平面机构自由度计算例题及答案
1 平面机构运动简图和自由度 习题答案

习 题1-1至1-4 绘制图示机构的机构运动简图。
题1-1图 颚式破碎机题1-2图 柱塞泵题1-3图 旋转式水泵O 1O 2AB1 234ABCD 1 2 3 4 A B CD1 234 AB CD1 2 34CD题1-4图 冲压机构1-5至1-10 指出机构运动简图中的复合铰链、局部自由度和虚约束,并计算各机构的自由度。
题1-6图解:构件3、4、5在D 处形成一个复合铰链,没有局部自由度和虚约束。
32352701L H F n P P =--=⨯-⨯-=解:没有复合铰链、局部自由度和虚约束。
323921301L H F n P P =--=⨯-⨯-= 题1-5图题1-5图56 ABCDEFO 1 O 2 D F1 2 345 6EGFEG题1-7图题1-8图题1-9图 题1-10图解:A 处为复合铰链,没有局部自由度和虚约束。
323721001L H F n P P =--=⨯-⨯-=解:A 处为复合铰链,没有局部自由度和虚约束。
323721001L H F n P P =--=⨯-⨯-=解:B 处为局部自由度,没有复合铰链和虚约束。
32352710L H F n P P =--=⨯-⨯-=解:C 处为复合铰链,E 处为局部自由度,没有虚约束。
32372912L H F n P P =--=⨯-⨯-=AB C DE IFG HADBECAEBCDGF1-11图示为一手动冲床机构,试绘制其机构运动简图,并计算自由度。
试分析该方案是否可行;如果不可行,给出修改方案。
题1-11图手动冲床答:此方案自由度为0,不可行。
改进方案如图所示:手动冲床运动简图手动冲床改进方案。
机械设计基础IA--第一章平面机构的自由度及速度分析--习题与答案

第1章 平面机构的自由度和速度分析本章要点:1、理解运动副及其分类,熟识各种平面运动副的一般表示方法;了解平面机构的组成。
2、熟练看懂教材中的平面机构的运动简图。
3、能够正确判断和处理平面机构运动简图中的复合铰链、局部自由度和常见的虚约束,综合运用公式F=3n-2P L -P H 计算平面机构的自由度并判断其运动是否确定。
第一节 平面机构的组成基本概念1、平面机构的定义:所有构件都在互相平行的平面内运动的机构2、自由度:构件所具有的独立运动个数3、运动副:两个构件直接接触组成的仍能产生某些相对运动的联接 第二节 平面机构的运动简图平时观察机构的组成及运动形式时,不可能将复杂的机构全部绘制下来观看,应该将不必要的零件去掉,用简单的线条表示机构的运动形式:机构的运动简图、机构简图 步 骤1、运转机械,搞清楚运动副的性质、数目和构件数目;2、测量各运动副之间的尺寸,选投影面(运动平面);3、按比例绘制运动简图;简图比例尺:μl =实际尺寸 m / 图上长度mm4、检验机构是否满足运动确定的条件。
第三节 平面机构的自由度 一、平面机构自由度计算公式机构的自由度保证机构具有确定运动,机构中各构件相对于机架的独立运动数目 一个原动件只能提供一个独立运动 机构具有确定运动的条件为 自由度=原动件的个数平面机构的每个活动构件在未用运动副联接之前,都有三个自由度 经运动副相联后,构件自由度会有变化:自由度的计算公式 F=3n -(2PL +Ph )二、计算平面机构自由度的注意事项活动构件 构件总自由度 3×n 低副约束数 2 × P高副约束数1 × P h n1、复合铰链:两个以上的构件在同一处以转动副相联2、局部自由度:与输出件运动无关的自由度出现在加装滚子的场合,计算时应去掉Fp3、虚约束:对机构的运动实际不起作用的约束计算自由度时应去掉虚约束第四节速度瞬心及在机构速度分析上的应用机构运动分析的任务、目的和方法(1)任务:在已知机构尺寸及原动件运动规律的情况下,确定机构中其他构件上某些点的轨迹、位移、速度及加速度和构件的角位移、角速度及角加速度。
《机械设计基础》答案

《机械设计基础》作业答案第一章平面机构的自由度和速度分析1 —11 - 21 —31 —41 —5自由度为:F 3n (2P L P H P') F'3 7 (2 9 1 0) 121 19 11或:F 3n 2P L P H3 6 2 8 111-6自由度为F 3n (2P L P H P') F'3 9 (2 12 1 0) 11或:F 3n 2P L F H3 8 2 11 124 22 111 —10自由度为:F 3n (2P L P H P') F'3 10 (2 14 1 2 2) 130 28 11或:F 3n 2P L P H3 9 2 12 1 227 24 211 —11F 3n 2P L P H3 4 2 4 221 —13:求出题1-13图导杆机构的全部瞬心和构件1 R4R3 3 卩34只31、3的角速度比。
1 - 14:求出题1-14图正切机构的全部瞬心。
设1 10rad/s,求构件3的速度v3。
100v3v P13 1P14P310 200 2000mm/s1- 15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试1 R4p2 2 B4R2IP 24R 2I 2r 2IR 4P 12I r 11 10rad /s ,求机构全部瞬心、滑块速度 g 和连杆角速度1 P 4P 3I 10 AC tan BCA 916.565mm/sR 4R2 1 _100_10_ 2.9rad P 24R22 AC 1001 — 17:题1-17图所示平底摆动从动件凸轮 1为半径r 20的圆盘,圆盘中心 C 与凸轮回 转中心的距离l AC 15mm , l AB 90mm ,1 10rad /s ,求 00和 1800时,从动件角速度 2的数值和方向。
1 — 16 :题1-16图所示曲柄滑块机构,已知:1AB 100mm /s , I BC 250mm/s,在三角形ABC 中, BC sin 45°AB ------------- ,sin sin BCA BCA —, 5 cos BCA AC sin ABCBC sin 45° ,AC 310.7mm V 3 V p131 R4p 22 P24 P 2〔|P12 R3I|p2 P23I15 1090 152rad / s 方向如图中所示1 R2p3 2p2P23当1800时P2R3IP12P23IV——1.43rad / s90 15方向如图中所示第二章平面连杆机构2-1试根据题2-1图所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双摇杆机构。
平面机构自由度计算例题及答案

平面机构自由度计算例题及答案在机械设计和分析中,自由度是一个重要的概念,它用来描述机构的运动能力和约束程度。
特别是对于平面机构而言,自由度计算是机构设计和分析的基础。
本文将以一个例题为例,详细介绍平面机构自由度计算的方法,并给出答案。
例题描述:给定一个平面机构,该机构由三个连杆和两个旋转副组成,其中两个连杆用来传递运动,第三个连杆则作为链接杆。
假设该机构中的两个旋转副都分别由一对垂直的直线轴构成。
求该平面机构的自由度。
解题思路:为了计算平面机构的自由度,首先需要明确平面机构的自由度计算公式。
根据机构自由度的定义,平面机构的自由度等于其约束数目减去自由度减去已知条件数目。
对于本例中的平面机构,约束数目为2,已知条件数目为1,因此我们只需要计算平面机构的自由度即可。
解题步骤:1. 确定机构中的运动副:根据题目描述,该机构中的运动副是两个旋转副。
2. 统计机构中的连杆数目:根据题目描述,该机构中共有三个连杆。
3. 计算机构中的运动副数目:根据运动副的定义,旋转副的数目等于直线轴的数目减一。
因此,该机构中的旋转副数目为2。
4. 计算平面机构的自由度:根据平面机构的自由度计算公式,自由度等于连杆数目减去运动副数目。
因此,该机构的自由度为3-2=1。
5. 减去已知条件数目:根据已知条件的定义,已知条件是指在机构中已经确定的尺寸或位置关系。
根据题目描述,已知条件数目为1。
6. 最终计算结果:根据平面机构自由度的定义,平面机构的自由度等于约束数目减去自由度减去已知条件数目。
因此,该平面机构的自由度为2-1=1。
答案解析:根据计算结果,该平面机构的自由度为1。
这意味着该机构具有一个独立自由度,即只能在一个平面内进行单一的自由运动。
根据机构设计和分析的需要,可以对该机构进行进一步优化和改进,以满足特定的运动要求。
总结:通过上述例题的计算,我们了解了平面机构自由度的计算方法。
平面机构自由度的计算是机构设计和分析的基础,对于确定机构的运动能力和约束程度非常重要。
机械设计基础考试题库及答案

机械设计基础考试题库及答案1.机械是机器和机构的总称。
2.机构中各个构件相对于机架能够产生独立运动的数目称为自由度。
3.平面机构的自由度计算公式为:F=3n-2P-L-PH。
4.已知一对啮合齿轮的转速分别为n1、n2,直径为D1、D2,齿数为z1、z2,则其传动比i=(n1/n2)=(D2/D1)=(z2/z1)。
5.在传递相同功率下,轴的转速越高,轴的转矩就越小。
6.在铰链四杆机构中,与机架相连的杆称为连架杆,其中作整周转动的杆称为曲柄,作往复摆动的杆称为摇杆,而不与机架相连的杆称为连杆。
7.平面连杆机构的死点是指从动件与连杆共线的位置。
8.平面连杆机构曲柄存在的条件是①最短杆与最长杆长度之和小于或等于其它两杆长度之和②连架杆和机架中必有一杆是最短杆。
9.凸轮机构主要由凸轮、从动件和机架三个基本构件组成。
10.带工作时截面上产生的应力有拉力产生的应力、离心拉应力和弯曲应力。
11.带传动工作时的最大应力出现在紧边开始进入小带轮处,其值为:σmax=σ1+σb1+σc。
12.渐开线的形状取决于基圆。
13.一对齿轮的正确啮合条件为:m1=m2和α1=α2.14.一对齿轮连续传动的条件为:重合度ε>1.15.齿轮轮齿的失效形式有齿面点蚀、胶合、磨损、塑性变形和轮齿折断。
16.蜗杆传动是由蜗杆、蜗轮和机架组成。
17.常用的轴系支承方式有向心支承和推力支承。
18.轴承6308,其代号表示的意义为6:深沟球轴承、3:直径代号,08:内径为Φ40.19.润滑剂有润滑油、润滑脂和气体润滑剂三类。
A。
机器。
B。
零件。
C。
构件。
D。
螺纹2.(A)在机构中起着连接、支承、传递力和运动等作用。
A。
构件。
B。
零件。
C。
轴承。
D。
轮系3.(B)是指蜗杆螺纹与蜗轮齿面的啮合状态。
A。
紧密啮合。
B。
正确啮合。
C。
松散啮合。
D。
滑动啮合4.(B)四杆机构的急回性质与极位夹角θ的大小有关。
A。
正确。
B。
错误5.(B)带传动的弹性滑动和打滑是由于带传动的弹性变形引起的。
机构运动简图与自由度习题及答案

一、填空题1.机构中各个构件相对于机架能够产生独立运动的数目称为(自由度)。
2.平面机构的自由度计算公式为:(F=3n-2P L-P H)。
3.从机构结构观点来看,任何机构是由_原动件_、__机架_、_从动件三部分组成。
4.构件的自由度是指构件所具有的独立运动的数目5.两构件之间以线接触所组成的平面运动副,称为高副,它产生1个约束,而保留 2 个自由度。
6.机构中的运动副是指使两构件直接接触并产生一定相对运动的连接7.机构具有确定的相对运动条件是原动件数等于机构的自由度。
8.在平面机构中若引入一个高副将引入_1_个约束,而引入一个低副将引入_2_个约束,构件数、约束数与机构自由度的关系是F=3n-2P L-P H。
9.当两构件构成运动副后,中,每个运动副引入的约束至多为 2 ,至少为 1 。
10.在平面机构中,具有两个约束的运动副是低副,具有一个约束的运动副是高副。
11.计算平面机构自由度的公式为F= F=3n-2P L-P H,应用此公式时应注意判断:A. 复合铰链,B.局部自由度,C.虚约束。
12.机构中的复合铰链是指;局部自由度是指;虚约束是指。
13.机构运动简图是的简单图形。
14.机构中,若两构件之间既相互直接接触,又具有一定的相对运动,形成一种可动连接称为运动副,通过面接触而形成的联接称为低副,通过点或线接触而形成的联接称为高副。
15.构成机构的要素是零件和构件;构件是机构中的运动单元体。
16.运动副是指能使两构件之间既能保持_直接_接触,而又能产生一定的形式相对运动的_联接__。
17.图示机构要有确定运动需要有__1_个原动件。
18.平面运动副可分为低副和高副,低副又可分为转动副和移动副。
19.运动副是使两构件接触,同时又具有确定相对运动的一种联接。
平面运动副可分为低副和高副。
20.平面运动副的最大约束数为2 。
21、机构具有确定相对运动的条件是机构的自由度数目等于主动件数目。
22、在机构中采用虚约束的目的是为了改善机构的工作情况和受力情况。
机械设计基础习题答案

1、平面机构及其自由度1、如图a 所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。
解 1)取比例尺l μ绘制其机构运动简图(图b )。
图 b )2)分析其是否能实现设计意图。
由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F故:00)0142(33)2(3=--+⨯-⨯='-'-+-=F p p p n F h l因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。
3)提出修改方案(图c )。
为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 给出了其中两种方案)。
图 c 1) 图 c 2) 2、试画出图示平面机构的运动简图,并计算其自由度。
解:3=n ,4=l p ,0=h p ,123=--=h l p p n F解:4=n ,5=l p ,1=h p ,123=--=h l p p n F3、计算图示平面机构的自由度。
解:7=n ,10=l p ,0=h p ,123=--=h l p p n F解:8=n ,11=l p ,1=h p ,123=--=h l p p n F ,局部自由度解:9=n ,12=l p ,2=h p ,123=--=h l p p n F解: D,E,FG 与D ,H ,J ,I 为对称结构,去除左边或者右边部分,可得,活动构件总数为7,其中转动副总数为8,移动副总数为2,高副数为0,机构自由度为1。
(其中E 、D 及H 均为复合铰链)4、试求图示各机构在图示位置时全部瞬心的位置(用符号ij P 直接标注在图上)。
机械原理平面机构自由度计算-例题

探索机械原理平面机构自由度计算。从定义到计算方法,深入讲解铰连机构、 双曲柄摇杆机构、牛顿-奥氏连杆机构、齿轮机构等的自由度计算。同时解析 计算过程示例、取舍问题和误差分析。
什么是平面机构自由度
自由度是指机构内部独立运动的数量。在平面机构中,自由度决定了机构的 运动灵活性和可实现的运动副类型。
卷绕机构的自由度等于连接轮杆的数量减去张紧轮的数量。
平面七杆机构的自由度计算
平面七杆机构的自由度等于连接杆数目减去基础杆件的数量再减去悬线杆件的数量。
螺旋副的自由度计算
螺旋副的自由度等于连接杆数目减去基础杆件的数量。
自由度的确定
根据机构的构造特点和运动副类型,可以准确确定机构的独立性来计算 自由度。
将机构关系用矩阵表示,从 矩阵的秩来确定自由度。
铰连机构的自由度计算
铰连机构的自由度等于机构中连接杆数目减去基础杆件的数量。
平面双曲柄摇杆机构的自由度计算
双曲柄摇杆机构的自由度等于连接杆数目减去基础杆件的数量再减去悬线杆件的数量。
牛顿-奥氏连杆机构的自由度计 算
制造误差的影响
制造误差会对机构的运动特性和自由度产生一定影响,需要进行充分考虑和补偿。
磨损与冲击的影响
磨损和冲击是机构长期运行中的特殊因素,会对自由度和机构性能产生一定 影响。
实际应用中的注意事项
在实际机构设计和应用中,需要注意一些关键问题,如安全性、可靠性和效 率等。
牛顿-奥氏连杆机构的自由度等于连接杆数目减去基础连杆的数量再减去实际 存在运动副的数量。
齿轮机构的自由度计算
齿轮机构的自由度等于连接轮杆的数量减去约束齿轮的数量再减去齿轮对的数量。
齿轮-摆线轮减速机构的自由度计算
《机械设计基础》答案.. (2)

离心力与重力之比为:
8-4 如图所示盘形回转件,经静平衡试验得知,其不平衡质径积 等于 ,方向沿 。由于结构限制,不允许在与 相反方向上加平衡质量,只允许在 和 方向各加一个质径积来进行平衡。求 和 的数值。
解:依题意可得:
于是可解得:
8-5 如图所示盘形回转件上有4个偏置质量,已知 , , , , , , , ,设所有不平衡质量分布在同一回转面内,问应在什么方位、加多大的平衡质径积才能达到平衡?
解:(1)推程:
推程角:
从动件的位移方程:
从动件的行程:
00
500
1000
1500
(mm)
0
2.01
27.99
30
(2)回程:
回程角:
从动件的位移方程:
00
400
800
1200
(mm)
30
27.99
2.01
0
于是可以作出如下的凸轮的理论轮廓曲线,再作一系列的滚子,绘制内包络线,就得到凸轮的实际轮廓曲线(略)
5-1 在题5-1图所示双级蜗轮传动中,已知右旋蜗杆1的转向如图所示,试判断蜗轮2和蜗轮3的转向,用箭头表示。
5-2 在题5-2图所示轮系中,已知 , , , , , , (右旋), , ,若 ,求齿条6线速度 的大小和方向。
解:
方向为水平向右。
5-3 在题5-3图所示钟表传动示意图中,E为擒纵轮,N为发条盘,S、M、H分别为秒针、分针、时针。设 , , , , , , , , , , , ,求秒针与分针的传动比 和分针与时针的传动比 。
时
方向如图中所示
当 时
方向如图中所示
第二章 平面连杆机构
2-1 试根据题2-1图所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构还是双摇杆机构。
平面机构自由度计算例题及标准答案

1.2. 3.4. 5.6.1.构件数n为7,低副p为9,高副pn为1,局部自由度为1,虚约束为0.E处为局部自由度,C处为复合铰链.F=3n-2p-pn=3*7-2*9-1=2(与原动件数目一致,运动确定)2. B处有复合铰链,有2个转动副。
无局部自由度。
B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。
n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。
运动链有确定运动,因为原动件数= 自由度数。
3.A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。
B处为局部自由度,假设将滚子同构件CB固结。
无虚约束。
n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。
运动链有确定运动,因为原动件数= 自由度数。
4. 没有复合铰链、局部自由度、虚约束。
n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。
运动链有确定运动,因为原动件数= 自由度数。
5. 计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。
修改参考方案如图所示。
6. F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。
B处为局部自由度,假设将滚子同构件CB固结。
移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。
n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。
运动链没有确定运动,因为原动件数< 自由度数。
平面机构(运动链)自由度计算辅导

平面机构(运动链)自由度计算辅导运动链是指若干个构件通过运动副连接而成的系统。
运动链自由度计算主要解决的问题是:1、运动链的可动性;2、运动链运动的确定性,即运动链成为机构的条件。
一、平面机构(运动链)自由度:㈠、计算公式:F=3n-2P L-P H⑴式中:F—机构(运动链)自由度;n—机构(运动链)中的运动构件数;P L—机构(运动链)中低副数,包括移动副和转动副; P H—机构(运动链)中的高副数。
㈡、公式用途:运动链类型:⑴、固定运动链:组成运动链的构件之间没有相对运动。
如桥梁、钢结构支架等。
⑵、可动运动链:①、运动不确定的可动运动链:运动链可动,但运动链中构件的运动不能确定。
②、具有确定运动的运动链及机构。
运动链中构件的具有确定性。
1、判别运动链能否运动(运动链可动性分析):⑴、当F﹥0 运动链能运动,即运动链是可动的。
⑵、当F≦0 运动链不动,即运动链为固定运动链。
例:判别下面运动链的可动性:图示:n=3,P L=4,P H=1 。
F=3n-2P L-P H =3×3-2×4-1=0运动链不可动。
图示:n=4,P L=5,P H=1 。
F=3n-2P L-P H =3×4-2×5-1=1﹥0运动链可动。
2、判别运动链是否成为机构:运动链的运动确定性分析。
⑴、当F≦0 运动链不可动,此种运动链不能成为机构;⑵、当F﹥0 运动链可动:①、若F﹥原动件数,运动链不能成为机构;②、若F=原动件数,运动链运动确定,运动链成为机构;③、若F﹤原动件数,运动链不能成为机构。
结论:运动链成为机构的条件:F﹥0,且F等于机构原动件数。
㈢、机构自由度计算时应注意的问题:1、复合铰链及其处理方法:⑴、概念:复合铰链:多个构件(含固定件)在同一处形成两个或两个以上转动副,该处成为复合铰链。
⑵、处理方法:P L=m-1,m为该处构件数(含固定件)。
⑶、常见形式:①、②、③、④、例:计算下面运动链自由度,说明要使运动链成为机构需要几个原动件。
机械原理平面机构自由度计算例题课件

PART 05
平面机构自由度计算例题 三:间歇运动机构
间歇运动机构的组成及运动特点
组成
间歇运动机构由固定构件、运动构件和机架组成,其中运动构件又分为主动件和从动件。
运动特点
间歇运动机构能够在特定角度范围内实现主动件与从动件之间的传动,当主动件转动一圈时,从动件 完成一次或多次的间歇运动。
间歇运动机构的运动副及约束
平面机构的运动副及其约束
运动副
机构中两构件之间通过点、线或 面的接触形成的可动连接。
低副
两构件之间为点或线接触的副, 如转动副、移动副等。每个低副 引入两个约束,限制了构件的2
个自由度。
高副
两构件之间为面接触的副,如凸 轮机构中的凸轮与从动件之间的 副。每个高副引入一个约束,限
制了构件的1个自由度。
约束
齿轮机构中的轴和轴承之间的约束是 固定约束,轴承和轴承座之间的约束 也是固定约束。
齿轮机构的自由度计算
计算公式
自由度 = 3n - (2p + q)
n
活动构件数
p
低副数
q
高副数
计算结果
根据公式计算,齿轮机构的自由度为1。
结果分析
由于齿轮机构中有一个齿轮和一个轴,因此活动构件数为 2,低副数为2(两个转动副),高副数为0。根据公式计 算,自由度为1,符合平面机构的自由度计算规则。
组合机构的自由度计算
要点一
计算方法
对于组合机构,需要分别计算各组成机构的自由度,再根 据连接方式和约束情况,综合计算组合机构的总自由度。
要点二
注意事项
在计算组合机构的自由度时,需要注意各组成机构之间的 连接方式和约束情况,以及是否存在冗余自由度。同时, 还需考虑机构的实际运动情况,以确定机构的真实自由度数。
机械设计基础习题答案

平面机构及其自由度1、如图a 所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。
解 1)取比例尺l μ绘制其机构运动简图(图b )。
图 b )2)分析其是否能实现设计意图。
由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F故:00)0142(33)2(3=--+⨯-⨯='-'-+-=F p p p n F h l因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。
3)提出修改方案(图c )。
为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 给出了其中两种方案)。
图 c 1) 图 c 2) 2、试画出图示平面机构的运动简图,并计算其自由度。
解:3=n ,4=l p ,0=h p ,123=--=h l p p n F解:4=n ,5=l p ,1=h p ,123=--=h l p p n F3、计算图示平面机构的自由度。
解:7=n ,10=l p ,0=h p ,123=--=h l p p n F解:8=n ,11=l p ,1=h p ,123=--=h l p p n F ,局部自由度解:9=n ,12=l p ,2=h p ,123=--=h l p p n F解: D,E,FG 与D ,H ,J ,I 为对称结构,去除左边或者右边部分,可得,活动构件总数为7,其中转动副总数为8,移动副总数为2,高副数为0,机构自由度为1。
(其中E 、D 及H 均为复合铰链)4、试求图示各机构在图示位置时全部瞬心的位置(用符号ij P 直接标注在图上)。
机械原理部分试题目及解答

第一章机构的组成和结构1-1 试画出图示平面机构的运动简图,并计算其自由度。
F=3×3-2×4=1 F=3×3-2×4=1F=3×3-2×4=1 F=3×3-2×4=11-2 计算图示平面机构的自由度。
将其中高副化为低副。
确定机构所含杆组的数目和级别,以及机构的级别。
(机构中的原动件用圆弧箭头表示。
)F=3×7-2×10=1 F=3×7-2×10=1含3个Ⅱ级杆组:6-7,4-5,2-3。
含3个Ⅱ级杆组:6-7,4-5,2-3。
该机构为Ⅱ级机构构件2、3、4连接处为复合铰链。
该机构为Ⅱ级机构F=3×4-2×5-1=1 F=3×3-2×3-2=1F=3×5-2×7=1(高副低代后) F=3×5-2×7=1(高副低代后)含1个Ⅲ级杆组:2-3-4-5。
含2个Ⅱ级杆组: 4-5,2-3。
该机构为Ⅲ级机构构件2、3、4连接处为复合铰链。
该机构为Ⅱ级机构F=3×8-2×11-1=1 F=3×6-2×8-1=1F=3×9-2×13=1(高副低代后)F=3×7-2×10=1(高副低代后)含4个Ⅱ级杆组:8-6,5-7,4-3,2-11。
含1个Ⅱ级杆组6-7。
该机构为Ⅱ级机构含1个Ⅲ级杆组2-3-4-5。
第二章 连 杆 机 构2-1 在左下图所示凸轮机构中,已知r = 50mm ,l OA =22mm ,l AC =80mm,︒=901ϕ,凸轮1的等角速度ω1=10rad/s ,逆时针方向转动。
试用瞬心法求从动件2的角速度ω2。
解:如右图,先观察得出瞬心P 13和P 23为两个铰链中心。
再求瞬心P 12:根据三心定理,P 12应在P 13与P 23的连线上,另外根据瞬心法,P 12应在过B 点垂直于构件2的直线上,过B 点和凸轮中心O 作直线并延长,与P 13、P 23连线的交点即为P 12。
平面机构自由度计算例题及答案

平面机构自由度计算例题及答案在机械原理中,平面机构自由度的计算是一个重要的知识点。
通过计算机构的自由度,可以判断机构的运动可能性和确定性,为机构的设计和分析提供重要依据。
下面我们通过几个例题来详细讲解平面机构自由度的计算方法。
例题 1:如图所示的平面机构,由 4 个杆件组成,其中杆件 1 为机架,杆件2 和杆件 3 通过转动副连接,杆件 3 和杆件 4 通过移动副连接。
试计算该机构的自由度。
分析:首先,我们需要确定机构中的运动副类型和数量。
在这个机构中,有 2 个转动副(分别在杆件 2 和杆件 3 的连接处,以及杆件 1 和杆件 2 的连接处)和 1 个移动副(在杆件 3 和杆件 4 的连接处)。
接下来,我们根据自由度的计算公式 F = 3n 2PL PH 进行计算。
其中,n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。
在这个机构中,活动构件的数目 n = 3(杆件 2、3、4),低副的数目 PL = 3(2 个转动副和 1 个移动副),高副的数目 PH = 0。
将这些值代入公式,得到:F = 3×3 2×3 0 = 9 6 = 3所以,该机构的自由度为 3。
例题 2:考虑一个平面机构,由 5 个杆件组成,杆件 1 固定不动,杆件 2 与杆件 1 通过转动副连接,杆件 2 与杆件 3 通过移动副连接,杆件 3 与杆件 4 通过转动副连接,杆件 4 与杆件 5 通过移动副连接。
计算该机构的自由度。
分析:首先明确运动副类型及数量。
此机构有 3 个转动副(分别在杆件 1 和杆件 2、杆件 3 和杆件 4 、杆件 4 和杆件 5 的连接处),2 个移动副(分别在杆件 2 和杆件 3、杆件 4 和杆件 5 的连接处)。
然后计算活动构件数目 n = 4(杆件 2、3、4、5),低副数目 PL = 5(3 个转动副和 2 个移动副),高副数目 PH = 0。
将数值代入自由度计算公式:F = 3×4 2×5 0 = 12 10 = 2所以该机构的自由度为 2。
平面机构自由度计算例题及答案

平面机构自由度计算例题及答案在机械原理的学习中,平面机构自由度的计算是一个非常重要的知识点。
它能够帮助我们判断机构是否具有确定的运动,以及机构的运动是否受到合理的约束。
下面,我们通过几个具体的例题来深入理解平面机构自由度的计算方法。
例题 1如下图所示的平面机构,其中构件 1 为机架,构件 2 与构件 1 以转动副连接,构件 3 与构件 2 以移动副连接,构件 4 与构件 3 以转动副连接,构件 5 与构件 4 以转动副连接。
试计算该机构的自由度。
!平面机构示例 1(解题思路首先,我们需要确定活动构件的数量。
在这个机构中,活动构件有构件 2、3、4、5,共 4 个。
然后,计算低副的数量。
转动副有 4 个(构件 2 与构件 1 之间、构件 4 与构件 3 之间、构件 5 与构件 4 之间),移动副有 1 个(构件 3与构件 2 之间),所以低副总数为 5 个。
接下来,计算高副的数量。
在这个机构中没有高副。
最后,根据自由度的计算公式:F = 3n 2PL PH (其中 F 为自由度,n 为活动构件数,PL 为低副数,PH 为高副数),代入数值计算。
n = 4,PL = 5,PH = 0F = 3×4 2×5 0= 12 10 0= 2答案该平面机构的自由度为 2。
例题 2如下图所示的平面机构,构件 1 为机架,构件 2 与构件 1 以转动副连接,构件 3 与构件 2 以转动副连接,构件 4 与构件 3 以转动副连接,同时构件 4 与构件 1 以移动副连接。
计算该机构的自由度。
!平面机构示例 2(解题思路活动构件有构件 2、3、4,共 3 个。
低副方面,转动副有 3 个(构件 2 与构件 1 之间、构件 3 与构件 2之间、构件 4 与构件 3 之间),移动副有 1 个(构件 4 与构件 1 之间),低副总数为 4 个。
高副数量为 0。
n = 3,PL = 4,PH = 0F = 3×3 2×4 0= 9 8 0= 1答案该平面机构的自由度为 1。
平面机构自由度计算例题及答案

平面机构自由度计算例题及答案自由度是指机构中独立运动的最小单位数量,它反映了机构的灵活性和可变性。
在平面机构中,自由度的计算是非常重要的,它可以帮助我们分析和设计机构的性能。
本文将提供一个平面机构自由度计算的例题及答案,以帮助你更好地理解和应用这一概念。
例题:在下图所示的平面四杆机构中,AB为平面机构的固定基准杆,BC、CD、DA均为连杆。
BC杆可绕B点转动,CD杆可绕C点转动,DA杆可绕D点转动。
A/ \/ \/ \B--------C\ /\ /\ /\ /D问题:请计算该平面机构的自由度。
答案:1. 首先,我们需要确定机构中的连接杆关系。
根据题目给出的机构结构,我们可以看到BC杆仅与AB杆相连,CD杆仅与BC杆相连,DA杆仅与CD杆相连,因此它们之间存在着逐级连接的关系。
2. 接下来,我们需要明确机构中的独立运动。
根据题目给出的机构结构,我们可以观察到以下几种独立运动方式:a) BC杆绕点B的转动;b) CD杆绕点C的转动;c) DA杆绕点D的转动。
3. 根据独立运动的数量,我们可以得出该平面机构的自由度。
在本例中,存在3种独立运动方式,因此,该平面四杆机构的自由度为3。
以上是关于平面机构自由度计算的例题及答案。
通过对机构结构的分析,我们可以确定连接杆关系和独立运动的方式,进而计算出机构的自由度。
这对于分析和设计机构的性能具有重要意义。
总结:自由度计算是平面机构设计和分析中常用的方法之一。
它可以帮助我们了解机构的灵活性和可变性,并为机构的运动学和动力学分析提供基础。
通过了解和应用自由度计算的方法,我们可以更好地理解和解决与平面机构相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、2、3、
精品文档,超值下载
4、5、
6、
1、构件数n为7,低副p为9,高副pn为1,局部自由度为1,虚约束为0、E处为局部自由度,C处为复合铰链、
F=3n-2p-pn=3*7-2*9-1=2(与原动件数目一致,运动确定)
2、B处有复合铰链,有2个转动副。
无局部自由度。
B点左侧所有构件与运动副带入的约束为虚约束,属于与运动无关的对称部分。
n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。
运动链有确定运动,因为原动件数= 自由度数。
3、A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。
B处为局部自由度,假设将滚子同构件CB固结。
无虚约束。
n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。
运动链有确定运动,因为原动件数= 自由度数。
4、没有复合铰链、局部自由度、虚约束。
n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。
运动链有确定运动,因为原动件数= 自由度数。
5、计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。
修改参考方案如图所示。
6、F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。
B处为局部自由度,假设将滚子同构件CB固结。
移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。
n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。
运动链没有确定运动,因为原动件数< 自由度数。