湖南省2019年普通高等学校对口招生考试数学试题及参考答案

合集下载

2019年普通高等学校招生全国统一考试数学及详细解析(湖南卷·理)

2019年普通高等学校招生全国统一考试数学及详细解析(湖南卷·理)

2019年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题)一、选择题:本大题共10小,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =i +i 2+i 3+i 4的值是 ( ) A .-1 B .0 C .1 D .i2.函数f (x )=x21-的定义域是( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)3.已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 2=5,则nn n a a a a a a -++-+-+∞→12312lim111(= ( )A .2B .23C .1D .21 4.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]5.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AB C 1D 1的距离为 ( ) A .21 B .42C .22D .23 6.设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2019(x )=( ) A .sinxB .-sinxC .cos xD .-cosx7.已知双曲线22a x -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( )A .30ºB .45ºC .60ºD .90º8.集合A ={x |11+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是( )A .-2≤b <0B .0<b ≤2C .-3<b <-1D .-1≤b <29.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是 ( )A .48B .36C .24D .1810.设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABc PBC S S ∆∆, λ2=ABCPCAS S ∆∆, λ3=ABC PAB S S ∆∆,定义f (P)=(λ1, λ, λ3),若G 是△ABC 的重心,f (Q)=(21,31,61),则( )A .点Q 在△GAB 内 B .点Q 在△GBC 内C .点Q 在△GCA 内D .点Q 与点G 重合第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分,把答案填在答题卡中对应题号后的横线上. 11.一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品.12.在(1+x )+(1+x )2+……+(1+x )6的展开式中,x 2项的系数是 .(用数字作答)13.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则⋅= .14.设函数f (x )的图象关于点(1,2)对称,且存在反函数f -1(x ),f (4)=0,则f -1(4)= .15.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上的面积,已知函数y =sinn x 在[0,nπ]上的面积为n 2(n ∈N *),(i )y =sin3x 在[0,32π]上的面积为 ;(ii )y =sin (3x -π)+1在[3π,34π]上的面积为 .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小. 17.(本题满分12分) 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2. (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.18.(本小题满分14分) 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A的概率.图1 图219.(本小题满分14分)已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形. 20.(本小题满分14分)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用x n 表示某鱼群在第n 年年初的总量,n ∈N *,且x 1>0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x n 2成正比,这些比例系数依次为正常数a ,b ,c. (Ⅰ)求x n+1与x n 的关系式;(Ⅱ)猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)(Ⅱ)设a =2,b =1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *,则捕捞强度b 的 最大允许值是多少?证明你的结论.21.(本小题满分14分) 已知函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. (Ⅰ)若b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(Ⅱ)设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.2019年普通高等学校招生统一考试(湖南,理科)解析第Ⅰ卷1.[答案]:B [评述[:本题考查复数,复数的意义及其运算。

湖南职高数学对口升学一轮基础复习试题三(含答案)

湖南职高数学对口升学一轮基础复习试题三(含答案)

第7题图数学试题一、选择题(每题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的) 1.集合{}{}4,5,3,9,3M m N =-=-,若M N ⋂≠∅,则实数m 的值为( ) A .3或3- B .3 C . 3或1- D .1-2.关于复数ii z -+=1)1(2,下列说法中正确的是( )A .在复平面内复数z 对应的点在第一象限.B .复数z 的共轭复数i z -=1.C .若复数1z z b =+(R b ∈)为纯虚数,则1b =.D .设,a b 为复数z 的实部和虚部,则点(,)a b 在以原点为圆心,半径为1的圆上.3.“22a b >”是“22log log a b >”的( )A .充分不必要条件BC .充要条件 D. 必要不充分条件4.阅读如图所示的程序框图,输出结果s 的值为( ) A .21 B .163 C .161 D .815.已知AC AB 、是非零向量且满足 AC AB AC AB AC AB ⊥⊥)-,()-(22则ABC ∆的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 6.将函数y=sin 2x 的图像向左平移4π个单位,再向上平移1个单位,所得图像的函数解析式是 ( ) (A )y=cos2x (B )y=22cos x (C )y=1+sin 24x π⎛⎫+⎪⎝⎭(D )y=22sin x 7.已知空间不共面的四点A,B,C,D ,则到这四点距离相等的平面有( )个 A .4 B .6 C .7 D .58.设2,1,1(),()x x x x f x g x ≥<⎧⎪=⎨⎪⎩是二次函数,若f (g(x))的值域是[0,+∞), 则g(x)的值域是( )A(-∞, -1]∪[1, +∞) B(-∞, -1]∪[0, +∞) C[0, +∞) D[1, +∞)第10题图二.填空题(本大题共7小题,每小题5分,共35分)9、1.已知直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________10.某几何体的三视图如图所示,则其表面积为 .11.若函数0()(2sin )a f a x dx =+⎰,则f ⎝⎛⎭⎫π2等于 12. 已知一元二次不等式0)(<x f 的解集为{}221|<<x x , 则0)2(>xf 的解集为 .13.已知实数y x ,满足⎪⎩⎪⎨⎧≤-≤+≥0231y x y x x ,则 xy x y x y z ))((-+=的最大值为 .14.已知数列}{n a 的通项公式为p n a n +-=,数列}{n b 的通项公式为52-=n n b ,设⎩⎨⎧>≤=nn n nn n n b a b b a a c ,,,若在数列}{n c 中,n c c >8)8,(≠∈*n N n ,则实数p 的取值范围是 .15.对于集合N={1,2,3,…,n}的每一个非空子集,定义一个“交替和”如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和为5.当集合N 中的n=2时,集合N={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S 2=1+2+(2-1)=4,请你尝试对n=3、n=4的情况,计算它的“交替和”的总和S 3、S 4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和S n =三.解答题(本题共6大题,共75分)16.(12分)函数()f x 对于x >0有意义,且满足(2)1,()()(),()f f x y f x f y f x =•=+是减函数 .(1)证明(1)f =0 ; (2)若()(3)2f x f x +-≥成立,求x 的取值范围。

2019年普通高等学校招生全国统一考试数学卷(湖南.文)含答案

2019年普通高等学校招生全国统一考试数学卷(湖南.文)含答案

2019年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.不等式2x x >的解集是( ) A .(0)-∞,B .(01),C .(1)+∞,D .(0)(1)-∞+∞,,2.若O E F ,,是不共线的任意三点,则以下各式中成立的是( ) A .EF OF OE =+ B .EF OF OE =- C .EF OF OE =-+D .EF OF OE =--3.设2:40p b ac ->(0a ≠),:q 关于x 的方程20ax bx c ++=(0a ≠)有实数,则p是q 的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( ) A .4122-B .2122-C .10122-D .11122-5.在(1)nx +(n ∈N*)的二次展开式中,若只有3x 的系数最大,则n =( ) A .8B .9C .10D .116.如图1,在正四棱柱1111ABCD A B C D -中,E F ,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11A C 异面7.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米 B .49米 C .50米 D .51米ABC 1A 1C1D1BDEF8.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,的图象和函数2()log g x x =的图象的交点个数是( )A .1B .2C .3D .49.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,P 是其右准线上纵坐标(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )AB .12CD.210.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j =,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( ) A .10 B .11 C .12 D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y -=相切的圆的方程是 .12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =π3C =,则A = . 13.若0a >,2349a =,则14log a = . 14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,(1)b 的取值范围是 ;频率水位(米)图2(2)若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .15.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,则球O 的表面积是 ;设E F ,分别是该正方体的棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率. 18.(本小题满分12分) 如图3,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30. (I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.19.(本小题满分13分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C 的坐标是(10),.(I )证明CA ,CB 为常数;ABCQαβ P(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程. 20.(本小题满分13分)设n S 是数列{}n a (n ∈N*)的前n 项和,1a a =,且22213n n n S n a S -=+,0n a ≠,234n =,,,.(I )证明:数列2{}n n a a +-(2n ≥)是常数数列;(II )试找出一个奇数a ,使以18为首项,7为公比的等比数列{}n b (n ∈N*)中的所有项都是数列{}n a 中的项,并指出n b 是数列{}n a 中的第几项. 21.(本小题满分13分) 已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.2019年普通高等学校招生全国统一考试(湖南卷)数学(文史类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.B 3.A 4.B 5.C 6.D 7.C 8.C 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-= 12.π613.314.(1)[2)+∞,(2)9215.3π三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=. (I )函数()f x 的最小正周期是2ππ2T ==;(II )当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z )时,函数()2f x x=是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z ).17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯=. 所以该人参加过培训的概率是230.450.450.9P P +=+=.(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=.3人都参加过培训的概率是330.90.729P ==.所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=. 解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=.3人都没有参加过培训的概率是30.10.001=.所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=. 18.解:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ=,所以CO α⊥,又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=,从而BO PQ ⊥,又CO PQ ⊥, 所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ=,BO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO =3sin 302OH AO ==. 在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 于是在RtBOH △中,tan 22BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=. 不妨设2AC =,则AO =1CO =.AB CQαβ POH在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以(3AB =,,(0AC =-,. 设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得00z =+=⎪⎩,取1x =,得1n =.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,.所以1212cos ||||5n n n nθ===. 故二面角B AC P --的大小为 19.解:由条件知(20)F ,,设11()A x y ,,22()B x y ,.(I )当AB 与x 轴垂直时,可设点A B ,的坐标分别为(2,(2,, 此时(12)(12)1CA CB =-=-,,. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=,有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2221212(1)(21)()41k x x k x x k =+-++++2222222(1)(42)4(21)4111k k k k k k k +++=-++-- Q22(42)411k k =--++=-.综上所述,CA CB 为常数1-.(II )解法一:设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由CM CA CB CO =++得: 121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y +=+⎧⎨+=⎩,于是AB 的中点坐标为222x y +⎛⎫⎪⎝⎭,. 当AB 不与x 轴垂直时,121222222yy y y x x x x -==+---,即1212()2y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-.将1212()2yy y x x x -=--代入上式,化简得224x y -=. 当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程. 所以点M 的轨迹方程是224x y -=.解法二:同解法一得12122x x x y y y +=+⎧⎨+=⎩,……………………………………①当AB 不与x 轴垂直时,由(I ) 有212241k x x k +=-.…………………②21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭.………………………③ 由①②③得22421k x k +=-.…………………………………………………④241ky k =-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,2x k y+=,将其代入⑤有2222244(2)(2)(2)1x y x y y x x yy +⨯+==++--.整理得224x y -=. 当0k =时,点M 的坐标为(20)-,,满足上述方程.当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程. 故点M 的轨迹方程是224x y -=.20.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …………………………① 于是213(1)n n S S n ++=+. …………………………………………………②由②-①得:163n n a a n ++=+.……………………………………………③ 于是2169n n a a n +++=+.……………………………………………………④ 由④-③得:26n n a a +-=.…………………………………………………⑤ 即数列2{}n n a a +-(2n ≥)是常数数列. (II )由①有2112S S +=,所以2122a a =-. 由③有1215a a +=,所以332a a =+,而⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列.所以22(1)6626k a a k k a =+-⨯=-+,213(1)6623k a a k k a +=+-⨯=+-,k ∈N*.由题设知,1187n n b -=⨯.当a 为奇数时,21k a +为奇数,而n b 为偶数,所以n b 不是数列21{}k a +中的项,n b 只可能是数列2{}k a 中的项.若118b =是数列2{}k a 中的第n k 项,由18626k a =-+得036a k =-,取03k =,得3a =,此时26k a k =,由2n k b a =,得11876n k -⨯=,137n k -=⨯∈N*,从而n b 是数列{}n a 中的第167n -⨯项.(注:考生取满足36n a k =-,n k ∈N*的任一奇数,说明n b 是数列{}n a 中的第126723n a-⨯+-项即可)。

湖南省 2022年普通高等学校对口招生考试数学试卷及参考答案

湖南省 2022年普通高等学校对口招生考试数学试卷及参考答案

湖南省2022年普通高等学校对口招生考试数学试卷本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟。

满分120分。

一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U ={1,3,5,7},集合A ={3,5},则C U A =A.{1,7}B.{1,5}C.{3,7}D.{5,7}2.“(x +1)(x -3)=0”是“x =3”的A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件3.已知cos α=−31,且α∈(-π,0),则sin α=A.322-B.32 C.322 D.−324.下列函数中既是偶函数,又在区间(0,+∞)上单调递增的是A.y =cos xB.y =4xC.y =2x 2+1D.y =ln x5.已知sin 2x =a -1,则实数a 的取值范围是A.[-1,1]B.[0,1]C.[0,2]D.[-2,0]6.已知向量a =(2,-1),b =(-3,4),则a ·(2b -a )=A.-25B.-10C.10D.257.不等式|2x +5|>7的解集是A.(-6,1)B.(-∞,-6)∪(1,+∞)C.(-1,6)D.(-∞,-1)∪(6,+∞)8.已知a =0.90.9,b =0.91.8,c =1.80.9,则a ,b ,c 的大小关系是A.b <c <aB.a <c <bC.a <b <cD.b <a <c9.已知两条不同的直线m ,n 与平面α,则下列命题正确的是A.若m //α,n //α,则m //nB.若m ⊥n ,m//α,则n ⊥αC.若m ⊥n ,m ⊥α,则n ⊥αD.若m ⊥α,n ⊥α,则m //n10.已知点P 在直线l :x -y -6=0上,点Q 在圆O :x 2+y 2=2上,则|PQ |的最小值为A.24B.23C.22D.2二、填空题(本大题共5小题,每小题4分,共20分)11.在一次“党史”知识竞赛中,参加知识竞赛的10名学生的成绩如下表:成绩92959698人数1243则这10名学生的平均成绩是.12.经过点M (0,-2),且与直线x +y +1=0平行的直线方程为.13.若角α的终边经过点P (21,−23),则sin 2α=.14.如图,高为5cm,底面边长是3cm 的正四棱柱形工件,以它的两底面中心的连线为轴,钻出一个直径是2cm 的圆柱形孔,则剩余部分几何体的体积是____cm 3(圆周率π取3.14).(第14题)15.若数列{a n }满足a 1=1,且a n +1=2a n +1,则数列{a n }的通项公式a n =.三、解答题(本大题共7小题,其中第21,22小题为选做题,满分60分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知函数f (x )=1+log 4(x +m ),f (1)=2.(1)求实数m 的值,并写出f (x )的定义域;(2)若f (x )<3,求x 的取值范围.、已知等差数列{a n}满足a1=1,a5-a3=4.(1)求a10;(2)设数列{a n}的前n项和为S n,问:S4,S8,S16是否成等比数列?请说明理由.18.(本小题满分10分)某班拟组织部分学生参观爱国主义教育基地.已知该班第一小组有5名男生与3名女生,从中任意选取3名学生去参观.(1)用ξ表示选取的3人中女生的人数,求ξ的分布列;(2)求选取的3人中,女生人数多于男生人数的概率.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥B C.(1)证明:平面PBC ⊥平面PAB ;(2)若AB =BC =2,直线PB 与平面ABC 所成的角为60°,求三棱锥P -ABC 的体积.(第19题)20.(本小题满分10分)已知双曲线C :12222=-by a x =1(a ,b >0)的离心率为26,左、右焦点分别为F 1,F 2,且|F 1F 2|=23(1)求双曲线C 的方程;(2)设直线y =x +3与双曲线C 相交于M ,N 两点,求MNF 2的面积.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,点D为等边三角形ABC的边BC上一点,且BD=2DC,AD=7.(1)求CD的长;(2)求sin∠BAD的值.(第21题)22.(本小题满分10分)某工厂生产甲、乙两种电子产品,每生产一件甲产品需要A,B配件分别为4件和2件;每生产一件乙产品需要A,B配件分别为4件和6件.该厂每天可从配件厂最多获得A配件20件和B 配件18件,且生产一件甲产品的利润为4千元,生产一件乙产品的利润为5千元.问如何安排生产,才能使工厂每天利润最大?并求出利润的最大值.湖南省2022年普通高等学校对口招生考试数学试卷参考答案一、选择题1.A2.B3.A4.C5.C6.A7.B8.D9.D10.C二、填空题11.9612.02=++y x 13.23-14.29.315.12-n三、解答题16.解:(1))3(log 1)(32)1(log 1)1(44++=∴=⇒=++=x x f m m f 函数)(.3-)(303∞+->⇒>+,的定义域为即x f x x (2)1316316log 2)3(log )3(log 1)(444<⇒<+⇒=<+⇒++=x x x x x f )()(.133-3)(3-)(,的取值范围为时,的定义域为又x x f x f <∴∞+ 17.解:(1).19291924211035=⨯+=+=∴=⇒==-d a a d d a a (2)在等差数列{}n a 中.,,S 2562120116120161516211664228182887821816261464342141684164281116118114成等比数列S S S S S d a d a S d a d a S d a d a S ∴⋅==⨯+⨯=+=⨯⨯⨯+==⨯+⨯=+=⨯⨯⨯+==⨯+⨯=+=⨯⨯⨯+=18.解:(1)ξ可分别取0,1,2,3.561)3(5615)2(28155630)1(2855610)0(38333823153813253835==============C C P C C C P C C C P C C P ξξξξξ的分布列为ξ123P28528155615561(2)女生人数多于男生人数的概率为725615615)3()2(=+==+=ξξP P 19.解:(1)BCPA ABC⊥∴⊥平面P A PABPBC 平面平面平面则又⊥∴⊥=⋂⊥P ABBC AP A AB BC AB (2)60=∠∴⊥PBA ABC PB ABC P A 所成角即为与平面直线平面33432222131S 3132tan ABC -=⨯⨯⨯⨯===<⋅=h V PBA AB P A P AB ABC P 中,在直角三角形20.解:(1)3322F F 21=⇒==c c 12C 123226322222=-=-=-==⇒===y x a c b a a a c e 的方程为即双曲线(2)设M 、N 两点的坐标分别为()()2211,,,y x y x 3462421216)1(13032484)34(24)(183402834123222222122122121222=⨯⨯===-++-==⨯--=-++==-=+=++⇒⎪⎩⎪⎨⎧=-+=∆d MN S d F x x x x k MN x x x x x y x x y MNF 到直线的距离根据韦达定理可得21.解:(1)设AB 长为a ,则BD=a 32,DC=a 31在等边三角形ABC 中,131360cos 322)32(7cos 2222222===⇒⋅⋅-+=⇒⋅-+=︒a CD a a a a a BBD AB BD AB AD 则(2)在三角形ABD 中,根据正弦定理可得721sin sin sin sin =∠=∠⇒∠=∠AD B BD BAD B AD BAD BD 22.解:设生产甲产品为x 件,乙产品为y 件,公司获利为Z 元,则z =4000x +5000y由题意得:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+⇒⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+009350018622044y x y x y x y x y x y x 如右图所示,当x =3,y =2时,Z max =4000×3+5000×2=22000(元)答:生产甲产品为3件,乙产品为2件时,公司获利最大为22000元.x+y=5yx x+3y=9o 、A (3,2)59534x+5y=0。

答案-2019年湖南省跨地区普通高等学校对口招生养殖类二轮联考试卷

答案-2019年湖南省跨地区普通高等学校对口招生养殖类二轮联考试卷

2019年湖南省跨地区普通高等学校对口招生二轮联考养殖类专业综合知识试题参考答案一、单选题(本大题共30小题,每小题4 分,共120分)1-5 ACCAA 6-10 BCACB 11-15 BCDBA16-20 DCBCC 21-25 CBBAA 26-30 CADCA二、多选题(本大题共12小题,每小题5分,共60分)31. ABC 32. ABCD 33. BD 34. ABC 35. ABC 36. AD37. ABCD 38. ACD 39. ABCD 40. AC 41. ABD 42. AC三、技能操作题(本大题共5小题,每小题20分,共100分)43. 给牛进行雄性激素皮下埋植的具体操作步骤:(1)使用剂量:0.5~1.0 g (4分)(2)皮下埋植的方法:①保定家畜。

(4分)②取一消毒好的塑料细管(长18 mm,内径1.8 mm,外径2.6 mm),四周用6号针头烫刺成4×4小孔,一端密封,另一端开口,用70%酒精浸泡数小时,干燥后注入丙酸睾酮。

(4分)③家畜耳背皮肤去毛后,用酒精消毒。

(4分)④用兽用套管针刺破下皮(以水平方向刺入2~3 cm),放入塑料细管。

(4分)【考虑答题顺序,根据答题要点,酌情给分】具体见《畜禽繁殖与改良》84页44. 雏鸡断喙的时间、方法及注意事项如下:(1)雏鸡断喙的时间:商品蛋鸡多在6~10日龄断喙,而后在7~8周龄或10~12周龄时再作适当的补充修剪。

(4分)(2)雏鸡断喙的方法:①左手抓住鸡的腿部,右手拿鸡,将右手拇指放在鸡头,示指放在咽下,稍施压力,使鸡缩舌。

(2分)②借助于断喙器——灼烧热的刀片,切除鸡上下喙的一部分,并烧灼切口,防止流血。

(2分)③上喙断去喙尖至鼻孔之间的1/2,下喙则断去1/3。

(2分)(3)雏鸡断喙的注意事项:①断喙的前3天不能喂磺胺类药物。

(2分)②断喙应选择天气凉爽的时候进行。

(2分)③断喙的前后3天饲料中应添加维生素K3,2 mg/kg。

(完整版)湖南省2019年普通高等学校对口招生考试医卫类专业综合知识试题

(完整版)湖南省2019年普通高等学校对口招生考试医卫类专业综合知识试题

湖南省2019年普通高等学校对口招生考试医卫类专业综合知识试题本试题卷共七大题,62道小题,共6页。

时量150分钟,满分390分。

一、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,本大题共30小题,每小题2分,共60分)1.在骨的形态分类中,提法不确切..的是A.长骨B.短骨C.扁骨D.含气骨2. 属于关节辅助结构的是A.关节面B.关节囊C.关节盘D. 关节腔3. 人体最大的腺体是A.胃腺B.唾液腺C.肝脏D.胰腺4. 上呼吸道最狭窄..处A.鼻后孔B.喉口C.前庭裂D. 声门裂5. 不.具布结肠带的是A.横结肠B.盲肠C.直肠D. 升结肠6. 子宫腔A.呈梭形B.是子宫颈内的腔隙C.只与输卵管相通D.呈倒三角形7.属于男性生殖腺的是A.前列腺B.睾丸C.尿道球腺D.精囊腺8.附着于左房室口的瓣膜是A.二尖瓣B.三尖瓣C.主动脉瓣D.肺动脉瓣9.大隐静脉A.起于足背静脉弓的外侧B.行经内踝前方C.末端没有属支D.行经膝关节外侧10.大脑半球外侧面的动脉供应主要来自于A.大脑前动脉B.大脑中动脉C.大脑后动脉D.基底动脉11.不.属于臂丛分支的是A.副神经B.正中神经C.尺神经D.桡神经12.管理全身骨骼肌运动的脑区是A.中央前回B.中央后回C.颞横回D.岛叶皮质13.不.属折光装置的是A.角膜B.虹膜C.房水D.晶状体14.皮质脊髓束的纤维交叉部位在A.中脑B.脑桥C.延髓D.脊髓15.面神经A.支配面肌B.支配咀嚼肌C.支配腮腺分泌D.司面部皮肤感觉16.下列属于神经调节特点是A.调节幅度小B.灵敏度低C.作用准确D.作用时间持久17.在细胞膜的跨膜物质转运方式中,存在竞争性抑制现象的是A.单纯扩散B.通道运输C.载体运输D.主动转运18.细胞膜两侧的电位差从-90mv变为-120mv,被称为A.去极化B.复极化C.反极化D.超极化19.当血浆晶体渗透压下降时,下列描述正确的是A.红细胞膨胀B.发生红细胞皱缩C.组织液增多D.组织液减少20.下列关于心动周期描述错误..的是A.心脏的舒张期比收缩期长B.当心率过快时,则心动周期延长C.不存在全心收缩期D.新生儿的心动周期较成年人短21.关于心迷走神经的作用,描述错误..的是A.其节后纤维末梢释放乙酰胆碱B.心迷走神经兴奋,心率减慢C.心迷走神经抑制,心肌收缩力减弱D.心迷走神经兴奋,血压下降22.下列对呼吸中枢具有直接抑制作用的是升高 B.动脉血中H+增多A.在一定范围内,PC02C.脑脊液中H+增多D.低0223.下列关于胃排空的描述,正确的是A.食物入胃5min后,胃排空开始B.脂肪排空速度大于蛋白质C.流体食物排空缓慢D.胃排空是连续进行24.小肠特有的运动方式是A.蠕动B.紧张性收缩C.容受性舒张D.分节运动25.致热源入侵人体后,下列描述正确的是A.致热源可使热敏神经元敏感性增加B.致热源使体温调定点上移C.致热源可使冷敏神经元阈值升高D.致热源使散热大于产热26.关于醛固酮的描述正确的是A.醛固酮具有保K+,保水和排Na+的作用B.醛固酮由肾上腺皮质网状带分泌C.醛固酮具有维持细胞外液容量稳定的作用D.血管紧张素Ⅱ增加,醛固酮减少27.下列关于远视眼的描述,正确的是A.远视眼眼球前后径过长B.远视眼折光能力增强C.远视眼无论看近物还是看远物都需要调节D.远视眼用凹透镜矫正28.位于骨骼肌终板膜上,与乙酰胆碱结合的受体是A.N1B.N2C.MD.α29.关于胰岛素对脂肪代谢的调节,描述正确的是A.胰岛素缺乏时,血脂升高B.胰岛素可促进脂肪的分解C.胰岛素抑制肝脏合成脂肪酸D.以上描述都不正确30.导致排卵的原因是A.黄体生成素出现高峰B.雌孕激素处于低水平C.雌激素出现第一次高峰D.孕激索出现第一次高峰二、多选题(在本题的每一小题的备选答案中,有两个或两个以上答案是正确的,多选、少选不给分。

湖南省2019年普通高等学校对口招生考试计算机计应部分(有答案)

湖南省2019年普通高等学校对口招生考试计算机计应部分(有答案)

湖南省2019年普通高等学校对口招生考试计算机应用类专业综合知识试题(计应部分)一、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,本大题共22小题每小题5分,共110分)1.______世界上第一台电子计算机( ENIAC)诞生于美国宾夕法尼亚州。

A.1941年B.1946年C.1949年D.1950年2.下列术语中,通常用于描述计算机显示器性能指标的是______A.速度B.可靠性C.分辨率D.精度3.计算机能够直接识别并执行的语言是______A.汇编语言B.C语言C.高级语言D.机器语言4.下列选项中,不正确的是______A. ITB=1024GBB. 1024TB=IPBC. 1MB=1024KBD. 1024PB=1GB5.将二进制数01100100转化为十进制数的结果是______A.80B.90C.100D.1016.在Windows7操作系统中,使用______组合键,可将当前窗口最小化。

A.ALT+空格+NB. CTRL+ALT+DELETEC. Windows键+CTRL+MD. ALT+F47.在Microsoft Word2010中,编辑一段文字。

要求首字下沉2行,距正文0.5厘米,应选择______菜单进行设置。

A.开始B.页面布局C.插入D.视图8.在Microsoft Excel2010中,如果单元格E2的值为12,则公式“=IF(E2>8, E2,E2/2)”的结果是A.6B.8C.12D.249.在Microsoft Powerpoint2010中,系统默认的视图是______A.大纲视图B.幻灯片浏览视图C.普通视图D.幻灯片视图10.下列说法中正确的是______A.根据冯・诺依曼原理,计算机由运算器、控制器、存储器、输入设备和输出设备五部分组成B.台式机中,硬盘位于主机箱内,属于内存储器C.如果台式机主机箱前、后面板都有USB接口,则移动硬盘只能接到后面板USB接口,U 盘只能接到前面板USB接口D.计算机访问互联网必要的设备是调制解调器11.下列关于CPU的说法中正确的是______A.台式机CPU工作时发热小,不需要安装CPU风扇散热B.CPU的主频和外频的关系是:主频=外频×倍频C.CPU缓存的容量比内存的容量大D.任意台式机CPU可以直接安装在笔记本电脑上正常工作12.下列关于内存的说法中正确的是______A.DDR4工作电压比DDR3工作电压要高B.DDR4台式机内存条可以安装在笔记本电脑上正常工作C.CPU对内存的存取速度比对机械硬盘的存取速度要快D.办公用台式机内存容量不能小于16GB13.下列关于输出设备的说法中正确的是______A.显卡分为集成显卡、独立显卡和核芯显卡三类,其中集成显卡的性能最好B.单个显卡只能配置一个输出接口,不能同时配置两个输出接口C.在液晶显示器不同面板类型中,IPS面板的优势是响应速度快,色彩还原准确屏幕较硬D.所有台式机声卡只能实现双声道输出,不能实现5.1声道输出14.0SI参考模型中,应用层的下一层是______A.传输层B.会话层C.应用层D.表示层15.WWW服务器与浏览器之间进行通信的协议是______A.HTTPB. HTMLC. FTPD. SMTP6.下列选项中,属于B类地址的是______A.123.168.0.1B.191.168.0.1C.192.168.0.1D.225.168.0.117.下列选项中,网络覆盖范围最大的是______A.局域网B.广域网C.城域网D.校园网18.用二进制数表示的IPv6地址的位数是______A.128B.64C.32D.1219.在HTML中,要把一段文字按页面源代码中的格式输出,应该使用的标签是______A.<pre>…</pre>B.<text>…</text>C.< label>…</ label>D.<font>…</font>20.已知“int w=1,x=2,y=3,z=4;”,则表达式“w>x?w:z>y?z:x”的值是______A.1B.2C.3D.421.若有定义语句“int a[3][5];",按内存中的数据存放顺序,a数组的第10个元素是______A. a[1][4]B. a[1][3]C. a[2][3]D. a[2][4]2.已知“int a=1,b=2,c=3,x;”与“x=(a^b)&c;”,则x的值为______A.0B.1C.2D.3二、基本操作题(本大题共5小题,每空4分,共60分)23.小明发现自己的计算机经常死机,想重装操作系统。

2019年湖南对口升学数学考试试题

2019年湖南对口升学数学考试试题

设样本数据 的均值和方差分别为1和4,若 ( 为非零常数, ),则 的均值和方差分别为( )A、 B、 C、 D、答案A解析试题分析:由题得: ;的均值和方差分别为:均值方差故选A考点:均值和方差.某人5次上班途中所花的时间(单位:分钟)分别为 .已知这组数据的平均数为10,方差为2,则 的值为 .答案解析试题分析:由题意可得 ,即.考点:样本数据的数字特征——平均数与方差.(2014·仙桃模拟)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为( )A、65辆B、76辆C、88辆D、95辆答案B解析设时速不低于60 km/h的汽车数量为n,则 =(0.028+0.010)×10=0.38,所以n=0.38×200=76.某车间 名工人年龄数据如下表:(1)求这 名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这 名工人年龄的茎叶图;(3)求这 名工人年龄的方差.年龄(岁)工人数(人)答案(1)众数为 ,极差为 ;(2)详见解析;(3) .解析试题分析:(1)根据频率分布表中的相关信息结合众数与极差的定义求出众数与极差;(2)根据频率分布表中的信息以及茎叶图的作法作出这 名工人年龄的茎叶图;(3)根据茎叶图所反映的信息,先求出平均数,然后根据方差的计算公式求出这 名工人年龄的方差.(1)这 名工人年龄的众数为 ,极差为 ;(2)茎叶图如下:(3)年龄的平均数为 ,故这 名工人年龄的方差为.考点:本题考查茎叶图、样本的数字特征,考查茎叶图的绘制,以及样本的众数、极差、平均数以及方差的计算,属于中等题.某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则 的值为( )A、9B、10C、11D、13答案D解析试题分析:观察茎叶图,甲班学生成绩的平均分是 ,故 ,乙班学生成绩的中位数是 ,故 ,∴,故选 。

湖南省2019年普通高等学校对口招生考试数学试题含答案

湖南省2019年普通高等学校对口招生考试数学试题含答案

湖南省 2019 年普通高等学校对口招生考试数学试卷(含答案)本试题卷包括选择题、填空题和解答题三部分.共4页,时量120分钟,满分120分 一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}3,1=A ,{}a B ,0=,且{}3,2,1,0=⋃B A ,则=a ( C ) A.0 B. 1 C.2 D. 32.“4>x ”是“2>x ”的( A ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.过点P(1, 1) 且与直线043=-y x 平行的直线方程是( D )A 、0734=-+y xB 、0143=+-y xC 、0134=-+y xD 、0143=+-y x 4.函数[])8,1(log )(2∈=x xx f 的值域为( B )A 、[0, 4]B 、[0, 3]C 、[1, 4]D 、[1, 3] 5.不等式()01<+x x 的解集是( C )A 、{}1-<x xB 、{}0>x xC 、{}01<<-x xD 、{}01>-<x x x 或6.已知43tan -=α ,且α为第二象限角,则=αsin ( D )A 、54-B 、54C 、53-D 、537、已知 A, B 为圆122=+y x 上两点, O 为坐标原点,若2=AB ,则=•OB OA ( B ) A 、23-B 、0C 、 21D 、28. 函数 2sin )(+=x A x f ( A 为常数)的部分图像如图所示,则 A =( A ) A 、1 B 、2 C 、3 D 、-19.下列命题中,正确的是( D ) A .垂直于同一条直线的两条直线平行 B .垂直于同一个平面的两个平面平行C .若平面外一条直线上有两个点到平面的距离相等,则该直线与平面平行D .一条直线与两个平行平面中的一个垂直,则必与另一个垂直10.已知直线1:=+by ax l (b a , 为常数)经过点)3sin ,3(cos ππ则下列不等式一定成立的是( A )A 、122≥+b aB 、122≤+b aC 、1≥+b aD 、1≤+b a 二、填空题(本大题共 5 小题,每小题 4 分,共 20 分) 11.在一次射击比赛中,某运动员射击 20 次的成绩如下表所示:单次成绩(环)7 8 9 10 次数46 64则该运动员成绩的平均数是 8.5 (环);12.已知向量()0,1=a ,()1,0=b 且b y a x c +=,则=+y x 27; 13.()51ax +的展开式中x 的系数为 10,则=a 2;14.将 2,5,11三个数分别加上相同的常数,使这三个数依次成等比数列,则=m 1 ; 15.已知函数)R x )(x (f ∈为奇函数,)R x )(x (g ∈为偶函数,且1x 4x )x (g )x (f 2+-=+,求=-)2(g )2(f -13 .三、解答题(本大题共 7 小题,其中第 21,22 题为选做题.满分 60 分.解答题应写出文字说明、证明过程或演算步骤) 16.(本小题满分10分)已知数列{}n a 为等差数列,若1a 1=,3a 2= (I )求数列{}n a 的通项公式;(II )设n n n a )1(b -=,数列{}n b 的前n 项和为n T ,求100T . (Ⅰ)解:设数列{}n a 公差为d ,则 2a a d 12=-= 故 1n 22)1n (1a n -=⨯-+= (Ⅱ)解:)1n 2()1(b n n --=100502199197119)75()31(19919797531T 100=⨯=+-++-++-++-=+-+-+-+-=)()( 17. (本小题满分10分)10 件产品在有 2 件不合格品,每一次取一件,有放回地抽取三次,用ξ表示取到不合格品的次数,求: (I )随机变量的ξ分布列;(II )三次中至少有一次取到不合格品的概率. (I )解:随机变量ξ的可能取值为 0,1,2,3,则12564)54(C )0(P 303===ξ 12548)54()51(C )1(P 2113===ξ 12512)54()51(C )2(P 1223===ξ 1251)51(C )3(P 333===ξ 故ξ的分布列为ξ 0123P1256412548 12512 1251 (II )三次中至少有一次取到不合格品的概率为12561125641)1(P =-=≥ξ 18.(本小题满分 10 分)已知函数⎩⎨⎧≤<-≤≤=4x 2,x 62x 0,x )x (f 2(I )画出)x (f 的图象;(II )若2)m (f ≥,求 m 的取值范围.(I )解:作 f (x) 的图象如下所示:(II )由 ⎩⎨⎧≥-≥2m 62m 2得4m 2≤≤故 m 的取值范围为[]42,19.(本小题满分 10 分)如图,在三棱柱111C B A ABC -中,⊥1AA 底面ABC ,1B C AB ==,090ABC =∠, 为 AC 的中点。

湖南省2019年高考文科数学试题及答案

湖南省2019年高考文科数学试题及答案

湖南省2019年高考文科数学试题及答案湖南省2019年高考文科数学试题及答案(满分150分,考试时间120分钟)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z =A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A +C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50?D .1cos50?11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年湖南理数高考试题文档版(含答案解析)

2019年湖南理数高考试题文档版(含答案解析)

绝密★启用前2019年普通高等学校招生全国统一考试(湖南卷)理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。

2019年湖南省对口高考数学试卷及参考答案

2019年湖南省对口高考数学试卷及参考答案

2019年湖南省对口高考数学试卷一、选择题(每小题4分,共40分) 1、已知集合},B{0,3}{1A a ,=,且}3,2,1,0{=B A ,则=a ( ) A 、0 B 、1 C 、2 D 、3【解析】因为{1,3}{0,}{0,1,3,}{0,1,2,3}A B a a ===,所以2a =,选C2、“4x >”是“2x >”的( )条件A 、充分不必要B 、必要不充分C 、充分必要D 、既不充分又不必要 【解析】因为由“4x >”可以得出“2x >”,而“2x >”不能得出“4x >”,所以“4x >”是“2x >”的充分不必要条件。

选A3、过点(1,1)P 且与直线340x y -=平行的直线方程是( )A 、4370x y +-=B 、3410x y --=C 、4310x y +-=D 、3410x y -+=【解析】过一点与已知直线0Ax By C ++=的平行的直线方程可以设为10Ax By C ++=。

本题中设所求直线方程为340x y c -+=,将(1,1)P 代入得:1c =,故所求直线方程为3410x y -+=。

选D4、函数2()log ([1,8])f x x x =∈的值域为( )A 、[0,4]B 、[0,3]C 、[1,4]D 、[1,3]【解析】2()log ([1,8])f x x x =∈是单调增函数,所以(1)()(8)f f x f ≤≤,又2(1)log 10,f ==2(8)log 83f ==,所以2()log ([1,8])f x x x =∈的值域为[0,3]。

选B 5、不等式(1)0x x +<的解集是( )A 、{|1}x x <-B 、{|0}x x >C 、{|10}x x -<<D 、{|1x x <-或0}x >【解析】因为(1)0x x +=的解为121,0x x =-=,且2x 的系数1>0,所以(1)0x x +<的解集为{|10}x x -<<。

湖南省 2023年普通高等学校对口招生考试数学试卷及参考答案

湖南省 2023年普通高等学校对口招生考试数学试卷及参考答案

湖南省2023年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟。

满分120分。

一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3},B={2,3,4},则A⋃B=A.{1,4}B.{2,3}C.{2,3,4}D.{1,2,3,4}2.不等式x²-2x-3≤0的解集是A.[-1,3]B.[-3,1]C.(-∞,-1)⋃[3,+∞)D.(-∞,-3)⋃[1,+∞)3.已知直线l1:y=2x+1与直线l2:x+ay=0.若l1//l2,则a的值为A.-2B.C. D.24.已知奇函数f(x)在[-3,0]上是减函数,且f(-3)=2,则f(x)在[0,3]上的最小值为A.-3B.-2C.0D.35.已知圆锥的底面圆半径为1,侧面积为2π,则该圆锥的体积为A. B.πC.3πD.23π数学试题第1页(共5页)6.已知向量a=(1,2),b=(3,2),则与向量2a-b平行的向量可以是A.(2,-1)B.(1,-2)C.(-2,-1)D.(-1,-2)7.已知函数f(x)=a²(a>0,且a≠1)满足,则不等式f(x)≥8的解集是A.(-∞,-3)B.C.(3,+∞)D.8.从某小学随机抽取100名学生,将他们的身高数据绘成频率分布直方图如下图所示.若从身高在(120,130),(130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数为A.9B.6C.4D.39.已知函数f(x)=|lgx|,),b=f(3),,则a,b,c的大小关系是A.c<a<bB.a<c<bC.c<b<aD.a<b<c10.下列命题中正确的是A.函数y=2sinx的周期为πB.函数y=sinx在区间内是减函数C.函数y=sinx的图像与函数y=cosx+3的图像有交点D.函数y=cosx的图像可由的图像向左平移个单位得到二、填空题(本大题共5小题,每小题4分,共20分)11.已知,则12.已知函数若f(a)=-4,则a=·13.某乒乓球队有5名队员,需派3名参加比赛.教练计划从2名主力队员中选1名排在第二场的位置,从其余3名非主力队员中选2名排在第一、三场位置,那么共有种不同的出场安排(用数字作答).14.已知直线I:y=x+2与圆C:x²+y²-2y=0交于A,B两点,则|AB|=15.设等差数列{an }的前n项和为Sn.若S10=20,a2+a4+a6+a8+a10=15,则Sn的最小值为·三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知函数f(x)=log₂(1+x),g(x)=log₂(1-x).(1)判断函数h(x)=f(x)-g(x)的奇偶性,并说明理由;(2)求方程f(x)=g(x)+1的解.17.(本小题满分10分)已知等比数列{an }的公比q≠1,a1=1,且a1,a3,a2成等差数列.(1)求{an}的通项公式;(2)设|,求数列{bn }的前n项和Sn.18.(本小题满分10分)为推进地区教育均衡发展,某市教育局拟从6名优秀教师中抽取人员分三批次赴农村薄弱学校进行支教,每批次需从6名教师中随机抽取2名教师支教,且每批次抽取互不影响.(1)求在这3批次支教活动中教师甲恰有2次被抽中的概率;(2)已知这6名教师中有2名数学教师,设第一批次抽到的数学教师人数为ξ,求ξ的分布列.19.(本小题满分10分)如图,在三棱锥A-BCD中,AC⊥BD.平面α交AB,BC,CD,DA分别于E,F,G,H,且AC//平面α,BD//平面α.(1)证明:四边形EFGH为矩形;(2)若AC=BD=2,求矩形EFGH面积的最大值.(第19题图)20.(本小题满分10分)已知抛物线C:x²=2py(p>0)的焦点为F(0,1),过点F的直线1交C于A,B两点.(1)求抛物线C的标准方程及其准线方程;(2)设E为C的准线与y轴的交点,直线AE,BE的斜率分别为k1,k2,证明:k₁+k₂=0.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分.作答时,请写清题号.21.(本小题满分10分)如图,已知在△ABC中,AB=3,BC=4.(1)若∠ABC=60°,求AC的长;(2)若D为AC的中点,求的值.(第21题图)22.(本小题满分10分)某客运公司用A,B两种型号的车辆承担甲地至乙地的长途客运业务,每车每天出车一次,A,B两种型号的车辆的载客量分别为30人和50人,营运成本分别为1200元/辆和2400元/辆,公司拟组建一个不超过28辆车的客运车队,并要求B型车不多于A型车8辆.如果要求每天运送从甲地去乙地的旅客不少于1000人,那么公司应配备A型车、B型车各多少辆,才能使得公司的营运成本最低,最低是多少元?湖南省2023年普通高等学校对口招生考试数学参考答案一、选择题1.D 2.A 3.B 4.B 5.A 6.B 7.C 8.D 9.C 10.D二、填空题11.012.-113.1214.215.-16三、解答题16(1)为奇函数。

湖南省2019年普通高等学校对口招生考试数学试题及参考答案

湖南省2019年普通高等学校对口招生考试数学试题及参考答案

湖南省2019年普通高等学校对口招生考试数学试题(附答案)本试题卷包括选择题、填空题和解答题三部分.时量120分钟.满分120分一、选择题(本大题每小题4分,共40分.每小题只有一项是符合题目要求的)1.已知集合{},3,1=A ,{}aB ,0=,且{}3,2,1,0B A = 则=a 【答案】CA. 0B. 1C. 2D. 32. “4>x ” 是“2>x ”的 【答案】A A .充分不必要条件 B . 必要不充分条件 C .充分必要条件 D . 既不充分也不必要条件3.过点P (1,1)且与直线043=-y x 平行的直线方程是 【答案】DA. 0734=-+y xB.0143=--y xC. 0134=-+y xD. 0143=+-y x4.函数[])8,1(log )(2∈=x x x f 的值域为 【答案】BA .[]4,0 B .[]3,0 C .[]4,1 D . []3,15.不等式0)1(<+x x 的解集是 【答案】C A .{}1-<x x B .{}0>x x C .{}01<<-x x D . {}01>-<x x x 或6.已知43tan -=α,且α为第二象限角,则=αsin 【答案】DA .54-B . 54C .53-D .53 7.已知A 、B 为圆122=+y x 上两点,O 为坐标原点,若2AB =,则=•OB OA【答案】BA .23- B .0 C .21 D .28.函数为常数)A x x f (2Asin )(+=的部分图像如图所示,则=A ______.【答案】AA.1B. 2C. 3D. -19.下列命题,正确的是 【答案】D A .垂直于同一直线的两条直线平行 B .垂直于同一个平面的两个平面平行C .若平面外一条直线上有两个点到平面的距离相等,则该直线与平面平行D .一条直线与两个平行平面中的一个垂直,则必与另一个垂直。

湖南省2019年对口招生考试计算机应用类专业综合知识和答案

湖南省2019年对口招生考试计算机应用类专业综合知识和答案

湖南省2019年普通高等学校对口招生考试计算机应用类专业综合知识试题本试题卷共六大题,39小题,共18页.时量150分钟,满分390分。

一、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,本大题共22小题,每小题5分,共110分)1.世界上第一台电子计算机(ENIAC)诞生于美国宾夕法尼亚州。

A.1941年B.1946年C.1949年D.1950年2.下列术语中,通常用于描述计算机显示器性能指标的是A.速度B.可靠性C.分辨率D.精度3.计算机能够直接识别并执行的语言是A.汇编语言B.C语言C.高级语言D.机器语言4.下列选项中,不正确的是A.1TB=1024GB B.1024TB=1PB C.1MB=1024KB D.1024PB=1GB 5.将二进制数01100100转化为十进制数的结果是A.80 B.90 C.100 D.101 6.在Windows7操作系统中,使用组合键,可将当前窗口最小化.A.ALT+空格+N B.CTRL+ALT+DELETEC.Windows键+CTRL+M D.ALT+F47.在Microsoft Word2010中,编辑一段文字.要求首字下沉2行,距正文0。

5厘米,应选择菜单进行设置.A.开始B.页面布局C.插入D.视图8.在Microsoft Excel2010中,如果单元格E2的值为12,则公式“=IF(E2>8,E2,E2/2)”的结果是A.6 B.8 C.12 D.24 9.在Microsoft PowerPoint2010中,系统默认的视图是A.大纲视图B.幻灯片浏览视图C.普通视图D.幻灯片视图10.下列说法中正确的是A.根据冯 诺依曼原理,计算机由运算器、控制器、存储器、输入设备和输出设备五部分组成B.台式机中,硬盘位于主机箱内,属于内存储器C.如果台式机主机箱前、后面板都有USB接口,则移动硬盘只能接到后面板USB 接口,U盘只能接到前面板USB接口D.计算机访问互联网必要的设备是调制解调器11.下列关于CPU的说法中正确的是A.台式机CPU工作时发热小,不需要安装CPU风扇散热B.CPU主频和外频的关系是:主频=外频×倍频C.CPU缓存的容量比内存的容量大D.任意台式机CPU可以直接安装在笔记本电脑上正常工作12.下列关于内存的说法中正确的是A.DDR4工作电压比DDR3工作电压要高B.DDR4台式机内存条可以安装在笔记本电脑上正常工作C.CPU对内存的存取速度比对机械硬盘的存取速度要快D.办公用台式机内存容量不能小于16GB13.下列关于输出设备的说法中正确的是A.显卡分为集成显卡、独立显卡和核芯显卡三类,其中集成显卡的性能最好B.单个显卡只能配置一个输出接口,不能同时配置两个输出接口C.在液晶显示器不同面版类型中,IPS面板的优势是响应速度快,色彩还原准确。

2019年高考数学湖南(理科卷)(解析版)

2019年高考数学湖南(理科卷)(解析版)

2019年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。

参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。

(3)球的体积公式343V R π=,其中R 为求的半径。

一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+则A .1a =,1b = B. 1,1a b =-= C.1,1a b =-=- D. 1,1a b ==- 2.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的 A.充分不必要条件 B.必要不充分条件 C. 充分必要条件 D. 既不充分又不必要条件 3.设图1是某几何体的三视图,则该几何体的体积为A. 9122π+B. 9182π+C. 942π+D. 3618π+4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由()()()()()22n ad bc k a b c d a c b d -=++++算得,()22110403020207.860506050k ⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是A . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关”5.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A.4 B.3 C.2 D.1 6.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为A.12B.1C.7.设m >1,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数Z=x+my 的最大值小于2,则m 的取值范围为A.(1,1 B.(1+∞) C.(1,3 ) D.(3,+∞)8.设直线x=t 与函数2()f x x = ()ln g x x = 的图像分别交于点M,N,则当MN 达到最小时t 的值为A.1B. 12C. 2D. 2填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡...中对应号后的横线上。

湖南2019年高考理科数学试卷及答案-6页文档资料

湖南2019年高考理科数学试卷及答案-6页文档资料

湖南2019年高考理科数学试卷2019年普通高等学校招生全国统一考试数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}(二)必做题(12~16题)12.已知复数z=(3+i)2(i为虚数单位),则|z|=_____.13.的二项展开式中的常数项为。

(用数字作答)14.如果执行如图3所示的程序框图,输入x=-1,n=3,则输入的数S=(1)当N=16时,x7位于P2中的第___个位置;(2)当N=2n(n≥8)时,x173位于P4中的第___个位置。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。

已知这100位顾客中的一次购物量超过8件的顾客占55%。

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率。

(注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。

(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

19.(本小题满分12分)已知数列{an的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……。

1若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2019年普通高等学校对口招生考试数学试题
及参考答案
本试题卷包括选择题、填空题和解答题三部分.时量120分钟.满分120分
一、选择题(本大题每小题4分,共40分.每小题只有一项是符合题目要求的)
1.已知集合{},3,1=
A,{}a
B,0=,且{}3,2,1,0B A=则=a【答案】C
A.0
B.1
C.2
D.3
2.“4>x”是“2>x”的【答案】A A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
3.过点P(1,1)且与直线043=-y x平行的直线方程是【答案】D
A.0734=-+y x
B.0143=--y x
C.0134=-+y x
D.0143=+-y x
4.函数[])8,1(log)(2∈=x x x f的值域为【答案】B
A.
[]4,0B.[]3,0C.[]4,1D.[]3,1
5.不等式0)1(<+x x的解集是【答案】C A.{}1-x x C.{}01<<-x x D.{}01>-<=""p="">
6.已知4
3
tan-=α
,且α为第二象限角,则=αsin【答案】D A.54-
B.54
C.53-
D.5
37.已知A、B为圆12
2
=+y x上两点,O为坐标原点,若
2AB=,则=?
【答案】B
A.2
3
-B.0C.21D.
2
8.函数
为常数)A x x f(2Asin)(+=的部分图像如图所示,则=A ______.【答案】A
A.1
B.2
C.3
D.-1
9.下列命题,正确的是【答案】D A.垂直于同一直线的两条直线平行B.垂直于同一个平面的两个平面平行
C.若平面外一条直线上有两个点到平面的距离相等,则该直线与平面平行
D.一条直线与两个平行平面中的一个垂直,则必与另一个垂直。

10.已知直线为常数)b a by
ax l,(1:=+经过点????
?
3sin3cosππ,则下列不等式一定成
立的是【答案】A A.122
≥+b a
B.122≤+b a
C.1≥+b a
D.1≤+b a
二、填空题(本大题共5小题,每小题4分,共20分)
11、在一次射击比赛中,某运动员射击20次的成绩如下表所示:
则该运动员成绩的平均数是(环)【答案】8.5
12.已知向量)0,1(=a,)1,0(=b,)14,13(=c且b y a x c +=,则=+y x
.【答案】27
13.5
)1(+ax的展开式中x的系数为10,则=a
.【答案】2
14.将2,5,11三个数分别加上相同的常数m,使这三个数依次成等比数列,则=m
.【答案】115.已知函数))((R x x f∈为奇函数,))((R x x g∈为偶函数,且14)()(2
+-=+x x x g x f,

=-)2()2(g f.【答案】-13
三、解答题(本大题共7小题,其中第21,22题为选做题.满分60分.解答题应写出文字
说明、证明过程或演算步骤)16.(本小题满分10分)
已知数列{}n a为等差数列,3,131==a a,求:(I)求数列{}n a的通项公式;
(II)设n n n a b)1(-=,数列{}n b的前n项和n T,求100T.
17.(本小题满分10分)
10件产品中有2件不合格品,每一次取1件,有放回地抽取三次,用ξ表示取到不合格品的次数,求:
(I)随机变量ξ的分布列;(II)三次中至少有一次取到不合格品的概率.
解:
18.(本小题满分10分)
已知函数()???≤<-≤≤=).
42(,6),
20(,2x x x x x f.
(I)画出()x f的图像;(II)若
2)(≥m f,求m的取值范围.
19.(本小题满分10分)
如图在三棱柱111C B A AB C-中,AB C AA1底面⊥,1BC AB==,90ABC=∠,
D为AC的中点。

(I)证明:C C AA B D11平面⊥;
(II)若直线1BA与平面C C AA11所成的角为
30,求三棱柱
111C B A ABC-的体积。

(I)
证明:BC AB=且D为AC的中点∴AC BD⊥
又AB C AA1底面⊥,ABC BD平面?∴B D AA1⊥
而AC AA1与是C C AA11平面内的两条相交直线,
∴C C AA B D11平面⊥
20.(本小题满分10分)
已知椭圆C:12
22
=+y x。

(I)求椭圆C的离心率;(II)已知点M(-1,0),直线1-=x y与椭圆C相交于A,B两点,求M AB?的面积.
解:
选做题:请考生在第21,22题中选一题作答,如果两题都做,则按所做的第21题计分,作答时请写清题号。

21.(本小题满分10分)如图,在直角三角形ABC中,
90ACB=∠,60=∠ABC,BC=2M为ABC?内一点,
90BMC=∠且MC=1
解:
22.(本小题满分10分)
某企业拟生产产品A和产品B,已知生产一件A产品需要新型材料2千克,用3个工时;生产一件B产品需要新型材料1千克,用3个工时,生产一件产品A的利润为1600元,生产一件产品B的利润为1000元.现有新型材料200千克,问该企业在不超过360个工时的条件下,如何规划生产,才能使企业获得的总利润最大?并求出总利润的最大。

[解]设生产产品A和产
品B分别为x,y件,公司获利为Z元,则y x z
10001600+=
由题意得:????
???≥≥≤+≤+0
0360232002y x y x y x
作出可行域如图四边形OABC所示
作直线0l:058=+y
x并平移,由图象得,
当直线经过B点时Z能取得最大值,
由???=+=+360232002y x y x解得???==12040y x
即B(40,120)所以当(元)时,184001201000401600Z120,40max =?+?===y x。

相关文档
最新文档