河北省廊坊市七年级数学试题

合集下载

河北省廊坊市2023-2024学年七年级上学期期末考试数学试题(含答案)

河北省廊坊市2023-2024学年七年级上学期期末考试数学试题(含答案)

ܿ൅

解得:x=9000, 故答案为:C.
【分析】设树苗总数 x 棵,根据题意列出方程 ܿ ൅
,再求出 x 的值即可。
17.【答案】20 【解析】【解答】解: ∵ఢ. ∴积最大是 20. 故答案为:20.
ܿ,
ܿ ,其他数相乘均为负数,
【分析】利用有理数的乘法计算方法求解即可。
18.【答案】经过两点有且只有一条直线 【解析】【解答】解: 甲尺是直的,两尺拼在一起两端重合,
B、单项式
㠠的次数是 ൅ ൅ ܿ ,不符合题意;
C、 ܿ 时,
ܿ
,符合题意;
D、 ൅ ܿ ,不符合题意;
故答案为:C.
【分析】根据真命题的定义逐项判断即可。
7.【答案】D 【解析】【解答】A.∵ ܿ ,∴ ܿ ,故 A 不符合题意; B. ∵ ܿ ,∴ 㠠 ܿ 㠠 或 ൅ 㠠 ܿ ൅ 㠠,故 B 不符合题意;
C.圆柱,圆锥,正方体,三棱锥
D.圆柱,圆锥,三棱柱,正方体
10.如图,数轴的单位长度为 1,若点 和点 所表示的两个数的绝对值相等,则点 表示的数是( )
A.-3
B.-1
C.1
D.3
11.如图, ܿ 㠠 ,C 为 的中点.点 D 在线段 上,且 : ܿ : ,则 的长度是( )
A. 㠠
B. 㠠
C. 㠠
【分析】如图,由作图可知∠EO′F=∠A″OB′,再根据角的和差定义解决问题即可。 15.【答案】C 【解析】【解答】解:根据表中数据可得:输出数据的规律为 ,

10
当输入数据为 8 时,输出的数据为 ൅ ܿ . 故答案为:C.
【分析】结合表格中的数据求出规律 ൅ ,再将 n=8 代入计算即可。 16.【答案】C 【解析】【解答】设树苗总数 x 棵,根据题意得:

河北省廊坊市第七中学2023-2024学年七年级上学期期中数学试卷(含解析)

河北省廊坊市第七中学2023-2024学年七年级上学期期中数学试卷(含解析)

2023-2024学年度第一学期期中素质调研大联考七年级数学人教版(试卷页数:8页,考试时间:120分钟,总分:120分)注意事项:1.使用考试专用扁头2B涂卡铅笔填涂,或将普通2B铅笔削成扁鸭嘴状填涂.2.修改时,请先用橡皮擦干净,再重新填涂,不得使用修正带或涂改液.3.填涂的正确方法:错误方法:一、选择题(本大题共16个小题,共38分.1~6小题各3分;7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列计算正确的是( )A. -3+2=-5B. (-3)×(-5)=-15C. -(-22)=-4D. -(-3)2=-9【答案】D解析:A. -3+2=-1,故错误;B. (-3)×(-5)=15,故错误;C. -(-22)=4,故错误;D. -(-3)2=-9,正确,故选D.2. 下列算式中,结果是正数的是( )A. B. C. D.【答案】D解析:解:A、,结果为负数,不符合题意;B、,结果为负数,不符合题意;C、,结果为负数,不符合题意;D、,结果为正数,符合题意;故选D.3. 下列各组中的两项,属于同类项的是( )A. 与B. 与C. 与D. 与【答案】B解析:解:A、与所含的字母不相同,不是同类项,不符合题意;B、与所含字母相同,相同字母的指数也相同,是同类项,符合题意;C、与所含字母相同,相同字母的指数不相同,不是同类项,不符合题意;D、与所含的字母不相同,不是同类项,不符合题意;故选B.4. 下列用正数和负数表示相反意义量,其中正确的是( )A. 一天凌晨的气温是,中午比凌晨上升,所以中午气温是B. 如果表示比海平面高,那么表示比海平面低C. 如果生产成本增长记作,那么表示生产成本降低D. 如果收入增加10元记作元,那么元表示支出减少4元【答案】C解析:解:A、一天凌晨的气温是,中午比凌晨上升,所以中午气温是,原说法错误,不符合题意;B、如果表示比海平面高,那么表示比海平面低,原说法错误,不符合题意;C、如果生产成本增长记作,那么表示生产成本降低,原说法正确,符合题意;D、如果收入增加10元记作元,那么元表示收入减少4元,原说法错误,不符合题意;故选C.5. 多项式的次数与项数分别是( )A. 2,3B. 3,3C. 4,3D. 5,3【答案】B解析:解:多项式的次数与项数分别是,3,故选B.6. 下列式子变形正确的是( )A. B. C. D.解析:解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算正确,符合题意;D、,原式计算错误,不符合题意;故选C.7. 下列说法中,正确的是( )A. 若x、y互为倒数,则B. 如果,那么x的值一定是2C. 与原点的距离为3个单位长度的点所表示的有理数是3D. 若,则【答案】A解析:解:A、若x、y互为倒数,则,则,原说法正确,符合题意;B、如果,那么x的值是,原说法错误,不符合题意;C、与原点的距离为3个单位长度的点所表示的有理数是,原说法错误,不符合题意;D、若,则,即,则,原说法错误,不符合题意;故选A8. 已知有理数a、b在数轴上对应的点如图所示,则下列式子结果是负数的有( )①②③④A. ③④B. ②③④C. ①③④D. ①②③④【答案】D解析:解∶由数轴得,,∴,,,,9. 若A与B都是三次多项式,则关于的结论,甲、乙、丙、丁四位同学展开了讨论:甲:结果可能是三次多项式;乙:结果可能是四次式;丙:结果可能是一次式;丁:结果不可能是零.下列判断正确的是( )A. 四位同学说法都对B. 只有甲、丙说法正确C. 只有乙说法不对D. 只有丁说法不对【答案】B解析:解;∵A与B都是三次多项式,∴当A与B的三次项系数不相同时,的结果是三次多项式,故甲说法正确;∵A与B都是三次多项式,∴的结果不可能是四次式,故乙说法错误;∵A与B都是三次多项式,∴当A与B的三次项系数和二次项系数分别相同,一次项系数不同时,的结果是一次式,故丙说法正确;故选B.10. 对于有理数a,b,定义,则计算后的结果是( )A. B. C. 4 D.【答案】C解析:解∶根据题中的新定义,得.故选∶C.11. 对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N 是m的“和倍数”.对下列三个人的说法判断正确的是( )小嘉说:247是13的“和倍数” 小淇说:441是9的“和倍数”小华说:214、357均不是“和倍数”A. 三人说法都对B. 只有一人说法不对C. 小华说的不对D. 只有一人说法对【答案】A解析:解∶∵,∴247是13的“和倍数”,故小嘉的说法正确;∵,∴441是9的“和倍数”,故小淇的说法正确;∵,∴214不是“和倍数”,∵,∴357不是“和倍数”,故小华的说法正确;故选:A.12. 已知声音在水中的传播速度为1500米/秒,声音在水中经过t秒()传播的距离用科学记数法表示为“”米,则n的值为( )A 2 B. 3 C. 3或4 D. 3或4或5【答案】C解析:解:当时,传播的距离为米,写成科学记数法为:米,当时,传播的距离为米,写成科学记数法为:米,∴n的值为3或4,故选:C.13. 若关于a,b的多项式与的和不含三次项,则k的值为( )A. 3B.C. 6D.【答案】D解析:解∶,∵多项式与的和不含三次项,∴,∴.故选∶D.14. “大国点名,没你不行”,第七次全国人口普查口号深入人心,统计数据真实可信,全国大约人.用四舍五入法对“”取近似值,其中错误的是( )A. 14亿(精确到亿位)B. (精确到百分位)C. (精确到十万位)D. 1412百万(精确到百万位)【答案】B解析:解:A、亿(精确到亿位),原说法正确,不符合题意;B、(精确到百万位),原说法错误,符合题意;C、(精确到十万位),原说法正确,不符合题意;D、百万(精确到百万位).原说法正确,不符合题意;故选B.15. 若,则的值是()A. 2B.C.D. 10【答案】C解析:解:解得:故选C.16. 已知一个两位数a和一个两位数b,将a放在b的左边,形成一个四位数A,交换a和b的位置形成另一个四位数B,则的值为( )A. B. C. D.【答案】A解析:解∶由题意可得:,,∴,故选∶A.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,空2分,把答案写在题中横线上)17. 对单项式可以解释为:一件商品原价为元,若按原价折出售,这种商品现在的售价是元.请你对再赋予一个实际意义:____________.【答案】练习本每本0.8元,小明买了a本,共付款0.8a元.解析:解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.故答案为:练习本每本0.8元,小明买了a本,共付款0.8a元.18. 已知,.(a为常数)(1)若A与B的二次项系数互为相反数,则___________;(2)在(1)的条件下,化简:___________.【答案】①. ②. ##解析:解:(1)∵,,A与B的二次项系数互为相反数,∴,故答案为:;(2)由(1)得,∴,故答案为:.19. 已知笔记本的单价是m元,碳素笔的单价为n元.(1)嘉嘉买了3本笔记本,2支碳素笔,一共花费___________元;(2)若,,在(1)的条件下,嘉嘉一共花费___________元.【答案】①. ##②.解析:解:(1)由题意得,嘉嘉买了3本笔记本,2支碳素笔,一共花费元,故答案为:;(2)当,时,,∴在(1)的条件下,嘉嘉一共花费元,故答案为:.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(1)(2)(3)【答案】(1)5 (2)(3)4【小问1解析】解:;【小问2解析】解:;【小问3解析】解:.21. 嘉淇在电脑上设计了一个有理数运算程序:输入a,加*键,再输入b,得到运算:.(1)求的值;(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,出现了什么情况?为什么?【答案】(1)(2)输入了的数值,理由见解析【小问1解析】解∶;【小问2解析】解∶∵0不能作除数,∴小华在输入数据时可能是,即.22. 某超市在甲批发市场以每包m元的价格购进了40包茶叶,又在乙批发市场以每包n元的价格购进了同样的60包茶叶,共用去P元;如果以每包元的价格全部卖出这种茶叶,销售收入为Q元.(1)用含m、n的整式分别表示P、Q;(2)如果,请判断超市在这次买卖中的盈亏情况.【答案】(1),(2)超市在这次买卖中的盈利元小问1解析】解:由题意得,,;【小问2解析】解:∵,∴∵,即,∴,∴卖出的钱数大于购进的钱数,∴超市在这次买卖中的盈利元.23. 化简并求值:已知,小明错将“”看成“”,算得结果.(1)计算的表达式;(2)小强说正确结果的大小与的取值无关,对吗?请说明理由.(3)若,,求正确结果的代数式的值.【答案】(1);(2)小强的说法对,正确结果的取值与无关,理由见解析;(3)0.解析:解:(1)∵,∴.B;(2).因正确结果中不含,所以小强的说法对,正确结果的取值与无关;(3)将, 代入(2)中的代数式,得:.24. 甲、乙两家文具店出售同样的毛笔和宣纸(中国传统的古典书画用纸),毛笔每支20元,宣纸每张2元.甲文具店优惠方法为:买一支毛笔送两张宣纸;乙文具店优惠方法为:按总价的九折优惠.小嘉想购买5支毛笔,宣纸x张().(1)若到甲店购买,小嘉应付多少元?(用含x的整式表示)(2)若到乙店购买,小嘉应付多少元?(用含x的整式表示)(3)若小嘉要购买5支毛笔,10张宣纸,应选择哪家文具店?若购买5支毛笔,100张宣纸呢?【答案】(1)元(2)(3)若小嘉要购买5支毛笔,10张宣纸,应选择甲文具店;若小嘉要购买5支毛笔,100张宣纸,应选择乙文具店【小问1解析】解;由题意得,到甲店购买,小嘉应付元;【小问2解析】解:由题意得,到乙店购买,小嘉应付元;【小问3解析】解:当时,,,∵,∴若小嘉要购买5支毛笔,10张宣纸,应选择甲文具店;当时,,,∵,∴若小嘉要购买5支毛笔,100张宣纸,应选择乙文具店.25. 图是2023年8月的日历:(1)求出图甲中带阴影方框中9个数的和m,并指出m与方框正中心的数n有什么数量关系;(2)如果把图甲带阴影的方框移至图乙带阴影的方框的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框大小,把方框移动几个位置,写出方框中9个数的和m与方框正中心的数n之间存在的数量关系,并证明这个结论的正确性;(4)直接写出9月4日、9月11日是星期几.【答案】(1)(2)成立(3)(4)9月4日是星期一、9月11日是星期一【小问1解析】解:由题意知,,∴;【小问2解析】解:由题意知,,∴,∴结论还成立;【小问3解析】解:正中心数为,则它左边的数为,右边的数为,正上方的数为,正下方的数为,左上方的数为,右下方的数为,左下方的数为,右上方的数为,∴,∴;【小问4解析】解:由表格知8月31日是星期四,则9月1日是星期五,9月2日是星期六,9月3日是星期日,9月4日是星期一,又9月11日比9月4日多7天,∴9月11日也是星期一.26. 某水果店新进了A、B两种水果,进价分别为每千克10元、每千克16元,A、B两种水果分别购进a 千克、b千克,共付款P元.(1)用含a、b的整式表示P;(2)若购进千克A种水果和千克B种水果,用科学记数法表示P;(3)购进A种水果后,水果店A种水果一周的批发销售情况如下表所示(以销售50千克为标准,超过标准用正数表示,不足用负数表示),若A种水果批发价为每千克16元,B种水果批发价为每千克20元,这周B种水果批发销售的数量是总量的,求这周销售A、B两种水果的总利润的和.星期一二三四五六日A种水果销售情况(千克)425【答案】(1)(2)(3)【小问1解析】解:由题意得,;【小问2解析】解:∵购进千克A种水果和千克B种水果,∴;【小问3解析】解:,千克,∴这周A种水果的销量为347千克,设这周B种水果的销量为千克,由题意得,,解得,∴这周B种水果的销量为千克,∴这周销售A、B两种水果的总利润的和为元.。

河北省廊坊市数学初一上学期试题及答案指导(2025年)

河北省廊坊市数学初一上学期试题及答案指导(2025年)

2025年河北省廊坊市数学初一上学期复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、下列各数中,哪个是负数?A. 5B. -3C. 0D. 2/32、如果 a = -2, b = 3, 那么 a + b 的结果是多少?A. 1B. -1C. 5D. -53、若一个数的平方是4,那么这个数可能是()A、2B、-2C、2或-2D、04、在下列数中,能被3整除的数是()B、12C、15D、205、若一个正方形的边长为(3)厘米,则其周长是多少?A.(9)厘米B.(12)厘米C.(15)厘米D.(18)厘米6、已知一个数加上(7)后等于(15),那么这个数是多少?A.(7)B.(8)C.(9)D.(10)7、一个长方形的长是10厘米,宽是6厘米,那么这个长方形的周长是多少厘米?选项:A、16厘米B、22厘米C、30厘米D、36厘米8、下列数中,哪个数是质数?选项:B、9C、15D、179、若(x)是一个整数,且(−3<x<4),那么(x)可能取的所有正整数值之和是多少?A. 6B. 7C. 8D. 9二、填空题(本大题有5小题,每小题3分,共15分)1、(1+2+3+…+100)×100的值是_________ 。

2、一个长方体的长、宽、高分别为a、b、c,那么它的体积V可以表示为 _________ 。

3、一个长方形的长是5厘米,宽是3厘米,这个长方形的面积是 ________ 平方厘米。

4、小华今年12岁,他的爸爸比他大28岁,那么他爸爸的年龄是 ________ 岁。

5、若等差数列{an}的首项为a1,公差为d,则第n项an=______ 。

三、解答题(本大题有7小题,第1小题7分,后面每小题8分,共55分)第一题已知二次函数的图象开口向上,顶点坐标为(-1,2),且该函数经过点(3,4)。

(1)求该二次函数的解析式;(2)若该函数的图象与x轴有两个不同的交点,求这两个交点的坐标。

河北省廊坊市安次区第四中学2024-2025学年七年级上学期10月月考数学试题

河北省廊坊市安次区第四中学2024-2025学年七年级上学期10月月考数学试题

河北省廊坊市安次区第四中学2024-2025学年七年级上学期10月月考数学试题一、单选题1.如果向北走10米记做10+米,那么6-米表示( )A .向东走6米B .向西走6米C .向南走6米D .向北走6米 2.实数6-的相反数是( )A .16-B .16C .6-D .63.5-的绝对值是( )A .15-B .15C .5-D .54.下列各数中:()5--,57-,3-,0,25.8-,2+,1--,π3-,21-,25%-,3.1415926,中,负数有( )A .5个B .6个C .7个D .8个5.下列说法正确的是( )A .数轴上表示2的点与表示8的点之间的距离是10B .数轴上表示2-的点与表示8-的点之间的距离是10-C .数轴上表示8-的点与表示2的点之间的距离是10D .数轴上表示8-的点与原点之间的距离是8-6.在数轴上,6-在5-的( ).A .右边B .左边C .同一点上D .无法确定 7.下列各式中结果最小的是( )A .4-B .()2--C .7--D .12⎛⎫-+ ⎪⎝⎭ 8.张老师对全班同学以90分为标准计分,小明得95分,记作5+分;小丽被记作3-分,则小丽的实际分数为( )A .93B .92C .87D .889.绝对值大于或等于1,而小于4的所有的正整数的和是( )A .8B .0C .6D .510.下列各数与163-相等的是( ) A .163-+ B .163-- C .173-+ D .173-- 11.如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D 12.下列说法不正确的是( )A .a 一定是正数B .0的绝对值是0C .一个有理数不是整数就是分数D .0既不是正数,也不是负数13.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这条数轴上随意画出一条长2024厘米的线段AB ,则线段AB 盖住的整点个数是( )A .2024B .2025C .2023或2024D .2024或2025 14.机床厂工人加工一种直径为30mm 的机器零件,要求误差不大于0.05mm ,质检员现抽取10个进行检测(超出部分记为正,不足部分记为负,单位:mm )得到数据如下: 0.05+,0.01-,0.02-,0.07+,0.03-,0.04+,0.01-,0.01-,0.03+,0.06-.其中不合格的零件有( )A .1个B .2个C .3个D .4个15.已知,a b 两个数在数轴上对应的点如图所示,则下列结论正确的是( )A .0a b +>B .0a b ->C .0a b +=D .a b <16.如图1,点,,A B C 是数轴上从左到右排列的三个点,分别对应的数为7,,2b -.某同学将刻度尺按如图2所示的方式放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对齐刻度2.1cm ,点C 对齐刻度6.3cm .在图1的数轴上点B 所对应的数b 为( )A . 2.1-B . 4.8-C . 3.6-D .4-二、填空题17.比较大小:(1)--1--;89-78-(填“>”或“<”或“=”) 18.21x ++有最值,为.19.如果4,7a b ==,且b a <,则a b +=.20.在课后延时服务中,某数学小组在一张白纸上制作一条数轴,如图.折叠纸面,使表示1-的点与表示3的点重合,若数轴上,A B 两点之间的距离为9(点A 在点B 的左侧),且,A B 两点折叠后重合,则A 点表示的数是,B 点表示的数是.三、解答题21.计算:(1)231811523-+--+ (2)252119692⎛⎫+--+ ⎪⎝⎭ (3)()335120.75344⎛⎫⨯--⨯--⨯ ⎪⎝⎭(4)()31120.752483⎛⎫+-⨯- ⎪⎝⎭22.在数轴上标出下列各数:()133,,0,,222----,并比较它们的大小,用“<”连接. 23.某电路检修小组在东西方向的道路上检修用电线路,检修车辆从该道路P 处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下:(单位:千米)(1)问检修小组收工时在P的________方向,距P处________千米:在第________次记录时距P地最远.(2)若检测车辆每千米耗油0.2升,每升汽油需6.2元,问这一天检测车辆所需汽油费多少元?24.如图.在一条不完整的数轴上,一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,则点B表示的数是________、点C表示的数是________;(2)如果点A、C表示的数互为相反数,求点B表示的数;(3)在(1)的条件之下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从C点出发,以每秒0.2个单位长度的速度沿数轴向左运动,设运动时间为t,当t为何值时两只小虫P、Q和原点的距离相等?(直接写出t值)。

廊坊市七年级上学期期末数学试题题及答案

廊坊市七年级上学期期末数学试题题及答案

廊坊市七年级上学期期末数学试题题及答案 一、选择题 1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 3.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( )A .9B .327-C .3-D .(3)--4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x -= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 5.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1126.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y 7.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离8.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯9.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+ C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<012.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟 B .42分钟 C .44分钟 D .46分钟二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.|-3|=_________;16.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________17.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 18.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.21.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.22.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.23.若4a +9与3a +5互为相反数,则a 的值为_____.24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.解方程组537x y x y +=⎧⎨+=⎩. 26.某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;(1)m=______,n=______.(2)补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人. 成绩x(分)频数(人) 频率 50≤x <605 5% 60≤x <7015 15% 70≤x <8020 20% 80≤x <90m 35% 90≤x≤100 25 n27.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A 、B 两点表示的数分别为 , ;(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形. ①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图.②553的点,(图中标出必要线段长)28.解下列一元一次方程()1()23x x +=-()2()113124x x --+= 29.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?30.解方程:4x+2(x﹣2)=12﹣(x+4)四、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.32.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.33.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N .故选B .2.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C;D. (3)--=3,故排除D.故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.B解析:B【解析】【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.6.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.7.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.8.D解析:D【解析】【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.9.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】 方程212134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D .【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.10.A解析:A【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.11.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.二、填空题13.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.16.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261-++-+=(a-1)x2+(b-6)x+1,x bx ax x由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.17.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.19.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.20.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.21.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°, 故答案为:72.【点睛】解析:72 【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 22.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可.【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.23.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.14xy=⎧⎨=⎩.【解析】【分析】利用加减消元法进行求解即可得.【详解】537x yx y+=⎧⎨+=⎩①②,②-①,得2x=2,解得x=1,把x=1代入①,得1+y=5,解得:y=4,所以14xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,根据方程组的特征灵活选用恰当的方法进行求解是解题的关键.26.(1)35,25%;(2)见解析;(3)600人【解析】【分析】(1)根据“频数=样本容量×频率”,直接求解即可;(2)求出m的值,再补全频数分布直方图,即可;(3)由成绩在80分以上(包括80分)的百分比,即可求解.【详解】(1)∵被调查的总人数为100人,∴m=100×35%=35,n=25100×100%=25%,故答案为:35,25%;(2)补全图形如下:(3)估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有:1000×(35%+25%)=600(人).【点睛】本题主要考查频数分布直方图表,掌握“频数=样本容量×频率”,是解题的关键.27.(1)12+;(2)①详见解析;②详见解析-,12【解析】【分析】(1)依据点A到原点的距离为:21-,点A在原点左侧,即可得到点A表示的实数为+,点B在原点右侧,即可得到点A表示的实数-,依据点B到原点的距离为:1212为12+;(2)依据所拼正方形的面积为5,即可得到其边长为5,进而得到分割线的长度;(3)依据(2)中分割线的长度即可得到表示数5以及5﹣3的点.【详解】解:(1)由图可得,点A到原点的距离为:21-,点A在原点左侧,∴点A表示的实数为12-,由图可得,点B到原点的距离为:12+,点B在原点右侧,∴点B表示的实数为12+,故答案为:12+;-,12(2)如图所示:(3553的点如图所示:【点睛】本题主要考查了实数与数轴,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.28.(1)2x =-;(2)32x =-【解析】【分析】(1)根据去括号、移项、合并同类项、x 系数化为1求解即可;(2)根据去分母、去括号、移项、合并同类项、x 系数化为1求解即可.【详解】解:(1)去括号得,26x x +=-,移项得,26x x +=-,合并同类项得,36x =-,系数化为1得,2x =-;(2)去分母得,2(1)12(1)1x x --+=,去括号得,2212121x x ---=,移项、合并同类项得,-1015x =,系数化为1得,32x =-. 【点睛】本题考查了一元一次方程的解法,关键是掌握正确的步骤.29.(1)10,20.5,(2)需付车费65元;(3)行驶的里程为13公里【解析】【分析】(1)根据计价规则,列式计算,即可得到答案,(2)根据计价规则,列式计算,即可得到答案,(3)若行驶的里程为10公里,计算所需要付的车费,得出行驶的里程大于10公里,设行驶的里程为x 公里,根据计价规则,列出关于x 的一元一次方程,解之即可.【详解】解:(1)根据题意得:2.5×2+0.45×8=7.6<10,即小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费10元,2.3×5+0.3×20+0.3×(20﹣10)=11.5+6+3=20.5(元),即傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费20.5元,故答案为:10,20.5,(2)20×2.4+40×0.35+(20﹣10)×0.3=48+14+3=65(元),答:需付车费65元,(3)若行驶的里程为10公里,需要付车费:2.3×10+0.3×30=29<39.8,即行驶的里程大于10公里,设行驶的里程为x公里,根据题意得:2.3x+0.3×30+0.3(x﹣10)=39.8,解得:x=13,答:行驶的里程为13公里.【点睛】本题考查了一元一次方程的应用和有理数的混合运算,解题的关键:(1)正确掌握有理数的混合运算法则,(2)正确掌握有理数的混合运算法则,(3)正确找出等量关系,列出一元一次方程.30.x=12 7【解析】【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【详解】去括号得:4x+2x﹣4=12﹣x﹣4,移项合并得:7x=12,解得:x=127.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1是解题的关键.此外还需要注意移项要变号.四、压轴题31.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.32.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.33.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。

河北省廊坊市七年级下学期数学期末考试试卷

河北省廊坊市七年级下学期数学期末考试试卷

河北省廊坊市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分.) (共10题;共30分)1. (3分) (2018七上·佳木斯期中) 下列计算正确的是()A . ﹣(﹣1)2+(﹣1)=0B . ﹣22+|﹣3|=7C . ﹣(﹣2)3=8D .2. (3分)下列现象是数学中的平移的是()A . 树叶从树上落下B . 电梯由一楼升到顶楼C . 碟片在光驱中运行D . 卫星绕地球运动3. (3分) (2020七上·平顶山期末) 下列调查中,适合普查的是()A . 全国中学生的环保意识B . 一批节能灯的使用寿命C . 对“天宫二号”空间实验室零部件的检查D . 白龟山水库水质的污染情况4. (3分) 2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为()A . 2.5×10-6B . 2.5×10-5C . -2.5×10-5D . -2.5×10-65. (3分)(2019·福田模拟) 下列运算正确的是()A . a2•a5=a10B . a6÷a3=a2C . (a+b)2=a2+b2D .6. (3分)若4x2-2(k-1)x+9是完全平方式,则k的值为()A . ±2B . ±5C . 7或-5D . -7或57. (3分)与分式的值,始终相等的是()A .B .C .D .8. (3分)甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时后甲追上乙.那么甲的速度是乙的()A . 倍B . 倍C . 倍D . 倍9. (3分) (2019七上·遂平期中) 计算-2×32-(-2×3)2的值是()A . 0B . -54C . -72D . -1810. (3分) (2019八下·如皋月考) 如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD 的周长是在14,则DM等于()A . 1B . 2C . 3D . 4二、填空题(本题有8题,每小题3分,共24分) (共8题;共24分)11. (3分)当 =2时,分式的值是________.12. (3分) 20150=________.13. (3分)(2018·嘉兴模拟) 因式分解: =________.14. (3分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表进球数876543(个)人数214782请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为________ ;(2)选择长跑训练的人数占全班人数的百分比是________ ,该班共有同学________ 人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,参加训练之前的人均进球数为________ .15. (3分) (2017七下·乌海期末) 已知方程组,如果x>y,那么m的取值范围是________.16. (3分) (2020九上·浦东月考) 如图,在△ABC中,AB=6,DE∥AC,将△DBE绕点B顺时针旋转得到△D'BE',点D的对应点落在边BC上,已知BE'=5,D'C=4,则BC的长为________。

廊坊市七年级下学期期末数学试题

廊坊市七年级下学期期末数学试题

廊坊市七年级下学期期末数学试题一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角2.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 33.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( ) A .8 B .-8C .0D .8或-8 4.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 5.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .6.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A .13B .9C .9-D .13-7.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .8.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-9.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140°10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.等式01a =成立的条件是________.13.已知方程组,则x+y=_____. 14.计算:32(2)xy -=___________.15.计算:312-⎛⎫ ⎪⎝⎭= . 16.已知一个多边形的每个外角都是24°,此多边形是_________边形.17.二元一次方程7x+y =15的正整数解为_____. 18.若x a y b =⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解,则4a ﹣6b =_____. 19.若2m =3,2n =5,则2m+n =______.20.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.三、解答题21.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;23.化简与计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 324.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.25.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).26.将下列各式因式分解(1)xy 2-4xy(2)x 4-8x 2y 2+16y 427.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ 28.南山植物园中现有A ,B 两个园区.已知A 园区为长方形,长为(x +y)米,宽为(x -y)米;B 园区为正方形,边长为(x +3y)米.(1)请用代数式表示A ,B 两园区的面积之和并化简.(2)现根据实际需要对A 园区进行整改,长增加(11x -y)米,宽减少(x -2y)米,整改后A 园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C ,D 两种花投入的费用与吸引游客的收益如下表:求整改后A ,B 两园区旅游的净收益之和.(净收益=收益-投入)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A 、(a 2b )3=a 6b 3,故A 错误;B 、a 6÷a 2=a 4,故B 错误;C 、5y 3•3y 2=15y 5,故C 正确;D 、a 和a 2不是同类项,不能合并,故D 错误;故选:C .【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.3.B解析:B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.4.A解析:A【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A 、a 4÷a 3=a ,故本选项正确;B 、a 4和a 3不能合并,故本选项错误;C 、 (-a 3)2=a 6,故本选项错误;D 、a 4⋅a 3=a 7,故本选项错误.故选:A .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.6.A解析:A【分析】先解方程组425x yx y+=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y+=与32x by+=-即可求出a、b的值,进一步即可求出答案.【详解】解:解方程组425x yx y+=⎧⎨-=⎩,得31xy=⎧⎨=⎩,把31xy=⎧⎨=⎩代入7ax y+=,得317a+=,解得:a=2,把31xy=⎧⎨=⎩代入32x by+=-,得92b+=-,解得:b=﹣11,∴a-b=2-(﹣11)=13.故选:A.【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.7.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A、B、C选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D .【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.9.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 解析:0a ≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 13.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2 【解析】由题意得,两个方程左右相加可得,,故答案为2.14.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 15.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.16.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.17.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.18.10【分析】已知是二元一次方程2x﹣3y﹣5=0的一组解,将代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b解析:10【分析】已知x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解,将x ay b=⎧⎨=⎩代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b=10故答案为:10【点睛】本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.19.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.20.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为-解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.三、解答题21.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c的正方形,即可得出答案.【详解】(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.(1)-11;(2)6a9【分析】(1)根据负指数幂运算法则,零指数幂运算法则进行运算即可求解(2)根据幂的乘方运算法则,同底数幂乘方和除法运算法则,先算乘法,后算乘除即可求解.【详解】(1)120 1(3)(2)3π-⎛⎫---+-⎪⎝⎭=391--+=-11故答案为:-11(2)(﹣2a3)3+(﹣4a)2•a7﹣2a12÷a3=-8a9+16a2•a7-2a9=-8a9+16a9-2a9=6a9故答案为:6a9【点睛】本题考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.要熟练掌握负指数幂运算法则,零指数幂运算法,幂的乘方运算法则,同底数幂乘法和除法运算法等.24.(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.25.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.26.(1)()4xy y -;(2)()()2222x y x y -+.【分析】(1)提出公因式xy 即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.27.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】 本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.28.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】 (1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y )=x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x 2+6xy+9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元.考点:整式的混合运算.。

河北廊坊市第四中学2024-2025学年七年级上学期11月期中数学试题

河北廊坊市第四中学2024-2025学年七年级上学期11月期中数学试题

河北廊坊市第四中学2024-2025学年七年级上学期11月期中数学试题一、单选题1.下列算式中,计算结果是负数的是()A .(3)4-+B .|3|-C .3(1)⨯-D .2(2)-2.2024-表示()A .2024的相反数B .12024-的绝对值C .2024-的绝对值D .12024的相反数3.在下列表述中,不能表示代数式“3a ”的意义的是()A .3的a 倍B .a 的3倍C .3个a 相加D .3个a 相乘4.手机移动支付给生活带来便捷.如图是小颖某天微信账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是()转账——来自天青色18.00+微信红包——发给高原红12.00-A .收入18元B .收入6元C .支出6元D .支出12元5.根据有理数加法法则,计算()23+-过程正确的是()A .()32++B .()32+-C .()32-+D .()32--6.2024年5月3日,我国嫦娥六号顺利发射飞向太空,随后历时五天抵达第四阶段,进行环月飞行任务.6月2号早上嫦娥六号在月球背面的南极-艾特肯盆地成功落月,月球距离地球约384400千米,将384400用科学记数法表示为()A .438.4410⨯B .53.84410⨯C .43.84410⨯D .50.384410⨯7.设x 是有理数,那么下列各式中一定表示正数的是()A .2018xB .x +2018C .|2018x |D .|x |+20188.如图,数轴上A 、B 两点所表示的两数的()A .和为正数B .和为负数C .积为正数D .积为负数9.能与3645⎛⎫-+ ⎪⎝⎭相加得0的是()A .6354+B .3645--C .6354-+D .3645-+10.如图所示的是嘉淇同学的答题情况,则她的得分应是()姓名嘉淇得分?填空题(共5个小题、答对一个小题得20分)①1-的绝对值是1②比较大小:215->-③将0.0954精确到百分位的近似数是0.1.④22a b -的系数是2-⑤若25-m x y 与32n x y 是同类项,则m n +的值为5A .40分B .80分C .60分D .100分11.观察下列五个式子,解答问题:①12a ②1b a +③32a b -④2b --⑤122a b -+这五个式子中,选择两个多项式进行加法运算,要求计算结果为单项式,则应选择()A .③④B .②④C .①⑤D .①③12.若2222222232m n +++=⨯⨯⨯=L L 1444424444314444244443个个则n m -的值为()A .11B .11-C .10-D .1013.一个三位数个位上的数字为a ,百位上的数字为b ,十位上的数字是个位数字与百位数字的和,将个位数字与十位数字调换组成新三位数,关于结论I ,Ⅱ,下列判断正确的是()结论I :原三位数一定是11的倍数;结论Ⅱ:原三位数与新三位数的差与a 的取值无关A .I 和Ⅱ都对B .只有I 对C .只有Ⅱ对D .I 和Ⅱ都错14.如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a ,b (a b <),则b a -的值为()A .4B .5C .6D .715.九宫格是一款数学游戏,起源于河图洛书,河图与洛书是我国古代流传下来的两幅神秘图案,历来被认为是河洛文化的滥觞,中华文明的源头.在如图所示的九宫格中,其每行、每列、每条对角线上三个数字之和都相等,则对于这个九宫格,下列说法错误..的是()A .每条对角线上三个数学之和等于3mB .三个空白方格中的数字之和等于11mC .n 是这九个数字中最小的数D .这九个数学之和等于9m16.如图:数轴上点A 、B 表示的数分别是a ,b ;若以点A 为原点,则点B 表示的数是()A .a b +B .a b -C .b a -D .a b--二、填空题17.如图,A ,B 两点在数轴上,点A 对应的数为2;若线段AB 的长为3,则点B 对应的数为.18.已知甲、乙两种书的售价分别为12元/本、20元/本,现购买a 本甲书和b 本乙书,共付款W 元.(1)W =(用含a ,b 的式子表示)(2)若2|2|(1)0a b -+-=,则W 的值为.19.如图是2024年12月份的日历,如图中那样,用一个圈竖着圈住3个数,如果被圈住的三个数的和为54,则这三个数中最小一个所表示的日期为2024年12月日.20.生活中常用的十进制是用09~这十个数字来表示数,满十进一,例:212122101102=⨯+⨯+;计算机常用二进制来表示字符代码,它是用0和1两个数来表示数,满二进一,例:二进制数10010转化为十进制数:4321120202120⨯+⨯+⨯+⨯+162=+18=;其他进制也有类似的算法…在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示是远古时期一位母亲记录孩子出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示,孩子已经出生的天数为.三、解答题21.计算(1)51(7.3)6 3.3166⎛⎫---+-+ ⎪⎝⎭(2)212589(3)3-+-+÷-⨯(3)33(98)0.75252744⎛⎫-⨯+⨯+⨯- ⎪⎝⎭(4)315146824⎛⎫⎛⎫-+-÷- ⎪⎝⎭⎝⎭22.如图是由边长相同的灰、白方块拼成的图形.(1)请观察图形,并填写下列表格;图形标号第1个第2个第3个…第n 个灰色方块的个数51015…______白色方块的个数4____________…______(2)第100个图形中的灰色方块和第102个图形中的白色方块共有多少个?(3)第()1n +个图形中的灰色方块比第()()11n n ->个图形中的白色方块多多少个?(用含n 的式子表示)23.某冷库一天的冷冻食品进出记录如下表所示(运进用正数表示,运出用负数表示)进出食品的重量(单位:吨)3-41-32进出次数31322(1)求冷库该天的冷冻食品的重量相比原来增加或减少了多少吨?(2)若运进每吨冷冻食品费用为500元,运出每吨冷冻食品费用为800元.求冷库该天的运送总费用.24.老师写出一个整式()()224232ax bx x x +---(其中a 、b 为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为2234x x ---.则甲同学给出a 、b 的值分别是a =________,b =________;(请直接写出a 、b 的值)(2)乙同学给出了2a =,1b =-,请按照乙同学给出的数值化简整式()()224232;axbx x x +---(3)丙同学给出了a 、b 的一组数,使计算的最后结果与x 的取值无关,则丙同学给出a 、b 的值分别是a =________,b =________;(请直接写出a 、b 的值)25.如图,在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,已知数b 是最小的正整数,且a 的倒数为12-,c 为多项式34432x y xy --的次数.(1)a =______,b =______,c =______;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .①当运动时间为2秒时,AB =______,AC =______②当运动时间为t 秒时,AB =______,AC =______(用含t 的式子表示并化简)③请问32BC AB 的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.。

七年级下册廊坊数学期末试卷测试与练习(word解析版)

七年级下册廊坊数学期末试卷测试与练习(word解析版)

七年级下册廊坊数学期末试卷测试与练习(word 解析版)一、选择题1.9的算术平方根是()A .-3B .3C .3±D .192.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.点()P m n ,在第二象限内,则点(),Q m m n --在第______象限.A .一B .二C .三D .四4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个5.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.若23a =-2b =-,()332c =--a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 7.如图,直线l 1∥l 2且与直线l 3相交于A 、C 两点.过点A 作AD ⊥AC 交直线l 2于点D .若∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2021,0二、填空题9.已知1x -=8,则x 的值是________________.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若△ABC 的面积为15,DE =3,AB =6,则AC 的长是 _______12.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.13.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.14.已知57+的小数部分是a ,57-的小数部分是b ,则2019()a b +=________. 15.()2260a b ++-=,则(),a b 在第_____象限. 16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2021次相遇地点的坐标是_________.三、解答题17.计算:239(6)27--(2)﹣12+(﹣2)3×31127()89--- . 18.求下列各式中x 的值:(1)30.008x =;(2)3338x -=; (3)3(1)64x -=.19.如图所示,已知∠1+∠2=180°,∠B =∠3,请你判断DE 和BC 平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE ∥BC .理由如下:∵∠1+∠4=180°(平角的定义),∠1+∠2=180°( ),∴∠2=∠4( ).∴ ∥ ( ).∴∠3= ( ).∵∠3=∠B ( ),∴ = ( ).∴DE ∥BC ( ).20.如图,ABC 的顶点坐标分别为:(4,5)A ,(1,1)B ,(5,2)C ,将ABC 平移得到A B C ''',使点A 的对应点为(2,1)A '--.(1)A B C '''可以看作是由ABC 先向左平移 个单位,再向下平移 个单位得到的; (2)在图中作出A B C ''',并写出点B 、C 的对应点B '、'C 的坐标;(3)求A B C '''的面积.21.如图,数轴的正半轴上有A ,B ,C 三点,点A ,B 表示数1和2.点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为c .(1)请你求出数c 的值.(2)若m 为()2c -的相反数,n 为()3c -的绝对值,求6m n +的整数部分的立方根.二十二、解答题22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?二十三、解答题23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.24.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的概念可直接进行求解.【详解】解:∵()239±=,∴9的算术平方根是3;故选B .【点睛】本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键.2.C【分析】根据平移不改变图形的形状和大小,进而得出答案.【详解】解:观察图形可知选项C中的图案通过平移后可以得到.故选:C.【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C【分析】根据平移不改变图形的形状和大小,进而得出答案.【详解】解:观察图形可知选项C中的图案通过平移后可以得到.故选:C.【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.3.D【分析】先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解.【详解】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴-m>0,m-n<0,∴点Q(-m,m-n)在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.A【分析】过P点作PM//AB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P点作PM//AB交AC于点M.∵CP平分∠ACD,∠ACD=68°,∠ACD=34°.∴∠4=12∵AB//CD,PM//AB,∴PM//CD,∴∠3=∠4=34°,∵AP⊥CP,∴∠APC=90°,∴∠2=∠APC-∠3=56°,∵PM//AB,∴∠1=∠2=56°,即:∠BAP的度数为56°,故选:A.【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵3c==--=,a=-,b=()22∴c b a>>,故选:D.【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.7.C【分析】由题意易得∠CAD=90°,则有∠CAB=125°,然后根据平行线的性质可求解.【详解】解:∵AD⊥AC,∴∠CAD=90°,∵∠BAD=35°,∴∠CAB=∠BAD+∠CAD=125°,∵l1∥l2,∴∠ACD+∠CAB=180°,∴∠ACD=55°;故选C.【点睛】本题主要考查垂线的定义及平行线的性质,熟练掌握垂线的定义及平行线的性质是解题的关键.8.B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运解析:B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.【点睛】本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.二、填空题9.65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵=8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.4【分析】过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的,,进而解得AC 的长.【详解】过点D 作DF ⊥AC∵AD 是△AB解析:4【分析】过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的ADB ADC ABC S S S ∆∆∆+=,⨯+⨯=11AB DE AC DF 1522,进而解得AC 的长.【详解】过点D 作DF ⊥AC∵AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,∴DE=DF,又三角形的面积的ADB ADC ABC S S S ∆∆∆+=,即⨯+⨯=11AB DE AC DF 1522, 解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.12.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.13.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC =∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED +∠GEC =180゜∴∠2=11(180)(180108)3622GEC ︒-∠=⨯︒-︒=︒ 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 14.1【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a 用5+减去其整数部分即可,同理可得b 的值,再将a ,b 的值代入所求式子即可得出结果.【详解】解析:1 【分析】根据4<7<9可得,27<3,从而有7<7<8,由此可得出77,小数部分a 用7b 的值,再将a ,b 的值代入所求式子即可得出结果.【详解】解:∵4<7<9,∴273,∴-3<7<-2,∴7<7<8,2<73,∴77,72,∴77,77∴2019()a b +=12019=1.故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.15.二【分析】根据非负数的性质列方程求出a 、b 的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单解析:(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单位/秒,3单位/秒,则两个物体每次相遇时间间隔为1613=4秒,则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)∵2021=4×505…1,∴第2021次两个物体相遇位置为(0,2),故答案为:(0,2).【点睛】本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8)×18-(-3)×(-13)=-1-1-1=-3.故答案为(1)0;(2)-3.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2)32;(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值.【详解】解:(1)x3=0.008,则x=0.2;(2)x3-3=38则x3=3+38故x3=27 8解得:x =32; (3)(x -1)3=64则x -1=4,解得:x =5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.19.已知;同角的补角相等;AB ;EF ;内错角相等,两直线平行;∠ADE ;两直线平行,内错角相等;已知;∠B ;∠ADE ;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB解析:已知;同角的补角相等;AB ;EF ;内错角相等,两直线平行;∠ADE ;两直线平行,内错角相等;已知;∠B ;∠ADE ;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB ∥EF ,根据平行线的性质得出∠3=∠ADE ,求出∠B =∠ADE ,再根据平行线的判定推出即可.【详解】解:DE ∥BC ,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等),∴AB ∥EF (内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B (已知),∴∠B =∠ADE (等量代换),∴DE ∥BC (同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键. 20.(1)6;6;(2)图见解析,,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形.(3)利用间接求面积的方法,即可求出三角形解析:(1)6;6;(2)图见解析,(5,5)B -'-,(1,4)C -'-;(3)132【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形.(3)利用间接求面积的方法,即可求出三角形的面积.【详解】解:(1)∵(4,5)A 平移后对应点为(2,1)A '--,∴A B C '''可以看作是由ABC 先向左平移6个单位,再向下平移6个单位得到的 故答案为:6;6;(2)作出ΔA B C '''如图所示.∴点B 、C 的对应点B '、C '的坐标分别为:(5,5)B -'-,(1,4)C -'-;(3)将三角形ΔA B C '''补成如图所示的正方形,则其面积为:11113443414132222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△. 【点睛】本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形.21.(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB 之间的距离即为c 的值;(2)根据题意及c 的值求出m 和n 的值,再把m ,n 代入所求代数式进行计算即可.【详解】解:(1)点.分别表示解析:(121;(2)2【分析】(1)根据数轴上两点间的距离求出AB 之间的距离即为c 的值;(2)根据题意及c 的值求出m 和n 的值,再把m ,n 代入所求代数式进行计算即可.【详解】解:(1)点A .B 分别表示12,21AB ∴=,1c ∴=;(2)21c =-,11m ∴=-=,13|4n =-=661(410m n +=⨯+= 122<<,21∴-<-,8109∴<,6m n ∴+的整数部分是8,∴2=.【点睛】此题考查了估算无理数的大小,正确估算12<<及8109<是解题的关键. 二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r =∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1) ;(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F , ∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠, ''11402190B FC FGC +=∴∠+∠=∠︒-∠︒, 1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =5407︒(). 【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO 、∠OAC 的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC =∠ADC ,根据平行线的性质得到∠DEF =∠ADE ,推出DE ∥BC ,得到∠CDE =∠BCD ,根据角平分线的定义得到∠ADE =∠CDE ,求得∠B =∠BCD ,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB 、△AOC 都是“梦想三角形”证明:∵AB ⊥OM ,∴∠OAB =90°,∴∠ABO =90°﹣∠MON =30°,∴∠OAB =3∠ABO ,∴△AOB 为“梦想三角形”,∵∠MON =60°,∠ACB =80°,∠ACB =∠OAC +∠MON ,∴∠OAC =80°﹣60°=20°,∴∠AOB =3∠OAC ,∴△AOC 是“梦想三角形”.(3)解:∵∠EFC +∠BDC =180°,∠ADC +∠BDC =180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407︒().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1)EAF EDG AED∠+∠=∠,证明见解析;(2)证明见解析;(3)80EKD∠=︒.【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

廊坊数学试题及答案初一

廊坊数学试题及答案初一

廊坊数学试题及答案初一一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 如果a和b是相反数,那么a+b的值是多少?A. 0B. 1C. -1D. 2答案:A3. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C4. 计算下列哪个表达式的结果为正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-3)答案:A5. 哪个分数的值大于1?A. 1/2B. 2/3C. 3/4D. 5/2答案:D6. 一个圆的直径是10厘米,那么它的周长是多少?A. 31.4厘米B. 62.8厘米C. 10厘米D. 20厘米答案:B7. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么它的周长是多少?A. 16厘米B. 21厘米C. 26厘米D. 31厘米答案:B8. 下列哪个图形的面积最大?A. 边长为4厘米的正方形B. 长为6厘米,宽为4厘米的长方形C. 半径为3厘米的圆D. 底为5厘米,高为3厘米的三角形答案:C9. 一个数的立方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:D10. 一个数的绝对值是它本身的数是?A. 正数和0B. 负数和0C. 只有0D. 所有实数答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 一个数的绝对值是7,那么这个数可以是______或______。

答案:7或-713. 一个数的平方是36,那么这个数是______或______。

答案:6或-614. 一个数的立方是-8,那么这个数是______。

答案:-215. 一个圆的半径是5厘米,那么它的面积是______平方厘米。

答案:78.516. 一个等边三角形的周长是18厘米,那么它的每条边长是______厘米。

河北省廊坊市第六中学2024-2025学年七年级上学期10月月考数学试题

河北省廊坊市第六中学2024-2025学年七年级上学期10月月考数学试题

河北省廊坊市第六中学2024-2025学年七年级上学期10月月考数学试题一、单选题1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A .8-B .3C .13D .3-2.下列判断语句中,错误的是( )A .最小的正整数是1B .最大的负整数是1-C .没有最大的有理数D .最小的有理数是03.在数轴上,把表示1-的点移动1个单位长度后,所得到的对应点表示的数为( ) A .2- B .0 C .2-或0 D .无法确定 4.在0,(2)+-,3,(0.1)-+,()5--中,负数的个数是( )A .1B .2C .3D .4 5.若()2210x y -++=,则x y +等于( )A .3-B .1-C .1D .不能确定 6.如果x 为有理数,式子20232x -+存在最大值,这个最大值是( )A .2025B .2024C .2023D .20227.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度)根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )米.A .210B .130C .390D .210- 8.地球上的海洋面积约为2361000000km ,用科学记数法可表示为( )A .823.6110km ⨯B .223.6110km ⨯C .820.36110km ⨯D .923.6110km ⨯9.小明在计算1357911131517-+-+-+-+时,不小心把八个运算符号中的一个写错了(“+”错写成“-”或“-”错写成“+”),结果算成了17-,则原式从左往右数,第( )个运算符号写错了A .6B .8C .4D .210.下列计算:①1899--=-;②()5611-+-=-;③()40.753÷-=-;④()()236-⨯-=-;⑤2213()13-⨯-=-;其中计算正确的个数有( ) A .1个 B .2个 C .3个 D .4个11.有一个数值转换器,其工作原理如图所示,若输入2-,则输出的结果是( )A .8-B .6-C .4-D .2-12.下列说法正确的是( )A .近似数1.2和1.20精确度相同B .π取3.14,身高约165cm ,其中3.14和165都是近似数C .0.0156(用四舍五入法精确到0.001)≈0.015D .由四舍五入得到的近似数48.0110⨯,精确到百分位13.在数学课上,老师让甲、乙、丙、丁四位同学分别做了一道有理数运算题,你认为做对的同学是( )甲:998080-??;乙:2244324460-⨯=-⨯=;丙:()3223612361216233-÷=⨯-⨯=; 丁:()21339193-÷⨯=÷=. A .甲 B .乙 C .丙 D .丁14.若有理数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( )A .1a a <-<-B .1a a -<<-C .1a a -<-<D .1a a <-<- 15.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算78⨯和89⨯的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算79⨯,左、右手依次伸出手指的个数是( ) 78⨯= 因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以()7856,7810233256⨯=⨯=⨯++⨯=89⨯=?因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以()8972,8910342172⨯=⨯=⨯++⨯= A .2,4 B .1,4 C .3,4 D .3,1二、填空题16.小明在超市购买食品,其包装袋注明:净重2002±克,请你判断小明购买的食品,最轻是克.17.已知3a =,6b =,且0a b ⨯<,则a b -=.18.在210,,π,23⎛⎫--- ⎪⎝⎭四个数中,最小的实数是. 19.在有理数3.14,3,﹣12,0,+0.003,﹣313 ,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于.20.已知a 与b 互为倒数,m 与n 互为相反数,x 的绝对值等于1,则()202220232024m n x ab +-+的值为.21.用“⇒”与“⇐”表示一种法则:()a b b ⇒=-,()a b a ⇐=-,如()233⇒=-,则()()2023201820232015⇒⇐⇒=.三、解答题22.补全下面数轴,在数轴上将43-,0,3--,1.5,()2--表示出来.并用“>”将它们连接起来.23. 2023年洪涝灾害比以往较多,在某次救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从甲地出发,晚上到达乙地,规定向东为正方向,当天的航行路程记录如下(单位:km ):15,11-,7,6-,16+,8-,12,5-.(1)通过计算说明:乙地在甲地的______(填“东边”或“西边”)方向,与A 地相距______km ;(2)救灾过程中,最远处离出发点A 是______km ;(3)若冲锋舟每千米耗油0.5升,油箱容量为32升,求途中还需补充多少升油? 24.计算:(1)()()18424+---+(2)()()623⨯-÷- (3)2453(1)53⎛⎫---⨯÷- ⎪⎝⎭(4)35711461236⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭25.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是_____.A .()()325+++=+B .()()321++-=+C .()()325--+=-D .()()321-++=-②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依此规律跳,当它跳2024次时,落在数轴上的点表示的数是____.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2024的点与表示______的点重合.②若数轴上A、B两点之间的距离为2024(A在B的左侧,且折痕与①折痕相同),且A、B 两点经折叠后重合,则A点表示_____,B点表示_____.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为______.(用含有a,b 的式子表示)。

河北省廊坊市第六中学2023-2024学年七年级上册月考数学试题(含解析)

河北省廊坊市第六中学2023-2024学年七年级上册月考数学试题(含解析)

A.3个、7个B.4个、6个C.5个、5个D.6个、4个
15.嘉淇同学在某月的月历上圈出了相邻的三个数,并求出了三个数的和为39.这三个数在月历中的分布不可能是()
..
..
.某幼儿园(位师生,购买了y个苹果.若每人发
个,则最后还缺
(1)若输入的x 的值为-1,求输出的值;
(2)若输出的是“”,请求出输入x 的值.
21.淇淇在解一元一次方程“”时,一不小心将墨水洒在作业本上,其中未知数了,他便问嘉嘉,嘉嘉想考考他,于是用手遮住了解题过程,只露出最后一步:(1)求前四个台阶上数的和;
(2)求第五个台阶上的数x 的值;
(3)求从下到上,前23个台阶上数的和;
(4)试用含m (m 为正整数)的式子表示出数again 329x x -=+
(1)点A表示的数为,点C表示的数为
4-
()。

廊坊市七年级下学期期末数学试题

廊坊市七年级下学期期末数学试题

廊坊市七年级下学期期末数学试题一、选择题1.下列运算正确的是 ()A .()23524a a -=B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅=2.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=105.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .2566.不等式3+2x>x+1的解集在数轴上表示正确的是( ) A . B .C .D .7.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1)C .(1,1)D .(1,﹣1)8.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°, ④两个角的两边分别平行,则这两个角相等 A .1个B .2个C .3 个D .4个9.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:210.下列运算正确的是( ) A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷=二、填空题11.一个五边形所有内角都相等,它的每一个内角等于_______. 12.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________. 13.等式01a =成立的条件是________.14.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.15.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .16.若29x kx -+是完全平方式,则k =_____.17.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.18.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.19.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2. (1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= . 22.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15 162401 680802221322222xx x xx xxx+++++++即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262(2)62xx x xx xxx+++++-++☆☆☆得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x2+2x2-x-2进行因式分解,进行到了:x3+2x2-x-2=(x+2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2-x-2因式分解.23.如图,已知:点A C、、B不在同一条直线,AD BE.(1)求证:180B C A∠+∠-∠=︒.(2)如图②,AQ BQ、分别为DAC EBC∠∠、的平分线所在直线,试探究C∠与AQB∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB,直线AQ BC、交于点P,QP PB⊥,请直接写出::DAC ACB CBE∠∠∠=______________.24.如图,在数轴上,点A、B分别表示数1、23x-+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( ) A .点A 的左边 B .线段AB 上 C .点B 的右边 25.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩26.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1. 27.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-28.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”. (2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】A 选项:(﹣2a 3)2=4a 6,故是错误的;B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的; C 选项:6123a a +=+13,故是错误的; 故选D .2.C解析:C 【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.3.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.4.A解析:A【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x y x y -=⎧⎨-=⎩ ,解得,1015x y =-⎧⎨=-⎩;把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.5.D解析:D 【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.6.A解析:A 【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可. 【详解】解:移项,得2x -x >1-3, 合并同类项,得x >﹣2, 不等式的解集在数轴上表示为:.故选:A . 【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.7.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.8.A解析:A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误.故选A.【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.9.B解析:B【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.【详解】解:A、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故A选项是正确的;B、∵∠A=60°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴△ABC是锐角三角形,故B选项是错误的;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故C选项是正确的;D、∵∠A:∠B:∠C=1:1:2,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故D选项是正确的;故选:B.【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.10.C解析:C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.二、填空题11.【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°解析:108︒【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°=108°.故答案为:108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.12.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A的个位数字是1,故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.13..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 解析:0a ≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 14.2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿本,圆珠笔和练习簿数量都是整数,则x=2时,, 故答案为2.【点睛解析:2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿1434x -本,圆珠笔和练习簿数量都是整数,则x=2时,14324x -=, 故答案为2.【点睛】明确圆珠笔和练习簿数量都是整数是本题的关键,难度较小.15.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.16.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值.【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式,熟练掌握完全平方公式解析:6【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k的值.【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键17.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行. 故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.18.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.19.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得:,解得:,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x,y代入方程组,首先求得m,进而可以求得n.【详解】解:将11xy=⎧⎨=⎩代入方程组得:31=1mm n-⎧⎨-=⎩,解得:21mn=⎧⎨=-⎩,故n的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++ 故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.22.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2 32321222222xx x x xx xxx-++--+----,∴()()()()()3222221211x x x x x x x x+--=+-=++-.【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.23.(1)见详解;(2)2180C AQB∠+∠=︒;(3)1:2:2【分析】(1)过点C作CF AD,则//BECF,再利用平行线的性质求解即可;(2)过点Q作QM AD,则//BEQM,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD∠=∠-∠,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出12CAD CBE∠=∠,又因为QP PB⊥,因此180CBE CAD∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB∠的度数,再求答案即可.【详解】解:(1)过点C作CF AD,则//BECF,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q作QM AD,则//BEQM,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.24.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.25.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-,∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组. 26.2x 2-8x-3;-9.【解析】【分析】根据整式的乘法运算法则即可化简求值.【详解】解:原式=x 2-4x+4+2(x 2-2x-8)-(x 2-9)=x 2-4x+4+2x 2-4x-16-x 2+9=2x 2-8x-3当x=1时,原式=2-8-3=-9【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.27.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.28.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+, 2222m n n t m t -=+--①, 2222m n m t n t +=+++②, 得()()2()0m n m n m n -++-=, 即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++, ∴4242,4mn t mn t -=-+=-, ∵m n ≠,∴2()0m n ->, ∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.。

廊坊市人教版七年级下学期期末数学试题

廊坊市人教版七年级下学期期末数学试题

廊坊市人教版七年级下学期期末数学试题一、选择题1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 3.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 4.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 25.下列计算错误的是( ) A .2a 3•3a =6a 4 B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 6.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .67.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 48.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣89.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩10.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .二、填空题11.已知等腰三角形的两边长分别为4和8,则它的周长是_______.12.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.13.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 14.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.15.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.16.计算:(12)﹣2=_____. 17.若等式0(2)1x -=成立,则x 的取值范围是_________.18.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.19.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”) 三、解答题21.解方程组:41325x y x y +=⎧⎨-=⎩. 22.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).23.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1.24.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.25.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点.(1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案)(2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .26.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 227.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.3.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,故a 2-b 2=(a +b )(a -b ).故选:C .【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.5.C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a<4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a的值之和为4.故选:C.【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.7.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.B解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.10.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.二、填空题11.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=20.故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+4y2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.13.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1.3 =-故答案为1. 3 -【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 15.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.【解析:54140 3276 x yx y+=⎧⎨+=⎩【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.16.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】 解:(12)﹣2=2112⎛⎫ ⎪⎝⎭=114=4, 故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可. 17.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.18.28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.19.﹣【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣.解析:﹣1 2【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12.【点睛】此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12, ∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键. 三、解答题21.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩.本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.22.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.4xy﹣8y2,﹣20【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,最后代入求出即可.【详解】(x﹣2y)(x+2y)﹣(x﹣2y)2=x2﹣4y2﹣(x2﹣4xy+4y2)=x2﹣4y2﹣x2+4xy﹣4y2=4xy﹣8y2,当x =3,y =﹣1时,原式=4×3×(﹣1)﹣8×(﹣1)2=﹣20.【点睛】本题考查整式的化简求值,涉及平方差公式、完全平方公式、合并同类项等知识,熟练掌握整式的乘法运算法则和乘法公式的运用是解答的关键.24.(1)16;4;(2)m=3n ;【分析】(1)利用a m +n =a m ⋅a n 和a m -n =a m ÷a n 进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n =4;(2)∵, ∴∴【点睛】本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.25.知识回顾:∠A+∠B ;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A 和∠P 之间的数量关系是:∠P =∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC 度数,进而求得∠ACB 度数;(2)已知∠A 度数,即可求得∠ABC+∠ACB 度数,进而求得∠DBC+∠ECB 度数. 拓展延伸:(1)连接AP ,根据三角形外角性质,∠DBP =∠BAP+∠APB ,∠ECP =∠CAP+∠APC , 得到∠DBP+∠ECP =∠BAC+∠BPC ,已知∠BAC =70°,∠BPC =150°,即可求得∠DBP+∠ECP 度数;(2)如图⑤,设∠DBO =x ,∠OCE =y ,则∠OBP =∠DBO =x ,∠PCO =∠OCE =y , 由(1)同理得:x+y =∠A+∠O ,2x+2y =∠A+∠P ,即可求出∠A 和∠P 之间的数量关系; (3)如图,延长BP 交CN 于点Q ,根据角平分线定义,∠DBP =2∠MBP ,∠ECP =2∠NCP ,且∠DBP+∠ECP =∠A+∠BPC ,∠A =∠BPC ,得到∠BPC =∠MBP+∠NCP ,因为∠BPC =∠PQC+∠NCP ,证得∠MBP =∠PQC ,进而得到BM ∥CN .【详解】知识回顾:∵∠ACD+∠ACB =180°,∠A+∠B+∠ACB =180°,∴∠ACD =∠A+∠B ;故答案为:∠A+∠B ;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM ∥CN .【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.27.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a+•-=121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。

廊坊数学试题及答案初一

廊坊数学试题及答案初一

廊坊数学试题及答案初一一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 3D. -2答案:C2. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A3. 绝对值等于5的数是:A. 5B. -5C. 5和-5D. 0答案:C4. 下列哪个分数是最简分数?A. 3/4B. 6/8C. 8/12D. 5/10答案:A5. 一个数的平方等于9,这个数是:B. -3C. 3和-3D. 0答案:C6. 计算下列哪个表达式的结果为正数?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. (-2) × (-3) × 2答案:A7. 一个数的立方等于-8,这个数是:A. 2B. -2D. -8答案:B8. 计算下列哪个表达式的结果为0?A. 0 + 5B. 0 - 5C. 0 × 5D. 0 ÷ 5答案:C9. 下列哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A10. 一个数的倒数是2,这个数是:A. 1/2B. 2C. 1/4D. 4答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数可能是______或______。

答案:7 或 -712. 一个数的相反数是5,这个数是______。

答案:-513. 一个数的平方等于16,这个数可能是______或______。

答案:4 或 -414. 一个数的立方等于-27,这个数是______。

答案:-315. 计算 (-3) × (-2) 的结果是______。

答案:616. 计算 5 + (-3) 的结果是______。

答案:217. 计算 10 - (-5) 的结果是______。

答案:1518. 计算 0 × 8 的结果是______。

答案:019. 计算 0 ÷ 4 的结果是______。

河北省廊坊市第六中学2023-2024学年七年级上学期月考数学试题

河北省廊坊市第六中学2023-2024学年七年级上学期月考数学试题

24.有 30 筐白菜,以每筐 25kg 为标准,其中质量超过或不足的千克数分别用正数或负
数来表示,记录如表所示:
试卷第 3 页,共 4 页
与标准质量的差值/kg 3 2 1 0 1 2 3
筐数
1 3 5 9642
(1)30 筐白菜中,质量最大的一筐比质量最小的一筐多多少千克? (2)与标准质量相比, 30 筐白菜总计超过或不足的质量为多少千克? (3)若白菜每千克售价 3 元,则这 30 筐白菜可卖多少钱? 25.在东西向的马路上有一个巡岗亭 A ,巡岗员甲从岗亭 A 出发以 20km/h 的速度匀速 来回巡逻.如果规定向东为正,向西为负.巡逻情况记录如下:(单位: km )
22.计算:
(1) 43 77 27 43 ;
(2)
5 6
2
1 2
1
1 6
0.5

(3)
13
28
1 13
1 7

(4) 30 4 2.5 0.5 ;
(5)
2 3
5 6
7 8
1 12
1 24

23.如图,根据下面给出的数轴,解答下面的问题:
(1)根据图中 A、B 两点的位置,分别写出它们所表示的有理数 A:________;B :________;
13.某市一天早晨的气温是 6℃,中午上升了15℃,半夜又下降了8℃,则半夜的气温
是( )℃.
A.1
B. 17
C. 1
D.13
14.有四包袋装小食品,每包以标准克数( 200 克)为基准,超过的克数记作正数.不
足的克数记作负数.以下数据是记录结果.其中表示实际克数最接近标准克数的是( )
A. 5

廊坊市七年级数学试卷

廊坊市七年级数学试卷

廊坊市七年级数学试卷一、选择题(共20分,每题2分)1.下列哪个数是无理数? A. ( \sqrt{4} ) B. ( \pi ) C.( 0.75 ) D. ( -\frac{2}{3} )2.代数式 ( 2x + 5 ) 当 ( x = 3 ) 时的值是: A. 11 B. 6 C. 16D. 13.方程 ( 4x - 1 = 15 ) 的解是: A. ( x = 4 ) B. ( x = 3 ) C.( x = 2 ) D. ( x = 5 )4.不等式 ( 3x + 2 > 8 ) 的解集是: A. ( x > 2 ) B. ( x < 2 )C. ( x \geq 2 )D. ( x \leq 2 )5.一个等边三角形的每个内角的度数是: A. ( 60^\circ ) B.( 90^\circ ) C. ( 120^\circ ) D. ( 180^\circ )二、填空题(共20分,每题2分)6.计算 ( (x - 1)(x + 1) ) 的结果是 _______。

7.如果一个数的4倍减去6等于18,那么这个数是 _______。

8.一个直角三角形的斜边长为13cm,一条直角边长为5cm,那么另一条直角边长是 _______。

9.一组数据的平均数是21,中位数是20,那么这组数据的众数可能是 _______。

10.抛一枚硬币得到正面的概率是 _______。

三、解答题(共60分)11.(10分)计算下列表达式的值:( 5x^2 - 2x + 3 ) 当 ( x =1 )。

12.(10分)解方程:( 8x + 6 = 22 )。

13.(10分)解不等式:( 5x - 3 < 12 )。

14.(10分)计算一个长为10cm,宽为8cm的矩形的周长和面积。

15.(10分)一个等腰三角形的周长为28cm,其中一边长为8cm,求其他两边的长度。

16.(10分)给定数据集:1, 3, 3, 5, 7, 9, 11。

河北省廊坊市广阳区廊坊市第九中学2023-2024学年七年级上学期月考数学试题

河北省廊坊市广阳区廊坊市第九中学2023-2024学年七年级上学期月考数学试题

河北省廊坊市广阳区廊坊市第九中学2023-2024学年七年级
上学期月考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
....
.为计算简便,把(﹣﹣(﹣3.7)﹣(+0.5)+(+2.4)+(﹣3.5)写成省略加号的和的形式,并按要求交换加数的位置正确的是()
.﹣1.4+2.4+3.7﹣﹣3.5.﹣1.4+2.4+3.7+0.5
.﹣1.4+2.4﹣3.70.5﹣3.5.﹣1.4+2.4﹣3.70.5+3.5
.下列各式比较大小正确的是()
A .4
B .5
C .6
D .7
15.如图,数轴上的A 、B 两点所表示的数分别为a 、b ,且0a b +<,0ab <,则原点
O 的位置在()
A .点A 的右边
A .(5)(2)-+-
B .(5)2-+
C .5(2)+-
D .5+
二、填空题
三、解答题
20.把下列各数填在相应的表示集合的大括号里.整数集合{
分数集合{
(1)在数轴上标a -、b -对应的点.
(2)用“>”或“<”填空a b +______0,b a -______0(3)用“<”连接,,0,,a b a b --.
25.我们知道:在数轴上,一个数所对应的点与原点之间的距离叫做这个数的绝对值.于“两点间的距离”,是指两点之间线段的长度,若一个数的绝对值为轴上的点与原点间的距离为1,该点表示的数为【问题解决】。

河北廊坊市七年级数学下册第六章【实数】经典练习卷(含答案)

河北廊坊市七年级数学下册第六章【实数】经典练习卷(含答案)

一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .72.若2x -+|y+1|=0,则x+y 的值为( )A .-3B .3C .-1D .13.下列各数中比3-小的数是( )A .2-B .1-C .12-D .04.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S5.下列实数中,是无理数的为( )A .3.14B .13C .5D .96.81的算术平方根是( )A .3B .﹣3C .±3D .67.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 8.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( )A .2015B .2014C .20152014D .2015×2014 9.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-6810.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a >>- D .1a a a ->> 11.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.计算题.(1)12(7)6(22)-+----(2)2312272⨯- (3)316(2)(4)÷-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 13.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;… 回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.14.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.15.(223228432--16.比较大小:21(填“>”、“=”或“<”).17.比较大小:12π-________118.若2x =,29y =,且0xy <,则x y -等于______.19.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π而常用的“……”或者“≈”的表示方法都不够百分百准确; 信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10可以表示为10a b <+<则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数. 20.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.21.比较大小:三、解答题22.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根. 23.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a+=-★,求a的值.24)1152-⎛⎫-+︒ ⎪⎝⎭25.已知a的整数部分,b的小数部分,求代数式(1b a-的平方根.一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .42.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .② 3.-18的平方的立方根是( ) A .4 B .14 C .18 D .1644.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .65.若a =b =-,c =,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 6.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1 7.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .18.下列实数是无理数的是( ) A . 5.1- B .0 C .1D .π9 )A .8B .8-C .D .±10. )A .5和6B .6和7C .7和8D .8和911.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 2=±D .()515-=- 二、填空题12.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.13.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;14.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 15.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.16.27-的立方根是______________________;| 3.14|π-的绝对值是___________.17的相反数是________的数是________18.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10可以表示为10a b <+<则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.19.(12; (2)求 (x -1)2-36=0中x 的值.20.已知21a -的平方根是31a b +-的算术平方根是6,求4a b +的平方根. 21.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______三、解答题22.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+23.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .24.解方程:(1)2810x -=;(2)38(1)27x +=.25.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . 2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A .0个B .1个C .2个D .3个3 )A .2B .4C .2±D .-44.在00.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( ) A .3 B .4 C .5 D .65.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4076.1的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间7.81的平方根是( )A .9B .-9C .9和9-D .81 8.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数9.已知无理数m 5π-的整数部分相同,则m 为( )A B C 1 D .π-10.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 11.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 二、填空题12.计算:3011(2)(200422-+---13.对于实数x ,规定[x ]表示不大于x 的最大整数,如[4]=4,=1,如[﹣2.5]=﹣3,现对82进行如下操作:82−−−→第一次=9−−−→第二次=3−−−→第三次=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是__.14.实数2-,227,π-中属于无理数的是________.15.0.5325===的值是______________________.16.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.17.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π而常用的“……”或者“≈”的表示方法都不够百分百准确; 信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10可以表示为10a b <+<则a b +=______;(4)若303x y -=+,其中x 是整数,且01y <<,请求x y -的相反数.18.定义一种新运算;观察下列各式; 131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +与4d +互为相反数,求23c d -的平方根.20.若已知()21230a b c -+++-=,则a b c -+=_____.21.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______. 三、解答题22.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++;(3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算: ()()()()()()121231312x x x x x x -+------23.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.24.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.25.计算题.(1)12(7)6(22)-+----(2)2312272⨯ (3316(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭。

河北省廊坊市大城县2022-2023学年七年级上学期期末考试数学试题(含答案)

河北省廊坊市大城县2022-2023学年七年级上学期期末考试数学试题(含答案)

河北省廊坊市大城县2022-2023学年七年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.增长2.7%记作 2.7+%,“减少3.4%”记作( ) A . 3.4-% B . 2.7+% C . 3.4±% D . 3.4+%【答案】A【分析】根据正负数的意义即可求解.【详解】解:增长2.7%记作 2.7+%,“减少3.4%”记作 3.4%-, 故选:A .【点睛】本题考查了正负数的意义,理解题意是解题的关键. 2.下列运算结果为负数的是( ) A .()()23-⨯- B .()245-÷C .()08⨯-D .()342--⨯+.已知等式,则下列等式变形不正确...的是() A .6m n += B .28m n -=- C .2212m n =-D .()60mx nx x =-≠【答案】D【分析】根据等式的性质逐项分析判断即可求解. 【详解】解:A. ∵6m n =-,∵ 6m n += ,故该选项正确,不符合题意; B. ∵6m n =-,∵28m n -=-,故该选项正确,不符合题意; C. ∵6m n =-,∵2212m n =-,故该选项正确,不符合题意; D. ∵6m n =-,∵()60mx nx x x =-≠,故该选项不正确,,符合题意; 故选:D .【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等. 4.若233m x y -与42n x y 是同类项,则n m =( ) A .6 B .7C .8D .9【答案】C【分析】根据同类项的定义,分别求解字母m ,n 的值,从而求解结果即可.【详解】根据题意:243m n =⎧⎨=⎩,解得:23m n =⎧⎨=⎩,∵328n m ==, 故选:C .【点睛】本题考查同类项的定义,理解基本定义是解题关键. 5.若关于x 的方程130m x --=是一元一次方程,则m 等于( ) A .3 B .2C .1D .1-【答案】B【分析】根据一元一次方程的定义,即可求解.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax +b =0(a ,b 是常数且a ≠0). 【详解】解:∵关于x 的方程130m x --=是一元一次方程, ∵11m -=, 解得:2m =, 故选B .【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键. 6.如图表示互为相反数的两个点是( )A .A 和CB .B 和CC .A 和DD .B 和D【答案】C【分析】根据相反数的和为0,位于原点的两侧,且到原点的距离相等,即可求解.【详解】解:根据数轴可知点A表示的数为2-,点D表示的数为2,∵表示互为相反数的两个点是A和D,故选:C.【点睛】本题考查了数轴上表示有理数,相反数的定义,数形结合是解题的关键.7.能与425⎛--⎫⎪⎝⎭相加得0的是()A.425--B.425+C.425-+D.425-+8.如图,钟表3点时,时针和分针所成的角度是()A.90︒B.80︒C.60︒D.56︒【答案】A【分析】根据钟表的刻度,每一大格有30︒,钟面上数字12到数字3,有3格,据此即可求解.【详解】解:∵钟面上数字12到数字3,有3格,每一大格有30°,∵钟表3点时,时针和分针所成的角度是90︒,故选:A.【点睛】本题考查了钟面角,掌握根据钟表的刻度,每一个大格有30︒是解题的关键.9.如果单项式56m a b是8次单项式,那么m的值为()A.2B.3C.4D.5【答案】B【分析】直接根据单项式的次数的定义得出答案,一个单项式中所有字母的指数的和叫做单项式的次数.m+=.【详解】解:单项式56m a b是8次单项式,则58m=,解得:3故选:B.【点睛】本题考查了单项式的次数,理解单项式的次数的定义是解题的关键.10.已知线段16AB=cm,点C是直线AB上一点,6BC=cm,若M是AC的中点,则线段MB的长度为()A.5cm B.11cm C.5cm或11cm D.以上都不对11.如图,下列结论正确的是()∵射线OB的方向是北偏西30︒;∵射线OC的方向是东南方向;∵射线OA的方向是北偏东20︒;∵AOC ∠和AOB ∠互为补角A .1个B .2个C .3个D .4个【答案】B【分析】根据方位角的确定方法依次判断.【详解】解:∵射线OB 的方向是北偏西60︒,故错误; ∵射线OC 的方向是东南方向,故正确; ∵射线OA 的方向是北偏东20︒,故正确;∵70452060195AOC AOB ∠+∠=︒+︒+︒+︒=︒,故错误; 正确的有2个, 故选:B .【点睛】此题考查了方位角的表示方法,以正南(或正北)为基准线,其夹角的度数即为某条射线的方位角.12.如图,表中给出的是某月的月历,任意选取“”型(如阴影部分所示)框中的3个数,则这3个数的和不可能...是( )A .6B .18C .87D .16【答案】D【分析】设中间的数字为n ,则这三个数的和为3n ,然后逐项分析判断即可求解. 【详解】解:设设中间的数字为n ,则这三个数分别为1,,1n n n -+,三个数的和为11n n n -+++=3n ,∵16不能被3整除, ∵这3个数的和不可能是16, 故选:D .【点睛】本题考查了列代数式,整式的加减,根据题意表示出这3个数是解题的关键. 13.神州十三号飞船在太空中以每小时约28440千米的速度飞行,每90分钟..绕地球一圈.将神舟十三号飞船绕地球一圈的距离用科学记数法表示应为( ) A .42.84410⨯千米 B .328.4410⨯千米 C .44.26610⨯千米 D .342.6610⨯千米14.老师设计了计算接力游戏,规则是每名同学只能利用前面一个同学的式子进一步计算,将计算的结果传给下一个同学,最后解决问题.过程如下,自己负责的那一步错误的是( )A .甲B .乙C .丙D .丁15.我市为争创“全国文明城市”,对城区主干道进行绿化,如图所示,计划把某一段公路的侧全部栽上梧桐树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完. 甲:设共需树苗x 棵,根据题意,得()()521161x x +-=-; 乙:设公路长为y 米,依题意,得1156y y -=+ 其中正确的是( )A .甲对,乙不对B .甲不对,乙对C .两人都对D .两人都不对16.如图,用围棋子按下面的规律摆图形,第一个共5枚棋子,第2个共8枚棋子,第3个共11枚棋子……,则摆第10个图形需要围棋子的枚数是( )A .22个B .32个C .33个D .26个【答案】B【分析】根据图形写出前几个图形需要的棋子,找到规律,进而即可求解. 【详解】解:第一个图形共5枚棋子,235+=, 第2个图形共8枚棋子,2238+⨯=, 第3个图形共11枚棋子,23311+⨯= ⋯⋯,第n 个图形,棋子的个数为:23n +,∵第10个图形,棋子的个数为:231032+⨯=, 故选:B .【点睛】本题考查了图形类规律题,找到规律是解题的关键.二、填空题17.一个角是30︒,那么它的余角是____________.【答案】60︒##60度【分析】根据余角的定义:如果两个角的和等于90︒(直角),就说这两个角互为余角计算即可解答.︒︒︒.【详解】根据余角的定义得,30︒的余角度数是90-30=60故答案为:60︒.【点睛】本题考查的是余角的概念,掌握若两个角的和为90︒,则这两个角互余是解题的关键.18.如图,数轴上的三点A、B、C分别表示有理数a、b、c.则-______0(选填“>”“<”或“=”);(1)b a-+++,结果为______.(2)化简b a a b c19.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.如图所示,将1~9这九个数字填入这个33⨯的幻方中,恰好能使三行、三列、对角的三个数字之和分别相等.(1)若每一横行、每一竖行以及两条对角线上的数字之和都是15,则n =______; (2)根据题意,要求幻方中的m ,则可列一元一次方程为______,进而可求得m =______. 【答案】 4 635m +=+ 2【分析】(1)首先根据每一横行数字之和为15求出第一个方格数字; (2)根据每列数字和等于每一行数字之和,列出一元一次方程即可求解. 【详解】解:(1)依题意,6515n ++=, ∵4n =, 故答案为:4.(2)设第三行中间的数字为a ,如图所示∵356a a m ++=++ 即635m +=+ 解得:2m =,故答案为:635m +=+,2.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.三、解答题20.把下列各数填在相应的括号内:()4.3--,3--,23+,234⎛⎫- ⎪⎝⎭,0, 1.38-负有理数:{}⋯ 整数:{}⋯非负数:{}⋯1.38,;3,23,0,--;( 4.3,0,--【分析】先化简绝对值,多重符号,有理数的乘方,根据负有理数、整数、非负数、选) 4.3=,3-,34⎛⎫- ⎪⎝⎭}1.38,;}23,0,;2323,,0,4⎛⎫+- ⎪⎝⎭⎫⎪⎬⎪⎭1.38,;3,23,0,--+;( 4.3,0,--.【点睛】本题考查了有理数分类,解题的关键能掌握有理数的分类. 21.已知1163nP m ⎛⎫=--÷⨯- ⎪⎝⎭.(1)当100n =,2m =-时,求P 的值; (2)当101n ,3m =时,求P 的值. 101n ,m =(1)解:当()62-÷-⨯101n ,m =133⎛⎫⨯- ⎪⎝⎭22.如图,在同一平面内有四个点A,B,C,D,请按要求完成下列问题.(注:此题作图不要求写出作法和结论)(1)连接AB,画射线AD;(2)连接AC,BD交于点P;(3)在(1)(2)基础上填空:∵图中共有______条线段;∵我们比较容易判断出线段+AB AD与BD的数量关系是______,理由是______.BD=,则PD的长为______.∵若BP的3倍比PD大5,且15【答案】(1)见解析(2)见解析(3)∵8;∵AB AD BD+>;两点之间线段最短;∵10【分析】(1)根据题意画出线段与射线即可;(2)根据题意画出线段即可求解;A B C D P为端点数出线段的数量即可求解;(3)∵根据线段的定义,分别以,,,,∵根据两点之间线段最短即可求解;∵根据题意列出一元一次方程即可求解.【详解】(1)解:如图所示,(2)解:如图所示,23.有一些分别标有2,4,6,8…的卡片,后一张卡片上的数比前一张卡片上的数大2.(1)嘉琪拿到一张卡片,上面的数字是20,她拿的是第几张卡片?(2)嘉嘉拿到了相邻的5张卡片,这些卡片上的数字之和为160,他拿到的5张卡片都是第几张?(3)现在在这些连续的卡片中每隔一个拿一张卡片,是否存在这样的5张卡片,使得这些卡片上的数之和为165?【答案】(1)第10张(2)第14、15、16、17、18张(3)不存在【分析】(1)设嘉琪拿的是第x张卡片,依题意列出一元一次方程,即可求解;(2)设嘉嘉拿的五张相邻卡片中间卡片上的数字为2a,根据这些卡片上的数字之和为160,列出一元一次方程,即可求解;(3)设五张卡片中间卡片上的数字为2m,根据这些卡片上的数之和为165,列出一元一次方程,解方程即可求解.x=【详解】(1)解:设嘉琪拿的是第x张卡片,依题意,220x=解得10答:嘉琪拿的是第10张卡片.(2)设嘉嘉拿的五张相邻卡片中间卡片上的数字为2a,则242222224160a a a a a -+-+++++=解得16a =∵嘉嘉拿的是第14、15、16、17、18张卡片.(3)设五张卡片中间卡片上的数字为2m ,则282422428165m m m m m -+-+++++= 解得16.5m =∵233m =∵33不是2的倍数,所以不可能拿到满足条件的5张卡片.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.24.如图1,O 是直线AB 上的一点,COD ∠是直角,13BOE BOD ∠=∠.(1)若30AOC ∠=︒时,则DOE ∠的度数为______.(2)将图1中的COD ∠绕顶点O 顺时针旋转至图2的位置,其他条件不变,若40DOE =︒∠,求AOC ∠的度数;(3)将图1中的COD ∠绕顶点O 顺时针旋转至图3的位置,其他条件不变.若30AOD ∠=︒,直接写出:AOC DOE ∠∠=______.25.商场经销甲、乙两种商品,甲种商品每件进价40元,售价60元;乙种商品每件进价50元,售价80元.(1)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2200元,这两种商品全部售完可获得多少利润?(2)该商场第二次以第一次的进价又购进甲,乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍,甲商品按原价销售,乙商品打8折销售.求第二次两种商品全部销售完可获得多少利润?【答案】(1)1200元【分析】(1)设购进甲种商品x 件,则购进乙种商品()50x -件,根据题意列出一元一次方程,解方程即可求解;(2)根据(1)的结论,结合题意分别计算甲乙商品的利润进而即可求解.【详解】(1)解:设购进甲种商品x 件,则购进乙种商品()50x -件,依题意()4050502200x x +-=解得30x =则5020x -=,获得利润:302020301200⨯+⨯=(元).∵这两种商品全部售完可获利润1200元.(2)()()306040800.8502031440⨯-+⨯-⨯⨯=(元)∵第二次两种商品全部销售完可获得1440元的利润.【点睛】本题考查了一元一次方程的应用,有理数的混合运算的应用,根据题意列出一元一次方程与算式是解题的关键.26.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如图1所示.(单位:cm )(1)求出该长方体的表面积(用含x 、y 的代数式表示);(2)当20x cm ,10y =cm 时,数学活动小组的同学准备用边长为a 的正方形纸板(如图2)裁剪成六块,作为长方体的六个面,粘合成如图1所示的长方体包装盒. ∵求出a 的值;∵在图2中画出裁剪线的示意图,并标注相关的数据.【答案】(1)224x xy +(2)∵40cm ;∵见解析【分析】(1)根据长方体的表面积等于6个长方形的面积和,结合图形列出代数式即可(2)∵根据正方形的面积等于长方体的表面积,进而即可求解;∵根据已知条件,将正方形分成4个长为20,宽为10和2个边长为20的正方形即可求解.【详解】(1)解:依题意,长方体的表面积224x xy =+;(2)∵当20x cm ,10y =cm 时,()22224220420101600cm x xy +=⨯+⨯⨯= ∵22241600a x xy =+= ,∵40a =()cm ;∵如图所示:【点睛】本题考查了列代数式,代数式求值,数形结合是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省廊坊市七年级数学试题
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是()
A . 300名学生是总体
B . 300是众数
C . 30名学生是抽取的一个样本
D . 30是样本的容量
2. (2分) (2017七上·萧山期中) 小聪同学对所学的部分知识进行分类,其中分类有错误的是().
A .
B .
C .
D .
3. (2分) (2017八上·阳谷期末) 已知点P的坐标为(﹣5,6)与点Q关于x轴对称,则点Q的坐标为()
A . (﹣5,﹣6)
B . (﹣5,6)
C . (5,6)
D . (5,﹣6)
4. (2分) (2012八下·建平竞赛) 若A(a,b),B(b,a)表示同一点,那么这一点在()
A . 第一、三象限内两坐标轴夹角平分线上
B . 第一象限内两坐标轴夹角平分线上
C . 第二、四象限内两坐标轴夹角平分线上
D . 平行于y轴的直线上
5. (2分)如图,能判断直线AB∥CD的条件是()
A . ∠1=∠2
B . ∠3=∠4
C . ∠1+∠3=180°
D . ∠3+∠4=180°
6. (2分)(2018·嘉兴模拟) 若x>y,则下列式子中错误的是()
A . x-3>y-3
B . x+3>y+3
C . -3x>-3y
D . >
7. (2分) (2018七下·邵阳期中) 方程组的解是()
A .
B .
C .
D .
8. (2分)(2012·玉林) 如图,a∥b,c与a,b都相交,∠1=50°,则∠2=()
A . 40°
B . 50°
C . 100°
D . 130°
9. (2分)(2018·包头) 已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()
A . 6
B . 5
C . 4
D . 3
10. (2分)某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产17吨,其中水稻超产10%,小麦超产15%,设该专业户去年计划生产水稻x吨,生产小麦y吨,依据题意列出方程组是()
A .
B .
C .
D .
11. (2分)下面各式中,计算正确的是()
A .
B .
C .
D . =﹣3
12. (2分)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2 ,第
②个图形的面积为18cm2 ,第③个图形的面积为36cm2 ,…,那么第⑥个图形的面积为()
A . 84cm2
B . 90cm2
C . 126cm2
D . 168cm2
二、填空题 (共5题;共8分)
13. (2分)一组数据中的最大数据与最小数据的差叫做这组数据的________,它反映了这组数据的________.
14. (1分) (2020七上·浦北期末) 如图,是的角平分线,是的角平分线,且比少,则的大小是________.
15. (1分)若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.
16. (1分) (2017七上·召陵期末) 某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打________折出售此商品.
17. (3分)如图,在平面直角坐标系xOy中,点A1 , A2 , A3 ,…,An在x轴的正半轴上,且OA1=2,OA2=2OA1 , OA3=2OA2 ,…,OAn=2OAn﹣1 ,点B1 , B2 , B3 ,…,Bn在第一象限的角平分线l上,且A1B1 ,A2B2 ,…,AnBn都与射线l垂直,则B1的坐标是________,B3的坐标是________,Bn的坐标是________.
三、解答题 (共4题;共35分)
18. (5分) (2017七下·农安期末) 解方程组:.
19. (20分) (2019八下·东莞月考) 计算:
(1)
(2)
(3)(7+4 )(7﹣4 )﹣(3 ﹣1)2
(4) | ﹣ |+| ﹣2|+
20. (5分)(2017·番禺模拟) 解不等式组,并把解集在数轴上表示出来.
21. (5分) (2018七下·市南区期中) 已知∠1+∠2=180°,∠3=∠A,试判断∠ACB与∠DEB的大小关系,并证明你的结论.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共5题;共8分)
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共4题;共35分)
18-1、
19-1、
19-2、
19-3、
19-4、
20-1、
21-1、。

相关文档
最新文档