谈盖斯定律的应用技巧
利用盖斯定律计算反应热的方法
利用盖斯定律计算反应热的方法(原创实用版2篇)目录(篇1)1.反应热的概念及意义2.盖斯定律的原理和应用3.利用盖斯定律计算反应热的步骤和方法4.注意事项和实际应用正文(篇1)一、反应热的概念及意义反应热是指化学反应中,由于物质发生化学变化而产生的能量。
反应热通常以热量的形式表现出来,单位为千焦耳(kJ)或焦耳(J)。
反应热的意义在于能够衡量化学反应中物质能量的变化,从而为工业生产、能源利用等领域提供数据支持。
二、盖斯定律的原理和应用盖斯定律是指一个化学反应,无论经过多少次,其总热效应等于各个分步反应的热效应之和。
也就是说,如果已知一个化学反应的反应热,那么通过加减分步反应,可以得到其他化学反应的反应热。
在实际应用中,盖斯定律可以用于计算反应热,以解决实验数据不准确、误差大等问题。
此外,盖斯定律还可以用于化学反应路径优化,降低能量消耗,提高反应效率。
三、利用盖斯定律计算反应热的步骤和方法1.分析待求反应的各个分步反应,并确定已知的反应热。
2.根据已知的反应热,利用盖斯定律计算待求反应的反应热。
3.整理计算结果,得到待求反应的反应热。
例如:假设已知A→B的反应热为ΔH1,B→C的反应热为ΔH2,求A→C的总反应热。
根据盖斯定律,ΔH=ΔH1+ΔH2。
整理后即可得到A→C的总反应热。
四、注意事项和实际应用在实际应用中,需要注意以下几点:1.盖斯定律只适用于等温等压条件下的化学反应。
如果反应条件不同,需要先进行转化,才能利用盖斯定律计算反应热。
2.在计算过程中,要注意各个分步反应的焓变符号和数值的准确性。
目录(篇2)1.引言2.盖斯定律的原理3.利用盖斯定律计算反应热的方法4.结论正文(篇2)一、引言盖斯定律是一种用于计算反应热的热力学定律。
反应热是指一个化学反应发生时,系统内所发生的热量变化。
盖斯定律是指在已知一个化学反应的情况下,通过一定的数学运算,可以推算出其他与之等效的化学反应。
二、盖斯定律的原理盖斯定律基于一个简单的原理:能量守恒。
高三化学 盖斯定律计算技巧口诀
盖斯定律计算反应热的注意事项化学反应的反应热只与始态和终态有关,而与反应途径无关,利用盖斯定律可以间接计算某些反应的反应热。
1.明确所求反应的始态和终态,各物质系数,及反应是吸热还是放热反应。
2.盖斯定律与反应途径无关,不同途径对应的最终结果是一样的。
3.各反应式相加时,有的反应逆向写,ΔH符号也相反。
有的反应式要扩大或缩小相应倍数,ΔH也要相应扩大或缩小相同的倍数。
4.注意各分步反应的ΔH的正负,放热反应为“—”,吸热反应为“+”,其具备数学意义,可进行大小比较。
5.注意弱电解质的电离、水解反应吸热,浓硫酸的稀释、氢氧化钠固体的溶解放热,都将对反应热产生影响。
盖斯定律的内容:不管化学反应是一步完成还是分几步完成,其反应热是相同的。
换句话说,化学反应的反应热只与反应的始态和终态有关,而与反应进行的途径无关。
如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一一步完成时的反应热是相同的,这就是盖斯定律。
应用盖斯定律进行计算的方法1.用盖斯定律结合已知反应的反应热求解一些相关反应的反应热时,其关键是设计出合理的反应过程,将已知热化学方程式进行适当数学运算得未知反应的方程式及反应热。
使用盖斯定律需要注意以下问题:2.当反应式乘以或除以某数时,△H也应该乘以或者除以某数3.反应方程式进行加减运算时,△H也同样要进行加减运算,并且要带正负号。
4.通过盖斯定律计算并比较反应热的大小时,同样要把△H看做整体。
5.在设计的反应过程中常常会遇到同一物质固液气三态的互相转化,状态由固—>液—>气变化会吸热,反之会放热。
6.当设计的反应逆向进行时,其反应热与正反应的反应热数值相等,符号相反。
例题:氮氧化物是造成雾霾天气的主要原因之一.消除氮氧化物有多种方法.可利用甲烷催化还原氮氧化物.已知:CH4(g)+4NO2(g)=4NO(g)+CO2(g)+2H2O(g);ΔH=-574KJ/mol。
CH4(g)+4NO(g)=2N2(g)+CO2(g)+2H2O(g);ΔH=-1160KJ/mol。
化学基本理论:盖斯定律应用的几个关键
2Cl2(g)+2H2O(g)===4HCl(g)+O2(g) ΔH3
则ΔH3与ΔH1和ΔH2间的关系正确的是( A )
A√.ΔH3=ΔH1+2ΔH2
B.ΔH3=ΔH1+ΔH2
C.ΔH3=ΔH1-2ΔH2
D.ΔH3=ΔH1-ΔH2
2.(2019·全国新课标Ⅱ·12)在1200℃时,天然气脱硫工艺中会发生下
√B.该过程实现了太阳能向化学能的转化 ×C.右图中ΔH1=ΔH2+ΔH3 √D.以CO和O2构成的碱性燃料电池的负极反应式为
【解析】 抓住盖斯定律的含义(反应的焓变与途径无关,只与始态和终态
有关)解题。A.根据题干中已知的两个反应可以看出,CeO2在反应 前后没有变化,CeO2应是水和二氧化碳转化为氢气和一氧化碳的催化
×C.等量的液态乙醇与气态乙醇完全燃烧生成稳定物质,前者放出的热量多 ×D.反应③正反应的活化能大于逆反应的活化能
【解析】 A项,乙醇的燃烧热是指液态乙醇充分燃烧生成CO2与液态水
时 放 出 的 热 量 ; B项 , 利 用 盖 斯 定 理 知 : ③ - ② + 3×①可得 C2H5OH(l)+3O2(g)===2CO2(g)+3H2O(l),则该反应ΔH=(Q2-
2.铁矿石中的含铁物质有FeO、Fe2O3、Fe3O4等。已知下列热化 学方程式:
①Fe2O3(s)+3CO(g)===2Fe(s)+3CO2(g) ΔH1=-25 kJ/mol ②3Fe2O3(s)+CO(g)===2Fe3O4(s)+CO2(g) ΔH2=-47 kJ/mol ③Fe3O4(s)+CO(g)===2FeO(s)+CO2(g) ΔH3=+19 kJ/mol
盖斯定律应用的几个关键
讲师:寇承志
●考纲解读
利用盖斯定律计算反应热的方法
利用盖斯定律计算反应热的方法【原创实用版3篇】目录(篇1)1.盖斯定律的定义与原理2.利用盖斯定律计算反应热的方法3.反应热的计算实例4.盖斯定律在反应热计算中的应用优势5.总结正文(篇1)一、盖斯定律的定义与原理盖斯定律是热力学的基本定律之一,它阐述了化学反应的热效应与反应的途径无关,只取决于反应物和生成物的总能量差。
这个定律可以简单地表述为:一个化学反应不管是一步完成还是分几步完成,其反应热是相同的。
二、利用盖斯定律计算反应热的方法利用盖斯定律计算反应热的方法主要分为以下几个步骤:1.确定反应物和生成物的能量状态:根据反应方程式,确定反应物和生成物的能量状态,通常用 H(焓)表示。
2.计算反应物和生成物的能量差:根据能量状态,计算反应物和生成物的能量差,即ΔH。
3.应用盖斯定律:根据盖斯定律,反应热(ΔH)只与反应物和生成物的总能量差有关,而与反应的途径无关。
因此,可以根据反应物和生成物的能量差计算出反应热。
三、反应热的计算实例以反应 2NO2(g)→2NO(g)+O2(g)为例,根据反应方程式,反应物 NO2 的能量状态为 H1,生成物 NO 的能量状态为 H2,生成物 O2 的能量状态为 H3。
假设 H1 为 -113.0kJ/mol,H2 为 -33.0kJ/mol,H3 为0kJ/mol,则反应热ΔH 为:ΔH = H1 - (H2 + H3) = -113.0kJ/mol - (-33.0kJ/mol + 0kJ/mol) = -80.0kJ/mol。
四、盖斯定律在反应热计算中的应用优势盖斯定律在反应热计算中的应用优势主要体现在以下几点:1.可以简化反应热的计算过程:利用盖斯定律,只需计算反应物和生成物的能量差,就可以得到反应热,避免了复杂的热化学方程式计算。
2.可以用于难以直接测量反应热的情况:有些反应的热效应难以直接通过实验测量,利用盖斯定律可以方便地计算出反应热。
3.可以用于预测未知反应的热效应:当反应物和生成物的能量状态已知时,可以利用盖斯定律预测未知反应的热效应。
盖斯定律的应用
1、盖斯定律的涵义:对于一个化学反应,无论是一步完成还是分几步完成,其反应焓变是一样的的。
这就是盖斯定律。
也就是说,化学反应的反应热只与反应体系的始态和终态有关,而与具体的反应进行的途径无关。
2、盖斯定律的应用盖斯定律在科学研究中具有重要意义。
因为有些反应进行的很慢,有些反应不容易直接发生,有些反应的产品不纯(有副反应发生),这给测定反应热造成了困难。
此时如果应用盖斯定律,就可以间接的把它们的反应热计算出来。
例如:C(S)+0.5O2(g)=CO(g)上述反应在O2供应充分时,可燃烧生成CO2、O2供应不充分时,虽可生成CO,但同时还部分生成CO2。
因此该反应的△H无法直接测得。
但是下述两个反应的△H却可以直接测得:C(S)+O2(g)=CO2(g) ;△H1= - 393.5kJ/molCO(g)+0.5 O2(g)=CO2(g) ;△H2=- 283.0kJ/mol根据盖斯定律,就可以计算出欲求反应的△H3。
分析上述反应的关系,即知△H1=△H2+△H3△H3=△H1-△H2=-393.5kJ/mol-(-283.0kJ/mol)=-110.5kJ/mol 例5图由以上可知,盖斯定律的实用性很强。
3、反应热计算根据热化学方程式、盖斯定律和燃烧热的数据,可以计算一些反应的反应热。
反应热、燃烧热的简单计算都是以它们的定义为基础的,只要掌握了它们的定义的内涵,注意单位的转化即可。
热化学方程式的简单计算的依据:(1)热化学方程式中化学计量数之比等于各物质物质的量之比;还等于反应热之比。
(2)热化学方程式之间可以进行加减运算。
例1:按照盖斯定律,结合下述反应方程式,回答问题,已知:(1)NH3(g)+HCl(g)===NH4Cl(s)△H1=-176kJ/mol(2)NH3(g)+H2O(l)===NH3.H2O(aq) △H2=-35.1kJ/mol(3)HCl(g) +H2O(l)===HCl(aq) △H3=-72.3kJ/mol(4)NH3(aq)+ HCl(aq)===NH4Cl(aq) △H4=-52.3kJ/mol(5)NH4Cl(s)+2H2O(l)=== NH4Cl(aq) △H5=?则第(5)个方程式中的反应热△H是____。
盖斯定律及其应用
盖斯定律及其应用盖斯定律化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步及反应的反应热之和与该反应一步完成的反应热是相同的,这就是盖斯定律。
例如:122(g)2(g)2(l)H 2(g)2(g)2(l)H 2(g)H 1H O H O 21H O H O 2H O ∆∆∆+=+−−→ 可以通过两种途径来完成。
如上图表:已知: 2(g)2(g)2(g)11H O H O ;H 241.8kJ /mol 2+=∆=- 2g 2l 2H O H O H 44.0kJ /mol =∆=()();- 根据盖斯定律,则12H H H 241.8kJ /mol 44.0kJ /mol 285.8kJ /mol ∆=∆∆=+=+-(-)- 其数值与用量热计测得的数据相同。
盖斯定律的应用盖斯定律:当某一物质在定温定压下经过不同的反应过程,生成同一物质时,无论反应是一步完成还是分几步完成,总的反应热是相同的。
即反应热只与反应始态(各反应物)和终态(各生成物)有关,而与具体反应的途径无关。
应用盖斯定律进行简单计算,关键在于设计反应过程,同时注意:⑴ 当反应式乘以或除以某数时,△H 也应乘以或除以某数。
⑵ 反应式进行加减运算时,△H 也同样要进行加减运算,且要带“+”、“-”符号,即把△H 看作一个整体进行运算。
⑶ 通过盖斯定律计算比较反应热的大小时,同样要把△H 看作一个整体。
⑷ 在设计的反应过程中常会遇到同一物质固、液、气三态的相互转化,状态由固→液→气变化时,会吸热;反之会放热。
⑸ 当设计的反应逆向进行时,其反应热与正反应的反应热数值相等,符号相反。
【例1】.已知⑴ ()()()2221g g g 1H O H O H akJ /mol 2+=∆;= ⑵ ()()()2222g g g 2H O 2H O H bkJ /mol +=∆;=⑶ ()()()2223g g l 1H O H O H ckJ /mol 2+=∆;= ⑷ ()()()2224g g l 2H O 2H O H dkJ /mol +=∆;=下列关系式中正确的是( )A .a <c <0B .b >d >0C .2a =b <0D .2c =d >0【解析】:⑴、⑵式反应物、生成物的状态均相同,⑴×2=⑵,即2△H 1=△H 2,2a =b ,又H 2的燃烧反应为放热反应,故2a =b <0,C 项符合题意。
盖斯定律的原理及应用
盖斯定律的原理及应用1. 引言盖斯定律是流体力学中的基本定律之一,描述了管道中流体的流动行为。
它由爱尔兰工程师亨利·盖斯于1799年提出,是流体力学领域中的重要原理。
本文将介绍盖斯定律的基本原理以及其在实际应用中的作用。
2. 盖斯定律的原理盖斯定律表述了液体或气体通过管道时的流量与压力之间的关系。
根据盖斯定律,管道内流体的流量Q与压力差△P之间呈线性关系。
具体可以用以下公式表示:Q = kA△P其中,Q表示流量,A表示管道的横截面积,△P表示压力差,k 为比例常数。
该公式可以简化为Q ∝△P。
盖斯定律的基本原理可以通过流体的动量守恒和能量守恒来推导。
根据动量守恒定律,流体在管道中的动量变化等于施加在其上的力乘以时间。
而根据能量守恒定律,单位时间内流过管道某一截面的功率等于管道前后的压力差。
基于这两个定律,可以推导出盖斯定律的数学表达式。
3. 盖斯定律的应用盖斯定律在很多实际应用中起着重要作用,以下列举几个常见的应用场景:3.1 水管系统的设计在设计水管系统时,盖斯定律可以用于确定不同管段的管径。
通过测量进水口和出水口处的压力差,可以根据盖斯定律计算出流量,然后根据流量要求确定相应的管径。
这有助于确保水流的稳定性和高效性。
3.2 汽车制动系统盖斯定律在汽车制动系统中有广泛应用。
制动系统中的刹车片通过液压系统施加力来减速汽车。
根据盖斯定律,当刹车踏板施加的力增大时,液压系统中的压力增加,从而提高了制动力。
这使得汽车的制动更加可控和安全。
3.3 喷气发动机的燃烧室设计盖斯定律在喷气发动机的燃烧室设计中也起着重要作用。
喷气发动机中的燃油通过喷射和燃烧产生高温高压的气体,从而产生推力。
盖斯定律可以用于确定燃烧室中燃气的流动速度和压力分布,有助于提高燃烧效率和推力。
3.4 水力发电站的设计盖斯定律在水力发电站的设计中也有重要应用。
水力发电利用水流的动能来驱动发电机,产生电能。
通过应用盖斯定律,可以计算出水流的流量和压力,从而设计合适的水轮机和水管系统,以提高发电效率。
谈盖斯定律的应用技巧
谈盖斯定律的应用技巧摘要:盖斯定律在求算反应热中的应用,属于高考的新增热点,但学生计算起来费时且易算错。
本文通分步求解的方法,快速解决学生会而不对的困境,具有很强的实用性。
关键词:盖斯定律反应热热化学方程式盖斯定律在求算反应热中的应用,属于新课程高考的热点,经考不衰,如 2013年全国卷Ⅱ,2008-2010 年江苏高考、2009 和 2010 年广东高考等都出现盖斯定律的应用。
在高中化学教学中,盖斯定律是个难点,不是盖斯定律的内涵不容易理解,而是学生很难找到切入点,计算起来费时且易算错,所以寻找出一种快捷、高效的方法可以避免学生对盖斯定律的畏难情绪。
我在教学实践中总结出了分步求解的方法,可以快速解决目标热化学反应方程式和已知热化学方程式之间的关系,学生也很容易掌握,取得了不错的效果。
我现将分步求解法运用在盖斯定律中的应用技巧简述如下1.盖斯定律的涵义1840 年,俄国化学家盖斯在分析了许多化学反应的热效应的基础上,总结出一条规律:“一个化学反应,不论是一步完成,还是分几步完成,其总的热效应是完全相同的。
”这个规律被称作盖斯定律。
盖斯定律表明,一个化学反应的焓变(ΔH)仅与反应的起始状态和反应的最终状态有关,而与反应的途径无关。
但是在众多的化学反应中,有些反应的反应速率很慢,有些反应同时有副反应发生,还有些反应在通常条件下不易直接进行,因而测定这些反应的热效应就很困难,运用盖斯定律可方便地计算出它们的反应热。
因此,如何让学生充分理解和熟练运用盖斯定律就成为解决热化学问题的关键。
2.盖斯定律例题分析例1.(2013年全国卷2)在1200。
C时,天然气脱硫工艺中会发生下列反应① H2S(g)+ O2(g)=SO2(g)+H2O(g)△H1② 2H2S(g)+SO2(g)=S2(g)+2H2O(g)△H2③ H2S(g)+O2(g)=S(g)+H2O(g)△H3④ 2S(g) =S2(g)△H4则△H4的正确表达式为A.△H4=(△H1+△H2-3△H3)B.△H4=(3△H3-△H1-△H2)C.△H4=(△H1+△H2-3△H3)D.△H4=(△H1-△H2-3△H3)解析:经分析④是我们研究的目标热化学方程式,首先利用类似于数学中的消元法,将①②③已知热化学方程式进行系数处理和方程式加减(减就是将方程式逆向相加),转化为④,最后对反应热焓变进行同样关系处理即可。
盖斯定律及其应用
盖斯定律及其应用盖斯定律及其应用1.盖斯定律的内容对于一个化学反应,无论是一步完成还是分几步完成,其反应焓变都一样,即化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关。
2.盖斯定律的应用AΔH 1ΔH 2B2 ①C(s)+O 2(g)===CO 2(g) ΔH 1 ②C(s)+12O 2(g)===CO(g) ΔH 2由①-②可得:CO(g)+12O 2(g)===CO 2(g) ΔH =ΔH 1-ΔH 23.运用盖斯定律的三个注意事项(1)热化学方程式乘以某一个数时,反应热的数值必须也乘上该数。
(2)热化学方程式相加减时,物质之间相加减,反应热也必须相加减。
(3)将一个热化学方程式颠倒时,ΔH 的“+”“-”随之改变,但数值不变。
[细练过关]题点(一) 根据盖斯定律确定反应热的关系1.已知:2H 2(g)+O 2(g)===2H 2O(g) ΔH 1 3H 2(g)+Fe 2O 3(s)===2Fe(s)+3H 2O(g) ΔH 2 2Fe(s)+32O 2(g)===Fe 2O 3(s) ΔH 32Al(s)+32O 2(g)===Al 2O 3(s) ΔH 42Al(s)+Fe 2O 3(s)===Al 2O 3(s)+2Fe(s) ΔH 5 下列关于上述反应焓变的判断正确的是( ) A .ΔH 1<0,ΔH 3>0 B .ΔH 5<0,ΔH 4<ΔH 3 C .ΔH 1=ΔH 2+ΔH 3D .ΔH 3=ΔH 4+ΔH 5解析:选B 大多数化合反应为放热反应,而放热反应的反应热(ΔH )均为负值,故A 错误;铝热反应为放热反应,故ΔH 5<0,而2Fe(s)+32O 2(g)===Fe 2O 3(s) ΔH 3 ③,2Al(s)+32O 2(g)===Al 2O 3(s) ΔH 4 ④,由④-③可得:2Al(s)+Fe 2O 3(s)===Al 2O 3(s)+2Fe(s) ΔH 5=ΔH 4-ΔH 3<0,可得ΔH 4<ΔH 3、ΔH 3=ΔH 4-ΔH 5,故B 正确、D 错误;已知:3H 2(g)+Fe 2O 3(s)===2Fe(s)+3H 2O(g) ΔH 2 ②,2Fe(s)+32O 2(g)===Fe 2O 3(s) ΔH 3 ③,将(②+③)×23可得:2H 2(g)+O 2(g)===2H 2O(g) ΔH 1=23(ΔH 2+ΔH 3),故C 错误。
盖斯定律怎么相加减计算技巧
盖斯定律怎么相加减计算技巧
沃尔贡-高斯法则(也称沃尔贡定律)是一种应用于圆形区域上的数学公式,通常被用作圆网计算中的一种方法。
计算公式为:
S=2πr(r+d)
其中,S表示圆网覆盖面积,r表示外圆的半径,d表示内外圈的差额。
应用此方法可以通过几种方式计算出覆盖网的面积:
1. 将圆网视为一个等边多边形的组合,计算每个形状的面积,然后求和
2. 将圆网视为一个等径多圆形组合,计算每个圆形的面积,并求和
3. 利用高斯定律,计算每个圆的周长及相差的内外圈周长,求出覆盖网的面积
对于覆盖斯定律相加减计算技巧,也可以采取类似的方法,将圆网视为多个圆组成的,将每个圆的面积累加减后求得最终覆盖网的面积。
利用盖斯定律计算反应热的方法
利用盖斯定律计算反应热的方法盖斯定律(Gibbs' Law)是热力学中非常重要的定律之一,它可以用来计算化学反应的热力学热变化。
该定律可以表示为以下方程式:ΔG=ΔH-TΔS其中,ΔG表示反应的自由能变化,ΔH表示反应的焓变化,ΔS表示反应的熵变化,T表示温度。
1.确定反应物和生成物:首先确定化学反应中的反应物和生成物。
这些物质在反应方程式中是明确的。
例如,对于A+B→C+D的反应,A和B 是反应物,C和D是生成物。
2.确定反应的热化学方程式:根据反应物和生成物,建立反应的热化学方程式。
这些方程式描述了反应物与生成物之间的化学反应关系,同时还包括反应的系数和状态标识。
3.确定反应的焓变化:利用已知的标准生成焓(ΔH°)值,计算反应的焓变化。
标准生成焓是指在标准状态下,1摩尔物质形成的过程中放出或吸收的热量。
通过查阅化学手册或热化学数据库确定反应物和生成物的标准生成焓,然后根据反应方程中的系数计算反应的焓变化。
4.确定反应的熵变化:确定反应的熵变化也需要一些信息。
从反应物到生成物的熵变可以通过已知的标准摩尔熵(ΔS°)值计算得出。
标准摩尔熵是指在标准状态下,1摩尔物质的熵变。
5. 确定温度:在应用盖斯定律计算反应热时,还需要确定反应发生的温度。
温度的单位通常是Kelvin(K)。
6.应用盖斯定律计算反应热:根据以上确定的ΔH,ΔS和温度值,应用盖斯定律进行计算。
7.解释结果:根据计算所得的反应热ΔG值,可以判断反应是自发进行的还是不自发进行的。
当ΔG<0时,反应是自发进行的,反应具有较大的发生倾向性。
当ΔG>0时,反应是不自发进行的,需要提供能量才能发生。
需要注意的是,在进行计算时要确保所有物质的标准生成焓和标准摩尔熵都是在相同温度下进行计算的。
此外,这种计算方法适用于理想气体和溶液的状态,对于其他复杂的体系可能需要考虑更多因素。
总而言之,利用盖斯定律计算反应热的方法是根据盖斯定律的方程式和已知的物质的焓变化和熵变化,应用热力学原理进行计算,以确定反应的自发性和热力学热变化。
盖斯定律及其应用
一、必备技能
1.盖斯定律: 不管化学反应是一步完成还是分几步完成,其总的热效应是 相同的,即反应的焓变只与体系的始态和终态有关,而与反应途 径无关。通俗地说,相关热化学方程式之间可以“加减”,随之 反应热ΔH也相应地“加减”。即在如下图所示的变化过程中,存
2.应用盖斯定律计算化学反应的焓变时,关键在于设 计反应过程,同时应注意: (1)由于△H与反应物的物质的量有关,因此热化学 方程式中化学式前面的化学计量数必须与△H相对应。如化 学计量数成倍减少或增加,则△H也要成倍的减少或成倍的 增加。
二、必备技能
【例1 】下列说法正确的是( ) A.任何酸与碱发生中和反应生成1 mol H2O的过程中,能量变化均相同
B.同温同压下,H2 (g)+Cl2(g)= 2HCl(g)在光照和点燃条件下的△H不同
【解析】 只有在稀溶液中,不同的强酸与强碱发生中和反应而生成 1molH2O时,能量变化相同,A错误;根据盖斯定律可知反应热
226.25 kJ。 答案 (1)2Al(s)+Fe2O3(s)===2Fe(s)+Al2O3(s) ΔH=-593.1 kJ· mol-1 (2)226.25 kJ
若有17 g氨气经催化氧化完全生成一氧化氮气体和水蒸
气所放出的热量为________。
解析 化学反应的反应热只与反应体系的始态和终态有关, 而与反应的途径无关。 1 3 (1)①× 2 + ② - ③× 得 : 2Al(s) + Fe2O3(s)===2Fe(s) + 2 Al2O3(s) ΔH=-593.1 kJ· mol-1 (2)(①-②)×2 +③×3 得: 4NH3(g) + 5O2(g)===4NO(g) + 6H2O(g) ΔH=-905 kJ· mol-1 -1 905 kJ· mol 17 g 则 17 g NH3 被氧化时放出的热量= = - × 4 17 g· mol 1
盖斯定律使用技巧
盖斯定律使用技巧
1. 嘿,你知道吗,盖斯定律使用技巧第一招就是要抓住反应的始末状态呀!比如说,就像你要从山脚爬到山顶,你只需要关注起点和终点,而不是在意中间走了哪些路。
咱就说氢气和氧气反应生成水,不管中间经过了多少步骤,最后能量的变化就看开始和结束的状态就好啦!
2. 哇塞,还有哦,盖斯定律使用技巧的关键一点是要巧妙拆分反应呢!好比是把一个大拼图拆成小块来研究。
举个例子,碳燃烧的反应,咱就可以拆成碳先变成一氧化碳,一氧化碳再变成二氧化碳,这样不就能更好地分析能量变化了嘛!
3. 嘿呀!别忘了合理组合反应也是个超棒的技巧呀!就像搭积木一样,把合适的反应组合起来得到你想要的。
比如说要研究某个复杂反应,那可以把几个简单反应组合起来,这不就能轻松搞定啦!
4. 哎呦喂,要留意反应物和生成物的状态变化呀,这可是个重要技巧!就像跑步时速度的变化一样明显。
比如水从液态变成气态,这中间的能量变化可不能忽视哦!
5. 嘿,还有一个技巧呢,就是要善于利用已知的数据呀!这就好比有了地图找路就容易多了。
像那些已经测出来的反应热数据,都能成为我们运用盖斯定律的好帮手哟!
6. 哇哦,一定得灵活多变呀!盖斯定律可不是死板的,要像孙悟空一样能七十二变呢!比如说根据不同的情况调整分析的角度,这多有意思呀!
7. 最后呀,要多练习多尝试呢!就像练武功一样,越练越厉害。
多找些例子来用盖斯定律分析分析,慢慢地你就得心应手啦!总之,盖斯定律的使用技巧可得好好掌握,这样咱在化学的世界里就能游刃有余啦!。
利用盖斯定律计算反应热的方法
利用盖斯定律计算反应热的方法【实用版3篇】目录(篇1)1.盖斯定律的定义与原理2.反应热的定义与计算方法3.利用盖斯定律计算反应热的技巧4.盖斯定律在反应热计算中的应用实例5.结论正文(篇1)一、盖斯定律的定义与原理盖斯定律是热力学中的一个基本原理,它表明在一个封闭系统中,无论化学反应是一步完成还是分几步完成,其反应热是相同的。
这个原理是由德国化学家盖斯(G.J.Gauss)在 19 世纪提出的,被称为盖斯定律。
二、反应热的定义与计算方法反应热是指在恒压条件下,化学反应过程中放出或吸收的热量。
反应热的计算方法通常使用热量计或通过热化学方程式计算。
在热化学方程式中,反应热用ΔH 表示,单位为焦耳/摩尔(J/mol)。
三、利用盖斯定律计算反应热的技巧1.根据反应方程式判断反应热对于放热反应,当反应物状态相同,生成物状态不同时,生成固体放热最多,生成气体放热最少。
当反应物状态不同,生成物状态相同时,固体反应放热最少,气体反应放热最多。
2.利用盖斯定律进行反应热的计算盖斯定律可以用来计算一些不易测定的反应的反应热。
可以通过给出的几个反应方程式,进行适当的加减,消掉不需要的反应物和生成物,然后计算剩余反应的反应热。
四、盖斯定律在反应热计算中的应用实例例如,对于反应 2NO2(g) → 2NO(g) + O2(g),我们可以通过以下步骤利用盖斯定律计算反应热:1.根据反应方程式,计算生成物和反应物的摩尔数2mol NO2(g) → 2mol NO(g) + 1mol O2(g)2.计算反应热的变化ΔH = Σ(ΔHf, products) - Σ(ΔHf, reactants)其中,ΔHf 表示标准生成焓,可以根据化学手册查找。
3.将计算得到的反应热进行单位转换,例如从焦耳/摩尔转换为千焦/摩尔4.得出反应热五、结论利用盖斯定律进行反应热计算是化学热力学中的一种重要方法,可以帮助我们更好地理解和预测化学反应过程中的能量变化。
利用盖斯定律推测并书写热化学方程式
C.依据图象分析判断1mol A2和1mol B2反应生成2molAB,每生成2molAB吸收(a-b)kJ热量,故C错误;
D.断裂1molA-A和1molB-B键,吸收akJ能量,故D错误;
故选A。
4. 常用于有机合成,其合成原理为 ,反应过程中的能量变化如下图所示,下列有关说法正确的是
(3)已知上述反应中相关的化学键键能数据如下:
化学键
C-H
C=O
H-H
C O(CO)
键能/kJ·mol−1
413
745
436
1075
则该反应的 ΔH =。
(4)将 氢化为 有三种方法,对应的反应依次为:
①
②
③
反应③的 ΔH3=(用ΔH1,ΔH2表示)
(5)①2Cu2O(s) + O2(g) =4CuO(s) ΔH1=-277kJ·mol-1
常见物质中的化学键数目
物质
CO2(C===O)
CH4(C-H)
P4(P-P)
SiO2(Si-O)
石墨
金刚石
S8(S-S)
Si
键数
2
4
6
4
2
8
2
1.在2L密闭容器中投入A和B,发生反应 ,反应10min时测得C生成了2mol,以B表示的平均反应速率为 ,下列说法正确的是
A.
C.以A物质表示的平均反应速率为
②8CuO(s) + CH4(g)=4Cu2O(s) + CO2(g)+2H2O(g) ΔH2=-348kJ·mol-1
反应CH4(g) +2O2(g)=CO2(g)+2H2O(g) ΔH=kJ·mol-1
盖斯定律的应用及反应热 的计算和大小比较 新高考化学专题讲解 考点详细分析深入讲解 最新版
盖斯定律的应用及反应 热 的计算和大小比较
详细分析与深入讲解
必备知识通关
1.盖斯定律 不管化学反应是一步完成还是分几步完成,其反应热是相同的。即反应 热只与反应体系的始态和终态有关,而与反应途径无关。如:
途径一:A→B 途径二:A→C→B 则ΔH1、ΔH2、ΔH的关系为ΔH=ΔH1+ΔH2。
2.根据反应进行程度的大小比较反应焓变大小
③C(s)+ 1 O2(g) 2
④C(s)+O2(g)
CO(g) ΔH3 CO2(g) ΔH4
反应④,C完全燃烧,放热更多,|ΔH3|<|ΔH4|,但ΔH3<0,ΔH4<0,故ΔH3>ΔH4。
解题能力提升
3.根据反应物或生成物的状态比较反应焓变大小
⑤S(g)+O2(g) ⑥S(s)+O2(g) 方法一:图像法
ΔH3。则下列判断正确的是
A.ΔH2>ΔH3
B.ΔH1<ΔH3
C.ΔH1+ΔH3=ΔH2
D.ΔH1+ΔH2>ΔH3
解题能力提升
SO2(g)+2OH-(aq)
S(aq)+H2O(l) ΔH1
ClO-(aq)+SO32-(aq)
SO42-(aq)+Cl-(aq) ΔH2
CaSO4(s)
Ca2+(aq)+SO42-(aq) ΔH3
则反应SO2(g)+Ca2+(aq)+ClO-(aq)+2OH-(aq)
CaSO4(s)+H2O(l)+Cl-(aq)的ΔH=
。
解题能力提升
解析:(1)将已知热化学方程式依次编号为①、②,根据盖斯定律,由①×3+
2022年高考化学总复习第四篇突破思维障碍必须掌握的技法规律3盖斯定律在高考的应用及解题技巧
3.盖斯定律在高考的应用及解题技巧盖斯定律是热化学的基本定律,有着重要的应用,如计算反应热、判断反应热之间的关系、书写热化学方程式等。
一、计算反应热由已知反应的反应热,应用盖斯定律,可以计算未知反应的反应热。
其解题关键是①设计合理的反应途径;②将已知的热化学方程式进行数学运算,得到所求的热化学方程式,即得到所求的反应热;③将热化学方程式进行数学运算时,ΔH 也应作为一个整体进行相应的数学运算。
【例1】(1)已知(g)===(g)+H 2(g) ΔH 1=+100.3 kJ·mol -1① H 2(g)+I 2(g)===2HI(g) ΔH 2=-11.0 kJ·mol -1② 对于反应:(g)+I 2(g)===(g)+2HI(g) ΔH 3=________ kJ·mol -1。
③(2)Deacon 直接氧化法可按下列催化过程进行:CuCl 2(s)===CuCl(s)+12 Cl 2(g) ΔH 1=+83 kJ·mol -1CuCl(s)+12 O 2(g)===CuO(s)+12 Cl 2(g) ΔH 2=-20 kJ·mol -1CuO(s)+2HCl(g)===CuCl 2(s)+H 2O(g) ΔH 3=-121 kJ·mol -1则4HCl(g)+O 2(g)===2Cl 2(g)+2H 2O(g)的ΔH =__________ kJ·mol -1。
【解析】(1)反应①+②可得反应③,则ΔH 3=ΔH 1+ΔH 2=+100.3 kJ·mol -1+ (-11.0 kJ·mol -1)=+89.3 kJ·mol -1。
(2)利用盖斯定律解答本题。
CuCl 2(s)===CuCl(s)+12 Cl 2(g) ΔH 1=+83 kJ·mol -1 ①CuCl(s)+12 O 2(g)===CuO(s)+12 Cl 2(g) ΔH 2=-20 kJ·mol -1 ②CuO(s)+2HCl(g)===CuCl 2(s)+H 2O(g) ΔH 3=-121 kJ·mol -1 ③ 则4HCl(g)+O 2(g)===2Cl 2(g)+2H 2O(g)可由①×2+②×2+③×2得到,所以其ΔH =+83 kJ·mol -1×2+(-20 kJ·mol -1)×2+(-121 kJ·mol -1)×2=-116 kJ·mol -1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈盖斯定律的应用技巧
摘要:盖斯定律在求算反应热中的应用,属于高考的新增热点,但学生计算起来费时且易算错。
本文通分步求解的方法,快速解决学生会而不对的困境,具有很强的实用性。
关键词:盖斯定律反应热热化学方程式
盖斯定律在求算反应热中的应用,属于新课程高考的热点,经考不衰,如2013年全国卷Ⅱ,2008-2010 年江苏高考、2009 和2010 年广东高考等都出现盖斯定律的应用。
在高中化学教学中,盖斯定律是个难点,不是盖斯定律的内涵不容易理解,而是学生很难找到切入点,计算起来费时且易算错,所以寻找出一种快捷、高效的方法可以避免学生对盖斯定律的畏难情绪。
我在教学实践中总结出了分步求解的方法,可以快速解决目标热化学反应方程式和已知热化学方程式之间的关系,学生也很容易掌握,取得了不错的效果。
我现将分步求解法运用在盖斯定律中的应用技巧简述如下
1.盖斯定律的涵义
1840 年,俄国化学家盖斯在分析了许多化学反应
的热效应的基础上,总结出一条规律:“一个化学反应,不论是一步完成,还是分几步完成,其总的热效应是完全相同的。
”这个规律被称作盖斯定律。
盖斯定律表明,一个化学反应的焓变(ΔH)仅与反应的起始状态和反应的最终状态有关,而与反应的途径无关。
但是在众多的化学反应中,有些反应的反应速率很慢,有些反应同时有副反应发生,还有些反应在通常条件下不易直接进行,因而测定这些反应的热效应就很困难,运用盖斯定律可方便地计算出它们的反应热。
因此,如何让学生充分理解和熟练运用盖斯定律就成为解决热化学问题的关键。
2.盖斯定律例题分析
例1.(2013年全国卷2)在1200。
C时,天然气脱硫工艺中会发生下列反应
①H2S(g)+ O2(g)=SO2(g)+H2O(g)△H1
②2H2S(g)+SO2(g)=S2(g)+2H2O(g)△H2
③H2S(g)+O2(g)=S(g)+H2O(g)△H3
④2S(g)=S2(g)△H4
则△H4的正确表达式为
A.△H4=(△H1+△H2-3△H3)
B.△H4=(3△
H3-△H1-△H2)
C.△H4=(△H1+△H2-3△H3)
D.△H4=(△H1-△H2-3△H3)
解析:经分析④是我们研究的目标热化学方程式,首先利用类似于数学中的消元法,将①②③已知热化学方程式进行系数处理和方程式加减(减就是将方程式逆向相加),转化为④,最后对反应热焓变进行同样关系处理即可。
如已知热化学方程式处理办法,可得(4),反应热△H进行同样关系处理:即△H4=(△H1+△H2-3△H3)。
答案:A
例2.(2009年广东卷)已知下列热化学方程式:(1)Fe2O3(s)+3CO(g)=2Fe(s)+3CO2(g)ΔH1=-25 kJ?mol-1
(2)3Fe2O3(s)+CO(g)=2Fe3O4(s)+CO2(g)ΔH2=-47 kJ?mol-1
(3)Fe3O4(s)+CO(g)=3FeO(s)+CO2(g)ΔH3=+19 kJ?mol-1
写出FeO(s)被CO还原成Fe和CO2的热化学方程式:_____________ 。
解析:目标热化学方程式为:FeO(s)+CO(g)=Fe(s)+CO2(g),首先将已知热化学方程式进行如下处理:可得目标热化学方程式。
再对反应热焓变
进行同样关系的处理:ΔH ==-11 kJ?mol-1,
答案:FeO(s)+CO(g)=Fe(s)+CO2(g)ΔH=-11 kJ?mol-1
3.盖斯定律解题步骤
第一步:首先找到或正确写出目标热化学方程式;然后对已知热化学方程式和目标热化学方程式进行对比分析,找到已知热化学方程中哪些物质必须转化为目标热化学方程式中的物质,哪些必须消去;最后对已知热化学方程式进行系数处理和相互加减,消去不需要的物质,从而得到目标热化学方程式,如果已知热化学方程式多于2个,先两两相加减,消去多余的物质,这步操作类似与数学中的消元法解方程组。
第二步:对焓变△H也要进行上述相应关系的处理,但是要注意的是焓变△H要随计量关系的改变而改变,且改变的倍数相同;而且当热化学方程式相减(逆向相加)时,符号还要相反处理(“+”变“一”或“一”变“+”)。
4.分步法运用在盖斯定律的特点
4.1.有利于帮助学生理解盖斯定律内涵。
通过待定系数法快速确定了总、分反应的关系,从而可以深刻理解“一个热化学反应,不论是一步完成,还是分几步完成,其总的热效应是完全相同的”。
4.2.有利于解决学生会而不对的困境。
学生做题不按步骤解题,耗时多且反应热容易出错,分步求解只要观察就可以确定总、分反应的关系分两步计算,提高了学生应试准确率。
4.3.有利于培养学生的思维、观察能力。
分步法很好地构建了数学模型和化学方程式系数之间的联系,将数学知识与学生的化学认知结构联系起来,激活了思维活动,内化了思维能力。
4.4.有利于教师研究解题方法,提高教学的有效性。
指导学生在学习过程中善于归纳、总结,提炼成解题方法,使思维更加有序。