人工神经网络

合集下载

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

《人工神经网络》课件

《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。

人工神经网络

人工神经网络

3、阈值函数(Threshold Function)阶跃函数
o
β
0
θ
net

4、S形函数
压缩函数(Squashing Function)和逻辑斯特 函数(Logistic Function)。
f(net)=a+b/(1+exp(-d*net)) a,b,d为常数。它的饱和值为a和a+b。 最简单形式为: f(net)= 1/(1+exp(-d*net))
用的; – 5)一个神经元接受的信号的累积效果决定该神经
元的状态; – 6) 每个神经元可以有一个“阈值”。
人工神经元
人工神经元
• 人工神经元模型应该具有生物神经元的六 个基本特性。
x1 w1
x2 w2 … xn wn
∑ net=XW
人工神经元的基本构成
x1 w1
x2 w2 … xn wn
∑ net=XW
• 2、 循环联接 –反馈信号。
联接模式
• 3、层(级)间联接 –层间(Inter-field)联接指不同层中的神 经元之间的联接。这种联接用来实现层 间的信号传递
ANN的网络结构
网络的分层结构
• 简单单级网
x1 x2 … xn
w11 w1m
w2m … wn1
wnm 输入层
o1
o2
… om
输出层
x1 x2 … xn
w11 w1m w2m …wn1
输入层
o1
o2
… 输出层
V
om
单级横向反馈网
• V=(vij) • NET=XW+OV • O=F(NET) • 时间参数——神经元的状态在主时钟的控制下同

人工智能9人工神经网络基础

人工智能9人工神经网络基础

第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。

而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。

因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。

又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。

人工神经网络中存在两个基本问题。

第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。

确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。

第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。

具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。

这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。

当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。

本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。

9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。

人工神经元的形态来源于神经生理学中对生物神经元的研究。

因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。

人工神经网络建模

人工神经网络建模

语音识别
总结词
语音识别是将人类语音转换成文本的过程, 利用人工神经网络进行语音特征提取和分类 。
详细描述
语音识别技术使得人机交互更加自然,广泛 应用于智能助手、语音搜索、语音翻译等领
域。
自然语言处理
要点一
总结词
自然语言处理是利用人工神经网络对人类语言进行分析、 理解和生成的过程。
要点二
详细描述
自然语言处理技术包括文本分类、情感分析、机器翻译等 ,使得计算机能够更好地理解人类语言,提高人机交互的 效率和自然度。
人工神经网络的应用领域
语音识别
利用循环神经网络(RNN)和 长短时记忆网络(LSTM)识 别语音并转换成文本。
推荐系统
利用深度神经网络为用户推荐 感兴趣的内容。
图像识别
利用卷积神经网络(CNN)识 别图像中的物体和特征。
自然语言处理
利用循环神经网络和注意力机 制处理自然语言任务,如机器 翻译、文本生成等。
训练算法
总结词
训练算法是指导神经网络学习和优化的算法,常用的有梯度下降法等。
详细描述
训练算法根据学习率和优化目标,不断迭代更新网络权重,使网络在训练数据上 获得更好的性能表现。
03
常见的人工神经网络模型
前馈神经网络
总结词
前馈神经网络是一种最基础的人工神 经网络模型,信息从输入层开始,逐 层向前传递,直至输出层。
数据清洗与预处理
去除异常值、缺失值,进 行数据标准化、归一化等 处理,以提高模型的准确 性和稳定性。
数据划分
将训练数据集划分为训练 集、验证集和测试集,以 便于模型训练、验证和评 估。
训练过程中的优化算法
梯度下降法
基于梯度下降的优化算法,通 过迭代更新权重和偏置项,最

人工神经网络

人工神经网络
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、 自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了 良好的智能特性。
神经元
如图所示 a1~an为输入向量的各个分量 w1~wn为神经元各个突触的权值 b为偏置 f为传递函数,通常为非线性函数。以下默认为hardlim() t为神经元输出 数学表示 t=f(WA'+b) W为权向量 A为输入向量,A'为A向量的转置 b为偏置 f为传递函数
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据 加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经 多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学 习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学 习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb 学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、 适应谐振理论网络等都是与竞争学习有关的典型模型。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、 自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经 成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可 以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集 理论、分形理论、证据理论和灰色系统等的融合。

人工神经网络

人工神经网络

• ANN学习的特点 学习的特点
①反向传播算法是最常用的ANN学习技术 ②长时间的训练,但训练完成后可快速求出目标函数值 ③神经网络方法学习到的权值是难以解释的。学到的神经网络比学到的规则 难于传达给人类。
3、感知器 、
• 组成神经网络的几种主要单元
感知器(perceptron) 线性单元(liner unit) sigmoid单元(sigmoid unit)
第4章 人工神经网络(ANN)
1、概述 、Biblioteka ① 人工神经网络提供了一种普遍且实用的方法从样例中学习值为实 数、离散值或向量的目标函数。 ② 反向传播算法,使用梯度下降来调节网络参数以最佳拟合由输入输出对组成的训练集合。 ③ 人工神经网络对于训练数据中的健壮性很好。 ④ 人工神经网络已被成功应用到很多领域,解决各种复杂问题。例 如视觉场景分析,语音识别,机器人控制。
其中:
⑤ sigmoid函数(也称logistic函数)
挤压函数、输出范围是0到1单调递增、导数就是容易就是函数本身
•反向传播算法 反向传播算法
对于由一系列确定的单元互连形成的多层网络,反向传播算法可用 来学习这个网络的权值。它采用梯度下降方法试图最小化网络输出值和 目标值之间的误差平方。 网络的误差定义公式,多个输出单元的网络输出的误差:
使用的符号说明 网络中每个节点被赋予一个序号,这里的节点要么是网络的输入, 要么是网络中某个单元的输出 xji表示节点i到单元j的输入,wji表示对应的权值 δn表示与单元n相关联的误差项。 反向传播算法与delta法则不同点是误差项被替换成一个更复杂的误差 项δn。 输出单元k的误差项 输出单元 的误差项 δk与delta法则中的(tk-ok)相似,但乘上了sigmoid挤压函数的导数ok(1ok)。 隐藏单元h的误差项 隐藏单元 的误差项 因为训练样例仅对网络的输出提供了目标值tk,所以缺少直接的目标 值来计算隐藏单元的误差值,采取以下的间接方法计算隐藏单元的误 差项:对受隐藏单元h影响的每一个单元的误差δk进行加权求和,每个 误差δk权值为wkh,wkh就是从隐藏单元h到输出单元k的权值。这个权 值刻画了隐藏单元h对于输出单元k的误差应负责的程度。

什么是人工神经网络

什么是人工神经网络

什么是人工神经网络人工神经网络是一种基于机器学习的人工智能技术,它可以让计算机学习如何识别与处理复杂的数据,比如图像、音频和视频。

本文将专注介绍人工神经网络,深入讨论它的构成、工作原理以及它如今所扮演的角色。

人工神经网络是一种仿照生物神经系统的架构和功能而开发的计算机技术。

它最初的概念可以追溯到1957年,由包括Frank Rosenblatt、Marvin Minsky和John McCarthy等在内的几位科学家在系统思想和计算机科学领域开发,它实际上是受到脑神经网络结构启发而发展出来的一种技术。

人工神经网络能够以一种类似于人类“思考”的方式从大量数据中获取结果,比如分析情感、视觉识别、语音识别等。

它可以通过学习过去的经验和观察,来推断当前和未来的情况。

人工神经网络的组成主要有神经元,连接和权重。

每个神经元都有输入、激活函数和输出。

神经元是网络中不同组件的基本部分,它们可以接受、处理和转发信号,以触发期望输出。

连接则用于把不同的神经元连接起来传输信息,这些连接可以赋予不同的权值,影响输入信号的最终输出。

最后,人工神经网络的工作原理,是通过迭代输入数据,调整权重使输出更接近期望结果,并且能够通过反馈机制自我调整参数和权重,以达到期望的训练结果。

人工神经网络如今已经被许多公司和组织使用,用于处理各种任务,包括复杂的图像识别、语音识别、语言建模、自动驾驶以及计算机视觉等。

它们已经成为机器学习和自然计算中最流行的方法之一,并广泛应用于商业、政府以及军事等众多领域。

比如,人工神经网络用于语音识别,top07机器人使用神经网络解析语音,帮助用户进行语音识别;或者用于机器视觉,Google等公司使用深度学习神经网络识别图像,可以对不同的图像进行分类,有效地提升图像浏览的用户体验。

总的来说,人工神经网络是一项设计用来处理繁杂任务的数据处理技术,可以重现生物神经系统架构和功能以及学习能力。

它是一种可以从大量数据中快速获取结果的技术,如今已经得到了普遍应用,被用于各种场景中。

人工神经网络基本原理

人工神经网络基本原理

人工神经网络基本原理人工神经网络(Artificial Neural Network,简称ANN)是一种模拟生物神经系统的计算模型,通过神经元之间的连接和传递信息的方式来进行计算和学习。

它由大量的人工神经元(Artificial Neuron)组成,每个人工神经元可以接收多个输入,经过激活函数的处理后,产生一个输出。

这些神经元之间通过权重来调整信息的传递强度和方向,从而实现信息的处理和模式的学习。

下面是人工神经网络的基本原理和工作过程。

1.人工神经元的结构和工作原理人工神经元是人工神经网络的基本组成单位,它模拟了生物神经元的结构和功能。

一个人工神经元接收多个输入信号,每个输入信号通过一个权重进行加权,然后通过激活函数进行处理,最终产生一个输出信号。

人工神经元的结构可以表示为:y = f(Σ(w_i * x_i) + b),其中y表示输出信号,x_i表示输入信号,w_i表示对应的权重,b表示偏置,f表示激活函数。

常用的激活函数有Sigmoid函数、ReLU函数等。

2.前向传播和反向传播在人工神经网络中,信息的传递分为两个过程:前向传播(Forward Propagation)和反向传播(Backward Propagation)。

(1)前向传播:在前向传播过程中,输入数据通过一层一层的神经元,从输入层传递到输出层。

每个神经元接收到上一层神经元的输出信号,并经过激活函数的处理产生一个新的输出信号。

这个过程可以理解为信息的正向流动。

通过多次的前向传播,人工神经网络可以对输入数据进行非线性的处理和抽象表示。

(2)反向传播:在反向传播过程中,首先计算输出层的误差,然后反向计算隐藏层和输入层的误差,并通过调整权重和偏置来减小误差。

这一过程可以看作是信息的反向流动。

反向传播使用梯度下降法来进行权重和偏置的更新,目的是将网络的输出尽可能地接近目标输出,从而实现训练和学习的目标。

3.神经网络的学习和训练神经网络的学习和训练是通过调整神经元之间的连接权重和偏置来实现的。

人工神经网络的基本原理及其应用

人工神经网络的基本原理及其应用

人工神经网络的基本原理及其应用人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的人工智能技术。

它由大量的节点(也被称为神经元)和连接线组成,能够模拟人脑的信息处理方式,具有学习、记忆、推理等功能,已广泛应用于图像识别、语音识别、自然语言处理、自动化控制等领域。

1. 基本原理人工神经网络的基本结构由输入层、隐藏层和输出层组成。

其中,输入层接收外部输入,隐藏层进行信息处理,输出层输出结果。

每个节点接受来自其他节点的输入,并对总输入进行加权处理,然后运用激活函数进行非线性变换,最终输出给后继节点。

加权系数和阈值是神经网络中的重要参数,它们的调整会影响神经元的输出。

神经网络的学习过程主要包括前向传播和反向传播。

前向传播是指输入数据从输入层传递到输出层的过程;反向传播是指根据输出误差对参数进行调整的过程。

通过不断迭代,神经网络的性能可以不断提高,实现更加准确的任务。

2. 应用领域2.1 图像识别图像识别是人工神经网络的常见应用之一。

通常,将图像中的每个像素作为输入,神经网络通过卷积层和池化层从原始图像中提取特征,然后通过全连接层进行分类。

例如,Google 在 2015 年发布的 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)中,使用了多层卷积神经网络(Convolutional Neural Network,CNN)架构,成功识别出一张图像中的物体,使得图像识别的准确率得到了显著提高。

2.2 语音识别自然语言处理业界对神经网络的应用也不断增多。

语音识别是其中的一个热点方向。

利用神经网络,可以将人类语言转化为计算机理解的信息。

语音识别的模型一般采用长短时记忆网络(Long Short-Term Memory,LSTM)结构。

LSTM 可以有效解决序列数据中存在的长距离依赖问题,提高语音的识别率。

人工神经网络

人工神经网络

x 0
i 1 i i
r
x 0
i 1 i i
r
5、算法实现
由于:
a xi i
i 1
r
1 x1 1 x2 2
假设:
xr r
X [1, x1, x2 ,
W [ , 1, 2 ,
单层感知器模型:
r y f xi i i 1
1 , if x 0 其中: f ( x) sgn( x) 1 , if x 0
xi
y
:输入数据 :输出数据
这是一个而分类问题,我们假设输出为1的对应类别为 l1, 输出为-1的对应类别为 l 2 。
人工神经网络
王刚
1、基本概念
人工神经网络(Artifical Neural Network,ANN),是由 大量处理单元(神经元 Neurons )广泛互连而成的网络,是 对人脑的抽象、简化和模拟,反映人脑的基本特性。
人工神经网络是由简单的处理单元所组成的大量并行分 布的处理机,这种处理机具有存储和应用经验知识的自然特 性,它与人脑的相似之处概括为两方面:
学习速率退火策略: (k )
1 k /
0
7、编程示例
语音信号识别:
f ( x) 1 1 e x
阈值函数:
分段线性函数:
Sigmoid函数:
4、单层前向网络
在众多人工神经网络模型中,最为简单的就是所谓的单 层前向网络,它是指拥有的计算节点(神经元)是“单层” 的。这里主要介绍的单层感知器和自适应线性元件模型均属 于典型单层前向网络。 感知器是神经网络用来进行模式识别的一种最简单模型, 但是由单个神经元组成的单层感知器只能用来实现线性可分 的两类模式的识别。 在信号处理领域,单个神经元也用来作为自适应线性元 件进行自适应滤波,Widrow和Hoff在1960年提出了易实现但 效 率 高 的 自 适 应 滤 波 的 LMS 算 法 ( Least Mean Square algorithm),可以称之为最小均方误差或梯度算法。

人工神经网络概述

人工神经网络概述

参考内容二
人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类 神经系统运作的数学模型,由多个简单计算单元(即神经元)组成,通过学习方 式从数据中提取模式并预测未来数据。
一、人工神经网络的基本结构
人工神经网络的基本结构包括输入层、隐藏层和输出层。输入层负责接收外 部输入的数据,隐藏层通过一系列复杂的计算将输入转化为有意义的特征,最后 输出层将隐藏层的结果转化为具体的输出。在隐藏层中,每个神经元都通过权重 和激活函数来对输入进行转换,以产生更有意义的输出。
根据任务的不同,人工神经网络可以分为监督学习、无监督学习和强化学习 三种。监督学习是指通过输入输出对之间的映射关系来训练模型;无监督学习是 指通过聚类或降维等方式来发现数据中的潜在规律;强化学习是指通过与环境的 交互来学习策略,以达到在给定的情况下采取最优行动的目标。
四、人工神经网络的未来发展
随着深度学习技术的不断发展,人工神经网络的性能和应用范围也在不断扩 大。未来的人工神经网络将更加注重模型的可解释性和鲁棒性,同时也将更加注 重跨领域的研究和应用。此外,随着计算机硬件的不断升级和算法的不断优化, 人工神经网络的训练速度和精度也将不断提高。
三、人工神经网络的种类
根据连接方式的不同,人工神经网络可以分为前馈神经网络和反馈神经网络 两种。前馈神经网络是一种层次结构,其中每个节点只与前一层的节点相连,每 个节点的输出都是前一层的加权输入。而反馈神经网络则是一种循环结构,其中 每个节点都与前一层的节点和后一层的节点相连,每个节点的输出不仅取决于前 一层的输入,还取决于后一层的输出。
反向传播算法是一种监督学习算法,它通过比较网络的输出和真实值来计算 误差,然后将这个误差反向传播到网络中,调整每个神经元的权重以减小误差。

人工神经网络

人工神经网络

人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model)目录[隐藏]∙ 1 人工神经网络概述∙ 2 人工神经网络的特点∙ 3 人工神经网络的特点与优越性∙ 4 人工神经网络的主要研究方向∙ 5 人工神经网络的应用分析人工神经网络概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。

人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。

国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。

” 这一定义是恰当的。

人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。

它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。

直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。

目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

人工神经网络是在现代神经科学的基础上提出来的。

它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。

人工神经网络的原理及优化方法

人工神经网络的原理及优化方法

人工神经网络的原理及优化方法随着计算机技术的不断发展,人工智能技术也得到了长足的发展。

人工神经网络作为人工智能技术的一个重要分支,广泛应用于语音识别、图像识别、机器翻译等领域。

本文将从人工神经网络的原理入手,介绍人工神经网络的优化方法。

一、人工神经网络的原理人工神经网络(Artificial Neural Network,ANN)是一种由神经元和之间联系组成的网络结构,其基本结构类似于生物神经元。

每个神经元接收来自其他神经元的信号,通过处理后输出信息到下一层神经元。

模拟了人脑神经元之间相互连接的模式。

在人工神经网络中,每个神经元都有权重和偏差值。

权重决定了该神经元的重要程度,而偏差值则可以对神经元的输出进行平移。

神经元的输入信号经过加权处理,并加上偏差值之后,再通过激活函数进行非线性变换。

人工神经网络最终的输出结果,就是所有神经元经过计算后的结果。

人工神经网络的训练过程,是利用已知数据集来调整神经网络中的权重和偏差值,以使得神经网络的输出结果尽可能接近于真实结果。

常用的神经网络训练算法包括反向传播算法、遗传算法、模拟退火等。

二、人工神经网络的优化方法人工神经网络的优化方法,旨在提高神经网络的准确性和泛化能力。

常用的优化方法包括以下几种:1. 权重初始化权重的初始化方案对神经网络的训练过程起着至关重要的作用。

一般来说,权重应该随机初始化,以避免过拟合和局部最优解。

常用的权重初始化方法包括高斯分布、均匀分布、正交初始化等,其中正交初始化是一种使用较少的初始化方式。

2. 优化函数优化函数是指在训练神经网络时,通过反向传播算法来更新权重和偏差值时所使用的损失函数。

常用的优化函数包括均方误差、交叉熵、KL散度等。

不同的优化函数对神经网络的训练效果有明显的影响。

3. DropoutDropout是一种随机性的正则化手段,它能够减少神经网络的过拟合现象。

这种方法在训练神经网络时,随机地将一些神经元的输出置为0,并将其忽略。

人工神经网络

人工神经网络

生物神经元示意图
从神经元各组成部分的功能来看,信息的处理与 传递主要发生在突触附近。当神经元细胞体通 过轴突传到突触前膜的脉冲幅度达到一定强度, 即超过其阈值电位后,突触前膜将向突触间隙 释放神经传递的化学物质。 突触有两种:兴奋性突触和抑制性突触。前者产 生正突触后电位,后者产生负突触后电位。
感知器权值参数的设计目的,就是根据学习法 则设计一条W*P+b=0的轨迹,使其对输入矢 量能够达到期望位置的划分。
以输入矢量r=2为例,对于选定的权值w1、w2和b, 可以在以p1和p2分别作为横、纵坐标的输入平面内画出 W*P+b=w1 p1十w2 p2十b=0的轨迹,它是一条直线, 此直线上的及其线以上部分的所有p1、p2值均使w1 p1 十w2 p2十b>0,这些点若通过由w1、w2和b构成的感知 器则使其输出为1;该直线以下部分的点则使感知器的 输出为0。 所以当采用感知器对不同的输入矢量进行期望输出 为0或1的分类时,其问题可转化为:对于已知输入矢 量在输入空间形成的不同点的位置,设计感知器的权 值W和b,将由W*P+b=0的直线放置在适当的位置上 使输入矢量按期望输出值进行上下分类。
3.1.2 人脑神经网络系统
图3—2脑神经系统的主要组成部分
人脑神经网络信息处理的特点 1.分布存储与冗余性 2.并行处理 3.信息处理与存储合一 4.可塑性与自组织性 5.鲁棒性
人工神经网络
♦ 神经网络直观理解
神经网络是一个并行和分布式的信息 处理网络结构,它一般由许多个神经元 组成,每个神经元只有一个输出,它可 以连接到很多其他的神经元,每个神经 元输入有多个连接通道,每个连接通道 对应于一个连接权系数。
人工神经元模型 归纳一下生物神经元传递信息的过程: 生物神经元是一个多输入、单输出单元。 常用的人工神经元模型可用图模拟。

人工神经网络及模式识别

人工神经网络及模式识别

人工神经网络及模式识别人工神经网络(Artificial Neural Network,ANN)是一种模仿生物神经网络结构和功能的数学模型,是深度学习的基础。

它由大量的神经元(也称为节点或单元)组成,通过连接不同神经元之间的连接权重进行信息传递和处理。

模式识别(Pattern Recognition)是指根据已知的模式进行辨识和分类的过程,人工神经网络在模式识别中有着广泛的应用。

人工神经网络的基本结构包括输入层、隐藏层和输出层。

输入层接收外部数据作为输入,隐藏层用于处理输入数据,输出层输出最终的结果。

神经元之间的连接权重和激活函数决定了信息的传递和处理方式。

常用的激活函数有 sigmoid 函数、ReLU 函数等。

通过调整神经元之间的连接权重和激活函数的选择,可以使神经网络对不同模式的输入数据进行学习和预测。

人工神经网络的训练过程通常包括前向传播和反向传播两个步骤。

前向传播是指依据当前的连接权重和激活函数,将输入数据从输入层传递到输出层,得到预测结果。

反向传播是指根据预测结果与真实结果的差别来调整连接权重,不断优化模型的性能。

模式识别是人工神经网络的主要应用之一、通过训练一个神经网络模型,可以使其具备识别和分类不同模式的能力。

例如,可以利用人工神经网络对图像进行分类,识别图像中的目标物体或区分不同类别的图像。

此外,人工神经网络还可以应用于语音识别、手写体识别、医学诊断等领域。

人工神经网络的模式识别能力取决于网络的深度和规模、数据样本的质量和数量,以及神经网络的参数设置等。

一般情况下,神经网络的规模越大、层数越深,其识别和分类的准确性和鲁棒性更高。

而充分的训练数据和合理的参数设置也是确保识别效果的重要因素。

总的来说,人工神经网络是一种模仿生物神经网络的数学模型,通过调整连接权重和激活函数的选择,实现对不同模式的输入数据进行学习和预测。

在模式识别中,人工神经网络可以应用于图像识别、语音识别、手写体识别等任务,具备较高的识别准确性和鲁棒性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 对人工神经网络,需要确定合适的能量定义;可以使用数学 上的优化技术来发现如何改变神经元间的联接权重。
ENERGY = measure of task performance error
人工神经网络
▪ 两个主要问题
▪ 结构
How to interconnect individual units?
▪ 学习方法
How to automatically determine the connection weights or even structure of ANN?
Solutions to these two problems leads to a concrete ANN!
ANN结构
▪ 前馈结构(Feedforward Architecture) - without loops - static
i0

y
f
f

n
xi c
2
i1

f ( )
Threshold
f ( )
Logistic Sigmoid
f ( )
1
1 exp( )
激活函数
f ( )
Linear
f ( )
Hyperbolic tangent Sigmoid
y f f gX
f: 激活函数(Activation Function) g: 组合函数(Combination Function)
McClloch and Pitts, A logical calculus of the ideas immanent in nervous activity, 1943
General structures of feedforward networks
………
……… ………
侧抑制连接
……
x1
x2
x3
xn
………
反馈连接
y1
y2
y3
yn
General structures of feedback networks
……… ……
……… ……… ………
ANN的学习方法
▪ 通过神经网络所在环境的模拟过程,调整网络中的自由参数 Learning by data
▪ 在神经层面上,通物系统中的学习
▪ Hebb学习律
▪ 神经元同时激活,突触强度增加 ▪ 异步激活,突触强度减弱
▪ 学习律符合能量最小原则
▪ 保持突触强度需要能量,所以在需要的地 方保持,在不需要的地方不保持。
ANN的学习规则
▪ 能量最小 ENERGY MINIMIZATION
▪ 反馈/循环结构(Feedback/Recurrent Architecture) - with loops - dynamic (non-linear dynamical systems)
……… ………
……… ………
……… ……… ……… ……… ………
……… ……… ……… ……… ………
………
▪ 学习模型 Incremental vs. Batch
▪ 两种类型 Supervised vs. Unsupervised
学习策略: Hebbrian Learning
▪ 若两端的神经元同时激活,增强联接权重 ▪ Unsupervised Learning
ij t 1 ij t xi t x j t
xj
ij
xi
学习策略: Error Correction
▪ 最小化实际输出与期望输出之间的误差(Supervised)
组合函数
▪ Weighted Sum
n
gX i xi i 1
y f f n i xi
i1

▪ Radial Distance
n
X C
xi ci 2
i 1
y f f n i xi
▪ 抑制状态,对输入信息整合后使细胞膜电位降低,当低于动作电位 的阈值时,无神经冲动产生。
▪ 结构的可塑性
▪ 神经元之间的柔性连接:突触的信息传递特性是可变的 ——学习记忆的基础
神经元模型
▪ 从生物学结构到数学模型
人工神经元
▪ M-P模型
Input
x1
ω1
x2
ω2
ωn
xn
Threshold
θ
y Output
神经元
▪ 神经元特性
▪ 信息以预知的确定方向传递 一个神经元的树突-细胞体-轴突-突触-另
一个神经元树突
▪ 时空整合性 对不同时间通过同一突触传入的信息具有时间
整合功能 对同一时间通过不同突触传入的信息具有空间
整合功能
神经元
▪ 工作状态
▪ 兴奋状态,对输入信息整合后使细胞膜电位升高,当高于动作电位 的阈值时,产生神经冲动,并由轴突输出。
人工神经网络
联结主义学派
▪ 又称仿生学派或生理学派
▪ 认为人的思维基元是神经元,而不是符号 处理过程
▪ 认为人脑不同于电脑
▪ 核心:智能的本质是联接机制。 ▪ 原理:神经网络及神经网络间的连接机
制和学习算法
麦卡洛可(McCulloch) 皮茨(Pitts)
什么是神经网络
▪ 所谓的人工神经网络就是基于模仿生物大脑的结构和功能而 构成的一种信息处理系统(计算机)。
f ( ) tanh()
f ( )
Saturating Linear
f ( )
+1

0
Gaussian
人工神经网络
▪ 多个人工神经元按照特定的网络结构联接在一起,就构成了 一个人工神经网络。
▪ 神经网络的目标就是将输入转换成有意义的输出。
生物系统中的学习
▪ 自适应学习
▪ 适应的目标是基于对环境信息的响应获得 更好的状态
仿生
人工神经网络
▪ 个体单元相互连接形成多种类型结构的图
▪ 循环、非循环 ▪ 有向、无向
▪ 自底向上(Bottom-Up)AI
▪ 起源于生物神经系统
▪ 从结构模拟到功能模拟
▪ 生物学启示 ▪ 多层神经网络 ▪ Hopfield网络 ▪ 自组织网络
内容
生物学启示
生物神经元
• 神经元组成:细胞体,轴突,树突,突触 • 神经元之间通过突触两两相连。信息的传递发生在突触。 • 突触记录了神经元间联系的强弱。 • 只有达到一定的兴奋程度,神经元才向外界传输信息。
相关文档
最新文档