2017年山东省东营市数学试题

合集下载

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s 2如下表所示:如果选拔一名学生去参赛,应派 乙 去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S <S ,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CE•CO ,其中正确结论的序号是 ①②③ .【分析】①由OC ⊥AB 就可以得出∠BOC=∠AOC=90°,再由OC=OA 就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C ⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可。

山东省东营市2017年数学试题

山东省东营市2017年数学试题

B. ②③
C. ①②④
D. ①③④
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题共 8 小题,其中 11-14 题每小题 3 分,15-18 题每小题 4 分,共 28 分.只
要求填写最后结果.
11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋
势预测为核心,采集调用了 8000 多个种类、总计 1.2 亿条全球进出口贸易基础数据„,
共有哪几种改扩建方案?
24.(本题满分 10 分) 如图,在等腰三角形 ABC 中,∠BAC=120°,AB=AC=2,点 D 是 BC 边上的一个动点(不
与 B、C 重合),在 AC 上取一点 E,使∠ADE=30°.
(1)求证:△ABD∽△DCE;
(2)设 BD= x ,AE= y ,求 y 关于 x 的函数关系式并写出自变量 x 的取值范围;
因一丈是十尺,则该圆柱的高为 20 尺,底面周长为 3 尺,有葛藤自点 A 处缠绕而上,绕
五周后其末端恰好到达点 B 处,则问题中葛藤的最短长度是
尺.
(第 16 题图)
(第 17 题图)
17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在 A 处测得塔顶的仰角
为 α,在 B 处测得塔顶的仰角为 β,又测量出 A、B 两点的距离为 s 米,则塔高为
C D
E
A
D
E
P
B
O
A
(第 14 题图)
B
C
(第 15 题图)
15.如图,已知菱形 ABCD 的周长为 16,面积为8 3 ,E 为 AB 的中点,若 P 为对角线 BD
上一动点,则 EP+AP 的最小值为

2017年度山东东营市中考数学试卷

2017年度山东东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC ∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B 两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C ⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可。

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【解答】解:0<<3<π,故选:D.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派乙去.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.(3分)(2017•东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E 为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A 1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【解答】解:(1)∵S=3,OB=3,△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.参与本试卷答题和审题的老师有:sd2011;dbz1018;gsls ;szl ;神龙杉;ZJX ;张其铎;tcm123;守拙;HJJ ;王学峰;家有儿女;弯弯的小河;三界无我;zgm666;nhx600;Ldt (排名不分先后) 菁优网2017年7月7日赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF第31页(共31页)。

2017年山东省东营市中考数学试卷及解析答案word版

2017年山东省东营市中考数学试卷及解析答案word版

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π【解答】解:0<<3<π,故选:D.2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.4.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.8.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.12.(3分)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派乙去.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故答案为2.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【解答】解:(1)∵S=3,OB=3,△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM +DM +DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t ,﹣t2+t +),则D(t ,﹣t +),∴DM=﹣t2+t +),则D(t ,﹣t +),∴DM=﹣t2+t +﹣(﹣t +)=﹣t2+t=﹣(t ﹣)2+,∴当t=时,DM 有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFEaBE1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a 运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

2017年山东省东营市中考数学试卷-答案

2017年山东省东营市中考数学试卷-答案

山东省东营市2017年初中学业水平考试数学答案解析第Ⅰ卷,a b ∥,∴4560APB ∠=,15∴∠,-∠=,1165APQ180165∴∠=,故选:7,四边形AB=,,5∴==.故选:B.AE AO26,侧120.故选:底面半径,根据圆锥的侧面展开图【解析】ABC △沿12BC =:,3BC =【提示】移动的距离可以视为12BC =:,推出【解析】BPC △是等边三角形,60,在正方形AB BC =90,30∴∠,2BE AE ∴=PC CD =,30PCD ∠,75∴∠,15∴∠,45DBA ∠=,15∴∠,FDP PBD ∴∠=∠,60DFP ∠=∠,DFP ∴△;故②正确;15FDP ∠=,45ADB ∠,30PDB ∴∠,而60∠,PFD ∴∠PDB △不会相似;故③错误;30PDH PCD ∠=∠,DPH DPC ∠,DPH ∴△2DP PH PC ∴=,故④正确;故选:C 【提示】由正方形的性质和相似三角形的判定与性质,即可得出结论.【考点】正方形的性质,等边三角形的性质,直角三角形的性质及相似三角形的性质与判定【解析】x x >丁甲从乙和丙中选择一人参加比赛,2S S <乙丙【提示】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【解析】①OC AB ⊥90.OC OA =45.AC OD ∥45,45∴∠,BOD ∴∠=.故①正确;②BOD DOC ∠=∠,BD ∴.故②正确;③90AOC ∠=,45∴∠,CDA ∴∠∠.OCD ∠=DOC EDC ∽△DC OC EC DC=2CD CE CO ∴.故③正确;故答案为:①②③.【提示】①由90,再由OC OA =45,45BOD =,进而得出45DOC =,从而得出结论;CD =;90就可以得出45,得出,得出CE CO . 【解析】如图作CE AB '⊥于E ',交BD 于P ',连接AC '、AP .已知菱形83AB CE '=,BE EA =重合,四边形P 与P '重合时,【考点】圆柱的侧面展开图是矩形,勾股定理及曲面的最小值tan tan sαββα-BCD 中,tan CBD ∠中,tan A ∠=,解得:tan tan tan s CD αββα=-,故答案为:tan tan s αββα-.t a n CD β,在R t △,根据t a n A ∠30,30,60∠,90∴∠,∴1AB =的横坐标为1-,过30,再过,根据等边三角形的性质以及含30角19.【答案】(1)8 16cos452⎛⎫+ ⎪⎝⎭21)1(2)a a ++-42a a +--20.【答案】(1)该班全部人数:1225%48÷=人; (2)4850%24⨯=,折线统计如图所示:636045=; (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:41360⨯百分比,计算即可;)用列表法即可解决问题.)OB OD =,AB AC =.DE 是O 的切线,)如图,过点O 作OH AF ⊥90ODE DEH =∠,∴四边形,OH DE =.DE AE +10OD =(10)2x x --=-.在.OH AF ⊥22816AF AH ∴==⨯=.)3AOB S =△2=-,∴一次函数,6OD =,反比例函数的解析式是,x 取整数,)ABC △是等腰三角形,120,30∴∠,30∴∠,ADC ∠=EDC =∠DCE ∽△,AB AC =120,过A 90,2AB =,30,112AF ∴==,BF ∴2BF =y -,ABD △∽△,22x ∴=30,120,60∴∠,90EDC ∠,则E 时,30AED EDA ∠=,120EAD ∠=,此时点42-330的性质求30,120EAD ∠,此时点)直线60,90ACB ∠=,30∴∠,3tan303AO CO ∴=)抛物线)MD y ∥轴,60,则30∠,DH ∴DMH △的周长3DM DM ,∴有最大值,点60,则在30,利用三角函数的定义可求得两点坐标,利用待定系数法可求得抛物线解析式;60,在Rt点的坐标,则可表示出DM11 / 11。

【2017中考数学真题】山东东营市试卷及解析【2017数学中考真题系列】

【2017中考数学真题】山东东营市试卷及解析【2017数学中考真题系列】

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π【解答】解:0<<3<π,故选:D.2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选:A.4.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选:B.8.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选:C.9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选:C.二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.12.(3分)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所如果选拔一名学生去参赛,应派乙去.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故答案为2.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【解答】解:(1)∵S=3,OB=3,△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.。

2017各地中考真题-2017年山东省东营市中考数学试卷

2017各地中考真题-2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s 2如下表所示:如果选拔一名学生去参赛,应派 乙 去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S <S ,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CE•CO ,其中正确结论的序号是 ①②③ .【分析】①由OC ⊥AB 就可以得出∠BOC=∠AOC=90°,再由OC=OA 就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C ⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可。

2017年山东省东营市中考数学(全解全析)

2017年山东省东营市中考数学(全解全析)

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中,最大的数是()A.3 B.C.0 D.π【解析】在数轴上表示的两个实数,右边的总比左边的大,0<<3<π,故选:D.2.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣(﹣a+1)=a+1【解析】A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解析】根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解析】小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【解析】如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解析】设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解析】连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°【解析】设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解析】∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解析】∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;故选C.二、填空题(本大题共8小题,共28分)11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.1.2亿=120000000=1.2×108.故答案为:1.2×108.12.分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解析】原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【解析】∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC 交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是①②③.【思路】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CECO.【解析】①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CECO.故③正确.故答案为:①②③.15.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解析】如图作C E′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解析】如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解析】在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【思路】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解析】由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解】(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解】(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解】(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B 两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解】(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解】(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A 点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.【解】(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.。

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前山东省东营市2017年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列四个数中,最大的数是( )A .3BC .0D .π 2.下列运算正确的是( )A .222()x y x y -=- B.2|2=C=D .(1)1a a --+=+3.若2|44|x x -+,则x y +的值为( )A .3B .4C .6D .94.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校.小明从家到学校行驶路程(m)s 与时间(min)t 的大致图象是( )ABCD5.已知a b ∥,一块含30角的直角三角尺如图所示放置,245=∠,则1∠等于 ( ) A .100 B .135 C .155D .1656.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的表面展开图的概率是 ( )A .47B .37C .27D .17(第6题)(第7题)7.如图,在□ABCD 中,用直尺和圆规作BAD ∠的平分线AG 交BC 于点E ,若8BF =,5AB =,则AE 的长为( )A .5B .6C .8D .128.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A .60B .90C .120D .1809.如图,把ABC △沿着BC 的方向平移到DEF △的位置,它们重叠部分的面积是ABC △面积的一半,若BC =则ABC △移动的距离是( )ABCD(第9题)(第10题)10.如图,在正方形ABCD 中,BPC △是等边三角形,,BP CP 的延长线分别交AD 于点,E F ,连接,BD DP ,BD 与CF 相交于点H ,给出下列结论:①2BE AE =;②DFP BPH △∽△;③PFD PDB △∽△;④2 DP PH PC =.其中正确的是( )A .①②③④B .②③C .①②④D .①③④(第5题)毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题.其中11~14题每小题3分,15~18题每小题4分,共28分) 11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8 000多个种类、总计1.2亿条全球进出口贸易基础数据……,1.212.分解因式:221632x y xy y -+-13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100m 自由泳训练,他们成绩的平均数x 及其方差2s 如下表所示:如果选拔一名学生去参赛,应派 去.14.如图,AB 是半圆直径,半径OC AB ⊥于点O ,D 为半圆上一点,AC OD ∥,AD 与OC 交于点E ,连结,CD BD ,给出以下三个结论:①OD 平分COB ∠;②BD CD =;③2 CD CE CO =.其中正确结论的序号是 .(第14题)(第15题)15.如图,已知菱形ABCD 的周长为16,面积为E 为AB 的中点,若P 为对角线BD上一动点,则EP AP+的最小值为 .16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是 尺.(第16题) (第17题)17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在点A 处测得塔顶的仰角为α,在B 处测得塔顶的仰角为β,又测量出,A B 两点的距离为 m s ,则塔高为 m .18.如图,在平面直角坐标系中,直线l :y =-与x 轴交于点1B ,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,……则点2017A 的横坐标是 .三、解答题(本大题共7个小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤)19.[本小题满分8分,第(1)题3分,第(2)题5分] (1)计算:102017201716cos45() 1.73)|54(0.25)3-+++-+⨯-.(2)先化简,再求值:23444(1)112a a a a a a a -+-+÷+-++-,并从1,0,2-中选一个合适的数作为a 的值代入求值.20.(本小题满分7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动).九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(第20题)(1)求该班的人数.(2)请把折线统计图补充完整.(3)求扇形统计图中,网络文明部分对应的圆心角的度数.(4)小明和小丽参加了志愿服务活动,请用画树状图或列表法求出他们参加同一服务活动的概率.(第18题)数学试卷 第5页(共6页) 数学试卷 第6页(共6页)21.(本小题满分8分)如图,在ABC △中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作O 的切线DE ,交AC 于点E ,AC 的反向延长线交O 于点F . (1)求证:DE AC ⊥.(2)若8DE EA +=,O 的半径为10,求AF 的长度.(第21题)22.(本小题满分8分)如图,一次函数y kx b =+的图象与坐标轴分别交于,A B 两点,与反比例函数ny x=的图象在第一象限的交点为C ,CD x ⊥轴,垂足为D ,若3OB =,6OD =,AOB △的面积为3.(1)求一次函数与反比例函数的解析式.(2)直接写出当0x >时,0nkx b x+-<的解集.(第22题)23.(本小题满分9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元.(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元,地方财政投入资金不少于4 000万元,其中地方财政投入到A,B 两类学校的改扩建资金分别为每所300万元和500万元.请问:共有哪几种改扩建方案?24.(本小题满分10分)如图,在等腰三角形ABC 中,120BAC =∠,2AB AC ==,点D 是BC 边上的一个动点(不与点,B C 重合),在AC 上取一点E ,使30ADE =∠.(1)求证:ABD DCE △∽△;(2)设BD x =,AE y =,求y 关于x 的函数关系式并写出自变量x 的取值范围. (3)当ADE △是等腰三角形时,求AE 的长.(第24题)25.(本小题满分12分) 如图,直线y =+分别与x 轴、y 轴交于,B C 两点,点A 在x 轴上,90ACB =∠,抛物线2y ax bx =+,A B 两点.(1)求,A B 两点的坐标.(2)求抛物线的解析式.(3)点M 是直线BC 上方抛物线上的一点,过点M 作MH BC ⊥于点H ,作MD y ∥轴交BC 于点D 求DMH △周长的最大值.(第25题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.(3分)以下四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)以下运算正确的选项是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣(﹣a+1)=a+1 3.(3分)假设|x2﹣4x+4|与互为相反数,那么x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时刻后抵达学校,小明从家到学校行驶路程s(m)与时刻t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如下图放置,∠2=45°,那么∠1等于()A.100°B.135°C.155°D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部份的5个小正方形是一个正方体的表面展开图的一部份,现从其余的小正方形中任取一个涂上阴影,能组成那个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.假设BF=8,AB=5,那么AE的长为()A.5 B.6 C.8 D.128.(3分)假设圆锥的侧面积等于其底面积的3倍,那么该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部份的面积是△ABC面积的一半,假设BC=,那么△ABC移动的距离是()A. B. C. D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线别离交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出以下结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•P C其中正确的选项是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,搜集挪用了8000多个种类,共计1.2亿条全世界进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x 2y+16xy﹣32y= .13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳竞赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6若是选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC 交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,假设P为对角线BD上一动点,那么EP+AP的最小值为.16.(4分)我国古代有如此一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如下图,把枯木看做一个圆柱体,因一丈是十尺,那么该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其结尾恰好抵达点B处,那么问题中葛藤的最短长度是尺.17.(4分)一数学爱好小组来到某公园,预备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,那么塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,那么点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2当选一个适合的数作为a的值代入求值.20.(7分)为大力宏扬“奉献、友爱、合作、进步”的志愿效劳精神,传播“奉献他人、提升自我”的志愿效劳理念,东营市某中学利用周末时刻开展了“助老助残、社区效劳、生态环保、网络文明”四个志愿效劳活动(每人只参加一个活动),九年级某班全班同窗都参加了志愿效劳,班长为了解志愿效劳的情形,搜集整理数据后,绘制以下不完整的统计图,请你依照统计图中所提供的信息解答以下问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部份对应的圆心角的度数;(4)小明和小丽参加了志愿效劳活动,请用树状图或列表法求出他们参加同一效劳活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)假设DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴别离交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,假设OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部份中小学,某县打算对A、B 两类学校进行改扩建,依照预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金别离是多少万元?(2)该县打算改扩建A、B两类学校共10所,改扩建资金由国家财政和地址财政一起承担.假设国家财政拨付资金不超过11800万元;地址财政投入资金很多于4000万元,其中地址财政投入到A、B两类学校的改扩建资金别离为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+别离与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+通过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.(3分)(2017•东营)以下四个数中,最大的数是()A.3 B.C.0 D.π【分析】依照在数轴上表示的两个实数,右边的总比左侧的大可得答案.【解答】解:0<<3<π,应选:D.【点评】此题要紧考查了实数的比较大小,关键是把握利用数轴也能够比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左侧的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)以下运算正确的选项是()A.(x﹣y)2=x2﹣y2 B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】依照完全平方公式,二次根式的化简和去括号的法那么进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;应选:B.【点评】此题综合考查了二次根式的加减法,实数的性质,完全平方公式和去括号,属于基础题,难度不大.3.(3分)(2017•东营)假设|x2﹣4x+4|与互为相反数,那么x+y的值为()A.3 B.4 C.6 D.9【分析】依照相反数的概念取得|x2﹣4x+4|+=0,再依照非负数的性质得x2﹣4x+4=0,2x ﹣y﹣3=0,然后利用配方式求出x,再求出y,最后计算它们的和即可.【解答】解:依照题意得|x2﹣4x+4|+=0,因此|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,因此x=2,y=1,因此x+y=3.应选A.【点评】此题考查了解一元二次方程﹣配方式:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方式求解,这种解一元二次方程的方式叫配方式.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时刻后抵达学校,小明从家到学校行驶路程s(m)与时刻t(min)的大致图象是()A.B.C.D.【分析】依照题意判定出S随t的转变趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时刻t的增加而增加,等了几分钟后坐上了公交车,因现在刻在增加,S不增加,坐上了公交车,公交车沿着公路匀速行驶一段时刻后抵达学校,因此S又随时刻t的增加而增加,应选:C.【点评】此题要紧考查了函数图象,关键是正确明白得题意,依照题意判定出两个变量的转变情形.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如下图放置,∠2=45°,那么∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,那么PQ∥b,依照平行线的性质即可取得∠3的度数,再依照对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,应选:D.【点评】此题要紧考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部份的5个小正方形是一个正方体的表面展开图的一部份,现从其余的小正方形中任取一个涂上阴影,能组成那个正方体的表面展开图的概率是()A.B.C.D.【分析】依照正方形表面展开图的结构即可求出判定出组成那个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的别离为:A、B、C、D、E、F、G,如下图,从其余的小正方形中任取一个涂上阴影共有7种情形,而能够组成正方体的表面展开图的有以下情形,D、E、F、G,∴能组成那个正方体的表面展开图的概率是,应选(A)【点评】此题考查概率,解题的关键是熟识正方体表面展开图的结构,此题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.假设BF=8,AB=5,那么AE的长为()A.5 B.6 C.8 D.12【分析】由大体作图取得AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.应选B.【点评】此题考查的是作图﹣大体作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)假设圆锥的侧面积等于其底面积的3倍,那么该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】依照圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,依照圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.应选C.【点评】此题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要牢牢抓住二者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,和利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部份的面积是△ABC面积的一半,假设BC=,那么△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离能够视为BE或CF的长度,依照题意可知△ABC与阴影部份为相似三角形,且面积比为2:1,因此EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.应选:D.【点评】此题要紧考查相似三角形的判定和性质、平移的性质,关键在于证△ABC与阴影部份为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线别离交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出以下结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的选项是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB可不能相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;应选C.【点评】此题考查的正方形的性质,等边三角形的性质和相似三角形的判定和性质,解答此题的关键是熟练把握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,搜集挪用了8000多个种类,共计1.2亿条全世界进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确信n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方式.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确信a的值和n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】依照提取公因式和完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】此题考查因式分解,解题的关键是熟练运用因式分解法,此题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳竞赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6若是选拔一名学生去参赛,应派乙去.【分析】第一比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙当选择一人参加竞赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一样地设n个数据,x1,x2,…x n 的平均数为,那么方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就能够够得出∠BOC=∠AOC=90°,再由OC=OA就能够够得出∠OCA=∠OAC=45°,由AC∥OD就能够够得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就能够够得出∠CDA=45°,得出∠DOC=∠CDA,就能够够得出△DOC∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】此题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练把握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,假设P为对角线BD上一动点,那么EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.第一证明E′与E重合,因为A、C关于BD对称,因此当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】此题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加经常使用辅助线,此题的冲破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有如此一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如下图,把枯木看做一个圆柱体,因一丈是十尺,那么该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其结尾恰好抵达点B处,那么问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短途径问题,能够展开成为平面内的问题解决,展开后可转化以下图,因此是个直角三角形求斜边的问题,依照勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】此题考查了平面展开最短途径问题,关键是把立体图形展成平面图形,此题是展成平面图形后为直角三角形依照勾股定理可求出解.17.(4分)(2017•东营)一数学爱好小组来到某公园,预备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,那么塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,依照tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】此题要紧考查解直角三角形的应用﹣仰角俯角问题,解题的关键是依照两直角三角形的公共边利用三角函数成立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,那么点A2017的横坐标是.【分析】先依照直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,依照等边三角形的性质和含30°角的直角三角形的性质,别离求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而取得A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如下图,过A1作A1A⊥OB1于A,那么OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,那么A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】此题要紧考查了一次函数图象上点的坐标特点和等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2当选一个适合的数作为a的值代入求值.【分析】(1)依照特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方能够解答此题;(2)依照分式的加减法和除法能够化简题目中的式子,然后在﹣1,0,2当选一个使得原分式成心义的值代入即可解答此题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】此题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答此题的关键是明确它们各自的计算方式.20.(7分)(2017•东营)为大力宏扬“奉献、友爱、合作、进步”的志愿效劳精神,传播“奉献他人、提升自我”的志愿效劳理念,东营市某中学利用周末时刻开展了“助老助残、社区效劳、生态环保、网络文明”四个志愿效劳活动(每人只参加一个活动),九年级某班全班同窗都参加了志愿效劳,班长为了解志愿效劳的情形,搜集整理数据后,绘制以下不完整的统计图,请你依照统计图中所提供的信息解答以下问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部份对应的圆心角的度数;(4)小明和小丽参加了志愿效劳活动,请用树状图或列表法求出他们参加同一效劳活动的概率.【分析】(1)依照参加生态环保的人数和百分比,即可解决问题;(2)社区效劳的人数,画出折线图即可;(3)依照圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全数人数:12÷25%=48人.(2)48×50%=24,折线统计如下图:(3)×360°=45°.(4)别离用“1,2,3,4”代表“助老助残、社区效劳、生态环保、网络文明”四个效劳活动,列表如下:那么所有可能有16种,其中他们参加同一活动有4种,因此他们参加同一效劳活动的概率P==.【点评】此题考查折线图、扇形统计图、列表法等知识,解题的关键是记住大体概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D 作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)假设DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.那么由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程取得AH的长度,结合OH ⊥AF,取得AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,那么∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】此题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴别离交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,假设OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)依照三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)依照图象即可得出答案.【解答】解:(1)∵S=3,OB=3,△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】此题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,要紧考查学生的观看图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部份中小学,某县打算对A、B两类学校进行改扩建,依照预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金别离是多少万元?(2)该县打算改扩建A、B两类学校共10所,改扩建资金由国家财政和地址财政一起承担.假设国家财政拨付资金不超过11800万元;地址财政投入资金很多于4000万元,其中地址财政投入到A、B两类学校的改扩建资金别离为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可依照“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要依照“国家财政拨付资金不超过11800万元;地址财政投入资金很多于4000万元”来列出不等式组,判定出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金别离为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金别离为1200万元和1800万元.(2)设今年改扩建A类学校a所,那么改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】此题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)依照两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,依照直角三角形30°的性质求AF的长,依照勾股定理求BF的长,那么可得BC的长,依照(1)中的相似列比例式可得函数关系式,并确信取值;(3)分三种情形进行讨论:①当AD=DE时,如图2,由(1)可知:现在△ABD∽△DCE,那么AB=CD,即2=2﹣x;②当AE=ED时,如图3,那么ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,现在点D与点B重合,不符合题意,此情形不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,那么DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:现在△ABD∽△DCE,那么AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,那么ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,现在点D与点B重合,不符合题意,此情形不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.。

山东省东营市中考数学试卷含答案.docx

山东省东营市中考数学试卷含答案.docx

2017 年山东省东营市中考数学试卷一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1.( 3 分)下列四个数中,最大的数是()A. 3B.C. 0D.π2.( 3 分)下列运算正确的是()A.( x﹣ y)2=x2﹣ y2B. |﹣2|=2﹣C.﹣= D .﹣(﹣ a+1) =a+13.( 3 分)若 |x 2﹣ 4x+4| 与互为相反数,则x+y 的值为()A.3B. 4C.6D.94.(3 分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s( m)与时间 t ( min)的大致图象是()A. B. C. D.5.( 3 分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠ 1 等于()A. 100°B. 135°C. 155°D.165°6.( 3 分)如图,共有12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.( 3 分)如图,在 ?ABCD中,用直尺和圆规作∠BAD的平分线AG交 BC于点 E.若 BF=8, AB=5,则 AE的长为()A.5B.6C.8D.128.( 3 分)若的面等于其底面的 3 倍,面展开所扇形心角的度数()A. 60°B9.( 3 分)如,把△. 90°ABC沿着C. 120°D.180°BC的方向平移到△DEF的位置,它重叠部分的面是△ABC面的一半,若BC=,△ABC移的距离是()A.B.C.D.10.( 3分)如,在正方形ABCD中,△ BPC是等三角形,BP、 CP 的延分交AD 于点E、F,接BD、 DP, BD 与CF相交于点H,出下列:2①BE=2AE;②△ DFP∽△ BPH;③△ PFD∽△ PDB;④ DP=PH?PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空(本大共8 小,共28 分)11.( 3 分)《“一一路” 易合作大数据告(2017)》以“一一路” 易合作状分析和核心,采集用了8000 多个种,条全球出口易基数据⋯,用科学数法表示.12.( 3 分)分解因式:2x2y+16xy 32y=.13.(3 分)拔一名手参加全国中学生游泳自由泳比,我市四名中学生参加了男子100 米自由泳,他成的平均数及其方差s2如下表所示:甲乙丙丁1′ 05″1′ 04″1′ 04″1′ 07″33262629S2如果拔一名学生去参,派去.14.( 3 分)如, AB是半直径,半径OC⊥ AB于点 O, D 半上一点, AC∥ OD, AD与 OC交于点 E,2CD、BD,出以下三个:① OD平分∠ COB;②BD=CD;③ CD=CE?CO,其中正确的序号是.15.( 4 分)如,已知菱形ABCD的周16,面 8,E AB的中点,若 P 角 BD上一点,EP+AP的最小.16.( 4 分)我国古代有一道数学:“枯木一根直立地上,高二丈,周三尺,有葛藤自根而上,五周而达其,葛藤之几何” 意是:如所示,把枯木看作一个柱体,因一丈是十尺,柱的高 20 尺,底面周 3 尺,有葛藤自点 A 而上,五周后其末端恰好到达点 B ,中葛藤的最短度是尺.17.( 4 分)一数学趣小来到某公园,准量一座塔的高度.如,在 A 得塔的仰角α,在B 得塔的仰角β,又量出A、B 两点的距离s 米,塔高米.18.( 4 分)如,在平面直角坐系中,直l :y= x与x交于点B1,以 OB1作等三角形A1OB1,点 A1作 A1B2平行于 x ,交直l 于点 B2,以 A1B2作等三角形A2A1B2,点 A2作 A2B3平行于 x ,交直l 于点 B3,以 A2B3作等三角形A3A2B3,⋯,点A2017的横坐是.三、解答题(本大题共7 小题,共62 分)19.( 8 分)( 1)计算: 6cos45 ° +()﹣ 10﹣ 320172017 +(﹣) +|5|+4 ×(﹣)(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为 a 的值代入求值.20.( 7 分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.( 8 分)如图,在△ABC中, AB=AC,以 AB为直径的⊙ O交 BC于点 D,过点 D 作⊙ O的切线 DE,交 AC于点 E, AC的反向延长线交⊙ O于点 F.(1)求证: DE⊥ AC;(2)若 DE+EA=8,⊙ O的半径为 10,求 AF 的长度.22.( 8 分)如图,一次函数y=kx+b 的图象与坐标轴分别交于A、 B 两点,与反比例函数y= 的图象在第一象限的交点为C, CD⊥ x 轴,垂足为 D,若 OB=3, OD=6,△ AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当 x> 0 时, kx+b﹣< 0 的解集.23.( 9 分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对校进行改扩建,根据预算,改扩建 2 所 A 类学校和 3 所 B 类学校共需资金7800 万元,改扩建和 1 所 B 类学校共需资金5400 万元.A、 B 两类学3 所 A类学校(1)改扩建 1 所 A 类学校和 1 所 B 类学校所需资金分别是多少万元(2)该县计划改扩建 A、B 两类学校共 10 所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800 万元;地方财政投入资金不少于4000 万元,其中地方财政投入到A、 B 两类学校的改扩建资金分别为每所300 万元和 500 万元.请问共有哪几种改扩建方案24.(10 分)如图,在等腰三角形ABC中,∠ BAC=120°, AB=AC=2,点 D是 BC边上的一个动点(不与B、C 重合),在 AC上取一点E,使∠ ADE=30°.(1)求证:△ ABD∽△ DCE;(2)设 BD=x, AE=y,求 y 关于 x 的函数关系式并写出自变量x 的取值范围;(3)当△ ADE是等腰三角形时,求AE的长.25.( 12 分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点 A 在 x 轴上,∠ ACB=90°,抛物线 y=ax 2+bx+经过A,B两点.(1)求 A、 B 两点的坐标;(2)求抛物线的解析式;(3)点 M是直线 BC上方抛物线上的一点,过点M作 MH⊥ BC于点 H,作 MD∥ y 轴交 BC于点 D,求△ DMH周长的最大值.2017 年山东省东营市中考数学试卷参考答案一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1.( 3 分)(2017?东营)下列四个数中,最大的数是()A. 3B.C. 0D.π【解答】解: 0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.( 3 分)(2017?东营)下列运算正确的是()A.( x﹣ y)2=x2﹣ y2B. |﹣2|=2﹣C.﹣= D .﹣(﹣ a+1) =a+1【考点】78:二次根式的加减法;28:实数的性质;36:去括号与添括号;4C:完全平方公式.【解答】解:A、原式=x 2﹣2xy+y 2,故本选项错误;B、原式 =2﹣,故本选项正确;C、原式 =2﹣,故本选项错误;D、原式 =a﹣ 1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题难度小.3.( 3 分)(2017?东营)若 |x 2﹣4x+4| 与互为相反数,则x+y 的值为()A.3B. 4C.6D.9【考点】 A6:解一元二次方程﹣配方法;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.菁【分析】根据相反数的定义得到|x 2﹣ 4x+4|+=0,再根据非负数的性质得x2﹣ 4x+4=0, 2x ﹣ y﹣3=0,然后利用配方法求出x,再求出 y,最后计算它们的和即可.【解答】解:根据题意得|x 2﹣ 4x+4|+=0,所以 |x 2﹣ 4x+4|=0 ,=0,即( x﹣ 2)2=0, 2x﹣ y﹣ 3=0,所以 x=2,y=1,所以 x+y=3.故选 A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3 分)( 2017?东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s( m)与时间 t ( min )的大致图象是()A. B. C. D.【分析】根据题意判断出S 随 t 的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S 随时间 t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t 的增长而增长,故选: C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.( 3 分)( 2017?东营)已知 a∥ b,一块含 30°角的直角三角板如图所示放置,∠ 2=45°,则∠ 1等于()A. 100°B. 135°C. 155°D. 165°【考点】 JA:平行线的性质.菁优网版权所有【解答】解:如图,过P 作 PQ∥ a,∵ a∥ b,∴ PQ∥ b,∴∠ BPQ=∠2=45°,∵∠ APB=60°,∴∠ APQ=15°,∴∠ 3=180°﹣∠ APQ=165°,∴∠ 1=165°,故选: D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.( 3 分)( 2017?东营)如图,共有12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A. B. C. D.【考点】 X5:几何概率;I6 :几何体的展开图.菁优网版权所有【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7 种情况,而能够构成正方体的表面展开图的有以下情况,D、 E、 F、 G,∴能构成这个正方体的表面展开图的概率是,故选( A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.( 3 分)( 2017?东营)如图,在 ?ABCD中,用直尺和圆规作∠BAD的平分线 AG交 BC于点 E.若 BF=8,AB=5,则 AE的长为()A.5B. 6C.8D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.菁优网版权所有【分析】由基本作图得到 AB=AF,AG平分∠故可得出 OB的长,再由勾股定理即可得出BAD,故可得出四边形ABEF是菱形,由菱形的性质可知OA的长,进而得出结论.AE⊥ BF,【解答】解:连结EF, AE 与 BF 交于点 O,∵四边形 ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥ BF,OB=BF=4, OA=AE.∵ AB=5,在 Rt △ AOB中, AO==3,∴ AE=2AO=6.故选 B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.( 3 分)( 2017?东营)若圆锥的侧面积等于其底面积的 3 倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A. 60° B. 90° C. 120°D. 180°【考点】 MP:圆锥的计算.菁优网版权所有【分析】根据圆锥侧面积恰好等于底面积的 3 倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r ,∴底面周长 =2π r ,底面面积 =π r 2,侧面面积 = lr= πrR,∵侧面积是底面积的 3 倍,∴ 3πr 2 =π rR,∴ R=3r,设圆心角为n,有= πR,∴ n=120°.故选 C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.( 3 分)( 2017?东营)如图,把△ABC沿着 BC的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ ABC移动的距离是()A.B.C.D.﹣【考点】 Q2:平移的性质.菁优网版权所有【分析】移动的距离可以视为BE 或 CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为 2: 1,所以 EC: BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ ABC沿 BC边平移到△ DEF的位置,∴ AB∥ DE,∴△ ABC∽△ HEC,∴=()2=,∴EC: BC=1:,∵ BC=,∴ EC=,∴ BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在证△ABC与阴影部分为相似三角形.10.( 3 分)( 2017?东营)如图,在正方形ABCD中,△ BPC是等边三角形, BP、CP的延长线分别交 AD于点E、 F,连接 BD、DP, BD与 CF相交于点 H,给出下列结论:①BE=2AE;②△ DFP∽△ BPH;③△ PFD∽△ PDB;2④DP=PH?PC其中正确的是()A.①②③④ B .②③ C .①②④D.①③④【考点】 S9:相似三角形的判定与性质;KK:等边三角形的性质;LE:正方形的性质.菁优网版权所有【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△ BPC是等边三角形,∴BP=PC=BC,∠ PBC=∠PCB=∠ BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠ A=∠ADC=∠ BCD=90°∴∠ ABE=∠ DCF=30°,∴ BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠ PDC=75°,∴∠ FDP=15°,∵∠ DBA=45°,∴∠ PBD=15°,∴∠ FDP=∠PBD,∵∠ DFP=∠ BPC=60°,∴△ DFP∽△ BPH;故②正确;∵∠FDP=∠PBD=15°,∠ ADB=45°,∴∠ PDB=30°,而∠ DFP=60°,∴∠ PFD≠∠ PDB,∴△ PFD与△ PDB不会相似;故③ ;∵∠PDH=∠ PCD=30°,∠ DPH=∠ DPC,∴△ DPH∽△ CPD,∴,∴ DP2=PH?PC,故④正确;故C.【点】本考的正方形的性,等三角形的性以及相似三角形的判定和性,解答此的关是熟掌握性和定理.二、填空(本大共8 小,共28 分)11.( 3 分)( 2017?)《“一一路” 易合作大数据告(2017)》以“一一路” 易合作状分析和核心,采集用了8000 多个种,条全球出口易基数据⋯,用科学数法表示×108.【考点】 1I :科学数法—表示大的数.菁网版所有【分析】科学数法的表示形式数成 a ,小数点移了多少位,当原数的< 1 , n 是数.a× 10n的形式,其中1≤ |a| < 10, n 整数.确定n 的,要看把原n 的与小数点移的位数相同.当原数> 1 , n 是正数;【解答】解:用科学数法表示×108.故答案:×108.【点】此考科学数法的表示方法.科学数法的表示形式a× 10n的形式,其中1≤ |a| <10, n 整数,表示关要正确确定 a 的以及 n 的.12.( 3 分)( 2017?)分解因式:2x2y+16xy 32y=2y( x 4)2.【考点】 55:提公因式法与公式法的合运用.菁网版所有【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式 = 2y( x28x+16) = 2y( x 4)2故答案:2y (x 4)2【点】本考因式分解,解的关是熟运用因式分解法,本属于基型.13.( 3 分)(2017?)拔一名手参加全国中学生游泳自由泳比,我市四名中学生参加了男子 100 米自由泳,他成的平均数及其方差s2如下表所示:甲乙丙丁1′ 05″1′ 04″1′ 04″1′ 07″33262629S2如果拔一名学生去参,派乙去.【考点】 W7:方差; W1:算平均数.菁网版所有【分析】首先比平均数,平均数相同方差小的运参加.【解答】解:∵>>=,∴从乙和丙中一人参加比,∵S<S,∴ 乙参,故答案:乙.【点】考了平均数和方差,一般地n 个数据, x1,x2,⋯ x n的平均数,方差S2= [ ( x1)2+(x2)2+⋯+(x n)2],它反映了一数据的波大小,方差越大,波性越大,反之也成立.14.( 3 分)(2017?)如,AB是半直径,半径OC⊥ AB于点 O, D 半上一点,AC∥OD, AD与 OC2交于点 E,连结 CD、 BD,给出以下三个结论:①OD平分∠ COB;② BD=CD;③ CD=CE?CO,其中正确结论的序号是①②③.【考点】 S9:相似三角形的判定与性质;M5:圆周角定理.菁优网版权所有【分析】①由 OC⊥ AB 就可以得出∠ BOC=∠ AOC=90°,再由OC=OA就可以得出∠ OCA=∠OAC=45°,由 AC∥OD就可以得出∠BOD=45°,进而得出∠ DOC=45°,从而得出结论;②由∠BOD=∠ COD即可得出BD=CD;③由∠ AOC=90°就可以得出∠CDA=45°,得出∠ DOC=∠ CDA,就可以得出△DOC∽△ EDC.进而得出,2得出 CD=CE?CO.【解答】解:①∵ OC⊥ AB,∴∠ BOC=∠ AOC=90°.∵ OC=OA,∴∠ OCA=∠ OAC=45°.∵ AC∥ OD,∴∠ BOD=∠CAO=45°,∴∠ DOC=45°,∴∠ BOD=∠DOC,∴ OD平分∠ COB.故①正确;②∵∠ BOD=∠ DOC,∴BD=CD.故②正确;③∵∠ AOC=90°,∴∠ CDA=45°,∴∠ DOC=∠ CDA.∵∠ OCD=∠ OCD,∴△ DOC∽△ EDC,2∴,∴ CD=CE?CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.( 4 分)( 2017?东营)如图,已知菱形ABCD的周长为16,面积为 8,E 为 AB 的中点,若 P 为对角线BD上一动点,则 EP+AP的最小值为2.【考点】 PA:轴对称﹣最短路线问题;L8:菱形的性质.菁优网版权所有【分析】如图作 CE′⊥ AB 于 E′,甲 BD于 P′,连接AC、 AP′.首先证明E′与 E 重合,因为A、 C 关于BD对称,所以当P 与 P′重合时, PA′ +P′ E 的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥ AB于 E′,甲 BD于 P′,连接AC、 AP′.∵已知菱形ABCD的周长为16,面积为 8,∴ AB=BC=4,AB?CE′ =8,∴ CE′ =2,在Rt △ BCE′中,BE′ ==2,∵ BE=EA=2,∴ E 与 E′重合,∵四边形ABCD是菱形,∴ BD垂直平分AC,∴ A、 C 关于 BD对称,∴当P 与 P′重合时, PA′ +P′ E的值最小,最小值为CE的长 =2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ ABC的高,学会利用对称解决最短问题.16.( 4 分)( 2017?东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20 尺,底面周长为 3 尺,有葛藤自点 A 处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【考点】 KV:平面展开﹣最短路径问题;KU:勾股定理的应用.菁优网版权所有【专题】 16 :压轴题; 35 :转化思想.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20 尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.( 4 分)( 2017?)一数学趣小来到某公园,准量一座塔的高度.如,在 A 得塔的仰角α,在 B 得塔的仰角β,又量出A、B 两点的距离s 米,塔高米.【考点】 TA:解直角三角形的用仰角俯角.菁网版所有【分析】在 Rt △ BCD中有 BD=,在Rt△ ACD中,根据tan ∠ A= =可得tanα =,解之求出CD 即可得.【解答】解:在 Rt △ BCD中,∵ tan ∠ CBD= ,∴ BD=,在Rt△ ACD中,∵ tan∠ A= =,∴ tanα =,解得: CD=,故答案:.【点】本主要考解直角三角形的用仰角俯角,解的关是根据两直角三角形的公共利用三角函数建立方程求解.18.( 4 分)( 2017?)如,在平面直角坐系中,直l : y= x与x交于点B1,以 OB1作等三角形A1OB1,点 A1作 A1B2平行于 x ,交直l 于点 B2,以 A1B2作等三角形A2A1B2,点 A2作 A2B3平行于 x ,交直l 于点 B3,以 A2B3作等三角形A3A2 B3,⋯,点A2017的横坐是.【考点】 F8:一次函数象上点的坐特征;D2:律型:点的坐.菁网版所有【分析】先根据直线 l : y=x﹣与 x 轴交于点 B ,可得 B (1, 0),OB=1,∠ OBD=30°,再,过 A 作11111A A⊥OB 于 A,过 A 作 A B⊥ A B 于 B,过 A 作 A C⊥ A B 于 C,根据等边三角形的性质以及含30°角的直角1122123323三角形的性质,分别求得A1的横坐标为,A2的横坐标为, A3的横坐标为,进而得到 A n的横坐标为,据此可得点 A的横坐标.2017【解答】解:由直线 l :y=x﹣11与 x 轴交于点 B1,可得 B1( 1,0),D(﹣,0),∴ OB=1,∠ OBD=30°,如图所示,过A1作 A1A⊥ OB1于 A,则 OA=OB1= ,即 A1的横坐标为=,由题可得∠ A1B2B1=∠OB1D=30°,∠B2A1B1=∠ A1B1O=60°,∴∠ A1B1B2=90°,∴ A1B2=2A1B1=2,过 A2作 A2B⊥ A1B2于 B,则 A1B= A1B2=1,即 A2的横坐标为 +1= =,过 A 作 A C⊥ A B 于 C,同理可得,A B =2A B =4,A C= A B =2,即 A 的横坐标为+1+2= =,332323222233同理可得, A4的横坐标为+1+2+4= =,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7 小题,共62 分)19.( 8 分)( 2017?东营)( 1)计算: 6cos45 ° +()﹣10﹣320172017 +(﹣) +|5|+4 ×(﹣)(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为 a 的值代入求值.【考点】 6D:分式的化简求值;2C:实数的运算;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂; T5:特殊角的三角函数值.菁优网版权所有【分析】( 1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2 中选一个使得原分式有意义的值代入即可解答本题.【解答】解:( 1) 6cos45 ° +()﹣ 10﹣320172017 +(﹣) +|5|+4×(﹣)=6×+3+1+5﹣ 3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣ 1,当 a=0 时,原式 =﹣0﹣ 1=﹣ 1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.( 7 分)( 2017?东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:( 1)该班全部人数:12÷ 25%=48人.(2) 48× 50%=24,折线统计如图所示:(3)× 360° =45°.(4)分别用“ 1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16 种,其中他们参加同一活动有 4 种,所以他们参加同一服务活动的概率P= = .【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.( 8 分)( 2017?东营)如图,在△ABC中, AB=AC,以 AB 为直径的⊙ O交 BC于点 D,过点 D 作⊙ O 的切线 DE,交 AC于点 E, AC的反向延长线交⊙ O于点 F.(1)求证: DE⊥ AC;(2)若 DE+EA=8,⊙ O的半径为 10,求 AF 的长度.【考点】 MC:切线的性质;KH:等腰三角形的性质;KQ:勾股定理; LD:矩形的判定与性质.网版权所有【分析】( 1)欲证明 DE⊥ AC,只需推知 OD∥ AC即可;(2)如图,过点 O作 OH⊥ AF 于点 H,构建矩形 ODEH,设 AH=x.则由矩形的性质推知:AE=10﹣ x,OH=DE=8﹣( 10﹣ x) =x﹣ 2.在 Rt△ AOH中,由勾股定理知: x2+( x﹣ 2)2=102,通过解方程得到AH的长度,结合OH⊥ AF,得到 AF=2AH=2× 8=16.【解答】( 1)证明:∵ OB=OD,∴∠ ABC=∠ ODB,∵ AB=AC,∴∠ ABC=∠ ACB,∴∠ ODB=∠ ACB,∴ OD∥ AC.∵DE是⊙ O的切线, OD是半径,∴ DE⊥OD,∴ DE⊥ AC;(2)如图,过点 O作 OH⊥ AF 于点 H,则∠ ODE=∠ DEH=∠ OHE=90°,∴四边形 ODEH是矩形,∴OD=EH,OH=DE.设 AH=x.∵ DE+AE=8,OD=10,∴ AE=10﹣x, OH=DE=8﹣( 10﹣ x) =x﹣ 2.在 Rt△ AOH中,由勾股定理知:222222=8,x2=﹣ 6(不合题意,舍去).∴AH=8.∵OH⊥ AF,∴ AH=FH=AF,AH+OH=OA,即 x +( x﹣ 2) =10,解得 x1∴A F=2AH=2× 8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.( 8 分)(2017?东营)如图,一次函数y=kx+b 的图象与坐标轴分别交于A、B 两点,与反比例函数y= 的图象在第一象限的交点为C,CD⊥ x 轴,垂足为D,若 OB=3, OD=6,△ AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当 x> 0 时, kx+b﹣< 0 的解集.【考点】 G8:反比例函数与一次函数的交点问题.菁优网版权所有【分析】( 1)根据三角形面积求出OA,得出 A、B 的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把 D 的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.【解答】解:( 1)∵ S△AOB=3, OB=3,∴ OA=2,∴ B( 3, 0),A( 0,﹣ 2),代入 y=kx+b 得:,解得: k= , b=﹣2,∴一次函数y= x﹣ 2,∵ OD=6,∴ D( 6,0), CD⊥x 轴,当 x=6 时, y= ×6﹣ 2=2∴C( 6, 2),∴ n=6× 2=12,∴反比例函数的解析式是y=;(2)当 x> 0 时, kx+b﹣< 0 的解集是0< x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.( 9 分)( 2017?东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B 两类学校进行改扩建,根据预算,改扩建 2 所 A 类学校和 3 所 B 类学校共需资金7800 万元,改扩建3所 A 类学校和 1 所 B 类学校共需资金5400 万元.(1)改扩建 1 所 A 类学校和 1 所 B 类学校所需资金分别是多少万元(2)该县计划改扩建 A、B 两类学校共 10 所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800 万元;地方财政投入资金不少于4000 万元,其中地方财政投入到A、 B 两类学校的改扩建资金分别为每所300 万元和 500 万元.请问共有哪几种改扩建方案【考点】 CE:一元一次不等式组的应用;9A:二元一次方程组的应用.菁优网版权所有【分析】( 1)可根据“改扩建 2 所 A 类学校和 3 所 B 类学校共需资金7800 万元,改扩建 3 所 A 类学校和1所 B 类学校共需资金5400 万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800 万元;地方财政投入资金不少于4000 万元”来列出不等式组,判断出不同的改造方案.【解答】解:( 1)设改扩建一所 A 类和一所 B 类学校所需资金分别为x 万元和 y 万元由题意得,解得,答:改扩建一所 A 类学校和一所 B 类学校所需资金分别为1200 万元和 1800 万元.(2)设今年改扩建 A 类学校 a 所,则改扩建 B 类学校( 10﹣ a)所,由题意得:,解得,∴ 3≤ a≤ 5,∵ x取整数,∴x=3, 4,5.即共有 3 种方案:方案一:改扩建 A 类学校 3 所, B 类学校 7 所;方案二:改扩建 A 类学校 4 所, B 类学校 6 所;方案三:改扩建A类学校 5 所, B 类学校 5 所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.( 10 分)( 2017?东营)如图,在等腰三角形ABC中,∠ BAC=120°, AB=AC=2,点 D 是 BC边上的一个动点(不与B、 C 重合),在 AC上取一点E,使∠ ADE=30°.(1)求证:△ ABD∽△ DCE;(2)设 BD=x, AE=y,求 y 关于 x 的函数关系式并写出自变量x 的取值范围;(3)当△ ADE是等腰三角形时,求AE的长.【考点】SO:相似形综合题.菁优网版权所有【分析】( 1)根据两角相等证明:△ABD∽△ DCE;(2)如图 1,作高 AF,根据直角三角形30°的性质求AF 的长,根据勾股定理求BF 的长,则可得BC的长,根据( 1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ ABD∽△ DCE,则AB=CD,即2=2﹣x;②当 AE=ED时,如图 3,则 ED= EC,即 y= ( 2﹣ y);③当 AD=AE时,∠ AED=∠ EDA=30°,∠EAD=120°,此时点 D 与点 B 重合,不符合题意,此情况不存在.【解答】证明:( 1)∵△ ABC是等腰三角形,且∠ BAC=120°,∴∠ ABD=∠ ACB=30°,∴∠ ABD=∠ADE=30°,∵∠ ADC=∠ADE+∠ EDC=∠ ABD+∠ DAB,∴∠ EDC=∠ DAB,∴△ ABD∽△ DCE;(2)如图 1,∵ AB=AC=2,∠ BAC=120°,过 A 作 AF⊥ BC于 F,∴∠ AFB=90°,∵ AB=2,∠ ABF=30°,∴AF= AB=1,∴ BF=,∴ BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ ABD∽△ DCE,∴,∴,化简得: y=x+2( 0< x< 2);(3)当 AD=DE时,如图2,由( 1)可知:此时△ABD∽△ DCE,则 AB=CD,即 2=2﹣x,x=2﹣2,代入 y=x+2,解得:y=4﹣ 2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠ EDA=30°,∠ AED=120°,∴∠ DEC=60°,∠EDC=90°,则 ED=EC,即 y=( 2﹣ y),解得:y= ,即 AE= ,当 AD=AE时,∠AED=∠ EDA=30°,∠EAD=120°,此时点 D 与点 B 重合,不符合题意,此情况不存在,∴当△ ADE是等腰三角形时,AE=4﹣ 2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形角的性质,本题的几个问题全部围绕△ABD∽△ DCE,解决问题;难度适中.25.( 12 分)( 2017?东营)如图,直线 y=﹣x+分别与x轴、y轴交于B、C两点,点A 在30°x 轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.。

山东省东营市2017年中考数学试卷(含答案)

山东省东营市2017年中考数学试卷(含答案)

绝密★启用前 试卷类型:A二0一二年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( ) A .31B . -31C . 3D . -32. 下列运算正确的是( )A .523x x x =⋅B .336()x x = C .5510x x x +=D .336x x x =-3. 下列图形中,是中心对称图形的是 ()A .B .C .D .4、下图能说明∠1>∠2的是( )12)A. 21)D.12 ))B.12 )) C.5、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为( ) A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3)B .(2,-1)C .(4,1)D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmC . 8cmD . 2cm 8.若43=x,79=y ,则yx 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1B . k ≤1C . k >1D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( ) A .118B .112 C .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)OBAB(第7题图) 5cm12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④AC BD =.其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④(第12题图)绝密★启用前 试卷类型:A二0一二年东营市初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 . 14.分解因式:x x 93 = . 15.某校篮球班21名同学的身高如下表:16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .得 分 评 卷 人BDCA(第16题图2)(第16题图1)17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y =和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,都是等腰直角三角形,如果A 1(1,1), A 2(23,27),那么点n A 的纵坐标是_ _____三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.得 分评 卷 人19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.(1) a= ,本次调查样本的容量是 ; (2) 先求出C 组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?捐款人数分组统计图1捐款人数分组统计图2得 分评 卷 人20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.得 分 评 卷 人(第20题图)A DNEBC OM每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.(第23题图1)(第23题图3)B CA DE(第23题图2)24.(本题满分11分)已知抛物线36232++=bx x y 经过 A (2,0). 设顶点为点P ,与x 轴的另一交点为点B . (1)求b 的值,求出点P 、点B 的坐标; (2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.得 分评 卷 人(第24题图)参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.13.3.6×106; 14.x (x +3)(x -3); 15. 187; 16. 30;17.123-⎪⎭⎫⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=-3-33+1+23…………………………2分 =-2-3…………………………3分 (2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分解不等式组⎩⎨⎧<+>-812,02x x 得722x <<,………………………2分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分19. 解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分 ∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180° ∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分∴ CD=cm )(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分 解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ………7分 (2)依题意,得:300×8000-400×1000-15000-97200=1887800 ∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分 22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里. 在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分∵AC +BC =AB =21×5,∴54215123x x +=⨯,解得60x =. ∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里).(第20题答案图)A DNEBC OM∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分 23. 解答:(1)证明:在正方形ABCD 中,∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°. ∵CE =CF ,∠GCE =∠GCF ,GC =GC , ∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分 (3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中,∵AD ∥BC ,∴∠A =∠B =90°, 又∠CGA =90°,AB =BC , ∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6 在Rt △AED 中, ∵222AEAD DE+=,即()()2224610-+-=x x .解这个方程,得:x =12,或x =-2(舍去).…………………………9分 ∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD答:梯形ABCD 的面积为108. …………………………10分 24.解:(1)由于抛物线36232++=bx x y 经过A (2,0), 所以3624230++⨯=b , 解得34-=b .…………………………1分C(第23题答案图1)(第23题答案图2)(第23题答案图3)B A D EG(第23题答案图3)所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , 所以顶点P 的坐标为(4,-23)…………………………2分 令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k解得⎪⎩⎪⎨⎧-==.36,3b k所以直线PB 的解析式为363-=x y .…………………………5分 又直线OD 的解析式为x y 3=所以直线PB ∥OD . …………………………6分设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m 解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n 所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D 点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则PC =23,AC =2,由勾股定理,可得AP =4,PB =4,又AB =4,所以△APB 是等边三角形,只要作∠P AB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠P AM =∠BAM ,AB =AP ,可得△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB.…………………………11分第24题答案图。

2017年山东省东营市中考数学试卷(解析版)

2017年山东省东营市中考数学试卷(解析版)

2017年山东省东营市中考数学试卷(分析版 )2017 年山东省东营市中考数学试卷一、选择题 (本大题共 10 小题 ,每题 3 分,共 30 分)1.以下四个数中 ,最大的数是 ()A . 3B .C . 0D .π【剖析】依据在数轴上表示的两个实数 ,右侧的总比左边的大可得答案 . 【解答】解 :0<<3< π,应选:D .【评论】本题主要考察了实数的比较大小, 重点是掌握利用数轴也能够比较随意两个实数的大小 , 即在数轴上表示的两个实数 , 右侧的总比左边的大 , 在原点左边 ,绝对值大的反而小 .2.以下运算正确的选项是 ()A .(x ﹣ y ) 2=x2 ﹣ y 2B . | ﹣ 2|=2 ﹣C . ﹣ =D . ﹣ (﹣ a+1) =a+1【剖析】依据完整平方公式 ,二次根式的化简以及去括号的法例进行解答 . 【解答】解 :A 、原式 =x2 ﹣ 2xy+y2, 故本选项错误 ;B 、原式 =2 ﹣ ,故本选项正确 ;C 、原式 =2 ﹣ ,故本选项错误 ;D 、原式 =a ﹣ 1,故本选项错误 ;应选:B .【评论】本题综合考察了二次根式的加减法 , 实数的性质 , 完整平方公式以及去括号 ,属于基础题 ,难度不大 .3.若 |x2 ﹣ 4x+4| 与互为相反数 ,则 x+y 的值为 ()【剖析】依据相反数的定义获得|x2 ﹣ 4x+4|+=0,再依据非负数的性质得x 2﹣ 4x+4=0, 2x﹣y﹣3=0,而后利用配方法求出x , 再求出 y , 最后计算它们的和即可 .【解答】解 :依据题意得 |x2 ﹣ 4x+4|+=0,1所以 |x2 ﹣ 4x+4|=0, =0,即(x ﹣ 2) 2=0, 2x﹣y﹣3=0,所以 x=2, y=1,所以 x+y=3.应选 A.【评论】本题考察认识一元二次方程﹣配方法 :将一元二次方程配成 (x+m) 2=n的形式 , 再利用直接开平方法求解 , 这类解一元二次方程的方法叫配方法 . 也考察了非负数的性质 .4.小明从家到学校 ,先匀速步行到车站 ,等了几分钟后坐上了公交车 ,公交车沿着公路匀速行驶一段时间后抵达学校 ,小明从家到学校行驶行程 s (m ) 与时间 t (min ) 的大概图象是 ()A.B.C.D.【剖析】依据题意判断出 S 随 t 的变化趋向 ,而后再联合选项可得答案 . 【解答】解 :小明从家到学校 ,先匀速步行到车站 ,所以 S 随时间 t 的增添而增长,等了几分钟后坐上了公交车,所以时间在增添 , S 不增添 ,坐上了公交车 , 公交车沿着公路匀速行驶一段时间后抵达学校, 所以 S 又随时间 t 的增添而增添 ,应选:C .【评论】本题主要考察了函数图象 , 重点是正确理解题意 , 依据题意判断出两个变量的变化状况 .5.已知 a∥ b ,一块30含°角的直角三角板如下图搁置, ∠ 2=45等于°() , 则∠12。

2017山东东营中考试卷解析版

2017山东东营中考试卷解析版

2017年山东省东营市中考数学试卷总分:120分版本:不限第Ⅰ卷(选择题共30分)一、选择题:(每小题3分,共10小题,合计30分)1.(2017山东东营,1,3分)下列四个数中,最大的数是()A.3 B. 3 C.0 D.π【答案】D【解析】1<3<2,π>3,∴选D2.(2017山东东营,2,3分)下列运算正确的是()A.(x-y)2=x2-y2B.|3-2|=2- 3 C.8-3= 5 D.-(-a+1)=a+1 【答案】B【解析】A:由完全平方公式可得(x-y)2=x2-2xy+y2,故A错误;B:∵3<2,∴3-2<0,根据负数的绝对值等于它的相反数,可得|3-2|=2-3,故B正确;C:8与3不是同类项,故不能合并,所以C错误;D:根据去括号法则中“括号前面是-号,将括号和-号去掉,扩到括号里的各项要变号”可得-(-a+1)=a-13.(2017山东东营,3,3分)若|x2-4x+4|与2x-y-3互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【答案】A【解析】|x2-4x+4|≥0,且2x-y-3≥0,要使|x2-4x+4|与2x-y-3互为相反数,则x2-4x+4=0且2x-y-3=0,解得x=2,y=1,所以x+y=3,故选A4.(2017山东东营,4,3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校.小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【答案】C【解析】“小明从家到学校,先匀速步行到车站”,可知随着时间的增加,路程越来越大;“等了几分钟”说明随着时间的增加,路程不变在图象中表示为水平线段;“公交车沿着公路匀速行驶一段时间后到达学校”说明随着时间的增加,路程越来越大。

故选C5.(2017山东东营,5,3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【答案】D【解析】如图,易得∠2+∠5=60°,∵∠2=45°,∴∠5=15°,∴∠1=165°6.(2017山东东营,6,3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A .47B .37C .27D .17【答案】A【解析】要从7个空白小正方形中选1个涂阴影,共有7种等可能结果,其中符合要求的是最下面的一行中的每一个,即有4种符合要求的结果,所以符合要求的概率是47,故选A 7.(2017山东东营,7,3分)如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =8,AB =5,则AE 的长为( )A .5B .6C .8D .12【答案】B【解析】连接EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠F AE =∠AEB ,∵AE 平分∠BAD ,∴∠F AE =∠EAB ,∴∠EAB =∠AEB ,∴AB =EB ,由作图可得,AB =AF ,∴EB =AF ,又∵AD ∥BC ,∴四边形ABEF 是平行四边形,再由AB =AF ,可得□AB EF是菱形。

山东省东营市2017年中考数学试卷

山东省东营市2017年中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120°D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC 面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④ B.②③ C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y= .13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC 交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t (min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120°D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④ B.②③ C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y= ﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派乙去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25 尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.【解答】解:(1)∵S△AOB=3,OB=3,∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,【分析】则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,。

2017年山东省东营市中考数学试卷(72)

2017年山东省东营市中考数学试卷(72)

2017年山东省东营市中考数学试卷一、选择题:每小题3分,共30分1.(3分)(2017•东营)的倒数是()A.﹣2B.2C.D.2.(3分)(2017•东营)下列计算正确的是()A.3a+4b=7abB.(ab3)2=ab6C.(a+2)2=a2+4D.x12÷x6=x63.(3分)(2017•东营)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°4.(3分)(2017•东营)从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是()A.B.C.D.5.(3分)(2017•东营)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.6.(3分)(2017•东营)东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A.B.C.D.7.(3分)(2017•东营)如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cmB.50cmC.60cmD.80cm8.(3分)(2017•东营)如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)9.(3分)(2017•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或1010.(3分)(2017•东营)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题:11-14小题,每小题3分,15-18小题,每小题3分11.(3分)(2017•东营)2017年第一季度,东营市实现生产总值787.68亿元,比上年同期提高了0.9个百分点,787.68亿元用科学记数法表示是元.12.(3分)(2017•东营)分解因式:a3﹣16a=.13.(3分)(2017•东营)某学习小组有8人,在一次数学测验中的成绩分别是:102,115,100,105,92,105,85,104,则他们成绩的平均数是.14.(3分)(2017•东营)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC 上,以AC为对角线的平行四边形ADCE中,DE的最小值是.15.(4分)(2017•东营)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是.16.(4分)(2017•东营)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为cm.17.(4分)(2017•东营)如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.18.(4分)(2017•东营)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2017的值?如能求出,其正确答案是.三、解答题:共7小题,共62分19.(7分)(2017•东营)(1)计算:()﹣1+(π﹣3.14)0﹣2sin60°﹣+|1﹣3|;(2)先化简,再求值:(a+1﹣)÷(),其中a=2+.20.(8分)(2017•东营)“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.21.(8分)(2017•东营)如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.22.(8分)(2017•东营)东营市某学校2017年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2017年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?23.(9分)(2017•东营)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.24.(10分)(2017•东营)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.25.(12分)(2017•东营)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.(3分)(2017•东营)的倒数是()A.﹣2B.2C.D.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)(2017•东营)下列计算正确的是()A.3a+4b=7abB.(ab3)2=ab6C.(a+2)2=a2+4D.x12÷x6=x6【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了完全平方公式的应用,以及合并同类项的方法,要熟练掌握.3.(3分)(2017•东营)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选C.【点评】本题考查了平行线的性质和三角形的外角性质,关键是求出∠3的度数,此题难度不大.4.(3分)(2017•东营)从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个正方形,正方形的左下角是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)(2017•东营)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.6.(3分)(2017•东营)东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A.B.C.D.【分析】直接根据概率公式即可得出结论.【解答】解:∵共设有20道试题,创新能力试题4道,∴他选中创新能力试题的概率==.故选A.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)(2017•东营)如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cmB.50cmC.60cmD.80cm【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故选A.【点评】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.8.(3分)(2017•东营)如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行求解.【解答】解:∵A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO 缩小,∴点A的对应点A′的坐标为(﹣3×,6×)或[﹣3×(﹣),6×(﹣)],即A′点的坐标为(﹣1,2)或(1,﹣2).故选D.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.9.(3分)(2017•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或10【分析】分两种情况考虑,如图所示,分别在直角三角形ABC与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.10.(3分)(2017•东营)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误.【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;设AD=a,AB=b由△BAE∽△ADC,有.∵tan∠CAD=,∴tan∠CAD=,故④错误,故选C.【点评】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确作出辅助线是解题的关键.二、填空题:11-14小题,每小题3分,15-18小题,每小题3分11.(3分)(2017•东营)2017年第一季度,东营市实现生产总值787.68亿元,比上年同期提高了0.9个百分点,787.68亿元用科学记数法表示是7.8768×1010元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将787.68亿用科学记数法表示为7.8768×1010.故答案为:7.8768×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:a3﹣16a=a(a+4)(a﹣4).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣16a,=a(a2﹣16),=a(a+4)(a﹣4).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.13.(3分)(2017•东营)某学习小组有8人,在一次数学测验中的成绩分别是:102,115,100,105,92,105,85,104,则他们成绩的平均数是101.【分析】根据算术平均数的计算公式列式计算即可得解.【解答】解:=(102+115+100+105+92+105+85+104)=×808=101.故答案为:101.【点评】本题考查了算术平均数,是基础题,准确计算是解题的关键.14.(3分)(2017•东营)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC 上,以AC为对角线的平行四边形ADCE中,DE的最小值是4.【分析】首先证明BC∥AE,当DE⊥BC时,DE最短,只要证明四边形ABDE是矩形即可解决问题.【解答】解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.【点评】本题考查平行四边形的性质、垂线段最短等知识,解题的关键是找到DE的位置,学会利用垂线段最短解决问题,属于中考常考题型.15.(4分)(2017•东营)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是x>3.【分析】观察函数图象得到当x>3时,函数y=x+b的图象都在y=kx+4的图象上方,所以关于x的不等式x+b>kx+4的解集为x>3.【解答】解:当x>3时,x+b>kx+4,即不等式x+b>kx+4的解集为x>3.故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(4分)(2017•东营)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为36cm.【分析】根据tan∠EFC的值,可设CE=3k,在RT△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在RT△AEF中利用勾股定理求出k,继而代入可得出答案.【解答】解:∵tan∠EFC=,∴设CE=3k,则CF=4k,由勾股定理得EF=DE=5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF=tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中由勾股定理得AE===5,解得:k=1,故矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36cm,故答案为:36.【点评】此题考查了矩形的性质以及翻折变换的知识,解答本题关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答,有一定难度.17.(4分)(2017•东营)如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意BD=AD+DC,由此即可解决问题.【解答】解:由题意=AD+CD=10,S扇形ADB=••AB=×10×5=25,故答案为25.【点评】本题考查扇形面积公式,解题的关键是记住扇形面积公式S==LR,属于中考常考题型.18.(4分)(2017•东营)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2017的值?如能求出,其正确答案是(m≠0且m≠1).【分析】仿照例子,将3换成m,设S=1+m+m2+m3+m4+…+m2017(m≠0且m≠1),则有mS=m+m2+m3+m4+…+m2017,二者做差后两边同时除以m﹣1,即可得出结论.【解答】解:设S=1+m+m2+m3+m4+…+m2017(m≠0且m≠1)①,将①×m得:mS=m+m2+m3+m4+…+m2017②,由②﹣①得:mS﹣S=m2017﹣1,即S=,∴1+m+m2+m3+m4+…+m2017=(m≠0且m≠1).故答案为:(m≠0且m≠1).【点评】本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+m+m2+m3+m4+…+m2017.本题属于基础题,难度不大,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论,此题中尤其要注意m 的取值范围.三、解答题:共7小题,共62分19.(7分)(2017•东营)(1)计算:()﹣1+(π﹣3.14)0﹣2sin60°﹣+|1﹣3|;(2)先化简,再求值:(a+1﹣)÷(),其中a=2+.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:(1)原式=2017+1﹣﹣2+3﹣1=2017;(2)原式=÷=÷=•=a(a﹣2).当a=2+时,原式=(2+)(2+﹣2)=3+2.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.20.(8分)(2017•东营)“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1个男生和1个女生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90°;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人;(4)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2017•东营)如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.【分析】(1)欲证明AB是圆的切线,只要证明∠ABC=90°即可.(2)在RT△AEB中,根据tan∠AEB=,求出BC,在在RT△ABC中,根据=求出AB即可.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ACB+∠DBC=90°,∵∠ABD=∠ACB,∴∠ABD+∠DBC=90°∴∠ABC=90°∴AB⊥BC,∴AB是圆的切线.(2)解:在RT△AEB中,tan∠AEB=,∴=,即AB=BE=,在RT△ABC中,=,∴BC=AB=10,∴圆的直径为10.【点评】本题考查切线的判定、三角函数等知识,解题的关键是记住经过半径的外端垂直于半径的直线是圆的切线,属于中考常考题型.22.(8分)(2017•东营)东营市某学校2017年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2017年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;(2)设这所学校再次购买y个乙种足球,根据题意列出不等式解答即可.【解答】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),可得:,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)设这所学校再次购买y个乙种足球,可得:50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,解得:y≤18.75,由题意可得,最多可购买18个乙种足球,答:这所学校最多可购买18个乙种足球.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.23.(9分)(2017•东营)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO 的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.【解答】解:(1)∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO=,∴CE=BE•tan∠ABO=6×=3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y=的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣.(2)∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=,∴OA=OB•tan∠ABO=4×=2.∵S△BAF=AF•OB=(OA+OF)•OB=(2+)×4=4+.∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO=×|﹣6|=3.∵S△BAF=4S△DFO,∴4+=4×3,解得:n=,经验证,n=是分式方程4+=4×3的解,∴点D的坐标为(,﹣4).【点评】本题考查了解直角三角形、反比例函数图象上点的坐标特征、三角形的面积公式以及反比例函数系数k的几何意义,解题的关键是:(1)求出点C的坐标;(2)根据三角形的面积间的关系找出关于n的分式方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,找出点的坐标,再利用反比例函数图象上点的坐标特征求出反比例函数系数是关键.24.(10分)(2017•东营)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.【分析】(1)根据旋转变换的性质和全等三角形的判定定理证明△CAF≌△BAD,证明结论;(2)①根据全等三角形的性质、垂直的定义证明即可;②连接DF,延长AB交DF于M,根据题意和等腰直角三角形的性质求出DM、BM的长,根据勾股定理求出BD的长,根据相似三角形的性质列出比例式,计算即可得到答案.【解答】解:(1)BD=CF.理由如下:由题意得,∠CAF=∠BAD=θ,在△CAF和△BAD中,,∴△CAF≌△BAD,∴BD=CF;(2)①由(1)得△CAF≌△BAD,∴∠CFA=∠BDA,∵∠FNH=∠DNA,∠DNA+∠NAD=90°,∴∠CFA+∠FNH=90°,∴∠FHN=90°,即BD⊥CF;②连接DF,延长AB交DF于M,∵四边形ADEF是正方形,AD=3,AB=2,∴AM=DM=3,BM=AM﹣AB=1,∵△ABC绕点A逆时针旋转45°,∴∠BAD=45°,∴AM⊥DF,∴DB==,∵∠MAD=∠MDA=45°,∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,∴=,即=,解得,DH=.【点评】本题考查的是正方形的性质、等腰直角三角形的性质、旋转变换的性质以及相似三角形的判定和性质,掌握旋转角的定义和旋转变换的性质、正确作出辅助性是解题的关键.25.(12分)(2017•东营)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.【解答】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共有哪几种改扩建方案?
24.(本题满分 10 分) 如图,在等腰三角形 ABC 中,∠BAC=120°,AB=AC=2,点 D 是 BC 边上的一个动点(不
与 B、C 重合),在 AC 上取一点 E,使∠ADE=30°.
(1)求证:△ABD∽△DCE;
(2)设 BD= x ,AE= y ,求 y 关于 x 的函数关系式并写出自变量 x 的取值范围;
x
C
O
BD
x
A
(第 22 题图)
23.(本题满分 9 分)
为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学.某县计划对 A、B
两类学校进行改扩建,根据预算,改扩建 2 所 A 类学校和 3 所 B 类学校共需资金 7800
万元,改扩建 3 所 A 类学校和 1 所 B 类学校共需资金 5400 万元.
以 A2B3 为边长作等边三角形 A3A2B3,„,则点 A2017
的横坐标是

A2
A1 B2
O
B1
l B3
x
(第 18 题图) 三、解答题:本大题共 7 小题,共 62 分.解答要写出必要的文字说明、证明过程或演算步 骤.
19. (本题满分 8 分,第⑴题 3 分,第⑵题 5 分)
(1)计算: 6 cos 45 +(1)1+( 3 1.73)0 + 5 3 2 42017 (0.25)2017 ; 3
(2)先化简,再求值:
3 a 1 a2 4a 4 4 a ,并从-1,0,2 中选一个合适的数作为 a 的值
a 1
a 1 a 2
代入求值. 20.(本题满分 7 分)
为大力弘扬“奉献、友爱、互助、进步”的志愿者服务精神,传播“奉献他人、提升自
我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态
10.如图,在正方形 ABCD 中,△BPC 是等边三角形,BP、CP 的延长线分别交 AD 于点 E、F,
连接 BD、DP,BD 与 CF 相交于点 H.给出下列结论:
① BE 2AE ;②△DFP∽△BPH;③△PFD∽△PDB;④ DP2 PH PC .
其中正确的是( )
A. ①②③④
(1)求证:DE⊥AC;
(2)若 DE+EA=8,⊙O 的半径为 10,求 AF 的长度.
F
A E
O
B
C D
(第 21 题图)
22.(本题满分 8 分)
如图,一次函数 y kx b 的图象与坐标轴分别交于 A、B 两点,与反比例函数 y n 的 x
图象在第一象限的交点为 C,CD⊥ x 轴,垂足为 D.若 OB=3,OD=6,△AOB 的面积为 3. (1)求一次函数与反比例函数的解析式;(y) (2)直接写出当 x>0 时, kx b n 0 的解集.
(1)求 A、B 两点的坐标; (2)求抛物线的解析式;
(3)点 M 是直线 BC 上方抛物线上的一点,过点 M 作 MH⊥BC 于点 H,作 MD∥ y 轴
交 BC 于点 D,求△DMH 周长的最大值.
y
M C
H D
A
O
(第 25 题图)
Bx
环保、网络文明”四个志愿服务活动(每人只参加一个活动).九年级某班全班同学都参 加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计 图.请你根据统计图中所提供的信息解答下列问题:
人数 30
24
18 12


文 明 生态环保 25%
助 老


6
O
社 区
助 老
生 态
网 络
服务活动
B. 3 2 2 3
C. 8 3 5
D. a 1 a 1
3.若 x2 4x 4 与 2x y 3 互为相反数,则 x y 的值为( )
A.3
B.4
C.6
D.9
4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行 驶一段时间后到达学校.小明从家到学校行驶路程 s(m)与时间 (t min)的大致图象是( )
B. ②③
C. ①②④
D. ①③④
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题共 8 小题,其中 11-14 题每小题 3 分,15-18 题每小题 4 分,共 28 分.只
要求填写最后结果.
11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋
势预测为核心,采集调用了 8000 多个种类、总计 1.2 亿条全球进出口贸易基础数据„,
s
s
s
s
O
tO
tO
tO
t
A
B
C
D
5.已知 a∥b,一块含 30°角的直角三角板如图所示放置,∠2=45°,则∠1 等于( )
A.100°
B.135°
C.155°
D.165°
1
a
2 b
(第 5 题图)
6.如图,共有 12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方体的表
面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表
服 助 环文
务 残 保明
社区服务 50%
(第 20 题图)
(1)求该班的人数; (2)请把折线统计图补充完整; (3)求扇形统计图中,网络文明部分对应的圆心角的度数; (4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动 的概率. 21.(本题满分 8 分) 如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 交 BC 于点 D,过点 D 作⊙O 的切线 DE,交 AC 于点 E,AC 的反向延长线交⊙O 于点 F.
秘密★启用前
试卷类型:A
二〇一七年东 120 分钟) 注意事项: 1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30 分;第Ⅱ卷为非选择题,90 分; 本试题共 6 页. 2.数学试题答题卡共 8 页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试 题和答题卡上,考试结束,试题和答题卡一并收回. 3.第Ⅰ卷每题选出答案后,都必须用 2B 铅笔把答题卡上对应题目的答案标号【ABCD】涂 黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用 0.5mm 碳素笔答在答 题卡的相应位置上.
()
A.60°
B.90°
C.120°
D.180°
9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积
的一半,若BC= 3 ,则△ABC移动的距离是( )
A. 3 2
A
D
H
3
B.
3
C. 6 2
B
D. 3 6 2
A
F P
H
E
B
E
C
F
(第 9 题图)
C
D
(第 10 题图)
米.
18.如图,在平面直角坐标系中,直线 l : y 3 x 3 与 x 轴交于点 B1,以 OB1 为边长 33
作等边三角形 A1OB1,过点 A1 作 A1B2 平行于 x 轴,
y A3
交直线 l 于点 B2,以 A1B2 为边长作等边三角形 A2

A1B2,过点 A2 作 A2B3 平行于 x 轴,交直线 l 于点 B3,
1.2 亿用科学记数法表示为

12. 分解因式: 2x2 y 16xy 32y =

13. 为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子
100 米自由泳训练,他们成绩的平均数 x 及其方差 s2 如下表所示:




x
10533 10426 10426 10729
s2
1.1
1.1
1.3
1.6
如果选拔一名学生去参赛,应派
去.
14.如图,AB 是半圆直径,半径 OC⊥AB 于点 O,D 为半圆上一点,AC∥OD,AD 与 OC
交于点 E,连结 CD、BD,给出以下三个结论:①OD 平分∠COB;②BD=CD;③
CD 2 = CE ?CO .其中正确结论的序号是

第Ⅰ卷(选择题 共 30 分)
一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正 确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.
1.下列四个数中,最大的数是( )
A.3
B. 3
C. 0
D.
2.下列运算正确的是( )
A. x y2 x2 y2
C D
E
A
D
E
P
B
O
A
(第 14 题图)
B
C
(第 15 题图)
15.如图,已知菱形 ABCD 的周长为 16,面积为8 3 ,E 为 AB 的中点,若 P 为对角线 BD
上一动点,则 EP+AP 的最小值为

16. 我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠
绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,
(1)改扩建 1 所 A 类学校和 1 所 B 类学校所需资金分别是多少万元?
(2)该县计划改扩建 A、B 两类学校共 10 所,改扩建资金由国家财政和地方财政共同
承担.若国家财政拨付资金不超过 11800 万元,地方财政投入资金不少于 4000 万元,其
中地方财政投入到 A、B 两类学校的改扩建资金分别为每所 300 万元和 500 万元,请问
相关文档
最新文档