到受体细胞中。

8、细菌的结合作用是指细菌与细菌的直接接触而产生的遗传信息的转移和重组过程9、线粒体遗传特征的遗传发生在核外,且在有丝分裂和减数分裂过程以外,因此它是一种细胞质遗传。

10、丝状真菌遗传学研究主要是借助有性过程和准性生殖过程,并通过遗传分析进行的,而准性生殖是丝状真菌,特别是不产生有性孢子的丝状真菌特有的遗传现象。

准性生殖是指不经过减数分裂就能导致基因重组的生殖过程。

微生物的遗传基因知识

微生物的遗传基因知识
按内部结构:
1、基因突变(点突变):一对或少数几对 碱基发生改变。
2、染色体畸变:DNA的大段变化(损伤), 表现为插入、缺失、重复、易位和倒位。
按表型特征:
1、形态突变型:细胞或菌落形态改变。 2、生化突变型--代谢途径发生变异而形态
没有明显变化。分营养缺陷型、抗性突变型 和抗原突变型。
(一)基因突变类型
3、致死突变型--基因突变导致个体死亡。 A、条件致死突变型:突变后,在某种条件下可
正常生长、繁殖并实现其表型,而在另一条件 下却无法生长、繁殖。例如,E.coli的某些菌株 可在37℃下正常生长,不能在42℃下生长等。 B、其他突变型:如毒力、糖发酵能力、代谢产 物的种类和产量以及对某种药物的依赖性等。
一、基本概念
(四)、饰变:不涉及遗传物质结构改变而 只发生在转录、翻译水平上的表型变化。
饰变特点:整个群体中每一个体都发生同样 变化;性状变化的幅度小;饰变性状不遗传。
例如,粘质沙雷氏菌25℃培养,产生深红色 灵杆菌素,把菌落染成鲜血似的(因此过去称 它为“神灵色杆菌”或“灵杆菌”);37℃时, 群体中所有个体都不产色素。重新降温至 25℃ ,所有细胞产色素能力又可以恢复。
四、原核生物的质粒
(二)、R因子、R质粒:
多数由相连的两个DNA片段组成。其一称 RTF质粒(抗性转移因子),含有调节DNA复制 和拷贝数的基因及转移基因,有时还有四环 素抗性基因。11×106Da。其二为r质粒(抗 性决定质粒),几百万至100×106Da以上。 含其他抗生素的抗性基因,例如抗青霉素、 安比西林、氯霉素、链霉素、卡那霉素和磺 胺等基因。
3、S型菌无细胞抽提液试验:活R菌加S菌 的无细胞抽提液,在培养皿中培养,长出大 量的R菌和少量的S菌。

第八章微生物遗传

第八章微生物遗传
杂交实验
中间平板上长出的原养型 菌落是两菌株之间发生了 遗传交换和重组所致。
证实接合过程需要细胞间的直接接触的 “U”型管实验( Bernard Davis,1950 )
F因子
大肠杆菌是有性别分 化的。决定它们性别的因
子称为F因子(致育因子
或称性质粒),呈超螺旋
状态,既可以在细胞内独 立存在, 具有自主的与染色 体进行同步复制和转移到 其他细胞中的能力,也可插 入(即整合)到染色体上
(局限转导噬菌体)
转导 低感染 局限转导子 (极少量) 颗粒 频率
高频转导:
形成转导子的频率很高, 理论上可达 50%。
• 高频转导是双重溶源的结果: λ ─┐ │+ E.coli k12 → [E.coli K12(λ/λ dgal )F ] λ dgal ┘ ↓UV 转导噬菌体(λgal)→ 转导子菌落 辅助噬菌体(λ)→ 噬菌斑
3)F′×F 杂交
F′×F-与F+×F-的不同:
供体的部分染色体基因随 F′一起转入受体细胞 a)与染色体发生重组; b)继续存在于F′因子上, 形成一种部分二倍体;
F′+ F′
细胞基因的这种转移过程又常称为性导(sexduction)
二、细菌的转导(transduction)
1、普遍性转导(generalized transduction)
• S. typhimurium: LT22A (trp-); LT2(his-) • LT22溶原性 →噬菌体P22 → 感染LT2(非溶原性) →可能释放带trp+的P22 →LT22A (trp-) →呈原养型。
Why and How ?
沙门氏菌LT22A是携带P22噬菌体的溶源性细菌 另一株是非溶源性细菌

普通生物学:第八章 生物的遗传与变异

普通生物学:第八章 生物的遗传与变异

一对等位基因在 形成配子时完全 独立地分离到不 同的配子中去, 相互不影响。
测交,为测定显性个体的基因型而进行的未知基因型显性个体与有 关隐性纯合个体之间的交配。 杂交产生的子一代个体再与其隐性 (或双隐性)亲本的交配方式,用以测验子代个体基因型的一种回 交。
2、自由组合定律
双显性亲本(种子圆形、黄色) 双隐性亲本(种子皱缩、绿色)
4、孟德尔学说的重要意义
(1)孟德尔第一次明确提出遗传因子的 概念, 并且提出了遗传因子控制遗传性 状的若干规律:
大多数生物体通常由 一对遗传因子(后 来称为两个等位基因)控制同一性状。这样 的生物体称为2n个体。在形成生殖细胞时, 这对遗传因子分离到两个配子中去。 遗传因子可以区分为显性和隐性。 控制不同性状的遗传因子是各自独立的 自由组合。
• 表型和基因型:表型指生物体个别或少数性状以 至全部性状的外在表现。基因型又称遗传型,指 生物的全部遗传物质(基因)组成。 但一般只表 示个别或少数基因位点上的等位基因的组成。
• 杂交:通过不同的基因型的个体之间的交 配而取得某些双亲基因重新组合的个体 的方法。
• 自交:自同一个体的雌雄配子的结合或具有相同 基因型个体间的交配。
一、孟德尔遗传的基本规律
孟德尔学说奠定了遗传学基础
在孟德尔以前,人们看到遗传现象,猜想 遗传是有规律的,甚至在农牧业育种中实际运 用了遗传规律,但是,一直找不到研究遗传规 律的恰当方法。
两种学说: 融合说 与颗粒说
孟德尔(1822-1884)从1856年起开始豌豆试验。 经过近10年的潜心研究,孟德尔发表了他的研究报告。 其内容可概括两个定律。
Gregor Johann Mendel
(一)分离定律和自由组合定律

第八章微生物的遗传变异与育种ppt课件

第八章微生物的遗传变异与育种ppt课件

(8) 易于形成营养缺陷型;
(9) 各种微生物一般都有相应的病毒;
(10) 存在多种处于进化过程中的原始有性 其它许多主要的生物学基本理 论问题中最热衷的研究对象。
❖对微生物遗传规律的深入研究,不仅促进了现代分子生物 学和生物工程学的发展,而且为育种工作提供了丰富的理 论基础,促使育种工作从不自觉到自觉、从低效到高效、 从随机到定向、从近缘杂交到远缘杂交的方向发展。
(movable gene)。
转座因子
定义:可在DNA链上改变自身位置的一段DNA序列。
原核生物中的转座子类型 转座的遗传效应
插入(IS)序列
转座子(Tn)
特殊病毒(Mu噬 菌体)
插入序列(IS,insertion sequence)
分子量最小(仅0.7~1.4kb),只有引起转座的转座酶基 因而不含其它基因,具有反向末端重复序列。已在染色体、 F因子等质粒上发现IS序列。E . coli的F因子和核染色体组 上有一些相同的IS,通过这些同源序列间的重组,就可使 F因子插入到E . coli的核染色体组上,形成Hfr菌株。因IS 在染色体组上插入的位置和方向的不同,其引起的突变效 应也不同。IS被切离时引起的突变可以回复,如果因切离 部位有误而带走IS以外的一部分DNA序列,就会在插入部 位造成缺失,从而发生新的突变。
第八章 微生物的遗传变异与育种
➢ 第一节 遗传变异的物质基础 ➢ 第二节 微生物的基因组结构 ➢ 第三节 质粒和转座因子 ➢ 第四节 基因突变及修复 ➢ 第五节 基因重组 ➢ 第六节 微生物育种 ➢ 第七节 菌种的衰退、复壮与保藏
遗传与变异的概念
遗传和变异是生物体的最本质的属性之一。
❖ 遗传:亲代将自身一整套遗传因子传递给下一代的行为和 功能,

第八章微生物遗传变异与菌种选育习题及答案

第八章微生物遗传变异与菌种选育习题及答案

第八章微生物遗传变异与菌种选育习题及答案第八章《微生物遗传与菌种选育》习题及参考答案一、名词解释1.点突变:DNA链上的一对或少数几对碱基发生改变,称为点突变。

2.感受态:受体菌最易接受到外源DNA片段并实现转化的生理状态。

3.基因工程:又称重组DNA技术,它是根据人们的需要在体外将供体生物控制某种遗传性状的一段生物大分子-----DNA切割后,同载体连接,然后导入受体生物细胞中进行复制、表达,从而获得新物种的一种崭新的育种技术。

4.接合:遗传物质通过细胞间的直接接触从一个细胞转入到另一细胞而表达的过程称为接合。

5.F'菌株:当Hfr菌株内的F因子不正常切割而脱离其染色体时,可形成游离的但携带一小段染色体基因的F因子,含有这种F因子的菌株称为F'菌株。

6.诱变育种:使用各种物理或化学因子处理微生物细胞,提高突变率,从中挑选出少数符合育种目的的突变株。

7.营养缺陷型:由于基因突变引起菌株在一些营养物质(如氨基酸、维生素和碱基)的合成能力上出现缺陷,而必须在基本培养基中添加相应的物质才能正常生长的突变型。

野生型:指从自然界分离到的任何微生物在其发生人为营养缺陷突变前的原始菌株。

原养型:一般指营养缺陷型突变株经回复突变或重组后产生的菌株。

9.重组DNA技术:是指对遗传信息的分子操作和施工,即把分离到的或合成的基因经过改造,插入载体中,导入宿主细胞内,使其扩增和表达,从而获得大量基因产物或新物种的一种崭新的育种技术。

10.基因重组:或称遗传重组,两个独立基因组内的遗传基因,通过一定的途径转移到一起,形成新的稳定基因组的过程。

11.基因突变(genemutation)和移码突变:基因突变(genemutation):一个基因内部遗传结构或DNA序列的任何改变,而导致的遗传变化就称基因突变。

移码突变:指诱变剂会使DNA分子中的一个或少数几个核苷酸的增添或缺失,从而使该部位后面的全部遗传密码发生转录和转译错误的一类突变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)涂布试验 1949年Newcombe设计的试验,其要点:在12个平板
上涂上数目相等的敏感于T1噬菌体的大肠杆菌,经5小 时的培养,在皿上长出大量的微菌落,取其中6皿直接 喷上T1噬菌体,另6皿则先用灭菌玻棒把微菌落重新均 匀涂布一次后同样喷上等量的T1噬菌体,培养后发现, 涂布过的一组有抗性菌落353个,比未涂布过的(仅28 个菌落)高得多。这说明该抗性突变发生在未接触噬菌 体前,噬菌体的加入不是诱导突变的因素。
了DNA是噬菌体遗传物质的直接证据。他们用含32P和35S的培养 基培养大肠杆菌H,再用被标记的大肠杆菌H培养T2噬菌体, 直至完全标记上32P和35S的T2噬菌体为止。用标记的T2噬菌体侵 染没有标记的大肠杆菌H,结果表明,T2噬菌体外壳蛋白中有 35S放射性并与细菌的细胞壁连接,而DNA部分则有32P放射性并 进如细菌的细胞质中。这一事实说明,在噬菌体侵染细菌过程 中蛋白质外壳留在细菌细胞外,只有DNA进入了细胞,又一次证 明遗传物质是DNA,而不是蛋白质。
第八章 微生物的遗传与变异
遗传性:指生物的亲代传递给其子代一套遗 传信息的特性。 基因型:指生物体所携带的全部基因的总称。 表型:指遗传特性在一定环境条件下的具体 表现。 变异:指遗传型的改变,即生物遗传物质结 构上发生改变。 饰变:同样遗传型的生物,在不 微生物遗传变异的物质基础
(一)变量试验 1943年,鲁里亚(S.E.Luria)和德尔波留克(M.Delbruck)
首先设计。其要点是:先将大肠杆菌液分成等量的两部分。一部 分装在大试管里,另一部分装在50支小试管里,将大小试管里的 大肠杆菌放在恒温箱里培养,经过24到60小时后分别接种到固体 培养基上。一只大试管分接50副培养皿,而50支小试管,每支接 一副培养皿。每皿固体培养基里有等量的噬菌体,能生长的大肠 杆菌是抗噬菌体的突变体。所得结果是,从一支大试管里长出来 的菌落,也就是抗噬菌体的数量比较一致,即使有差异,也仅仅 是实验上的误差。而由50支小试管长出来的抗噬菌体菌落,在数 量上的差异较大。这说明抗噬菌体突变体是在接触噬菌体前在一 次细胞分裂过程中随机自发产生的。这一自发突变发生得越早, 则抗噬菌体菌落出现得越多,反之越少。抗噬菌体突变体的出现 与是否接触噬菌体无关。
三、诱发突变 (一)物理因素的突变 1.紫外线 紫外线的大剂量作用可导致菌体死亡,小剂量则可引 起突变。其主要生物学效应是其对DNA的作用。其中主 要机制是胸腺嘧啶二聚体的形成,它可在同一条链或两 条链上发生。但发现形成的复合物暴露在可见光下,会 使胸腺嘧啶二聚体重新解聚成为单体,此过程称为光复 活作用。在紫外线照射进行诱变育种工作时,必须在红 光下进行处理或操作,并在黑暗条件下培养,以免发生 光复活作用。
一、基因突变的自发性和突变结果与原因不对应性 的证明
人们通常认为,某种细菌从对药物敏感到产生 抗性是由于药物长期作用于细菌的结果,但实际上, 对药物的这种抗性突变与接触药物无关,即突变的 性状与引起突变的原因间无直接的对应关系。后来, 人们通过几个严密的科学实验后终于证明,在接触 抗性因子之前便已出现了抗性菌落。最著名的实验 有:变量试验、涂布试验、影印培养试验
(三)影印培养试验 所谓影印培养法,实质上是使在一系列培养皿的相
同位置上能出现相同菌落的一种接种培养方法。1952年 J.Lederberg夫妇首先进行的实验,是通过使菌不接触 抗性环境而检查其抗性菌落出现的方法来证明的。方法 要点是:包有灭菌丝绒布的木质圆柱(直径略小于培养 皿底)为印章,用不具抗性环境(如不加抗生素等)的 完全培养基进行培养,以印章轻轻粘取菌落,然后再一 一接种到不同的选择培养基(如含有不同抗生素等)上, 培养后,对各培养皿相同位置上的菌落作比较,便可选 出相应的突变型菌落。
(三)病毒拆开和重建实验 通过Fraenbkel-Conrat等在植物病毒领域中的著名实验,
证明RNA是烟草花叶病毒的遗传物质。
第二节 微生物突变
突变(mutation)指遗传物质--核酸(DNA或RNA) 中的核苷酸顺序突然发生了稳定的可遗传的变化。突 变包含基因突变和染色体畸变,基因突变是由于DNA链 上的一对或少数几对碱基发生改变而引起的。
二、自发突变 自发突变:指微生物在没有人工参与下所发生的突变。 自发突变可能的机制: (一)背景辐射和环境因素的诱变 例如:充满宇宙空间的各种短波辐射、高温的诱变效应以及自然 界中存在的诱变物质的作用。由于长期受到原因不详的诱变因素 的综合效应,便发生自发突变。 (二)微生物的代谢产物的诱变 通常存在于细胞内的天然物质,如:过氧化氢、咖啡碱、硫氰化 合物、二硫化二丙烯、重氮丝氨酸等。它们既是微生物的代谢产 物,又可以引起微生物的自发诱变。 (三)环出效应 在DNA复制的过程中,如果其中某一单链上偶尔产生一小环,则 会因其上的基因越过复制而发生遗传缺失,从而造成自发突变。
2.X射线和γ射线 X射线和γ射线是不带电的光量子,不能直接引起
物质电离,但在与原子或分子碰撞时,能把全部能量 或部分能量传给原子而产生次级电子,这些次级电子 具有很高的能量,使产生电离作用,从而直接或间接 的改变DNA的结构。其直接效应是使碱基间、DNA间、 糖与磷酸间相接的化学键断裂;间接效应是,电离作 用引起水或有机分子产生自由基作用于DNA分子,导致 缺失或损伤。
(二)化学因素的诱变 1.碱基结构类似物
这是一类与正常碱基结构(A、T、C、G)相似的物质,如 5-溴尿嘧啶(5-BU)、5-脱氧尿嘧啶(5-dU)、8-氮鸟嘌呤(8NG)、2-氨基嘌呤等,它们能掺入DNA分子中而不妨碍DNA的正常 复制,但其发生的错误配对便可引起碱基对的置换,出现突变。 这类代谢类似物只有对正常进行新陈代谢和繁殖着的微生物才起 作用,而对休止细胞,游离的噬菌体粒子或离体的DNA分子却不 起作用。
(一)转化实验 1944年美国洛克非勒医学研究所的Avery
等人证实了1928年英国人Griffith的发现, 并将肺炎链球菌SⅢ型的DNA成功的转化无毒性 的肺炎球菌RⅡ型为有毒的肺炎球菌SⅢ型,第 一次证明了载有肺炎链球菌SⅢ型荚膜遗传信 息的物质是DNA。
(二)噬菌体的感染实验 1953年美国人Hershey和Chase用放射性同位素方法,提供
相关文档
最新文档