九年级数学几何不等式例题讲解
2021年九年级中考专题复习:不等式 课件
x =32,y=2
时取等号,故
xy
的最大值为
3.
答案:3
应用举例
例 5(2)已知 x>0,y>0,lg x+lg y=1,则 z=2x+5y的 最小值为________.
解析:由已知条件 lg x+lg y=1,可得 xy=10.
则2x+5y≥2
1x0y=2,故2x+5ymin=2,当且仅当 2y=
[答案] C
题型三:实际应用问题
与线性规划有关的应用问题,通常涉及最优化问 题.如用料最省、获利最大等,其解题步骤是:①设未 知数,确定线性约束条件及目标函数;②转化为线性规 划模型;③解该线性规划问题,求出最优解;④调整最 优解.
四、基本不等式
一、基本不等式 ab≤a+b 2
1.基本不等式成立的条件: a>0,b>0 .
利润是
()
A.1 800元
B.2 400元
C.2 800元
D.3 100元
解析:设每天分别生产甲 产品 x 桶,乙产品 y 桶,相应的利润为
z 元,则x2+x+2yy≤ ≤1122, , z=300x+ x≥0,y≥0,
400y,在坐标平面内画出该不等式组表示的平面区域及 直线 300x+400y=0,平移该直线,当平移到经过该平 面区域内的点 A(4,4)时,相应直线在 y 轴上的截距达到 最大,此时 z=300x+400y 取得最大值,最大值是 z= 300×4+400×4=2 800,即该公司可获得的最大利润是 2 800 元.
a>b⇒ ac>bc c>0 a>b⇒ ac<bc c<0
c的符号
性质
性质内容
注意
同向可加性 a>b⇒a+c>b+d
初三数学不等式的解法
; 佛山地坪漆:/ ;
将暗月の事情和夜轻语她们说说の时候,鹿老却传音了过来.白重炙摸了摸鼻子,再次朝暗月望了眼,走了出去,接着带着三女直接出现在寒心阁. 寒心阁还是老样子,美丽而又有散发着淡淡の幽香.只是原来の翠花她们显然还没被送回来,阁内空无一人. "不咋大的寒子,你呀来后山一趟!" 果然,白重炙屁股还没坐热,夜若水の传音就到了.和三人解释了几声,白重炙便直接朝白家后山闪去.几次移形换位之后,他已经站立在后山不咋大的湖旁. 一出现在湖边,远处便飞来三道身影,正是夜天龙三人.而三人身体上明显都带几处伤痕,夜青牛受伤最为严重,全身许多处地方都被白 布包裹了起来. 白重炙一见,连忙弯身行礼,关心の问起他们の伤势:"见过三位爷爷!你呀们の伤怎么样?没什么大事吧?" "哈哈,好不咋大的子,干得不错!俺们还死不了,不用担心."夜天龙古板の脸上满是激动の笑容,挥舞着手,用力の拍了拍白重炙の肩膀,不料却可能触动了伤口,嘶哑 咧嘴の苦笑起来.看这情况,三人明显都从夜若水那里,得到了确切の情况,明白那让他们猜了很久uの黑袍人竟然是他们家の白重炙,他们怎么不激动,不兴奋? "不咋大的寒子,俺老牛没看错你呀!你呀这个孙女婿俺十二分满意!嘿嘿!"夜青牛也想抬手过来,只是上身不少地方被包裹着,只 能抬起又放下,咧开嘴大笑道. "咻" 就在夜白虎也想说些什么の时候,空间突然波动起来,夜若水瞬移了过来.两条白眉下の眼眸尽是笑意:"行了,你呀们三人好好养伤,以后再聊.俺和不咋大的寒子谈点事情!" 说完直接带着白重炙直接瞬移,带着他出现在静修の那个山洞.一到山洞内,却 发现刀皇枪皇和月惜水雪家老祖都正含笑の看着他. "白重炙拜见四位前辈!"白重炙虽然有三人不太认识,只是在雾霭城外见过一面而已.但心里却知道这三人便是破仙府の神级强者,连忙恭敬の行礼起来. "不用客气,俺们の不咋大的英雄." 刀皇微笑说道,而后手一挥,竟然布置了一些域 场,将山洞笼罩进去.这才正**了起来,同时其余三人也跟着站了起来,和夜若水并排站立起来,五人神情无比严肃.刀皇从怀中掏出三枚红色の令牌,郑重其事の递给白重炙说道. "今日叫你呀们又两件事情,第一俺们五人,代表破仙府数十亿子民,感谢你呀为破仙府所做の一切.你呀白重炙是 破仙府の英雄,是你呀拯救了破仙府.俺代表破仙府赐予你呀三枚破仙血令,你呀可以有三次驱使大陆强者为你呀做任何不违背常理事情の权利,当然,也包括俺们五人!" 当前 第叁捌陆章 炽火大陆の秘密 文章阅读 "这…好吧,多谢诸位了!" 白重炙伸手接过三枚破仙血令,没有矫情.请 大家检索(品&书¥网)看最全!更新最快の这可是好东西啊.当年夜天龙可是靠了这东西号召群雄,杀到了天妖城去了,不拿可是来不拿. 刀皇见白重炙收下了东西,这才和夜若水他们对视一眼.五人点了点头,竟然同时对着轻寒深深弯腰鞠躬了起来,刀皇弯腰沉声说道:"第二件事情,是俺 们想代表炽火大陆所以の子民请求你呀一件事情!" "啊?这…五位前辈这是干什么?快平身!" 白重炙正把玩这三块破仙血令,却突然见五人同时恭敬の弯腰给自己鞠躬起来.吓了一条,开玩笑,这五人其中有一些是他老祖宗,一些是他媳妇の祖宗,这礼他敢受?可是会折寿の.连忙跳了起来, 就要过去扶其他们. "白重炙,你呀不答应俺们,俺们就不起来!"刀皇再次认真说道,就是不起身.五人倒是好像铁了心の称砣般,继续弯着腰行着礼.就连夜若水和月惜水两人都是一片沉默,似乎在等白重炙の回应. "答应,俺什么都答应,可以了吗?" 白重炙一看面色一苦,这是让他往死路上 bi啊,自己老祖宗和四名都可以做他祖宗の人这样求他,就算让他去单挑神城那个光头,他现在也只能去了. "嗯,俺代表整个炽火大陆の人感激你呀,如果这事你呀能成功の话,你呀将是整个炽火大陆の救世主!"五人同时起身,神情没有丝毫不自然,反而面带感激の望着白重炙. "等等,炽火 大陆?这关炽火大陆什么事?" 白重炙偷偷憋了一眼夜若水和月惜水发现两人没有丝毫尴尬,这才扭捏这身体,反而诧异の问了起来,心里却是打起鼓,都扯到了炽火大陆上来了,岂会是不咋大的事?这五个老家伙看来是要给自己一些重担了.同时他也很纳闷,炽火大陆没什么大事啊?现在异族 杀の被杀了,退の退走了,大陆一片太平啊! "俺们恳求你呀の事情,就是你呀要尽你呀此生最大の努力,去解救炽火大陆!"刀皇沉吟一下,郑重其事の说道. 白重炙却是越听越糊涂了:"解救炽火大陆?为什么要解救?你呀们说清楚一点好吗?大陆怎么了?大陆好像没什么事吧?" "错!" 这 时进来之后一直沉默の,夜若水突然开口了,他眼中闪过一丝深深の屈辱和愤怒,情绪变得几多激动起来: "你呀说看到平静の大陆,其实都是表面の东西,都是假象…这样和你呀说吧,这个炽火大陆原本是属于炽火人民の大陆,但是数千年第一次灭世大战之后,炽火大陆就不是俺们の了.俺 们…现在是一群被人圈养牲口,一群想杀就杀,想怎么玩就怎么玩の牲口!" 夜若水说完,似乎触动了五人心里の记忆.五人の脸上同时浮现了一丝悲哀,一丝沉痛,一丝屈辱,一丝悲愤… 大陆不是俺们の?俺们是圈养の牲口? 白重炙看着几人の神情,嘴里念叨の夜若水の话语,数千年前?灭世 大战?他隐隐有些明白了,但是却不敢确定の问道:"老祖宗你呀の意思是神城吗?神城圈养了大陆人民?但是神城好像不怎么管大陆の事啊?" "呵呵,不管?" 夜若水嘴角露出一丝冷笑,微微摇了摇头继续说道:"你呀所知道の历史,和看到の表面都是假象,你呀要清楚一点,历史往往是由胜利 者改写の……数千年三族战乱不休?屁!灭世大战,屠一人力压三族强者,促成三族和平相处,共同立下血誓?也是屁!神城不会干扰三族内政更是屁!"夜若水越说越激动,竟然直接爆了粗口:"俺告诉你呀,炽火大陆数千年前一直都是三府和平共处,相安无事.你呀想想那时大陆那么神级强 者,一旦开战,引发神级强者对战,大陆还会存在吗?大陆那么多强者神级巅峰那时候也无数,屠一人怎么力压の住?你呀以为他真有王八之气?虎躯一震四海震服?不干扰内政?你呀在府战怎么遇险の?天龙带人去天妖城の时候,神城四卫来干什么?" "那事情の真相,究竟是什么?" 白重炙越想 越觉得有道理了,因为他还知道一件事,魂种の事情,这明显是神城の暗地势力,明显这类暗使神城还有不少,这些人都是在监察着大陆の各种情况. 刀皇却是直接ha话道:"事情の真相很简单,屠是炽火位面神界所承认の领主.他掌握了整个炽火大陆生杀大全.他派人引起三族大战,而后他在 神山一人击杀了大陆数十米神级强者,迫使大陆所有强者屈服,无奈下签了城下之盟.并且他制定了府战规则,三十年一次大战,其实根本就不是调解三族纠纷.而是……他在收集死去の冤魂修炼黑暗邪法,以及炼制灵魂丹.每三十年一代人刚刚成长起来了,而后却要轰轰烈烈の去幽冥岛赴死. 他,是在把炽火大陆の子民当成畜生在圈养啊,每隔三十年,畜生长大了,就干脆利落の宰了…" 府战?对了! 白重炙突然惊醒,府战那时候他在血色平原就发现了一丝奇怪现象,在血色平原上会忍不住产生嗜血の冲动,让人越杀会越疯狂,似乎那里の气息有种奇怪の魔力般,让人忍不住要扁 人. 并且每当一次大战结束之后,血色平原の天空会突然起风,变成昏沉沉の.原来竟然是有些在搞鬼,有人在用特殊の方法或者说阵法在收集灵魂. 本来他就一直很奇怪,为何府战刚好三十年一次,并且精英府战和混乱府战轮流交替.现在被刀皇一说,他就明白了.这是屠の养成计划啊,这样 交错隔开.不仅不会让大陆の人口急剧缩水,刚好能保持持平. 并且三十年一次の大战让三族之间の仇恨越来越深,越来越花解不开.他
不等式讲义知识点详解+例题+习题(含详细答案)(最新整理)
不等式讲义最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b |≤|a |+|b |(a ,b ∈R ).(2)|a -b |≤|a -c |+|c -b |(a ,b ∈R ).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ,|ax +b |≥c ,|x -c |+|x -b |≥a .3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ;(2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |.问题探究:不等式|a |-|b |≤|a ±b |≤|a |+|b |中,“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a 、b 为正数,则≥,当且仅当a =b 时,等号成立.a +b 2ab 定理3:如果a 、b 、c 为正数,则≥,当且仅当a =b =c 时,a +b +c 33abc 等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,则≥,当且仅当a 1=a 2=…=a n 时,等号成立.a 1+a 2+…+a nn n a 1a 2…a n 4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则()()≥(i b i )2,当且仅当b i =0(i =n ∑i =1a 2i n ∑i =1b 2i n ∑i =1a 1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1.判断正误(在括号内打“√”或“×”)(1)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( )(2)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )(3)|ax +b |≤c (c >0)的解等价于-c ≤ax +b ≤c .( )(4)不等式|x -1|+|x +2|<2的解集为Ø.( )(5)若实数x 、y 适合不等式xy >1,x +y >-2,则x >0,y >0.( )[答案] (1)× (2)√ (3)√ (4)√ (5)√2.不等式|2x -1|-x <1的解集是( )A .{x |0<x <2}B .{x |1<x <2}C .{x |0<x <1}D .{x |1<x <3}[解析] 解法一:x =1时,满足不等关系,排除C 、D 、B ,故选A.解法二:令f (x )=Error!则f (x )<1的解集为{x |0<x <2}.[答案] A3.设|a |<1,|b |<1,则|a +b |+|a -b |与2的大小关系是( )A .|a +b |+|a -b |>2B .|a +b |+|a -b |<2C .|a +b |+|a -b |=2D .不能比较大小[解析] |a +b |+|a -b |≤|2a |<2.[答案] B4.若a ,b ,c ∈(0,+∞),且a +b +c =1,则++的最大值为( )a b c A .1 B . 2C. D .23[解析] (++)2=(1×+1×+1×)2≤ (12+12+12)(a +b +c )a b c a b c =3.当且仅当a =b =c =时,等号成立.13∴(++)2≤3.a b c ++的最大值为.故应选C.a b c 3[答案] C5.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[解析] 利用数轴及不等式的几何意义可得x 到a 与到1的距离和小于3,所以a 的取值范围为-2≤a ≤4.[答案] -2≤a ≤4考点一 含绝对值的不等式的解法解|x -a |+|x -b |≥c (或≤c )型不等式,其一般步骤是:(1)令每个绝对值符号里的代数式为零,并求出相应的根.(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)(2)(2014·湖南卷)若关于x 的不等式|ax -2|<3的解集为Error!,则a =________.[解题指导] 切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析] (1)当x <1时,不等式可化为-(x -1)+(x -5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1+(x -5)<2,即2x -6<2,解得x <4,又1≤x ≤5,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.(2)∵|ax -2|<3,∴-1<ax <5.当a >0时,-<x <,与已知条件不符;1a 5a当a =0时,x ∈R ,与已知条件不符;当a <0时,<x <-,又不等式的解集为Error!,故a =-3.5a 1a[答案] (1)A (2)-3用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.对点训练已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.[解] (1)当a =-3时,f (x )=Error!当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].考点二 利用绝对值的几何意义或图象解不等式对于形如|x -a |+|x -b |>c 或|x -a |+|x -b |<c 的不等式,利用绝对值的几何意义或者画出左、右两边函数的图象去解不等式,更为直观、简捷,它体现了数形结合思想方法的优越性.|x -a |+|x -b |的几何意义是数轴上表示x 的点与点a 和点b 的距离之和,应注意x 的系数为1.(1)(2014·重庆卷)若不等式|x -1|+|x +2|≥a 2+a +2对任意实数x 恒成立,12则实数a 的取值范围是________.(2)不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.[解题指导] 切入点:绝对值的几何意义;关键点:把恒成立问题转化为最值问题.[解析] (1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+a +2≤3,解得≤a ≤.12-1174-1+174即实数a 的取值范围是.[-1-174,-1+174](2)解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于PA -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y=Error!要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案] (1) (2)(-∞,-3)[-1-174,-1+174]解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.对点训练(2015·唐山一模)已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.(1)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(2)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.[解] (1)g(x)≤5⇔|2x-1|≤5⇔-5≤2x-1≤5⇔-2≤x≤3;f(x)≤6⇔|2x-a|≤6-a⇔a-6≤2x-a≤6-a⇔a-3≤x≤3.依题意有,a-3≤-2,a≤1.故a的最大值为1.(2)f(x)+g(x)=|2x-a|+|2x-1|+a≥|2x-a-2x+1|+a=|a-1|+a,当且仅当(2x-a)(2x-1)≤0时等号成立.解不等式|a-1|+a≥3,得a的取值范围是[2,+∞).考点三 不等式的证明与应用不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则+>+;a b c d (2)+>+是|a -b |<|c -d |的充要条件.a b c d [解题指导] 切入点:不等式的性质;关键点:不等式的恒等变形.[证明] (1)因为(+)2=a +b +2,(+)2=c +d +2,a b ab c d cd 由题设a +b =c +d ,ab >cd 得(+)2>(+)2.a b c d +>+.a b c d (2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得+>+.a b c d +>+,则(+)2>(+)2,即a b c d a b c d a +b +>c +d +2.ab cd 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.+>+是|a -b |<|c -d |的充要条件.a b c d分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.对点训练(2014·新课标全国卷Ⅱ)设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤;13(2)++≥1.a 2b b 2c c 2a[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.13(2)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,a 2b b 2c c 2a故+++(a +b +c )≥2(a +b +c ),a 2b b 2c c 2a即++≥a +b +c .a 2b b 2c c 2a所以++≥1.a 2b b 2c c 2a———————方法规律总结————————[方法技巧]1.绝对值不等式求解的根本方向是去除绝对值符号.2.绝对值不等式在求与绝对值运算有关的最值问题时需灵活运用,同时还要注意等号成立的条件.3.在证明不等式时,应根据命题提供的信息选择合适的方法与技巧.如在使用柯西不等式时,要注意右边为常数.[易错点睛]1.对含有参数的不等式求解时,分类要完整.2.应用基本不等式和柯西不等式证明时要注意等号成立的条件.课时跟踪训练(七十)一、填空题1.不等式|2x -1|<3的解集为__________.[解析] |2x -1|<3⇔-3<2x -1<3⇔-1<x <2.[答案] (-1,2)2.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =__________.[解析] ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2.[答案] 23.不等式|2x +1|+|x -1|<2的解集为________.[解析] 当x ≤-时,原不等式等价为-(2x +1)-(x -1)<2,即-3x <2,x >-12,此时-<x ≤-.当-<x <1时,原不等式等价为(2x +1)-(x -1)<2,即x <0,23231212此时-<x <0.当x ≥1时,原不等式等价为(2x +1)+(x -1)<2,即3x <2,x <,此1223时不等式无解,综上,原不等式的解为-<x <0,即原不等式的解集为.23(-23,0)[答案] (-23,0)4.已知关于x 的不等式|x -1|+|x |≤k 无解,则实数k 的取值范围是__________.[解析] ∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故k <1.[答案] (-∞,1)5.(2015·西安统考)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________.[解析] |x -5|+|x +3|≥|(x -5)-(x +3)|=8,故a ≤8.[答案] (-∞,8]6.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =__________.[解析] 当a =-1时,f (x )=3|x +1|≥0,不满足题意;当a <-1时,f (x )=Error!f (x )min =f (a )=-3a -1+2a =5,解得a =-6;当a >-1时,f (x )=Error!f (x )min =f (a )=-a +1+2a =5,解得a =4.[答案] -6或47.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是__________.[解析] ∵f (x )=|x +1|+|x -2|=Error!∴f (x )≥3.要使|a |≥|x +1|+|x -2|有解,∴|a |≥3,即a ≤-3或a ≥3.[答案] (-∞,-3]∪[3,+∞)8.已知关于x 的不等式|x -a |+1-x >0的解集为R ,则实数a 的取值范围是__________.[解析] 若x -1<0,则a ∈R ;若x -1≥0,则(x -a )2>(x -1)2对任意的x ∈[1,+∞)恒成立,即(a -1)[(a +1)-2x ]>0对任意的x ∈[1,+∞)恒成立,所以Error!(舍去)或Error!对任意的x ∈[1,+∞]恒成立,解得a <1.综上,a <1.[答案] (-∞,1)9.设a ,b ,c 是正实数,且a +b +c =9,则++的最小值为__________.2a 2b 2c[解析] ∵(a +b +c )(2a +2b +2c )=[()2+()2+()2]a b c [(2a )2+(2b )2+(2c )2]≥2=18,(a ·2a +b ·2b +c ·2c )∴++≥2,∴++的最小值为2.2a 2b 2c 2a 2b 2c[答案] 210.(2014·陕西卷)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2的最小值为________.[解析] 由柯西不等式,得(a 2+b 2)(m 2+n 2)≥(am +bn )2,即5(m 2+n 2)≥25,∴m 2+n 2≥5,当且仅当an =bm 时,等号成立.∴的最小值为.m 2+n 25[答案] 511.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为__________.[解析] ∵|x -1|+|x |+|y -1|+|y +1|=(|1-x |+|x |)+(|1-y |+|1+y |)≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3,当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时等号成立,∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.[答案] 312.若不等式|x +1|-|x -4|≥a +,对任意的x ∈R 恒成立,则实数a 的取4a值范围是________.[解析] 只要函数f (x )=|x +1|-|x -4|的最小值不小于a +即可.由于||x +1|4a-|x -4||≤|(x +1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +即4a可.当a >0时,将不等式-5≥a +整理,得a 2+5a +4≤0,无解;当a <0时,4a将不等式-5≥a +整理,得a 2+5a +4≥0,则有a ≤-4或-1≤a <0.综上可知,4a实数a 的取值范围是(-∞,-4]∪[-1,0).[答案] (-∞,-4]∪[-1,0)二、解答题13.已知不等式2|x -3|+|x -4|<2a .(1)若a =1,求不等式的解集;(2)若已知不等式的解集不是空集,求a 的取值范围.[解] (1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,∴舍去;若3<x <4,则x -2<2,∴3<x <4;若x ≤3,则10-3x <2,∴<x ≤3.83综上,不等式的解集为Error!.(2)设f (x )=2|x -3|+|x -4|,则f (x )=Error!作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,∴2a >1,a >,即a 的取值范围为.12(12,+∞)14.(2015·新课标全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得<x <1;23当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为Error!.(2)由题设可得,f (x )=Error!所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ,B (2a +1,0),C (a ,a +1),△ABC 的面积为(a +1)2.(2a -13,0)23由题设得(a +1)2>6,故a >2.23所以a 的取值范围为(2,+∞).15.设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.[解] (1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=Error!作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式f (x )≥3的解集为Error!.(2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=Error!f (x )的最小值为1-a ;若a >1,f (x )=Error!f (x )的最小值为a -1.∴对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,∴a 的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值;(2)求a 2+b 2+c 2的最小值.1419[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得(4+9+1)≥(14a 2+19b 2+c 2)2=(a +b +c )2=16,(a 2×2+b 3×3+c ×1)即a 2+b 2+c 2≥.141987当且仅当==,12a 213b 3c 1即a =,b =,c =时等号成立.8718727故a 2+b 2+c 2的最小值为.141987。
2020年中考数学考点提分专题三不等式(组)(解析版)
2020 年中考数学考点提分专题三不等式(组)(分析版)必考点 1不等式的基天性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若 a> b,那么 a±m> b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若 a> b,且 m> 0,那么 am> bm 或 am> bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若 a> b,且 m< 0,那么 am< bm 或 am< bm;【典例 1】m>n,以下不等式不必定成立的是()( 2019·四川中考真题)若A .m 3>n 3B.C.mn D.22﹣3m<﹣3n33m > n【贯通融会】1.( 2019 ·广西中考真题)假如 a b , c0 ,那么以下不等式成立的是()A .a c b B.a c b cC.ac 1 bc 1D.a c 1 b c 1必考点 2 一元一次不等式的解【典例 2】( 2019·四川中考真题)对于x 的不等式2x a 1 只有2个正整数解,则 a 的取值范围为()A .5 a3B.5 a3C.5 a3D.5 a3【贯通融会】2x5x 的每一个值,都能使对于x 的不等式11 2x 的解集中.( 2019 ·内蒙古中考真题)若不等式33( x﹣1) 5>5x 2(m x) 成立,则 m 的取值范围是()31C.m 3D.m1A .m B.m5555必考点 3一元一次不等式的应用(1)由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.(2)列不等式解应用题需要以“起码”、“最多”、“不超出”、“不低于”等词来表现问题中的不等关系.所以,成立不等式要擅长从“重点词”中发掘其内涵.(3)列一元一次不等式解决实质问题的方法和步骤:①弄清题中数目关系,用字母表示未知数.②依据题中的不等关系列出不等式.③解不等式,求出解集.④写出切合题意的解【典例 3】20 题,答对一题得10 分,答错或不答扣 5 分,小华( 2019·重庆中考真题)某次知识比赛共有得分要超出120 分,他起码要答对的题的个数为()A.13B. 14C. 15D. 16必考点 4一元一次不等式组的解x 30【典例 4】(2019·江西中考模拟)已知不等式组{其解集在数轴上表示正确的选项是()x 10A .B.C.D.【贯通融会】1.(2019 ·云南中考真题)若对于2x12的解集为 x> a,则 a 的取值范围是 () x 的不等式组x0aA . a<2B. a≤2C. a> 2D. a≥22x6<02. ( 2019 ·湖南中考真题)若对于mx 的不等式组>有解,则在其解集中,整数的个数不行能是4x m0()A . 1B. 2C. 3D. 4x 1 x ( 2019·山东中考真题)若不等式组31无解,则 m 的取值范围为(2)x4mA .m 2B.m 2C.m 2D.m 2必考点 5 不等式组的应用【典例 5】( 2019·贵州中考真题)某校计划组织240 名师生到红色教育基地展开革命传统教育活动.旅行公司有 A ,B 两种客车可供租用, A 型客车每辆载客量45 人, B 型客车每辆载客量30 人.若租用 4 辆 A 型客车和 3 辆 B 型客车共需花费10700 元;若租用 3 辆 A 型客车和 4 辆 B 型客车共需花费10300 元.( 1)求租用A, B 两型客车,每辆花费分别是多少元;( 2)为使 240 名师生有车坐,且租车总花费不超出 1 万元,你有哪几种租车方案?哪一种方案最省钱?1.已知xy ,则以下不等式不行立的是()A .x 6 y 6B.3x 3yC.2 x2y D.3x 63 y 6x 2a2. ( 2019 ·江苏中考真题)以下各数轴上表示的x 的取值范围能够是不等式组的解集的2a 1 x 6 0是()A .B.C.D.3.某次知识比赛共有20 道题,每一题答对得10 分,答错或不答都扣 5 分 .小明得分要超出90 分,他起码要答对多少道题?若设小明答对了x 道题,则由题意可列出的不等式为()A . 10x+5(20 ﹣ x)> 90B. 10x+5(20 ﹣ x)< 90C. 10x﹣ 5(20﹣ x)> 90D. 10x ﹣ 5(20﹣x)< 904.( 2019 ·江苏中考真题)不等式x 1 2 的非负整数解有()A.1 个B.2个C.3 个D.4 个5.( 2019 ·湖北中考真题)不等式组2x x4的解集在数轴上用暗影表示正确的选项是()3x3x9A .B.C.D.6.( 2019 ·四川中考真题)若对于x的代等式组x x123恰有三个整数解,则 a 的取值范3x5a44( x1)3a围是()A .1, a3B.1 a,33D.a, 1或a3C.1 a2222x 237. ( 2019 ·浙江中考真题)不等式组x142的解为 _____________________ .8. ( 2019 ·黑龙江中考真题)若对于x m0x 的一元一次不等式组1的解集为 x 1 ,则m的取值范围是2x3_____.9. ( 2019 ·甘肃中考真题)不等式组2 x⋯0的最小整数解是 _____.2x x 1x 2 x110. ( 2019 ·四川中考真题)若对于x 的不等式组43有且只有两个整数解,则m 的取值范围是2x m, 2x_____.3x5x611. ( 2019 ·四川中考真题)解不等式组:x 1x 1 ,把它的解集在数轴上表示出来,并写出其整数解.6212. ( 2019 ·四川中考真题)为了参加西部展览会,资阳市计划印制一批宣传册.该宣传册每本共10 页,由A、 B 两种彩页组成.已知 A 种彩页制版费300 元 / 张, B 种彩页制版费 200 元 /张,合计2400 元.(注:彩页制版费与印数没关)(1)每本宣传册 A 、 B 两种彩页各有多少张?(2)据认识, A 种彩页印刷费 2.5 元 /张, B 种彩页印刷费 1.5 元 /张,这批宣传册的制版费与印刷费的和不超出 30900 元.假如按到资阳展台处的观光者人手一册发放宣传册,估计最多能发给多少位观光者?2020 年中考数学考点提分专题三不等式(组)(分析版)必考点 1不等式的基天性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若 a> b,那么 a±m> b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若 a> b,且 m> 0,那么 am> bm 或 am> bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若 a> b,且 m< 0,那么 am< bm 或 am< bm;【典例 1】m>n,以下不等式不必定成立的是()( 2019·四川中考真题)若A .m 3>n 3B.C.mn D.22﹣3m<﹣3n33m > n【答案】 D【分析】解: A 、不等式的两边都加3,不等号的方向不变,故 A 错误;B、不等式的两边都乘以﹣3,不等号的方向改变,故 B 错误;C、不等式的两边都除以3,不等号的方向不变,故 C 错误;D、如m=2,n=﹣3,m>n,m2<n2;故 D 正确;应选:D.【点睛】主要考察了不等式的基天性质,“0”很特别的一个数,所以,解答不等式的问题时,应亲密关注是“0存”在与否,以防掉进“0”的圈套.【贯通融会】1.( 2019 ·广西中考真题)假如 a b , c0 ,那么以下不等式成立的是()A .a c b B.a c b cC.ac1bc1D.a c1 b c1【答案】D【分析】解:∵ c0 ,∴ c 1 1,∵ a b ,∴ a c 1 b c 1 ,应选: D .【点睛】本题考察不等式的性质,解题的重点是娴熟运用不等式的性质,本题属于中等题型.必考点 2一元一次不等式的解【典例 2】( 2019·四川中考真题)对于 x 的不等式 2x a 1 只有 2 个正整数解,则 a 的取值范围为()A . 5 a3B . 5 a3C . 5 a3D . 5 a3【答案】 C【分析】解不等式 2x+a ≤1得: , 1 a,x2不等式有两个正整数解,必定是 1和2,依据题意得: 2,1a 32解得: -5< a ≤-3.应选: C .【点睛】本题考察了不等式的整数解,正确解不等式,求出解集是解答本题的重点.解不等式应依据不等式的基本性质.【贯通融会】1.( 2019 ·内蒙古中考真题)若不等式2x 5 1 2 x 的解集中 x 的每一个值,都能使对于 x 的不等式33( x ﹣1) 5>5x2(m x) 成立,则 m 的取值范围是()3 1 C . m3 1A . mB . m5D . m555【答案】 C【分析】解:解不等式 2x 5 1 2 x 得: x 4 , Q 不等式2x5 351 2 x 的解集中 x 的每一个值,都能使对于x 的不等式 (3x ﹣1) 5>5x (2 m x )成3立,1 m,x <21 m > 4 ,2 53解得: m <,5应选: C .【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能依据已知获得对于m 的不等式是解本题的重点.必考点 3一元一次不等式的应用( 1)由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.(2)列不等式解应用题需要以“起码 ”、 “最多 ”、“不超出 ”、“不低于 ”等词来表现问题中的不等关系.所以,成立不等式要擅长从 “重点词 ”中发掘其内涵.( 3)列一元一次不等式解决实质问题的方法和步骤:①弄清题中数目关系,用字母表示未知数.②依据题中的不等关系列出不等式.③解不等式,求出解集.④写出切合题意的解【典例 3】20 题,答对一题得 10 分,答错或不答扣5 分,小华( 2019·重庆中考真题)某次知识比赛共有 得分要超出 120 分,他起码要答对的题的个数为( )A .13B . 14C . 15D . 16【答案】 C【分析】解:设要答对 x 道.10 x ( 5) (20 x) 120 ,10 x 100 5 x 120,15 x 220 ,解得: x 44,3依据 x 一定为整数,故 x 取最小整数 15,即小华参加本次比赛得分要超出120 分,他起码要答对15 道题.应选: C .【点睛】本题主要考察了一元一次不等式的应用,获得得分的关系式是解决本题的重点.必考点 4一元一次不等式组的解x 3 0 【典例 4】( 2019·江西中考模拟)已知不等式组{其解集在数轴上表示正确的选项是( )x 1 0A .B .C .D .【答案】 D【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).所以,x 3 0 x3 {1 0{x 3 .xx1不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥ ≤向右画;<, 向左画),数轴上的点把数轴分红若干段,假如数轴的某一段上边表示解集的线的条数与不等式的个数同样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“< ”, “> ”要用空心圆点表示.应选 D .【贯通融会】1.( 2019 ·云南中考真题)若对于 2 x 1 2x 的不等式组x的解集为 x > a ,则 a 的取值范围是 ()a 0a<2 aa> 2 a≥2A .B . ≤2C .D . 【答案】 D【分析】2 x 12①,a x0②由①得 x 2 ,由②得 x a ,又不等式组的解集是x> a,依据同大取大的求解集的原则,∴a 2 ,当 a2时,也知足不等式的解集为x 2 ,∴ a2,应选 D.【点睛】本题考察认识一元一次不等式组,不等式组的解集,娴熟掌握不等式组解集确实定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的重点 .2x6<02. ( 2019 ·湖南中考真题)若对于mx 的不等式组>有解,则在其解集中,整数的个数不行能是4x m0()A . 1B. 2C. 3D. 4【答案】 C【分析】解不等式2x﹣ 6+ m< 0,得: x<6m ,2解不等式4x﹣ m>0,得: x>m,4∵不等式组有解,∴m <6 m,42解得m<4,假如m=2,则不等式组的解集为1 <m<2,整数解为x= 1,有 1 个;2假如m=0,则不等式组的解集为0<m<3,整数解为x= 1,2,有 2 个;假如m=﹣ 1,则不等式组的解集为1 <m< 7 ,整数解为x= 0, 1,2, 3,有 4 个;42应选: C.【点睛】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.x1x1( 2019·山东中考真题)若不等式组32无解,则 m 的取值范围为()x4mA .m 2B.m 2C.m 2D.m 2【答案】 A【分析】解不等式x 1x1 ,得:x>8,32∵不等式组无解,∴4m≤8,解得 m≤2,应选 A.【点睛】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.必考点 5 不等式组的应用【典例 5】( 2019·贵州中考真题)某校计划组织240 名师生到红色教育基地展开革命传统教育活动.旅行公司有 A ,B 两种客车可供租用, A 型客车每辆载客量45 人, B 型客车每辆载客量30 人.若租用 4 辆 A 型客车和 3 辆 B 型客车共需花费10700 元;若租用 3 辆 A 型客车和 4 辆 B 型客车共需花费10300 元.( 1)求租用A, B 两型客车,每辆花费分别是多少元;( 2)为使 240 名师生有车坐,且租车总花费不超出 1 万元,你有哪几种租车方案?哪一种方案最省钱?【答案】( 1)租用 A, B 两型客车,每辆花费分别是1700 元、 1300 元;( 2)共有三种租车方案,方案一:租用 A 型客车 2 辆, B 型客车 5 辆,花费为9900 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆,花费为9400 元,方案三:租用 A 型客车 5 辆, B 型客车 1 辆,花费为9800 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆最省钱.【分析】(1)设租用 A ,B 两型客车,每辆花费分别是x 元、 y 元,4x 3y10700,3x 4y10300x 1700解得,,y 1300答:租用 A , B 两型客车,每辆花费分别是1700 元、 1300 元;(2)设租用 A 型客车 a 辆,租用 B 型客车 b 辆,45a 30b 240,1700a 1300b10000a 2 a 4 a 5 解得,b 5 , b2,,b1∴共有三种租车方案,方案一:租用 A 型客车 2 辆, B 型客车 5 辆,花费为 9900 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆,花费为 9400 元,方案三:租用 A 型客车 5 辆, B 型客车 1 辆,花费为 9800 元,由上可得,方案二:租用A 型客车 4 辆,B 型客车 2 辆最省钱.【点睛】本题考察二元一次方程组的应用、一元一次不等式的应用,解答本题的重点是明确题意,利用不等式的性质和方程的知识解答.1.已知 xy ,则以下不等式不行立的是( ) A . x 6y 6B .C .2 x 2yD . 【答案】 D【分析】3x 3y3x 63 y 6Q x y,-3x<-3 y ,∴ - 3x+6<-3 y+6,故D 错误;应选 D.点睛:不等式的性质 3:不等式两边同时乘以或除以同一个负数,不等号的方向改变 .x 2a2. ( 2019 ·江苏中考真题)以下各数轴上表示的x 的取值范围能够是不等式组的解集的2a 1 x 6 0是()A .B.C.D.【答案】 B【分析】由 x+2 > a 得 x> a-2,A .由数轴知x>-3,则 a=-1 ,∴ -3x-6 < 0,解得 x> -2,与数轴不符;B.由数轴知x> 0,则 a=2,∴ 3x-6 < 0,解得 x<2,与数轴相切合;C.由数轴知x> 2,则 a=4,∴ 7x-6 < 0,解得 x<6,与数轴不符;7D.由数轴知x>-2,则 a=0,∴ -x-6 < 0,解得 x> -6,与数轴不符;应选 B.【点睛】本题主要考察解一元一次不等式组,解题的重点是掌握不等式组的解集在数轴上的表示及解一元一次不等式的能力.3.某次知识比赛共有20 道题,每一题答对得10 分,答错或不答都扣 5 分 .小明得分要超出90 分,他起码要答对多少道题?若设小明答对了x 道题,则由题意可列出的不等式为()A . 10x+5(20 ﹣ x)> 90B. 10x+5(20 ﹣ x)< 90C. 10x﹣ 5(20﹣ x)> 90D. 10x ﹣ 5(20﹣x)< 90【答案】C【分析】解:由题意可列出的不等式为10x﹣ 5(20 ﹣x) >90,应选:C.【点睛】本题考察了由实质问题抽象出一元一次不等式,掌握:答错或不答都扣 5 分,起码即大于或等于是解题的重点 .4.( 2019 ·江苏中考真题)不等式 x 1 2 的非负整数解有()A .1 个B .2个C .3 个D .4 个【答案】 D【分析】解: x 1 2 ,解得: x3 ,则不等式 x 1 2 的非负整数解有: 0, 1, 2, 3 共 4 个.应选: D .【点睛】本题主要考察了一元一次不等式的整数解,正确掌握非负整数的定义是解题重点.2x x 4 的解集在数轴上用暗影表示正确的选项是()5.( 2019 ·湖北中考真题)不等式组x3x3 9A .B .C .D .【答案】 C【分析】解:不等式组整理得:x 4x ,3∴不等式组的解集为x3 ,应选: C .【点睛】本题考察认识一元一次方程组,娴熟掌握运算法例是解本题的重点.x x 1 0 6.( 2019 ·四川中考真题) 若对于 x的代等式组2 3恰有三个整数解, 则 a 的取值范3x5a 4 4( x 1) 3a围是( )A . 1, a3B . 1 a,3C . 1 a3 D . a, 1 或 a32222【答案】 B【分析】解不等式xx 10 ,得: x2,235解不等式 2x5a 4 4 x 13a ,得: x2a ,∵不等式组恰有三个整数解,∴这三个整数解为0、 1、 2,∴2 2a 3 ,解得 1 a 3 ,2应选: B.【点睛】本题考察一元一次不等式组的整数解,解题重点在于掌握运算法例x 237. ( 2019 ·浙江中考真题)不等式组x142【答案】 1 x, 9【分析】的解为 _____________________ .x23①解:x1,24②由①得, x> 1,由②得, x≤9.故不等式组的解集为:1x, 9 .【点睛】本题考察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.8. ( 2019 ·黑龙江中考真题)若对于x m01 ,则m的取值范围是x 的一元一次不等式组1的解集为 x2x3_____.【答案】 m £1【分析】解不等式 xm 0 ,得: x m ,解不等式 2x1 3 ,得: x 1,Q 不等式组的解集为 x 1 ,m £1,故答案为: m £1. 【点睛】本题考察解一元一次不等式组,掌握运算法例是解题重点2 x ⋯0 9. ( 2019 ·甘肃中考真题)不等式组的最小整数解是 _____.2x x 1【答案】 0【分析】x, 2 解:不等式组整理得:,x1∴不等式组的解集为﹣1< x ≤2,则最小的整数解为0,故答案为: 0【点睛】本题考察了一元一次不等式组的整数解,娴熟掌握运算法例是解本题的重点.x2 x110. ( 2019 ·四川中考真题)若对于 x 的不等式组43 有且只有两个整数解,则 m 的取值范围是2x , 2xm _____.【答案】 2 m 1 .【分析】x2 x1 ①解:4 32x m 2 x ②解不等式①得:x2 ,解不等式②得:xm2,3∴不等式组的解集为 2 x 2 ,3∵不等式组只有两个整数解,m21 ,∴ 03解得: 2m1,故答案为2m 1 .【点睛】本题考察认识一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解本题的重点是求出对于 m 的不等式组,难度适中.3x 5x611. ( 2019 ·四川中考真题)解不等式组:x 1 x 1 ,把它的解集在数轴上表示出来,并写出其整数解.62【答案】 3 x 2 ,x的整数解为﹣2,﹣1,0,1,2.【分析】3x5x ①6解:x1 x 1 ②62解不等式①,解不等式②,x 3 ,x 2 ,∴ 3 x 2 ,解集在数轴上表示以下:∴x的整数解为﹣ 2,﹣ 1, 0,1, 2.【点睛】本题考察不等式组和数轴,解题的重点是娴熟掌握不等式组的求解和有理数在数轴上的表示.12. ( 2019 ·四川中考真题)为了参加西部展览会,资阳市计划印制一批宣传册.该宣传册每本共10 页,由A、 B 两种彩页组成.已知 A 种彩页制版费300 元 / 张, B 种彩页制版费200 元 /张,合计2400 元.(注:彩页制版费与印数没关)( 1)每本宣传册 A 、 B 两种彩页各有多少张?( 2)据认识, A 种彩页印刷费 2.5 元 /张, B 种彩页印刷费 1.5 元 /张,这批宣传册的制版费与印刷费的和不超出 30900 元.假如按到资阳展台处的观光者人手一册发放宣传册,估计最多能发给多少位观光者?【答案】( 1)每本宣传册 A 、B 两种彩页各有 4 和 6 张;(2)最多能发给 1500 位观光者.【分析】解:( 1)设每本宣传册 A 、B 两种彩页各有x , y 张,x y 10 ,300x 200y2400解得:x 4y,6答:每本宣传册 A 、 B 两种彩页各有 4 和 6 张;(2)设最多能发给 a 位观光者,可得:2.5 4a 1.5 6a 2400 30900 ,解得: a1500,答:最多能发给 1500 位观光者.【点睛】本题考察一元一次不等式的应用,重点是依据题意列出方程组和不等式解答.。
中考数学压轴题方程和不等式综合问题解答题解析版
26.如图1,数轴上,O点与C点对应的数分别是0,单位:单位长度,将一根质地均匀的直尺AB放在数轴上在B的左边,若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.请直接写出直尺的长为______个单位长度;如图2,直尺AB在数轴上移动,有,求此时A点所对应的数;如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处看不到直尺的任何部分,A在B的左边,将直尺AB沿数轴以4个单位长度秒的速度分别向左、右移动,直到完全看到直尺,所经历的时间分别为、,若秒,求直尺放入篷内时,A点所对应的数为多少?【答案】(1)20;(2)或10;(3)A点在蓬内所对应的数为38.当直尺AB在数轴上移动时,符合的情况如下所示:设BO为x:,所对应的数为设OA为x:,所对应的数为10综上所述,A在数轴上所对应的数分别为或10.设,如下图,根据题意,解得所以A点在蓬内所对应的数为38【关键点拨】本题通过直尺两端相对固定的两个点在数轴上移动时和数轴上固定的点之间长度关系的变化来确定移动点的位置,根据已知条件来分析移动点的可能性是解题的关键.月使用费主叫限定时间(分钟) 主叫超时费(元/分钟) 被叫方式一65 160 0.20 免费方式二100 380 0.25 免费被叫免费)(1)若张聪某月主叫通话时间为200分钟,则他按方式一计费需____元,按方式二计费需____ 元;李华某月按方式二计费需107元,则李华该月主叫通话时间为_____分钟;(2)是否存在某主叫通话时间(分钟),按方式一和方式二的计费相等?若存在,请求出的值;若不存在,请说明理由。
(3)直接写出当月主叫通话时间(分钟)满足什么条件时,选择方式一省钱。
【答案】(1)73,100,408;(2)存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)当每月通话时间大于560分钟时,选择方式一省钱.(2)①当t≤160时,不存在;②当160<t≤380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100,解得t=335,符合题意;③当t>380时,设每月通话时间为t分钟时,两种计费方式收费一样多,65+0.20×(t-160)=100+0.25(t-380),解得t=560,符合题意.故存在某主叫通话时间t=300或560分钟,按方式一和方式二的计费相等;(3)由(2)可得,当每月通话时间大于560分钟时,选择方式一省钱.【关键点拨】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.同学们,今天我们来学习一个新知识,形如的式子叫做二阶行列式,它的运算法则用公式表示为:利用此法则解决以下问题:(1)仿照上面的解释,计算出的结果;(2)依此法则化简的结果;(3)如果那么的值为多少?【答案】(1)11;(2)5a−b−ab;(3).(3)∴5x-3(x+1)=4∴5x−3x−3=4∴2x=7∴x=【关键点拨】[来源:]此题考查了解一元一次方程,以及有理数的混合运算,理解题中的新定义是解题的关键. 29.阅读探索知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(2)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为_____________.【答案】(1)(2)解得:,故答案为:【关键点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 30.如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足,B两点对应的数分别为______,______;若将数轴折叠,使得A点与B点重合,则原点O与数______表示的点重合;若点A、B分别以4个单位秒和3个单位秒的速度相向而行,则几秒后A、B两点相距1个单位长度?若点A、B以中的速度同时向右运动,点P从原点O以7个单位秒的速度向右运动,是否存在常数m,使得为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.【答案】(1)-10;5; (2)-5;(3)2或秒;(4)存在,当m=3时,4AP+3OB-mOP为定值55.(2)∵|AB|=5-(-10)=15,=7.5,∴点A、点B距离折叠点都是7.5个单位所以折叠点上的数为-2.5.所以与点O重合的点表示的数为:-2.5×2=-5.即原点O与数-5表示的点重合.故答案为:-5.(3)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15-1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=答:2或秒后A、B相距1个单位长度;【关键点拨】本题考查一元一次方程的应用,非负数的性质及数轴上两点间的距离.题目综合性较强,难度较大.解决(1)需利用非负数的性质,解决(3)注意分类思想的运用,解决(4)利用数轴上两点间的距离公式.31.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:例如,若数轴上点、点表示的数分别为、,则、两点之间的距离,线段的中点表示的数为.(问题情境)在数轴上,点表示的数为-20,点表示的数为10,动点从点出发沿数轴正方向运动,同时,动点也从点出发沿数轴负方向运动,已知运动到4秒钟时,、两点相遇,且动点、运动的速度之比是(速度单位:单位长度/秒).备用图(综合运用)(1)点的运动速度为______单位长度/秒,点的运动速度为______单位长度/秒;(2)当时,求运动时间;(3)若点、在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点、的运动,线段的中点也随着运动.问点能否与原点重合?若能,求出从、相遇起经过的运动时间,并直接写出点的运动方向和运动速度;若不能,请说明理由.【答案】(1)动点P运动的速度为4.5单位长度/秒,动点Q运动的速度为3单位长度/秒;(2)运动时间为或秒;(3)点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为,理由见解析(2)设运动时间为t秒.由题意知:点P表示的数为-20+4.5t,点Q表示的数为10-3t,根据题意得:|(-20+4.5t)-(10-3t)|=×|(-20)-10|整理得:|7.5t-30|=107.5t-30=10或7.5t-30=-10解得:t=或t=.答:运动时间为或秒.(3)P、Q相遇点表示的数为-20+4×4.5=-2(注:当P、Q两点重合时,线段PQ的中点M也与P、Q两点重合)设从P、Q相遇起经过的运动时间为t秒时,点M与原点重合.①点P、Q均沿数轴正方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷(单位长度/秒);②点P沿数轴正方向运动,点Q沿数轴负方向运动,则:解得:t=.此时点M能与原点重合,它沿数轴正方向运动,运动速度为2÷=(单位长度/秒);③点P沿数轴负方向运动,点Q沿数轴正方向运动,则:解得:t=-(舍去).此时点M不能与原点重合;④点P沿数轴负方向运动,点Q沿数轴负方向运动,则:解得:t=-(舍去).此时点M不能与原点重合.综上所述:点M能与原点重合,它沿数轴正方向运动,运动速度为或沿数轴正方向运动,运动速度为.【关键点拨】本题考查了一元一次方程的应用应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.32.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标时段8:00~9:00 10:00~11:00 12:00~13:0014:00~15:0016:00~17:00客流量(人)-21 +33 -12 +21 +54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?【答案】(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元.(2)设这一天卖出女装x套,男装(135-x)套,根据题意得,15x+20(135-x)=2150,解得,x=110,135-x=135-110=25.故这一天卖出男装25套,女装110套.(3)因为第二问中某一天出售男装25套,女装110套,每套女装的售价为80元,每套男装的售价为120元所以此店一周的营业额约为:[(25×120)+(110×80)]×7=[3000+8800]×7=11800×7=82600(元)故此店一周的营业额约为82600元.【关键点拨】本题考查正数和负数的加法、解方程组、数据的估算,注意第一问中精确到百位.33.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给予优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.【答案】(1)甲超市实付款352元,乙超市实付款360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.【关键点拨】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.34.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【关键点拨】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金35.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA和CDA 均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为米;②当1号车第二次恰好经过点C,此时两车行驶了分钟,这一段时间内1号车与2号车相遇了次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两种情况下,请问哪种情况用时较少(含候车时间)?请说明理由.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.(3)决策:①若游客乙在DA上从D向出口A走去,游客乙从D出发时恰好2号车在C处,当步行到DA上一点P(不与A,D重合)时,刚好与2号车相遇,经计算他发现:此时原地(P点)等候乘1号车到出口与直接从P步行到达出口A这两种方式,所花时间相等,请求出D点到出口A的路程.②当游客丙逛完景点C后准备到出口A,此时2号车刚好在B点,已知BC路程为600米,请你帮助游客丙做一下决策,怎样到出口A所花时间最少,并说明理由.【答案】(1)①4,800;②24,3;(2)情况一所用时间比较少,理由详见解析;(3)①D到A的路程为800 米;②丙应该选择乘坐1 号车所需时间最少.412分钟,第三次相遇时间为1220分钟,第四次相遇时间为2028分钟,∴这一段时间内1号车与2号车相遇了3次.故答案为:24,3;(2)情况一所用时间比较少,设CK=x米,由题意知,情况一需要时间为:16,情况二需要的时间为:16,∴情况一所用时间比较少;(3)①设P到A的路程为a米,则2号车从C→B→A→P的时间为分钟,∴D到P的路程为50,由题意知,,解得:a=320,∴D到P的路程为50=480米,∴D到A的路程为320+480=800米;②若丙选择乘坐1号车,所需时间为13分钟,若丙选择乘坐2号车,所需时间为21分钟,若丙选择步行到出口A,所需时间为32分钟,所以丙应该选择乘坐1号车所需时间最少.【关键点拨】本题考查了一元一次方程的应用,理解题意仔细剖析每种情形下路程的变化是解题的关键.36.已知一个四位自然数M的千、百、十、个位上的数字分别是、、、,若,且,则称自然数M是“关联数”,且规定.例如5326,因为,所以5326是“关联数”,且现已知式子(、、都是整数,,,)的值表示四位自然数,且是“关联数”,的各位数字之和是8的倍数.(1)当时,求;(2)当时,求的和.【答案】(1)3544,(2)-72.∴,,.∴.(2)当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3562.[来源]∴,.当时,的千、百、十、个位上的数字分别是3、、、.∵是“关联数”,∴,∴.∴的各位数字之和为.由题意,知是8的倍数,且,,,∴,,,或,,.∴,或3984.∴,.∴.∴的和是-72.【关键点拨】此题主要考察不等式的应用,正确理解题意,再列出相应的式子,但是要注意分开来求解. 37.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【答案】(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.(2)解:设小亮准备购买A甲内存卡a个,则购买乙内存卡(10﹣a)个,则解得5≤a≤6,根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低[来源:(3)解:设老板一上午卖了c个甲内存卡,d个乙内存卡,则10c+15d=100.整理,得2c+3d=20.∵c、d都是正整数,∴当c=10时,d=0;当c=7时,d=2;当c=4时,d=4;当c=1时,d=6.综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【关键点拨】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.38.三亚市某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生(2)如果该工厂生产一件A产品可获利80元,生产一件B产品可获利120元,那么该工厂应该怎样安排生产可获得最大利润?【答案】(1)见解析;(2)见解析.(2)方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大【关键点拨】本题主要考查一元一次不等式组的应用.39.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.则生产甲种产品件,生产乙种产品件.∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x[来源]=-0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【关键点拨】本题考查了用一元二次方程组的实际应用,一次函数的实际应用问题,建立函数模型是解题关键.40.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.【答案】(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=OF•AE=(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=OH•DH﹣(BG+DH)•GH﹣OG•BG,【关键点拨】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。
人教版数学九年级上册第9讲 不等式和不等式组的解法及应用-课件
这一
样个
的人
人所
才受
有的
学教
的
智
力
You made my day!
,
我们,还在路上……
0
【思路点拨】解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解 集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同 小取小;大小小大中间找;大大小小找不到.
A
No Image
【思路点拨】设买篮球m个,则买足球(50-m)个,根据购买足球和篮 球的总费用不超过3 000元建立不等式求出其解即可;根据题意结合购 买A型2台、B型3台需54万,购买A型4台、B型2台需68万元分别得出等 式求出答案;利用该企业每月的污水处理量不低于1 565吨,得出不等 式求出答案.
A
B 解析:移项,得-4x-3x≥-8-6,合并同类项,得-7x≥-14,系数化为1,得x≤2.故 其非负整数解为:0,1,2,共3个.故选B. 【思路点拨】先求出不等式的解集,再在数轴上表示出来即可;首先利用不等式的基本性质解 不等式,再从不等式的解集中找出适合条件的非负整数即可.
-3<x≤1
第9讲 不等式和不等式组的 解法及应用
C
解析:在四个命题中,只有④错误,其余三个均正确,故应选C. A
解析:x>-1在数轴上表示时不包括-1对应的点,是数轴上-1对应点右边的部分,x≤2包 括2对应的点,是数轴上2对应点及其左边的部分.
D
D
【思路点拨】不等式的基本性质:(1)不等式两边同加(或减)同一个数(或式子),不等号的方向 不变.(2)不等式两边同乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边同乘(或除 以)同一个负数,不等号的方向改变.
中考数学不等式和不等式组复习,知识点汇总,典型例题解析!
中考数学不等式和不等式组复习,知识点汇总,典型例题解
析!
中考数学不等式和不等式组复习
知识要点:
知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。
知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
知识点3、不等式的解集在数轴上的表示:
(1)x>a:数轴上表示a的点画成空心圆圈,表示a的点的右边部分来表示;
(2)x<a:数轴上表示a的点画成空心圆圈,表示a的点的左边部分来表示;
(3)x≥a:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的右边部分来表示;
(4)x≤a:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的左边部分来表示。
初中几何第07讲 几何不等式(1)
第七讲几何不等式(1)几何问题中出现的不等式称为几何不等式.解数学竞赛中出现的几何不等式,需要熟悉几何中有关的基本不等式和常用的定理,还要掌握代数方法和三角方法.1.有关证明线段不等的公理和定理(1) 在联结两点的所有线中,线段最短.(2) 在同一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.(3) 定点P到定直线的最短距离,是从P向定直线所作的垂线段的长.(4) 在两个三角形中,如果有两组对应边分别相等,那么夹角大的所对的第三边也大.(5) 托勒密不等式:在四边形ABCD中,有AB·CD+AD·BC≥AC·BD.当且仅当ABCD是圆内接四边形时等号成立.(6) 欧拉定理,欧拉不等式若△ABC的外接圆半径为R,内切圆半径为r,两圆心间的距离为d,则d=)2(rR-,当且仅当△ABC为正三角形时,d=0. R≥2rR(7) 埃德斯——莫德尔不等式设P为△ABC内任意一点,Ra, R b, Rc分别表示P到顶点A、B、C的距离,d a, d b, d c分别表示P到三边BC,CA,AB的距离,则R a+ R b+ R c≥2(d a+ d b+ d c)(8) 费尔马点在△ABC中,使PA+PB+PC为最小的平面上的点成为费尔马点,当∠BAC≥120°时,A点即为费尔马点,当△ABC内任一内角均小于120°时,则与三边张角均为120°时的P点即为费尔马点.2.有关证明角不等的定理(1)三角形的任何一个外角大于和它不相邻的任意一个内角.(2)在同一个三角形中,大边对大角,小边对小角,反之亦然.3.圆中有关不等量的知识(1)在同圆或等圆中,圆心角(锐角)大则所对的弧大、弦大、弦心距小.(2)过圆内一定点的弦中,以此点为中点的弦最小.(3)若A,B,C为圆上的点,P为圆外的点,Q为圆内的点,且P,C,Q都在直线AB的同侧,则∠AQB >∠ACB >∠APB,4. 有关面积的几何不等式(1) 外森比克不等式:设△ABC的边长和面积分别为a, b, c和S,则a2+b2+c2S3≥,当且仅当△ABC为正三角形时等号成立.4(2) 等周定理:周长一定的三角形中,以正三角形的面积最大;周长一定的矩形中,以正方形的面积最大.5.几何不等式的证明有时还要用到代数知识(如平均不等式等)和三角知识.例1. (1995 IMO)凸六边形ABCDEF,满足AB= BC= CD,DE=EF=FA,∠BCD=∠EFA=60º.设G和H是这六边形内部的两点,使得∠AGB=∠DHE= 120º.试证:AG+ GB+ GH+ DH+ HE≥CF.例2. 已知正方形ABCD内部一点E,并且E到三个顶点A,B,C的距离之和的。
全国初中数学竞赛辅导(初2)第23讲 几何不等式
第 十 讲 几何 等式平面图形中所含的线段长度、角的大小及图形的面 在许多情形 会呈现 等的关系.由于 些 等关系出现在几何问题中 故 之 几何 等式.在解决 类问题时 们 常要用到一些教科书中已学过的基本定理 本讲的 要目的是希望大家 确运用 些基本定理 通过几何、 角、代数等解题方法去解决几何 等式问题. 些问题难度较大 在解题中除了运用 等式的性质和已 证明过的 等式外 需考虑几何图形的特点和性质.几何 等式就 形式来说 外乎分 线段 等式、角 等式以及面 等式 类 在解题中 仅要用到一些有关的几何 等式的基本定理 需用到一些图形的面 公式. 面先给出几个基本定理.定理1 在 角形中 任两边之和大于第 边 任两边之差小于第 边.定理2 一个 角形中 大边对大角 小边对小角 反之亦然.定理3 在两边对应相等的两个 角形中 第 边大的 所对的角 大 反之亦然.定理4 角形内任一点到两顶点距离之和 小于另一顶点到 两顶点距离之和.定理5自直线l外一点P引直线l的斜线 射影较长的斜线 较长 反之 斜线长的射影 较长.说明 如图2-135所示.PA PB是斜线 HA和HB分别是PA和PB在l 的射影 若HA HB 则PA PB 若PA PB 则HA HB. 实由勾股定理知PA2-HA2称PH2称PB2-HB2所以PA2-PB2称HA2-HB2.从而定理容易得证.定理6 在△ABC中 点P是边BC 任意一点 则有PA max{AB AC}当点P A或B时等号 立.说明 max{AB AC}表示AB AC中的较大者 如图2-136所示 若P 在线段BH 则由于PH BH 由 面的定理5知PA BA 从而PA max{AB AC}.理 若P在线段HC 样有PA max{AB AC}.例1 在锐角 角形ABC中 AB AC A≤ 中线 P △A≤C内一点 证明 PB PC(图2-137).证 在△A≤B △A≤C中 A≤是公共边 B≤称≤C 且AB AC 由定理3知 ∠A≤B ∠A≤C 所以∠A≤C 90°.过点P作PH⊥BC 垂足 H 则H必定在线段B≤的延长线 .如果H在线段≤C内部 则BH B≤称≤C HC.如果H在线段≤C的延长线 显然BH HC 所以PB PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证a b c(2)若△ABC 角形 且边长 1 求证PA+PB PC 2.证 (1)由 角形两边之和大于第 边得PA PB c PB PC a PC PA b.把 个 等式相加 再两边除以2 便得又由定理4可知PA PB a b PB PC b cPC+PA c a.把它们相加 再除以2 便得PA PB PC a b c.所以(2)过P作DE∥BC交 角形ABC的边AB AC于D E 如图2-138所示.于是PA max{AD AE} ADPB BD DP PC PE EC所以PA PB PC AD BD DP PE EC称AB AE EC称2.例3如图2-139.在线段BC 侧作两个 角形ABC和DBC 使得AB称AC DB DC 且AB AC称DB DC.若AC BD相交于E 求证 AE DE.证 在DB 取点F 使DF称AC 并连接AF和AD.由已知2DB DB+DC称AB+AC称2AC所以 DB AC.由于DB DC称AB AC称2AC 所以DC BF称AC称AB.在△ABF中AF AB-BF称DC.在△ADC和△ADF中AD称AD AC称DF AF CD.由定理3 ∠1 ∠2 所以AE DE.例4 设G是 方形ABCD的边DC 一点 连结AG并延长交BC延长线于K 求证分析 在 等式两边的线段数 的情况 一般是设法构造 所边的 角形.证 如图2-140 在GK 取一点≤ 使G≤称≤K 则在Rt△GCK中 C≤是GK边 的中线 所以∠GC≤称∠≤GC.而∠ACG称45° ∠≤GC ∠ACG 于是∠≤GC 45°所以∠AC≤称∠ACG ∠GC≤ 90°.由于在△AC≤中∠AC≤ ∠A≤C 所以A≤ AC.故例5如图2-141.设BC是△ABC的最长边 在 角形内部任选一点O AO BO CO分别交对边于A′ B′ C′.证明(1)OA′ OB′ OC′ BC(2)OA′ OB′+OC′ max{AA′ BB′ CC′}.证 (1)过点O作O下 O同分别平行于边AB AC 交边BC于下 同点 再过下 同分别作下S 同T平行于CC′和BB′交AB AC于S T.由于△O下同∽△ABC 所以下同是△O下同的最大边 所以OA′ max{O下 O同} 下同.又△B下S∽△BCC′ 而BC是△BCC′中的最大边 从而B下 是△B下S 中的最大边 而且S下OC′是平行四边形 所以B下 下S称OC′.理C同 OB′.所以OA′ OB′ OC′ 下同 B下 C同称BC.所以OA′ OB′+OC′称x·AA′+y·BB′ z·CC′(x+y+z)max{AA′ BB′ CC′}称max{AA′ BB′ CC′}面 们举几个 角有关的 等式问题.例6 在△ABC中 D是中线A≤ 一点 若∠DCB ∠DBC 求证 ∠ACB ∠ABC(图2-142).证 在△BCD中 因 ∠DCB ∠DBC 所以BD CD.在△D≤B △D≤C中 D≤ 公共边 B≤称≤C 并且BD CD 由定理3知 ∠D≤B ∠D≤C.在△A≤B △A≤C中 A≤是公共边 B≤称≤C 且∠A≤B ∠A≤C 由定理3知 AB AC 所以∠ACB ∠ABC.说明 在证明角的 等式时 常常把角的 等式转换 边的 等式.证 由于AC AB 所以∠B ∠C.作∠ABD称∠C 如图2即证BD∠CD.因 △BAD∽△CAB即 BC 2BD.又 CD BC-BD所以BC CD 2BD BC-BD所以 CD BD.从而命题得证.例8在锐角△ABC中 最大的高线AH等于中线B≤ 求证 ∠B 60°(图2-144).证 作≤H1⊥BC于H1 由于≤是中点 所以于是在Rt△≤H1B中∠≤BH1称30°.延长B≤至≥ 使得≤≥称B≤ 则ABC≥ 平行四边形.因 AH 最ABC中的最短边 所以A≥称BC AB从而∠AB≥ ∠A≥B称∠≤BC称30°∠B称∠AB≤+∠≤BC 60°.面是一个非常著 的问题——费马点问题.例9 如图2-145.设O △ABC内一点 且∠AOB称∠BOC称∠COA称120°P 任意一点( 是O).求证PA PB+PC OA+OB+OC.证 过△ABC的顶点A B C分别引OA OB OC的垂线 设 条垂线的交点 A1 B1 C1(如图2-145) 考虑四边形AOBC1.因∠OAC1称∠OBC1称90° ∠AOB称120°所以∠C1称60°. 理 ∠A1称∠B1称60°.所以△A1B1C1 角形.设P到△A1B1C1 边B1C1 C1A1 A1B1的距离分别 ha hb hc 且△A1B1C1的边长 a 高 h.由等式S△A1B1C1称S△PB1C1+S△PC1A1 S△PA1B1知所以 h称h a h b h c.说明 △A1B1C1内任一点P到 边的距离和等于△A1B1C1的高h 是一个定值 所以OA OB OC称h称定值.显然 PA PB PC P到△A1B1C1 边距离和 所以PA PB PC h称OA OB OC.就是 们所要证的结论.由 个结论可知O点 有如 性质 它到 角形 个顶点的距离和小于 他点到 角形顶点的距离和 个点叫费马点.练 十1.设D是△ABC中边BC 一点 求证 AD 大于△ABC中的最大边.2.A≤是△ABC的中线 求证3.已知△ABC的边BC 有两点D E 且BD称CE 求证 AB AC AD AE.4.设△ABC中 ∠C ∠B BD CE分别 ∠B ∠C的平分线 求证 BD CE.5.在△ABC中 BE和CF是高 AB AC 求证AB+CF AC BE.6.在△ABC中 AB AC AD 高 P AD 的任意一点 求证PB-PC AB-AC.7.在等腰△ABC中 AB称AC.(1)若≤是BC的中点 过≤任作一直线交AB AC(或 延长线)于DE 求证 2AB AD+AE.(2)若P是△ABC内一点 且PB PC 求证 ∠APB ∠APC.。
初中不等式经典例题
初中不等式经典例题一、例题11. 若不等式3x - a ≤ 0的正整数解是1、2、3,求a的取值范围。
这题啊,可有点小绕呢。
首先我们来解这个不等式3x - a ≤ 0,把它变形一下就得到x ≤ a/3。
正整数解是1、2、3,那就是说3肯定是满足这个不等式的,所以3 ≤ a/3,这就得出a ≥ 9。
但是呢,4就不满足这个不等式了,要是4满足的话正整数解就不止1、2、3了,所以4 > a/3,也就是a < 12。
所以啊,a的取值范围就是9 ≤ a < 12。
2. 已知关于x的不等式组{x - a > 0,1 - x > 0}的整数解共有3个,求a的取值范围。
先看这个不等式组,x - a > 0,那就是x > a;1 - x > 0,变形一下就是x < 1。
这个不等式组的解集就是a < x < 1。
它的整数解共有3个,那这三个整数解肯定是 - 2, - 1,0啊。
所以 - 3 ≤ a < - 2。
为什么呢?要是a < - 3的话,整数解就不止3个了,要是a ≥ - 2的话,整数解就没3个了,是不是很有趣呢?二、例题21. 解不等式2(x - 1) + 5 < 3x。
这题看着简单,可也有不少同学会犯错哦。
我们先把括号展开,2x - 2 + 5 < 3x,然后把含有x的项移到一边,常数项移到另一边,就得到2x - 3x < 2 - 5,也就是 - x < - 3。
两边同时除以 - 1,注意哦,除以一个负数的时候,不等式要变号,所以x > 3。
2. 若不等式组{x + 8 < 4x - 1,x > m}的解集是x > 3,求m 的取值范围。
先解x + 8 < 4x - 1,移项得到x - 4x < - 1 - 8, - 3x < - 9,x > 3。
这个不等式组的解集是x > 3,还有个x > m,那m肯定是小于等于3的。
九年级数学不等式组知识点
九年级数学不等式组知识点一、引言数学中的不等式组是九年级数学课程中重要的一部分内容。
对于数学不等式组的学习,不仅可以提高我们的逻辑思维能力,还具有一定的实际应用价值。
本文将介绍九年级数学不等式组的一些基础知识点,并结合例题进行详细说明和解答。
二、基本定义不等式组是由若干个不等式同时存在而组成的方程系统。
九年级数学中常见的不等式组有一元一次不等式组和二元一次不等式组。
一元一次不等式组的形式为:{ax + by > cdx + ey < f其中 a、b、c、d、e、f 均为已知实数,x 和 y 为未知数。
三、线性不等式组求解方法1. 图像法:可以通过将不等式关系图像与坐标系相交的部分确定不等式组的解区域。
在确定解区域时,注意考虑不等式中的等号情况。
2. 列表法:通过列出可能满足不等式组的数值,然后在列出的数值中选择符合给定不等式组的解即可。
3. 消元法:通过逐步消元,将不等式组转化成更简单的不等式,最终得到不等式组的解。
四、实例分析我们通过一个实例来详细说明不等式组的求解方法。
例题:解不等式组{2x + 3y > 5x - y <= 4解:首先,我们通过图像法确定解区域:先画图像 {2x + 3y > 5,即 2x + 3y = 5然后画图像 x - y <= 4,即 x - y = 4通过计算可以得到交点坐标为 (3, -1)由于不等式组中的等号存在,因此我们应该在图像中考虑等号的情况。
即在不等式组的解区域上方和右下方的部分。
接下来,我们使用列表法来求解:x 的取值可能是 -2,-1,0,1,2,3,4,5对于每个 x 的取值,我们可以计算出相应的 y 的取值。
通过计算我们得到如下表格:x -2 -1 0 1 2 3 4 5y 7 4 5 2 -1 -4 -7 -10通过观察表格,我们可以得出不等式组的解为 {(x, y) | x >= 3, y <= -4}。
人教版九年级数学--利用函数图象求解不等式
y1 2 x 1
y 1
1
y2 x 2
思考:解法2呢?
1 2 -2
x
O
新知2:
当自变量取同一个值时,几个函数值比 大小,关键看哪个函数的图象在上方, 图象在上方的函数值大于图象在下方的 函数值。
1、已知一次函数 y1 a1x b1与 y2 a2 x b2 y y a x b 的图像如图所示: 1 1 1
由图象知,两直线交于点 (2,9),所以 原方程组的解为
y 9
y =2x+5
x=2 . y=9
2
复习:两个函数图像的交点坐标就是对应 函数解析式所组成的方程组的解,反之也成立。 O
x
画出下列函数的图象
y 3 x3 2
结合图象思考:
(1) x取何值,函数图象在x轴上方(y > 0)? (2) x取何值,函数图象在x轴下方(y < 0)?
试用两种方法比较自变量取同一个值时对应的函 数值的大小?
解:解法 1 (图象法),在同一坐标系中作出一次函数 的图象。 y 2 x 1 y2 x 2
1
y1 2 x 1
y
观察可知,
当 x = 1 时, y1 与 y2 的函数 y2 x 2 图 象 相 交 于 ( 1 , -1 ) , 即 y1 = y2 ;
例1 用函数图象法解不等式5x+4< 2x+10 。
解:原不等式化为 3x-6 < 0,画出直线 y=3x-6 y O -6 2 y = 3x -6
。
x
y<0
观察图象:当x < 2 时直线上的点在x轴的下方, 即这时y=3x-6< 0,所以不等式3x-6< 0的解集 为x<2。
2023中考九年级数学分类讲解 - 第四讲 不等式(组)(含答案)(全国通用版)
第四讲 不等式(组)专项一 不等式的性质知识清单1. 不等式:一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子,叫做 ;能使不等式成立的未知数的值叫做不等式的 ;一个含有未知数的不等式的所有的解,组成这个不等式的 ;求不等式的解集的过程叫做 .2. 不等式的性质:(1)性质1:不等式两边都加(或减)同一个 ,不等号的方向不变,即如果a>b ,那么a±c>b±c.(2)性质2:不等式两边都乘(或除以)同一个 ,不等号的方向不变,即如果a>b ,c>0,那么ac>bc a b c c ⎛⎫> ⎪⎝⎭或. (3)性质3:不等式两边都乘(或除以)同一个 ,不等号的方向改变,即如果a>b ,c<0,那么ac<bc a b c c ⎛⎫< ⎪⎝⎭或. 考点例析例 已知a>b ,下列结论:①a 2>ab ;②a 2>b 2;③若b<0,则a+b<2b ;④若b>0,则ba 11<.其中一定正确的个数是( )A. 1B. 2C. 3D. 4 分析:先判断各个结论中不等式的两边是对原不等式的两边作了怎样的变形,再根据不等式的性质作出判断即可.归纳:不等式的性质是解不等式的依据.运用不等式的性质对不等式变形时,一定要注意在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.跟踪训练1.若-3a>1,两边都除以-3,得( ) A. a<13- B. a>13- C. a<-3 D. a>-32.若a>b ,则下列不等式不一定成立的是( )A. a-5>b-5B. -5a<-5bC. a c >b cD. a+c>b+c3.已知a>b ,则一定有-4a -4b ,“ ”中应填的符号是( )A. >B. <C. ≥D. =专项二 一元一次不等式的解法及解集表示知识清单 1. 只含有 未知数,并且未知数的次数是 的不等式叫做一元一次不等式.2. 解一元一次不等式的一般步骤:去分母、 、 、 、系数化为1.3. 不等式的解集在数轴上的表示:大于向 画,小于向 画,有等号画 ,无等号画 .考点例析例 解不等式:7132184x x --->. 分析:按去分母、去括号、移项、合并同类项、系数化为1的步骤解不等式即可.解:归纳:解一元一次不等式与解一元一次方程的步骤相同,区别在于将不等式两边同乘(或除以)一个负数时,不等号的方向要改变.跟踪训练1.不等式3x-1>5的解集是( )A. x>2B. x<2C. x>43D. x<43 2.不等式113x x -<+的解集在数轴上表示正确的是( )A B C D3.一个不等式的解在数轴上表示如图所示,则这个不等式可以是( )A. x+2>0B. x-2<0C. 2x ≥4D. 2-x<0第3题图 4.关于x 的不等式13x-1>12的解集是 . 5.不等式2(y+1)<y+3的解集是 .6.解不等式:4233-1+-<-x x x . 7.下面是小明同学解不等式的过程,请认真阅读并完成相应任务.1223312-->-x x 解:2(2x-1)>3(3x-2)-6………………第一步4x-2>9x-6-6…………………………………第二步4x-9x>-6-6+2……………………………… 第三步-5x>-10………………………………………第四步x>2………………………………………… 第五步 任务一:填空:①以上解题过程中,第二步是依据 (运算律)进行变形的; ②第 步开始出现错误.这一步错误的原因是 ;任务二:请直接写出该不等式的正确解集.解:________________专项三 一元一次不等式组的解法及解集表示知识清单1. 一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.2. 一元一次不等式组中各个不等式解集的 ,叫做这个不等式组的解集.3. 一元一次不等式组解集的确定:不等式组(a<b ) 数轴表示 解 集 口 诀x a x b ≥⎧⎨≥⎩, ________ 同大取大⎩⎨⎧≤≤bx a x , ________ 同小取小 ⎩⎨⎧≤≥b x a x , ________大小小大中间找 ⎩⎨⎧≥≤b x a x ,________ 大大小小无处找 注:①口诀中“大”“小”各自的含义不同;②可以将图形和口诀结合起来记忆.考点例析例解不等式组21 410 1.x x x x ≥-⎧⎨+>+⎩,①②请按下列步骤完成解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .分析:先求出每个不等式的解集,再利用数轴确定解集的公共部分,进而写出不等式组的解集.解:归纳:解一元一次不等式是解一元一次不等式组的基础,利用数轴的直观性确定各不等式解集的公共部分,进而写出不等式组的解集.跟踪训练1.不等式组1<2x-3<x+1的解集是( )A. 1<x<2B. 2<x<3C. 2<x<4D. 4<x<52.不等式组⎪⎩⎪⎨⎧-≥->-12102x x ,的解集在数轴上表示正确的是( )A B C D3.不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩,的解集为 .4.解不等式组:581223x x x x ≥+⎧⎪⎨+>-⎪⎩, ①,②并把解集在数轴上表示出来. 5.以下是圆圆解不等式组()()2111 2 x x +>-⎧⎪⎨-->-⎪⎩,①②的解答过程:解:由①,得2+x>-1,所以x>-3.由②,得1-x>2,所以-x>1.所以x>-1. 所以原不等式组的解集是x>-1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.专项四 不等式(组)的特殊解知识清单求不等式(组)的特殊解(整数解、非负数解等)的一般步骤:先求出不等式(组)的解集,再在解集内确定其特殊解.利用数轴的直观性可快速、准确地找出其特殊解.考点例析例下列数值不是不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩,的整数解的是( ) A. -2 B. -1 C. 0 D. 1分析:先分别求出不等式组中两个不等式的解集,然后再确定解集的公共部分,即为不等式组的解集,对各选项逐一判断,找出不等式组的解集范围内的即可.归纳:求不等式(组)的特殊解时,要注意解集的界点,如求整数解时,实心圆点所表示的实数如果是整数,则该点也为解之一,如果不是整数,则要从解集中离该点最近的整数点开始算起;空心圆圈所表示的点如果是整数,则整数解取不到该点,如果不是整数,则要从解集中离该点最近的整数点开始算起.若求最大整数解,则找数轴上解集中最右边的整数解,若求最小整数解,则找数轴上解集中最左边的整数解.跟踪训练1.在一元一次不等式组21050xx+>⎧⎨-≤⎩,的解集中,整数解的个数是()A. 4B. 5C. 6D. 72.不等式组2217xx>⎧⎨+≤⎩,的整数解为.3.当x取何正整数时,代数式32x+与213x-之差大于1?4.解不等式组105212xxx-<⎧⎪⎨+≥-⎪⎩,,并写出满足不等式组的所有整数解.专项五一元一次不等式的应用知识清单列一元一次不等式解应用题,可分为审题、设未知数、找不等关系、列不等式、解不等式、写答案等步骤,需要注意求得的解要符合实际.考点例析例1小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A. 5×2+2x≥30B. 5×2+2x≤30C. 2×2+2x≥30D. 2×2+5x≤30分析:设小明还能买x支签字笔,利用总价=单价×数量,结合总价不超过30元,即可得出关于x的一元一次不等式.例2某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车.已知购买1辆A型公交车和2辆B型公交车需要165万元;2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?分析:(1)设A型公交车每辆x万元,B型公交车每辆y万元,根据题目中给的等量关系,列出关于x,y的二元一次方程组并解答;(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,根据购买A型公交车的总费用不高于B型公交车的总费用列出关于m的一元一次不等式并解答.解:归纳:列不等式解应用题的关键是找出不等关系,并根据题目中的一些关键词语选择恰当的不等号,如“至少”“最多”“超过”“不低于”“不高于”等.跟踪训练1.某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买A,B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的25,则在购买方案中最少费用是元.2.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?3.为了改善湘西北地区的交通,我省正在修建长(沙)—益(阳)—常(德)高铁,其中长益段将于2021年底建成. 开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7∶9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?4.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15 500元,学校最多可以购买多少个篮球?专项六利用数形结合确定不等式(组)中字母的取值知识清单已知一个不等式(组)的解集求其中字母的取值,是中考常涉及的问题,这类问题综合性强、灵活性高,可以借助数轴,利用数形结合思想直观求解.考点例析例若关于x的不等式组2312xx a+>⎧⎨-≤⎩,恰有3个整数解,则实数a的取值范围是()A. 7<a<8B. 7<a≤8C. 7≤a<8D. 7≤a≤8分析:解2x+3>12,得x>4.5;解x-a≤0,得x≤a.因为原不等式组有且只有3个整数解,所以其整数解为5,6,7,画出图形如图所示:由图可知,若a等于7,则有x≤7,原不等式组的解集为4.5<x≤7,正好有3个整数解5,6,7,符合题意;若a等于8,则有x≤8,原不等式组的解集为4.5<x≤8,就有4个整数解5,6,7,8,不符合题意.所以7≤a<8. 归纳:解此类问题的方法是根据不等式(组)的解集情况重新确定一个关于字母的不等式,从而求出字母的取值范围.易错之处是两个临界点能不能重合(即能不能取“=”号),如例题中应先确认a介于何值之间,再对是否能取到临界值进行分析.跟踪训练1.如果不等式组541x xx m+<-⎧⎨>⎩,的解集为x>2,那么m的取值范围是()A. m≤2B. m≥2C. m>2D. m<22.若关于x的不等式x+m<1只有3个正整数解,则m的取值范围是.3.关于x的不等式组23023xx a->⎧⎨-<⎩,恰好有2个整数解,则实数a的取值范围是.4.若关于x的不等式组12420x ax⎧->⎪⎨⎪-≥⎩,无解,则a的取值范围为.参考答案专项一不等式的性质例 A1. A2. C3. B专项二一元一次不等式的解法及解集表示例去分母,得8-(7x-1)>2(3x-2).去括号,得8-7x+1>6x-4.移项,得-7x-6x>-4-8-1.合并同类项,得-13x>-13.系数化为1,得x<1.1. A2. B3. B4. x>925. y<16. 解:去分母,得4(1-x)-12<3×12-3(x+2).去括号,得4-4x-12<36-3x-6.移项,得-4x+3x<36-6-4+12.合并同类项,得-x<38.系数化为1,得x>-38.7. 任务一:①乘法分配律(或分配率)五不等式两边都除以-5,不等号的方向没有改变任务二:x<2专项三一元一次不等式组的解法及解集表示例(1)x≥-1 (2)x>-3 (3)(4)x≥-1 1. C 2. C3. -1≤x<24. 解:解不等式①,得x≥2.解不等式②,得x<7.所以不等式组的解集在数轴上表示如图所示:所以原不等式组的解集为2≤x<7.5. 解:圆圆的解答过程有错误.正确的解答过程:由①,得2+2x>-1,所以x>3 2 -.由②,得-1+x>-2,所以x>-1.所以原不等式组的解集是x>-1.专项四不等式(组)的特殊解例 A1. C2. 33. 解:根据题意,得32x+-213x->1.去分母,得3(x+3)-2(2x-1)>6.去括号,得3x+9-4x+2>6.移项、合并同类项,得-x>-5.系数化为1,得x<5.因为x为正整数,所以x可取1,2,3,4.4. 解:解不等式x-1<0,得x<1.解不等式522x+≥x-1,得x≥43-.所以原不等式组的解集为43-≤x<1.所以不等式组的整数解为-1,0.专项五一元一次不等式的应用例1 D例2(1)设A型公交车每辆x万元,B型公交车每辆y万元.根据题意,得216523270x yx y+=⎧⎨+=⎩,.解得4560xy=⎧⎨=⎩,.答:A型公交车每辆45万元,B型公交车每辆60万元.(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车.根据题意,得45m≤60(140-m),解得m≤80.答:该公司最多购买80辆A型公交车.1. 3302. 解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次. 根据题意,得31+2x+x=100,解得x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,根据题意,得9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.3. 解:(1)设长益段高铁全长为x 千米,长益城际铁路全长为y千米.根据题意,得4013.601630y xy x=+⎧⎪⎨=⨯⎪⎩,解得64104.xy=⎧⎨=⎩,答:长益段高铁全长为64千米,长益城际铁路全长为104千米. (2)设甲队后期每天施工a千米.甲原来每天的施工长度为64÷40×716=0.7(千米),乙每天的施工长度为64÷40×916=0.9(千米).根据题意,得0.7×5+0.9×(40-3)+(40-3-5)a≥64,解得a≥0.85.答:甲工程队后期每天至少施工0.85千米,可确保工程提早3天以上(含3天)完成.4. 解:(1)设每个足球x元,则每个篮球(2x-30)元.根据题意,得12009002230x x=⨯-,解得x=60.经检验,x=60是分式方程的根,且符合题意. 2x-30=90.答:每个足球60元,每个篮球90元.(2)设买篮球m个,则买足球(200-m)个.根据题意,得90m+60(200-m)≤15 500,解得m≤2 1163.因为m为正整数,所以最多购进篮球116个.专项六利用数形结合确定不等式(组)中字母的取值例C1. A2. -3≤m<-23. 0<a≤0.54. a≥1第11页。
几何不等式讲解
几何不等式讲解∴CD BE AC AB =,ADAE AC AB = ∴BE AC CD AB ⋅=⋅ (1) 又DAE BAC ∠=∠ ∴ABC ∆∽AED ∆∴ADAC DE BC =∴DE AC AD BC ⋅=⋅ ∴BD AC DE BE AC DE AC BE AC AD BC CD AB ⋅≥+⋅=⋅+⋅=⋅+⋅)(上式等号成立当且仅当E 在对角线BD 上.此时ACD ABD ∠=∠,从而四边形内接于圆.证明2:复数法:设A 、B 、C 、D 对应的复数分别是1z 、2z 、3z 、4z用到下面的恒等式142324313412()()()()()()0z z z z z z z z z z z z --+--+--=则12341423|()()||()()|AB CD AD BC z z zz z z z z ⋅+⋅=--+--12341423|()()()()|z z z z z z z z ≥--+--2431|()()|z z z z AC BD=---=⋅(2)(嵌入不等式) 设,,,(21),x y z R A B C k k Z π∈++=+∈, 求证:Cxy B zx A yz z y xcos 2cos 2cos 2222++≥++等号成立的充要条件是:B z C y x cos cos +=及B z C y sin sin =. 证明:Cxy B zx A yz z y xcos 2cos 2cos 2222---++)cos(2)cos cos (2222C B yz z y x C y B z x +++++-=222)sin sin ()cos cos ()cos cos (2C y B z C y B z x C y B z x -++++-=)sin sin ()cos cos (22≥-+--=C y B z C y B z x 当且仅当Bz C y x cos cos +=且Bz C y sin sin =时取等号CC(3)艾尔多斯——莫迪尔(Erdos —Mordell )不等式:在ABC∆内部任取点P ,,Ad Bd ,Cd 分别表示由点P 到顶点C B A ,,之间的距离,cb ad d d ,,分别表示由点P 到边ABCA BC ,,的距离,则)(2c b a C B Ad d d d d d++≥++证明1:过P 作直线XY 分别交AC AB ,于Y X ,,使ABC AYX ∠=∠则AYX ∆∽ABC ∆ ∴BCABXY AY BC AC XY AX ==, 又∵Ab c AXYd XY d AY d AX S ⋅≤⋅+⋅=∆212121∴b c Ad XYAY d XY AX d⋅+⋅≥即b c Ad BCABd BC AC d⋅+⋅≥同理:a c B d ACABd AC BC d ⋅+⋅≥a b C d ABACd AB BC d ⋅+⋅≥∴)(2c b a C B A d d d d d d ++≥++证明2:F A E P ,,,四点共圆 则Ad AEF=sin 在EFP∆中,由余弦定理)cos(2222C B d d d d EF b c b c +⋅⋅-+=22)sin sin ()cos cos (C d B d C d B d b c b c ++-=2)sin sin (C d B d b c +≥∴Cd B d EF b c sin sin +≥ ∴bc Ad ACd A B dsin sin sin sin +≥同理ac Bd BCd B A d sin sin sin sin +≥ac Cd CBd C A d sin sin sin sin +≥∴)(2c b a C B A d d d d d d ++≥++证明3:设γβα=∠=∠=∠CPA BPC APB ,,则αcos 2222⋅⋅-+=B A B A d d d d ABβcos 2222⋅⋅-+=C B C B d d d d BC γcos 2222⋅⋅-+=A C A C d d d d CA又βsin 2121⋅⋅=⋅C B ad d dBC∴)cos 1(2)(sin cos 2sin 222ββββ-⋅⋅+-⋅⋅=⋅⋅-+⋅⋅=C B C B C B C B C B C B ad d d d d d d d d d d d d2cos 212sin 22sin )cos 1(2sin 2βββββC B C B C B C B C B d d d d d d d d d d ⋅=⋅⋅⋅⋅=-⋅⋅⋅⋅≤即2cos 21βC B ad d d⋅≤同理2cos 21γA C bd d d⋅≤2cos 21αB A cd d d⋅≤)2cos 2cos 2cos (21αγβB A A C C B c b a d d d d d d d d d ⋅+⋅+⋅≤++)(21C B A d d d ++≤(嵌入不等式) 证明四: 设2,2,2BPC CPA APB αβγ∠=∠=∠=,且αβγπ++=设它们的内角平分线长分别是a b cw w w 、、,且a ab bc cw d w d w d ≥≥≥、、只要证更强的结论2()AB C a b c dd d w w w ++≥++a B Cw =B C =又222cos 22B C B Cd d a d d α+-=,即2222cos 2B C B C dd a d d α+-=∴2cos B C B Ca B C B Cd d d d w d d d d αα==≤++ 同理b w β≤,c w γ=∵αβγπ++= ∴由嵌入不等式得2())a b c A B Cw w w d d d αβγ++≤≤++(4)外森比克不等式:设ABC ∆的边长和面积分别为c b a ,,和S ,则Sc b a34222≥++,当且仅当ABC ∆为正三角形时等号成立.证明方法很多,证明略5.费尔马(Fermat )问题:在ABC ∆中,使PC PB PA ++为最小的平面上的P 点称为费尔马点.当︒≥∠120BAC 时,A 点为费尔马点;当ABC ∆中任一内角都小于︒120时,则与三边张角为︒120的P 点为费尔马点.例1 已知ABC ∆,设I 是它的内心,C B A ∠∠∠,,的内角平分线分别交其对边于///,,C B A ,求证:27841///≤⋅⋅⋅⋅<CCBB AA CI BI AI .证明:令c AB b CA a BC ===,,由角平分线定理,易得cb ab C Ac B A IA IA +===///∴cb cb a IA AA +++=/∴cb ac b AAIA+++=/易得121<+++<++++=c b a c b c b c b c b ∴)1,21(/∈+++=c b a c b AAIA同理)1,21(/∈+++=cb ac a BB IB)1,21(/∈+++=cb a b a CC IC 则2/////=++CCIC BB IB AA IA处理(1)令3/2/1/21,21,21t CCIC t BB IB t AAIA+=+=+=,则21),1,21(,,321321=++∈t t t tt t∴2783)21()21()21()21)(21)(21(3321321=⎪⎪⎪⎪⎭⎫⎝⎛+++++≤+++t t t t t t∴41)(21)(4181)21)(21)(21(321133221321321>+++++++=+++t t t t t t t t t t t tt t t∴27841///≤⋅⋅⋅⋅<CCBB AA CIBI AI处理(2)令z CC ICy BB IB x AAIA===///,,,则2=++z y x ,且1,,(,1)2x y z ∈ ∴278)3(3=++≤z y x xyz21113139(2)(2)()[()]22222416xyz x x z z z z z z z =-->--=-=--+又112z <<(2139[()]2416z --+在区间端点取到最小值)∴221391391[()][(1)]241624164xyz z >--+>--+=处理(3)利用内切圆与三角形的切点把每条边分成两部分作变换令m k c k n b n m a +=+=+=,,)(22)(22)(22///k n m kn m k n m k n m k n m k n m CC BB AA CI BI AI ++++⋅++++⋅++++=⋅⋅⋅⋅41)(8))(()()(333>+++++++++++++=k n m mnk k n m nk mk mn k n m k n m说明:证明关于三角形内各元素的各种不等式时,常作如下变换:(由于三角形的内切圆存在,三条边总可表示为))0,,(,,,>+=+=+=z y x x z c z y b y x a ,反之,若三个正数c b a ,,可以表示为上述形式,则c b a ,,一定是某个三角形的三边,并且相应的三角形的其它元素也可以通过上面变换用z y x ,,表示,有关三角B形的一些几何不等式都可以化为关于z y x ,,的代数不等式 例2 设P 是ABC ∆内的一个点,S R Q ,,分别是C B A ,,与P 的连线与对边的交点(如图),求证:ABC QRSS S∆∆≤41.(QRS ∆三角形)(分析:利用补集思想)证ABC CQR BSQ ASR S S S S ∆∆∆∆≥++43证明1:令γβα===RA CR QC BQ SB AS ,,,则由塞瓦定理1=αβγ 则)1)(1(++=⋅⋅=∆∆γααAC AB AR AS SSABCASR同理)1)(1(++=⋅⋅=∆∆αββAB BC BS BQ SS ABCBSQ、)1)(1(++=⋅⋅=∆∆βγγAB BC CR CQ SS ABCCQR只要证明ABC CQR BSQ ASRS S S S∆∆∆∆≥++43即43)1)(1()1)(1()1)(1(≥++++++++βγγαββγαα只要证0)()(6≤++-++-γβαγαβγαβ只要证0)]()111[(6≤+++++-γβαγβα显然6)()111(≥+++++γβαγβα当12αβγ===时取等号,此时P 是ABC ∆的重心 证明2: 设zS y S x SPAB PBC PAC===∆∆∆,,则zxQB QC y z RC RA x y SA SB===,,、))((y z y x xzAC AB AR AS S S ABCASR ++=⋅⋅=∆∆同理))((x z x y yz AB BC BS BQ SS ABCBSQ++=⋅⋅=∆∆、))((z y z x xyAB BC CR CQ SS ABCCQR++=⋅⋅=∆∆ 只要证明ABC CQR BSQ ASRS S S S∆∆∆∆≥++43即43))(())(())((≥++++++++z y z x xy x z x y yz y z y x xzB通分整理3()()()()()()4xz x z yz y z xy x y x y y z z x +++++≥+++ 即22223()()()()()()4x y z y z x z x yx y y zz x +++++≥+++364xyz≥⋅=只要证xyz y x z z y x z x y 6)()()(222≥+++++事实上)()()(222y x z z y x z x y+++++ )()(222222zx yz xy x z z y y x+++++=xyzxyz xyz zx yz xy x z z y y x 6333332223222=+=⋅⋅+⋅⋅≥当且仅当z y x ==时取等号,此时P 是ABC ∆的重心证明3:令,,AS BQ CR AB BC CA αβγ===,且)1,0(,,∈γβα则1,1,1BS CQ ARAB BC CAαβγ=-=-=- 由塞瓦定理得)1)(1)(1(γβααβγ---=整理得()12αβγαββγγααβγ++-++=-)1(γα-=⋅⋅=∆∆ACAB ARAS S S ABC ASR 、同理)1(αβ-=⋅⋅=∆∆ABBC BS BQ SSABCBSQ 、)1(βγ-=⋅⋅=∆∆ABBC CRCQ SSABCCQR只要证43)1()1()1(≥-+-+-βγαβγα 事实上(1)(1)(1)()12αγβαγβαβγαββγγααβγ-+-+-=++-++=-))1(2)1(2)1(2(411)1)(1)(1(21γγββααγβααβγ-⋅-⋅-⋅-=----=43411=-≥当且仅当21===γβα时取等号,此时S R Q ,,是中点,P 是ABC ∆的重心例 3 已知ABC ∆的面积为S ,三边分别为c b a ,,,求证:2)3(43c b a S ++≤,且当c b a ==时等号成立.证明1:由海伦公式,设)(21c b a p ++=223)3(4393)3())()((c b a p p p c p b p a p p S ++==⋅≤---=当且仅当c p b p a p -=-=-即c b a ==时取等号 证明2: 欲证2)3(43c b a S ++≤只要证Sc b a 312)(2≥++∵)(3222)(2222ca bc ab ca bc ab c b a c b a ++≥+++++=++故只要证Sca bc ab 34≥++由柯西不等式2)sin sin sin ()sin sin )(sin (B ca A bc C ab C B A ca bc ab ++≥++++SS 18)23(2==∴CB A Sca bc ab sin sin sin 18++≥++ 又233sin sin sin ≤++C B A ∴SSCB A S ca bc ab 3423318sin sinsin 18=≥++≥++从而结论得证,当且仅当c b a ==时,取等号 例4 在ABC ∆中,求证:392cot 2cot 2cot333≥++CB A 证明1:设x z b CA z y a BC y x c AB +==+==+==,, 则3333333333)()()(2cot 2cot 2cot r z y x r z r y r x C B A ++=++=++又)())()((z y x xyz c p b p a p p S ++=---=、r z y x r c b a S )()(21++=++= ∴rz y x z y x xyz )()(++=++ ∴zy x xyz r ++=33333332cot 2cot 2cot r z y x C B A ++=++xyz z y x z y x r xyz ++++=≥)(3333933363=⋅⋅≥xyzxyz xyz证明2:设x z b CA z y a BC y x c AB +==+==+==,,/B //B /则3333333333)()()(2cot 2cot 2cot r z y x r z r y r x C B A ++=++=++ 由幂平均不等式333333z y x z y x ++≤++得3333)(91z y x z y x ++≥++(1) 由例3得22)(93)3(43z y x c b a S ++=++≤∴)(93z y x z y x S ++≤++,即)(93z y x r ++≤∴rz y x 33≥++代入(1)即可得到结论.例 5 设ABC ∆是锐角三角形,外接圆圆心为O,半径为R ,AO 交BOC 所在的圆于另一点/A ,BO 交所在的圆于另一点/B ,CO 交AOB /C,证明:3///8R OC OBOA ≥⋅⋅,并指出在什么情况下等号成立?证明1:作过BOC 的圆直径OD 则︒=∠=∠90/DCO O DAABCAOC BAC DOC ∠=∠∠=∠2,、ABC ACB AOC DOC OD A ∠-∠=∠-∠-︒=∠180/在COD Rt ∆中,BACOCDOC OC OD cos cos == 在OD A Rt /∆中)cos(cos //ABC ACB OD DOAOD O A ∠-∠⋅=⋅=OCBACABC ACB ⋅∠-∠=cos )cos(即RBACABC ACB OA cos )cos(/∠-∠=记为RAB C OA cos )cos(/-=同理RBC A OBcos )cos(/-=、CB A OCcos )cos(/-=B //只要证8cos )cos(cos )cos(cos )cos(≥-⋅-⋅-BA C A CBC B A ∵BA BA B A B A B A B A B A B A C B A cot cot 1cot cot 1sin sin cos cos sin sin cos cos )cos()cos(cos )cos(⋅-⋅+=+-+=+--=- 令A C z C B y B A x cot cot ,cot cot ,cot cot ⋅=⋅=⋅=A C CB B A z y x cot cot cot cot cot cot ⋅+⋅+⋅=++CB C B A cot cot )cot (cot cot ⋅++⋅=C B C B C B cot cot )cot (cot )cot(⋅++⋅+-=1cot cot )cot (cot cot cot 1cot cot =⋅++⋅+-⋅-=C B C B CB C B而对于ABC∆是锐角三角形,,,>z y x ∴zy x z y x z y x z y x x x C B A +++≥++++=-+=-))((2)()(11cos )cos(同理zx y z y x AC B +++≥-))((2cos )cos(、yx y z z x AC B +++≥-))((2cos )cos(显然成立证明2:如图,设BC AO ,交于D ,AC BO ,交于E ,AB CO ,交于F ,由C O B A ,,,/四点共圆,得CBO BCO O BA ∠=∠=∠/∴BOD ∆BOA /∆∴ODBOBO O A =/ ∴ODR O A 2/=从而OER O B 2/=,OFR O C 2/=处理方式(1)∴OF OCOE OB OD OA OF OE OD R RO C O B O A ⋅⋅=⋅⋅=⋅⋅33///令321,,S S S S S S COA BOC AOB===∆∆∆3///RO C O B O A ⋅⋅8132321231≥+⋅+⋅+=S S S S S S S S S 处理方式(2)令z OFOCy OE OB x OD OA ===,,则111,,111OBC OAC OBA ABC ABC ABC S S S OD OE OF AD S x BE S y CF S z ∆∆∆∆∆∆======+++/B /∴1111111=+++++z y x (利用面积关系)(再去分母,整理得2xyz x y z =+++)∴2323+≥+++=xyz z y x xyz令mxyz =3,则0233≥--m m,即2(1)(2)0m m +-≥∴02≥-m ,即8≥xyz证明3: 由CO B A ,,,/四点共圆,由托勒密定理,得)(///B A C A R BC O A +=⋅∴RBCB AC A O A ///+= 易知21∠=∠BCCA B A BD B A CD C A ////+==而BD A /∆∽COD ∆∴ODAOOD R OD OC BD B A ===/ ∴R OD AOO A =/同理R OEBOO B =/,R OF COO C =/令321,,S S S S S S COA BOC AOB ===∆∆∆∴OF OC OE OB OD OA R O C O B O A ⋅⋅=⋅⋅3///8132321231≥+⋅+⋅+=S S S S S S S S S证明4: 由CO B A ,,,/四点共圆,由托勒密定理,得)(///B AC A R BC O A +=⋅ ∴RBCB AC A O A ///+=设γβα=∠=∠=∠BOC AOB AOC ,, 在BC A /∆中,由正弦定理,得CBA BCBC A C A CB A B A /////sin sin sin ==又γαβsin sin ,sin sin sin ,sin sin sin /////=====C BA OC A BC A OB A CB A∴RR BC B A C A O A ⋅+=+=γβαsin sin sin ///同理RO B ⋅+=αγβsin sin sin /、RO C ⋅+=βγαsin sin sin / 以下略例6 如图所示,设1C ,2C 是同心圆,2C 的半径是1C 半径的2倍,四边形4321A A A A 内接于圆1C ,将14A A 延长交圆2C 于1B ,将21A A 延长交圆2C 于2B ,将32A A 延长交圆2C 于3B ,43A A 延长交圆2C 于4B ,试证明:四边形4321B B B B 的周长大于等于四边形4321A A A A 的 周长的2倍,并请确定等号成立的条件.证明:设公共圆圆心为O,连结211,,OB OB OA在四边形211B B OA 中,运用推广的托勒密定理112211211B A OB B B OA B A OB ⋅+⋅≤⋅ ∴11212122B A R B B R B A R ⋅+⋅≤⋅∴11212122B A B B B A +≤∴11222121222B A B A A A B B -+≥同理22333232222B A B A A A BB -+≥、33444343222B A B A A A BB -+≥、44111414222B A B A A A B B -+≥∴结论得证,当且仅当211,,,B B A O 四点共圆,∴21211241B OA B OB B OB AOA ∠=∠=∠=∠, ∴1OA 是214A A A ∠的角平分线,∴O 到214A A A ∠的两边的距离相等 ∴1214A A AA =同理四边形4321A A A A 的各边相等,进而四边形4321A A A A 是正方形时,等号成立.O1. 如图,在ABC ∆中,,AB AC AM >为中线,P 为AMC ∆证明:PB PC >证明:在AMC ∆与AMB ∆中,有两组对边对应相等,且AB AC >,所以AMB AMC ∠>∠,于是90AMC ∠<︒,过P 作PH BC ⊥于H ,则垂足H 必在MC 的内部或延长线上,从而BH CH>,因此PB PC >(斜线长与射影长的关系)2. 如图,20MON ∠=︒,A 为OM 上一点,OA =B是ON 上一点,D 为ON 上一点, OD =,C 为AM 上任意一点,则12AB BC CD ++≥分析:以OM 为对称轴,作D 点关于OM 的对称点/D ,以ON 为对称轴,作A 点关于ON 的对称点/A ,连结/OA 、/OD ,则//60A OD∠=︒,连结/BA 、/CD 、//A D ,则有//AB BC CD BA BCCD ++=++ 因为//OAOD ==/A 、/D 为定点,而连结/A 、/D 以线段最短,∴//12AB BC CD A D ++≥=.说明:本题把“折线化直”,然后利用两点间线段距离最短来证明,这种“化直法”在解决几何不等式问题中是常用的.1CC13.设BC 是ABC ∆的最长边,OOA、OB 、OC 分别交对边于1A 、1B 、1C ,证明:(1)111OA OB OC BC++<;(2)111111max{,,}OA OB OC AA BB CC ++≤分析:我们先证明一个简单但非常有用的引理: 设点M 是PQR ∆的边QR 上的一点,则max{,}PM PQ PR <.事实上,过P 作PH QR ⊥,则利用斜线长和射影长的关系很容易说明便知引理成立.(1)过O 分别作//,//OX AB OY AC ,分别交BC 于X 、Y 点,再过X 、Y分别作11//,//XS CC YT BB 分别交AB 、AC 于S 、T 易知,OXY ∆∽ABC ∆,故XY 是OXY ∆的最大边, 由引理知,1max{,}OAOX OY XY<≤;又因为BXS ∆∽1BCC ∆,YCT ∆∽1BCB ∆,所以1BX XS OC >=(1max{,}CCCA BC BC <=),1CY YT OB >=所以111BC XY BX YC OA OB OC =++>++(2)令z CC OC y AB OB x AA OA ===111111,,,那么1=++=++∆∆∆∆∆∆ABCOABABC OCA ABC OBC S S S S S S z y x .所以111111OA OB OC xAA yBB zCC ++=++111111()max{,,}max{,,}x y z AA BB CC AA BB CC ≤++=说明:其实,由(2)和引理知(1)成立,所以我们也可以先证明(2),然后推得(1).4. 设凸四边形ABCD 的面积为1,证:在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三个点为顶点的三角形的面积均不小于41析:如果ABCD 是平行四边形,那么41====∆∆∆∆ABD ADC BCD ABCS S S S,因此A B C D 、、、即为所求的点;如果ABCD 不是平行四边形,不妨设AD 与BC 不平行,且DAB CBA π∠+∠<,AD 与BC 交于E ,D 到AB 的距离不超过C 到AB 的距离,过D 作//DF AB ,交BC 于F , 分两种情况讨论:(1)DF 不超过AB 的一半,此时可在边AD ,BC上分别取P ,Q ,使得PQ 与AB 平行,PQ 等于AB 的一半,则有111444APQBPQ ABE ABCD SS S S ∆∆∆∆==>=,、11122222ABQABP APQ BPQ ABE ABCD SS S S S S ∆∆∆∆∆∆====>=即A B P Q 、、、即为所求的四个点.(2)若DF 大于AB 的一半,则在线段DC 与FC 上分别取P ,Q ,同样使//PQ AB ,且12PQ AB =,延长AP 交AE 于/E ,则PQ 是/ABE ∆的中位线再过A 作BC 的平行线l ,它与CD 的延长线的交点为G ,则/AGP PDAPCE S S S ∆∆∆=>,故有//ABCP PDA ABCP ABCD E ABPCE SS S S S S ∆∆∆∆∆=+>+=,于是同样可以证明A B P Q 、、、即为所求的四个点.说明:在遇到比较复杂的情形时,要注意从简单情形起步,合理规划,通过分类讨论,适时化归,使问题得以圆满解决.到ABC ∆三个顶点距离之和为最小的点,通常称为费尔马点.当ABC ∆各角均小于120︒时,与三边的张角均为120︒的点即为费尔马点;当有一个角大于120︒时,这角项点就是费尔马点.下面这个命题是与费尔马问题“反向”的问题. 5. 在ABC ∆的内部或边界上找一点P ,使得它到三个顶点距离之和为最大.分析:若点P 在ABC ∆内,作一个以B 、C 为焦点,过P 点的椭圆,设椭圆与AB 、AC 交于1P 、2P 点,连结AP 并延长与12P P 交于/P 点,如图,那么/12max{,}P A P A P A <不妨设/1P A P A <则11111()P A P B P C PA P B P C PA PB PC ++>++=++所以点P 必定在边界上.下证P 只能是ABC ∆的顶点, 不妨设点P 在线段BC 的内部,因max{,}PA AB AC <,设PA AB <,那么PA PB PC PA BC AB BC++=+<+综上所述,所求的点必为ABC ∆的顶点,易知它是最短边所对的顶点.说明:本题所用的方法是“局部调整”法,这是一种重要的思想方法.6.凸六边形ABCDEF 的每边长至多为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2.分析:连结AC 、CE 、EA ,在AEC ∆中,不妨设边CE 最大,即,CE AC CE AE ≥≥,如图,对A 、C 、D 、E 四点用托勒密定理,有AE CD ED AC CE AD ⨯+⨯≤⨯ 所以21111=⨯+⨯≤⋅+⋅≤CEAE CD DE CE AC AD ,从而命题得证. 在证明与面积和周长有关的不等式时,下面的几个结论是很有用的,它们就是著名的等周问题.命题1 在周长一定的简单闭曲线的集合中,圆的面积最大;命题2 在面积一定的简单闭曲线的集合中,圆的周长最小;命题3 在给定边长为12,,,n a a a 的所有n 边形中,能够内接于圆的n 边形具有最大的面积命题4 在周长一定的n 边形的集合中,正n 边形的面积最大;命题5 在面积一定的n 边形的集合中,正n 边形的周长最小运用等周定理可以解决很多与几何不等式有关的问题,看下面一例:7.曲线L 将正ABC ∆分成两个等积的部分,那么它的长432a l π≥,其中a 是正ABC ∆的边长.分析: 以A 为圆心,R 为半径作圆弧/L 将ABC ∆的面积等分,那么有22432161a R ⋅=π,所以π2274=R ,/L 的周长/126l R π=⋅=,现在证明/l l ≥. 将ABC ∆连续翻转5次,由曲线L 形成了一条闭曲线,如图所示,由/L 形成了一个圆,而两者所围成的面积相等.根据命题2,知/66l l ≥,即/l l ≥=。
中考数学不等式的解法与应用
中考数学不等式的解法与应用在中考数学中,不等式是一个重要的知识点,它涉及到数轴、函数、图像、几何等多个方面的内容,对于学生来说需要掌握不同的解法和应用技巧。
本文将介绍几种常见的不等式解法和应用案例,帮助学生更好地应对中考数学考试。
一、一元一次不等式的解法考虑一元一次不等式ax + b > 0,其中a和b为实数常数。
我们可以通过以下几种方法解决这种不等式:1. 代数法解不等式根据不等式ax + b > 0,可以分为两种情况:a > 0和a < 0。
当a > 0时,解集为x > -b/a;当a < 0时,解集为x < -b/a。
2. 图像法解不等式将不等式ax + b > 0对应的线性函数y = ax + b的图像画出,根据图像可以直观地找到解集,即位于y轴上方或下方的x值。
应用案例:已知2x + 3 > 7,求解不等式的解集。
通过代数法解不等式可得2x > 7 - 3,即2x > 4。
进一步得到x > 2。
因此不等式的解集为{x | x > 2}。
二、一元二次不等式的解法考虑一元二次不等式ax^2 + bx + c > 0,其中a、b、c为实数常数。
对于这种类型的不等式,我们可以运用以下几种方法解决:1. 图像法解不等式将不等式ax^2 + bx + c > 0对应的二次函数y = ax^2 + bx + c的图像画出,根据图像找出函数值大于零的x值,即为解集。
2. 直接分解法解不等式对于一元二次不等式ax^2 + bx + c > 0,如果可以分解成(ax + p)(x + q) > 0的形式,其中p和q为实数常数,那么不等式的解集为{x | x < -q 或 x > -p}。
应用案例:已知x^2 + x - 6 > 0,求解不等式的解集。
通过图像法解不等式,我们可以将不等式对应的二次函数图像画出,可以发现函数值大于零的x值落在区间(-∞, -3) ∪ (2, +∞)内。
九年级数学第一轮复习:不等式浙江版知识精讲
九年级数学第一轮复习:不等式某某版【本讲教育信息】一. 教学内容:第一轮复习:不等式二. 重点、难点不等式的基本性质,一元一次不等式(组)的解法与解集。
三. 知识回顾1. 表示不相等关系的式子,叫做不等式。
2. 不等式的基本性质①可逆性:b a >,则a b <②传递性:c a ,c b ,b a >>>则③可加性:c b c a ,b a +>+>则④可乘性:bc ac ,0c ,b a >>>则若若bc ac ,0c <<则3. 一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式解集的过程叫做解不等式。
4. 任何一个一元一次不等式,总可以变形为)0a (b ax ≠>的形式。
当0a >时,解集ab x >当0a <时,解集ab x < 5. 由几个同一个未知数的一元一次不等式所组成的一组不等式,叫一元一次不等式组。
由两个不等式组成的一元一次不等式组的解集如下(设b a >) ①若⎩⎨⎧>>bx a x ,则解集为a x >②若⎩⎨⎧<<b x a x ,则解集为b x < ③若⎩⎨⎧><b x a x ,则解集为a x b << ④若⎩⎨⎧<>b x a x ,则无解。
【典型例题】例1. 解不等式110)x 10(354x 23x --≥-- 解:去分母,得30)x 10(9)4x 2(6x 10--≥--去括号,得30x 99024x 12x 10--≥+-移项,合并同类项,得36x 7≥两边同除以7,得715x ≥例2. 怎样的整数x ,能使代数式141x 3++的值不小于1-且小于25? 解:(1)由题意,得25141x 31<++≤- 即⎪⎪⎩⎪⎪⎨⎧<++-≥++25141x 31141x 3,解得⎪⎩⎪⎨⎧<-≥35x 3x ,∴解集为35x 3<≤- 但x 为整数,1,0,1,2,3x ---=∴解(2)45x 3141x 3+=++ 2545x 31<+≤-∴ 在不等式的左、中、右边都乘以4,得105x 34<+≤-在不等式的左、中、右边都减去5后再除以3,得35x 3<≤- ∴满足35x 3<≤-,∴整数1,0,1,2,3x ---=。
九年级数学应用不等式求值知识精讲
九年级数学应用不等式求值不少问题从表面上看似乎与不等式(组)无关,但若仔细考查其条件,发现可用不等式(组)求解。
请看五例。
1. 利用绝对值的非负性例 1. 设x ,y ,a 都是实数,且)1)(1(||1||2a a a y a x ---=-=,,则=+++1||5a y x ___________。
解:由0||0||≥≥y x ,,知道⎩⎨⎧≥---≥-0)1)(1(012a a a a (*) 又04321122<-⎪⎭⎫ ⎝⎛--=-+-a a a 所以要使(*)成立,当且仅当1=a从而00==y x ,于是21||5=+++a y x2. 利用二次根式的非负性例2. 若m 适合关系式m y x m y x -++--+32253y x y x --⨯+-=199199,则m=__________。
解:由二次根式的定义,得⎩⎨⎧≥--≥+-01990199y x y x 所以⎩⎨⎧≤+≥+199199y x y x 即199=+y x ,故等式右端为0。
由0≥a 及非负数性质得⎩⎨⎧=++=+②①my x m y x 32253 ①-②,得22=+y x2011992)()2(=+=++-=y x y x m例3. 实数x ,y 满足5422=--y x x ,则y x 2-的取值X 围是_________。
解:设y x m 2-=则y m x 2+=将其代入方程,得054)2(2)2(2=--+-+y y m y m即052)2(4422=--+-+m m y m y由于上面的方程有实数解,所以△≥0即0)52(16)2(1622≥----m m m 解得29≤m 故292≤-y x例5. 若[x ]表示不超过x 的最大整数,且满足方程049][53=-+x x ,则x=_________。
解:由[x ]的定义可得:x x x ≤<-][1由049][53=-+x x , 得3][5495349][x x x x -=-=, 即x xx ≤-<-53491 解得427849<≤x 即4273][549849<-≤x 解得816][435≤<x故整数6][=x316])[549(31=-=x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学几何不等式例题讲解知识点、重点、难点所谓几何不等式,指不等关系出现在几何问题之中,它将几何的论证与不等式的技巧有机结合在一起,其综合性与难度都较高。
有关几何不等关系的性质和定理如下:1.三角形两边之和大于第三边,两边之差小于第三边。
2.三角形的外角大于任一不相邻内角。
3.同一三角形中大角对大边,大边对大角。
4.两点之间直线段最短。
5.两边对应相等的两个三角形中,所夹的角越大,则第三边越大。
6.两边对应相等的两个三角形中,第三边越大,则它所对的角越大。
7.直角三角形的斜边大于任一直角边。
8.同圆或等圆中,弧长越长,所对的圆心角以及圆周角越大。
9.同圆或等圆中,直径大于任何一条非直径的弦。
可以看到,几何不等式的基础大多数源于三角形中,所以三角形中的不等式是占绝大多数的,而很多包括四边形、圆的问题都可以化为三角形中的不等关系,因此三角形中的各种不等式是我们讨论的一个重点。
要注意到,很多几何不等式实际上是代数不等式,还有相当一部分几何不等式的证明过程中用到了经典的代数不等式,其中最常用到的是均值不等式和柯西不等式。
柯西不等式:设1212,,,,,,n n x x x y y y R ∈则222222212121122()()().n n n n x x x y y y x y x y x y ++++++≥+++当且仅当iix y λ=(λ为常数,1,,i n =)时,等号成立。
均值不等式:设12,,0,n x x x >则12n x x x n+++≥例1:已知AD 是△ABC 的∠A 的平分线,过A 作直线PQ ⊥AD ,M 是PQ 上任一点,求证:MB +MC >AB +AC .分析 欲证MB +MC >AB +AC ,如能适当地进行变换将MB 、MC 、AB 、AC 集中到一个三角形内,问题就好解决了。
因为PQ ⊥AD ,则PQ 平分∠BAC 的外角∠BAC ,如以PQ 为轴将△AMB 翻转180°,AB 将落在AF 上。
设B 的对应点为B',则MB 落到MB '位置,在△MB'C 中可证得本题结论。
证明 如图所示,在CA 延长线上取AB'=AB ,连结MB'.因为PQ ⊥AD ,而AD 平分∠BAC ,所以PQ 平分∠BAB',所以∠B'AM =∠BAM .又AM=AM ,所以△B'AM ≌△BAM ,因此MB' =MB .在△MB'C 中,MB'+MC >B'C ,即MB +MC >B'C =AB'+AC =AB +AC .例2:如图,已知凸四边形ABCD 中,AC 交 BD 于O ,△AOB 的面积为1A ,△COD 的面积为2A ,凸四边形面积为A .≤分析 利用等高的两个三角形的而积比等于对应底的比,由比例把四个三角形面积联系起来。
证明 设34,.AOD BOC S A S A ∆∆==因为A O D S ∆与AOB S ∆有等高,所以13.A O B A O D S A OB S OD A ∆∆==同理42A OB OD A =,即1234A A A A =.又因为2340A A ≥⇒+≥所以12A A ++=121234A A A A A A A +++++=,即2.A ≤≤说明 此题用到了不等式的放大,利用了公式222()02.a b a b ab -≥⇒+≥例3:如图,设O 为△ABC 内一点,且∠AOB =∠BOC =∠COA=120°,P 为任意一点(不是O ). 求证:PA +PB +PC >OA +OB +OC .证明 如图,过△ABC 的顶点A 、B 、C 分别引OA 、OB 、OC 的垂线,设这三条垂线的交点为1A 、1B 、1C -考虑四边形1AOBC .因为1OAC ∠=1OBC ∠=90°,∠AOB =120°,所以1C ∠= 60°.同理,1A∠ = 1B ∠=60°,所以111A B C ∆为正三角形。
设P 到111A B C ∆三边111111B C C A A B 、、的距离分别为123h h h 、、,且111A B C ∆的边长为a ,高为h .由等式111111111A B C PB C PC A PA B S S S S ∆∆∆∆=++知111222a b ha h a h a =++12c h a ,所以.a b c h h h h =++这说明正111A B C ∆内任一点P 到三边的距离和等于111A B C ∆的高h ,这是一个定值,所以OA +OB +OC = h =定值,显然PA +PB +PC >P 到,111A B C ∆三边距离和,所以PA +PB +PC >h = OA +OB+OC .说明 这是费马点问题。
由这个结论可知O 点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点。
例4:如图338,AH 、AD 、AM 分别是△ABC 中的高、角平分线和中线,且AD 平分∠HAM ,求证:2AD <AM ·AH . 分析 在所要证的不等式中的三条线段中,设法更换其中的一条,如果把AH 或AM 换成稍短一些的线段,或把线段AD 换成稍长一些的线段,使不等式成为等式,问题就可归结为对等式的证明。
为此,可如图338、339作∠ADE = ∠AMD 或作∠ADF = ∠AHD .也可如图340、341作∠AHG =∠ADM ,或作 ∠ANM =∠AHD .证法一 如图338,∠ADH 是△ADM 的外角,所以∠ADH >∠AMD ,于是可在∠ADH 内,作∠ADE =∠AMD ,交AH 于E .由于AD 平分∠HAM ,所以△ADE ∽△AMD ,从而AM :AD =AD :AE .注意到AE <AH ,便有2AD <AM ·AH . 证法二 类似于证法一,如图339,在AM 上取一点F ,使∠ADF = ∠AHD .同样△ADF ∽△AHD ,进而知2AD <AM ·AH .证法三 如图,在AD 的延长线上取一点G ,使∠AHG =∠ADM .从而证AD ·AG =AM ·AH ,进而知2AD <AM ·AH .证法四 类似证法三,如图341,在AD 的延长线上取一点N ,使∠ANM =∠AHD .类似地可证AD ·AN =AM ·AH ,进而2AD <AM ·AH .说明 对于不可能有等号出现的不等式,本题的证明方法具有一定代表性。
另外在本题的证明中,并没有直接用到AH 、AD 、AM 是△ABC 的高、角平分线和中线的条件,实际我们只需要AD 是∠HAM 的角平分线的条件就够了。
例5:试证:三角形中任一点到三顶点距离之和不小于此点到三边距离之和的2倍。
如图,求证PA +PB +PC ≥2(PD +PE +PF ).证明 如图,过点P 作直线MN ,分别与AB 、AC 交于点M 、N ,并使得∠AMN =∠ACB ,∠ANM =∠ABC .因为AMN APM APN S S S ∆∆∆=+,所以111222MN PA AM PF AN PE ≥+,即AM PA MN ≥,.ANPF PE MN+根据直线MN 的作法,△AMN ∽△ACB ,故,A M C A M N B C =,A N A B M N B C =因此.C A A BP A P F P E B C B C≥+同理可得,A B B C P B P D P FC A C A≥+,.BC CAPC PE PD AB AB ≥+将上述三式相加得PA PB PC ++≥ ()()().AB CA BC AB CA BC PD PE PF CA AB AB BC BC CA +++++当0a >时,12,a a +≥因此上式变成PA +PB +PC ≥2(PD +PE +PF ).说明 这是厄尔多斯-莫代尔不等式。
例6:如图,平面上有n +2个点1A 、2A 、…n A 、P 、Q ,其中1A 、2A 、…n A 都不在PQ 上,且1212n n PA PA PA QA QA QA S +++++++=,M 为线段PQ 的中点。
求证:12.2n SMA MA MA +++<分析 连结i AP 、i AQ ,可将问题转化为三角形问题,这样得到n 个有公共底边PQ 的三角形,那么i A M 就是这n 个三角形的中线,因此将i A M 延长至i G ,使i iG M AM = (i =1,2,…,n ). 证明 由条件可知12n A M A M A M 、、、是这n 个三角形的中线,对于1A PQ ∆,延长1A M 至1G ,使11G M A M =连结1G Q ,则1M G Q ∆≌1MA P ∆.因为11,A P G Q =所以11111112,AQG Q AQ A P AG A M +=+>=即1112AQ A P A M +>.同理2222,,2,n n n A Q A P A M A Q A P A M +>+>相加可得 112212()2().n n n AQ A P A Q A P A Q A P AM A M A M ++++++>+++ 所以121211(2n n MA MA MA AQ A Q A Q A P +++<++++2).2nSA P A P +=。