基因与基因组的结构与功能
基因组的结构与功能
基因组的结构与功能基因组是生物体内存储遗传信息的全套DNA序列,它决定了生物体的结构和功能。
基因组的结构与功能密切相关,这是因为基因组的结构决定了其中基因的组织和排列方式,进而影响基因的表达和功能。
一、基因组的组成基因组由一系列的染色体组成,每条染色体都是一个长串的DNA分子。
人类及其他复杂生物的基因组是由多条染色体构成的,其中包含了数以万计的基因。
每个基因由一段DNA序列编码,这些基因控制了生物体内的各种生物化学过程和生物功能。
同时,基因组中还包含了其他非编码DNA序列的信息,如调控序列和转座子等。
二、基因组的结构基因组的结构可以分为线性结构和非线性结构两种。
1. 线性结构在多细胞生物中,基因组通常以线性结构存在于染色体中。
每条染色体上包含了一定数量的基因,这些基因以一定的顺序排列在染色体上。
不同染色体上的基因组成了不同的基因组。
人类的基因组由23对染色体组成,其中包括22对常染色体和一对性染色体。
每一条染色体上都包含了数百至数千个基因,这些基因编码了控制人体形态结构、器官功能和生物代谢等方面的蛋白质。
2. 非线性结构除了线性结构外,某些生物还存在着非线性结构的基因组。
例如,细菌和一些病毒的基因组是以环状DNA的形式存在的。
这些环状DNA的基因组结构相对简单,通常较小,编码的基因数量相对较少。
三、基因组的功能基因组的功能主要体现在基因的表达上,即基因的转录和翻译过程。
1. 基因的转录基因的转录是指将DNA序列转录为RNA的过程。
在此过程中,DNA的双链结构会被解开,使得其中的一条链作为模板来合成相应的RNA分子。
转录是基因表达的第一步,它决定了哪些基因会在什么条件下被激活和表达。
转录的产物,即RNA分子,可以进一步参与到蛋白质合成或其他生物过程中。
2. 基因的翻译基因的翻译是指利用RNA作为模板合成蛋白质的过程。
在这个过程中,RNA分子将在细胞质中被核糖体逐个读取,直至合成完整的蛋白质。
基因的翻译过程中,RNA的氨基酸序列会决定最终蛋白质的种类和功能。
基因组结构与功能
基因组结构与功能基因组是指一个生物体所拥有的所有基因的总称。
基因组的结构和功能对于生物体的发育和特征具有重要的影响。
本文将探讨基因组的结构和功能以及它们之间的关系。
一、基因组的结构基因组可以分为两种类型:核基因组和线粒体基因组。
1. 核基因组核基因组是指存在于细胞核中的DNA序列的组合。
核基因组由多个染色体组成,染色体又由一个个DNA分子构成。
每个DNA分子上都含有许多基因,基因编码着生物体的遗传信息。
2. 线粒体基因组线粒体基因组是细胞线粒体中的DNA序列的组合。
线粒体是细胞中的一个细胞器,它在能量代谢过程中起着重要的作用。
线粒体基因组较小,相对简单。
二、基因组的功能基因组的功能主要体现在DNA序列上的编码和调控。
1. 基因编码基因组中的基因通过特定的DNA序列编码了生物体的遗传信息。
这些遗传信息决定了生物体的形态特征、生理功能、行为习惯等。
基因组的不同部分编码了不同的蛋白质,蛋白质是生物体构造和调控的关键分子。
2. 基因调控基因组中的DNA序列不仅仅编码了基因,还包含了一些调控元件和调控基因。
这些调控元件和基因可以起到打开或关闭基因表达的作用,控制基因的表达时机、量级和位置。
基因调控是维持生物体稳态的重要机制。
三、基因组结构与功能的关系基因组的结构和功能密切相关,相互作用。
1. 结构决定功能基因组的结构决定了其中的基因和调控元件的组织方式和排列方式。
不同的结构会影响基因和调控元件之间的相互作用,从而影响基因组的功能。
2. 功能反作用结构基因组的功能需要依赖于合适的结构来进行实现。
例如,基因组中的调控元件需要正确地定位在合适的位置和距离上,才能准确地调控基因的表达。
功能的变化也可能导致基因组结构的调整和改变。
结论:基因组的结构和功能是相互关联的,彼此影响。
了解基因组的结构和功能对于理解生物体的遗传特征和生物过程具有重要意义。
进一步的研究将揭示更多关于基因组的奥秘,为人类的健康和生命的进化提供更多的启示。
基因组的结构和功能
基因组的结构和功能基因组是生物体内所有基因的总和,它决定了生物体的身体特征、生理功能以及遗传信息的传递。
基因组的组成和结构对生命的多个层面具有重要的影响。
本文将介绍基因组结构和功能的相关知识。
一、基因组的组成基因组由大量的DNA分子组成,DNA分子由核苷酸单元构成。
每个核苷酸单元包含一个五碳糖分子、一个有氮碱基和一个磷酸根。
在DNA分子中,有四种不同的氮碱基,分别是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)组成了DNA的基本组成单位。
基因组由两种核酸骨架构成,分别称为染色质和线粒体DNA。
染色体DNA是细胞核内最重要的基因组成分,其长度从2Mbp(人类门静脉血液的基因组大小)到150Mbp(巨型蕈类物种的基因组大小)不等。
线粒体DNA是线粒体中的DNA,通常很短,长度约为16kb。
染色体和线粒体DNA都参与到遗传信息的传递中。
二、基因组的结构基因组不仅由DNA单体组成,还具有很高的结构性特征。
主要的结构特征有染色体级别的组织、核小体级别的组织和DNA修饰等。
1.染色体级别的组织:染色体是线状的,通常被高度缠绕成凝固、紧密的包裹区域。
染色体的结构可以分成几个层次,一级结构上是染色体的基本构建块,被称为核小体。
核小体是细胞内与DNA结合的外围蛋白质,富含碱性氨基酸,包括赖氨酸、丝氨酸、组氨酸和半胱氨酸。
染色体上的核小体会进一步缠绕形成各种级别的结构。
通过高效地组装和解组织该结构,细胞可以对基因进行动态的调节。
2.核小体级别的组织:组蛋白是核小体的主要组成成分,其中的赖氨酸残基可以被甲基化、乙酰化等修饰,从而修饰组蛋白的化学性质和染色体的空间构建。
“核小体自由区”是没有外围蛋白质覆盖的DNA,通常在基因启动和调节机制中起到关键的作用。
”瓶颈“是某些区域连续的核小体,通常是“活跃”基因附近,可以饬使这些区域为工作适合的开放构建。
3. DNA修饰:氧化剂、甲基化、乙酰化等化学反应会改变DNA分子的化学性质。
生物化学 4-基因和基因组的结构与功能
4. 结构基因中无内含子,边转录边翻译。
5. 无基因重叠结构。
6. DNA分子中有多种功能区。这些区域往往具有特殊的结构,并且含 有反向重复序列。
8、基因组中也存在一些可移动的遗传因素,这些DNA顺 序并无明显生物学功能,似乎为自己的目的而组织, 故有自私DNA之称,其移动多被RNA介导(如在哺乳 动物及人类基因组中发现的逆转座子),也有被DNA 介导的(如在果蝇及谷类中发现的DNA转座子)
单一序列 中度重复序列
高度重复序列
重复序列
将真核生物基因组的DNA进行复性动力学测 定,显示3个不同的时相。
• 一个假基因常常有多个有害的突变,可能因为作为一种活 性基因一旦停止,就再没有适当机制阻止进一步突变的聚 积。假基因数目一般较少,往往只占基因总数的一小部分。
假基因主要有两种类型
• (1)由于一种基因的加倍而失活。这种类型假基因保留原 来亲本基因的外显子及内含子组织并常与亲本基因密切联 系,如α、β球蛋白基因簇的假基因。它们可能是由于失去 起始转录信号,或外显子—内含子连接处不能剪接或翻译 不能终止。
蛋白D 蛋白E
E.coli
细菌基因组
1. 一条双链DNA ,具有类核结构。
2. 具有操纵子结构。几个功能相关的结构基因串联在一起受同一个调控区调 节。 E.coli基因组含3500个基因,有260个已查明具有操纵子结构,定位于75个 操纵子中。
3. 蛋白质基因单拷贝,rRNA基因多拷贝,这可能有利于核糖体的组装。 E.coli中rRNA基因(rDNA)具有多拷贝,而且都以转录单位的形
基因组学的结构和功能关系
基因组学的结构和功能关系人类基因组计划的完成使得我们对基因组学有了更深入和细致的了解。
基因组学是对基因组结构和功能的研究,以期探索生命本质,从而为生命科学与医学带来新的发展。
本文将论述基因组学中结构和功能之间的关系,包括基因组的组成结构、性质、变异和功能区域,以及结构与功能之间的相互作用关系等。
一、基因组的组成结构基因组是指所有DNA分子组成的总和,包括DNA中的基因与非编码区域。
基因组的组成结构非常复杂,几乎涉及到所有层面的组织。
从DNA分子的角度,基因组是由一系列碱基对组成的,也分别被称为基序、碱基二聚体和序列等。
从亚细胞结构的角度,基因组是由纤维素异构体和染色体等组成的。
在常染色体中,基因组的基本单位是染色体,而DNA序列是基因的基本单位。
在特定的基因突变情况下,基因表达水平会随之发生变化,从而导致对细胞循环、生长、分化等生命过程的直接或间接影响。
二、性质和变异基因组的性质与变异是构成基因组的基本特征,是生命进化过程中起至关重要作用的关键要素。
基因组的性质和变异可以通过基因组内部不同部位的DNA序列、基因表达差异和可变简单重复序列等来刻画和识别。
DNA序列的差异可以反映生物个体间的血缘关系,而基因表达差异则可以反映基因功能和生理状态变化。
特定的可变简单重复序列在基因突变等生物学进化过程中起关键作用,而且这些重复序列在不同生物之间也存在显著的差异。
三、功能区域基因组的功能与DNA序列的编码性质有关,编码区域包括DNA序列和基因,与此同时,非编码的DNA序列区域、长链非编码RNA以及染色体的调控元素也参与了基因组的调节和维护。
有些基因与人类发育和疾病习惯有着密切的关系,例如人类疾病的易感基因、肿瘤抑制因子、DNA修复基因等。
这些区域被广泛研究以了解基因组功能的特征,并进一步研究其与各种疾病的关系。
四、结构与功能之间的相互作用关系基因组的结构与功能之间没有单一的确定因素,受到各种机制的影响。
首先,基因组的结构如DNA序列和注释的基因等,支配着其功能进行。
基因与基因组的结构和功能
反子、突变子和重组子
编辑课件
7
在20世纪50年代初人们已懂得基因与蛋白质间似乎存在着 相应的联系,但基因中信息怎样传递到蛋白质上这一基因功能 的关键课题在20世纪60年代至20世纪70年代才得以解决。
从1961年开始,尼伦伯格(M.W. Nirenberg)和科拉纳(H.G. Khorana)等人逐步搞清了基因以核苷酸三联体为一组编码氨 基酸,并在1967年破译了全部64个遗传密码,这样把核酸密码 和蛋白质合成联系起来。
过遗传因子来传递的,遗传编因辑子课件是一些独立的遗传单位
3
1903年萨顿(W.S. Sutton 1877~1916)和鲍维里(T.Boveri 1862~1915) “萨顿—鲍维里假想” :遗传因子位于染色体上
1909年丹麦遗传学家约翰逊(W.Johansen 1859~1927)在《精 密遗传学原理》一书中提出“基因(Gene)”概念,以此来替代 孟德尔假定的“遗传因子”。从此,“基因”一词一直伴随着遗 传学发展至今
沃森和克里克等人提出的“中心法则”更加明确地揭示了生命 活动的基本过程。1970年特明(H.M. Temin)以在劳斯肉瘤 病毒内发现逆转录酶这一成就进一步发展和完善了“中心法 则”,至此,遗传信息传递的编辑过课件程已较清晰地展示在人们的眼8 前。
基因概念的进一步发展
1、基因具重叠性
1977年桑格(F. Sanger)领导的研究小组,根据大量研究事实 绘制了共含有5375个核苷酸的ΦX174噬菌体DNA碱基顺序图,
编辑课件
12
Ovalbumin DNA X cDNA
Electro-microscope
7 introns 8 exons
1978 Gilbert 真核生物基因的新概念 Exon (外显子) is any segment of an interrupted gene that is represented in the mature RNA product
人类基因组的结构与功能分析
人类基因组的结构与功能分析随着科技的进步,我们对基因组的理解越来越深入。
人类基因组是由各种基因组成的,在人的生命过程中扮演着重要的角色。
本文将从基因组的结构以及功能角度分别进行探讨。
一、基因组的结构分析人类基因组是由DNA序列组成的,其长度约3亿个核酸碱基(A、T、C、G)。
基本上,人类基因组的组织结构分为”基因”和”非基因”两大类。
1. 基因的组成基因是人类基因组中最基本的单位,负责编码生物体中的一项或多项功能,例如蛋白质的合成。
人类基因组中的基因数目约为2万,但每个基因的长度不同。
整个人体中的基因主要由蛋白质编码基因和非蛋白质编码基因组成。
其中,蛋白质编码基因占基因组的99%,编码蛋白质序列的基因通过转录、翻译等过程来合成蛋白质,而非蛋白质编码基因则对人体的其他基本功能发挥作用,例如RNA的加工与修饰。
2. 非基因组成非基因区域主要由一些中间序列和调控序列构成。
中间序列是指不具有编码功能的DNA序列,例如转座子、嵌合元件以及微卫星等。
这些序列在基因组内部存在多个拷贝,并可以通过不同的重排方式来形成多样的基因组结构。
调控序列是控制基因在细胞中发挥特定功能的序列。
它们可以分为启动子和增强子等类型。
启动子通常位于基因组的上游区域,它们和参与转录的蛋白质结合,从而确定基因是否被转录和表达。
增强子则位于基因的上下游区域,其可以强化特定启动子的表达,使基因在相应的环境、时间和组织中被更有效的表达。
二、基因组的功能分析对于基因组的功能,我们可以从以下几个方向进行分析。
1. 基因表达调控基因表达的调控是基因组功能的一个重要组成部分。
对于细胞来说,我们通过基因表达来获取生命所需的各种物质,例如酶、激素、色素、抗体等。
在这个过程中,生物体需要将不同的信号和信息转换成细胞内的基因表达。
这些信号可以分为内部信号和外部信号。
内部信号通常是由于基因本身所携带的转录因子及上下游区域的调控序列所决定,而外部信号则是由体内或外的环境因素所造成的影响,例如激素、氧气浓度等。
基因组结构与功能
插入序列转座
插入序列(insertion sequences, IS)组成: 二个分离的反向重复(inverted repeats, IR)序列 特有的正向重复序列 一个转座酶(transposase)编码基因
IR Transposase Gene IR
发生形式: 保守性转座(conservative transposition) 复制性转座(duplicative transposition)
二、原核生物基因组结构与功能的特点
1.基因组通常仅由一条环状双链DNA分子组成。
2.基因组中只有1个复制起点。
3.具有操纵子结构。 4.结构基因无重叠现象,基因组中任何一段DNA不会用 于编码2种蛋白质。 5.基因序列是连续的,无内含子结构。 6.编码区和非编码区在基因组中约各占50%。 7.基因组中的重复序列很少。编码蛋白质结构基因多为单 拷贝,但编码rRNA的基因往往是多拷贝的 8.具有编码同工酶的基因(isogene) 9.细菌基因组中存在可移动的DNA序列,包括插入序列 和转座子。
能与顺式作用元件结合调节基因转录活性的蛋白质因子称 为反式作用因子(trans—acting factors)。
顺式调控元件有:启动子、上游启动子元件、反应元件、增 强子和加尾信号等。
(1)启动子(promoter) ①概念:启动子是DNA分子上可与RNA pol 特异性识别结 合并起始转录的部位,但启动子本身不被转录。 ②功能特点:启动子位于结构基因上游,启动子有方向性, 决定转录方向及那一条DNA链作模板转录(以信息链的互 补链作模板转录,转录的mRNA与信息链一致)。 ③真核生物的启动子元件是TATA box TATA盒与TATA因 子的转录因子结合后即成为完整的启动子。
分子生物学第四章 基因与基因组的结构与功能
4.2 基因命名法
但是在研究不同生物的同一遗传机制时,往往会产生一些混淆,如 在研究酿酒酵母和粟米酵母的细胞周期有关基因的命名中。此外, 许多基因在不同实验中从相同组织被分离出好几次而具有不同命名: 重要的果蝇的发育基因torpedo便是其中一例——它在筛选不同表 型的过程中三次被鉴定并被命名三种不同名称。果蝇提供了关于遗 传命名的最为丰富的例子,特别是在发育生物学中这种趋势也扩展 至脊椎动物中。
总之:顺反子学说打破了“三位一体”的基 因概念,把基因具体化为DNA分子上特定的 一段顺序--- 顺反子,其内部又是可分的, 包含多个突变子和重组子。 近代基因的概念:基因是一段有功能的DNA序 列,是一个遗传功能单位,其内部存在有许 多的重组子和突变子。 突变子:指改变后可以产生突变型表型的最 小单位。 重组子:不能由重组分开的基本单位。
(三)DNA是遗传物质:1928年Griffith 首先发现了肺炎球菌的转化,证实DNA 是遗传物质而非蛋白质;Avery用生物 化学的方法证明转化因子是DNA而不是 其他物质。 (四)基因是有功能的DNA片段 20世纪40年代Beadle和Tatum提出一个 基因一个酶的假说,沟通了蛋白质合成 与基因功能的研究 1953年Watson和Crick提出DNA双螺旋 结构模型,明确了DNA的复制方式。
病毒(+)股RNA为2个拷贝,基本结构为:
5'帽-R-U5-PB - -DLS--gag-pol-env- (onc-)- C-PB+-U3-R-poly(A)n 病毒颗粒中有两条相同的正股RNA+两条来自宿主细胞的 tRNA
A:编码区:所有逆转录病毒均含有3个基本结构基因
gag: pol: 病毒核心蛋白 肽链内切酶,一个逆转录酶,一个与前病毒整 合相关的酶 env: 包膜蛋白 B:非编码区: 与基因组复制和基因表达有关 A: B: C: R区: 两端的重复序列,与cDNA合成有关 引物结合区(primer binding site, PB) U区: U3 含强启动子,起始转录RNA. U5 与转录终止和加polyA有关 D: DLS--C区: DLS:两条病毒(+)RNA链结合位点 : 包装信号:RNA装入病毒颗粒 C: 调控区.
分子生物学--基因与基因组课件
2、物理图ቤተ መጻሕፍቲ ባይዱ:
以特异DNA序列为界标所展示的染色体图,它能反映生物 基因组中基因或标记间的实际距离,图上界标之间的距离是以 物理长度即核苷酸对数如bp、kb、Mb等来表示的。这些特 定的DNA序列可以是多态的,如RFLPs,但主要是非多态的如 STS、STR、EST和特定的基因序列等。
作图的基本方法:
1、家系分析定位
通过分析、统计家系中有关性状的连锁 情况和重组率而进行基因定位的方法。
有用的遗传标记: 取材方便 按孟德尔方式遗传 多态性标记位点
多态性:在一个群体中,某遗传特性存在若干种类型。
家
系性
分连
析
锁 分
定析
位
外祖父法
深绿代表红绿色盲患者,浅绿代表红 绿色盲基因携带者,黄色代表正常
家常
细胞融合技术
体
鼠细胞
人细胞
细
胞
杂
交
定
位
含全套鼠染色体 , 人 1号染色体,肽酶C
3、核酸分子杂交定位
• 应用已知的核酸探针与待定位的DNA序列进行杂交 对基因进行定位的方法 •具有互补序列两条单链核酸分子在一定条件下 按碱基互补配对原则退火形成双链的过程。 • 杂交的双方是待定位的核酸和已知核酸序列,已知 核酸序列称探针。
5’、、、AGCCGACTATGTCGAAGCTT、、、、、、 GCTTGACTATAAGACA、、、3’
3‘、、、TCGGCTGATACAGCTTCTAA、、、、、、 CGAACTGATATTCTGT、、、5‘
转录调控区
贮存RNA或蛋白质结构信息区 转录终止区
原核基因的结构特点
真核基因的结构特点
(二)基因作图的方法:
1、遗传图谱:
人类基因组结构与功能分析
人类基因组结构与功能分析随着科技的不断发展,人类对基因组的理解也越来越深入。
基因组是一个人类所有基因的总和,包括DNA序列、基因的分布、基因的功能等。
人类基因组分析不仅是生物学领域的重要研究方向,也对医学科技有着重大的启示作用。
本文将就人类基因组的结构与功能分析进行探讨。
一、人类基因组结构人类基因组是由大约30亿个DNA碱基所组成。
DNA有四种不同的碱基:腺嘌呤 (A)、胸腺嘧啶 (T)、鸟嘌呤 (C) 和鳙嘌呤 (G)。
这些碱基组成基因序列,指导着人类的生长、发育和维持生命所必须的一系列生物过程。
人类基因组的结构是由许多基因所组成。
一个基因是指一个有一定功能的DNA序列,可以编码一个蛋白质。
人类基因组的大约2%是编码蛋白质的基因。
其中,有一部分是人类所有特有的基因,而另一部分则是与其他物种共有的。
这些基因分布于人类23对染色体上,但它们的数量和功能并不完全一致。
例如,第一对染色体上有大约2700个基因,而第二对染色体上只有1400个基因。
此外,除了基因之外,人类基因组中也包含了大量的非编码RNA,它们也扮演着重要的调控作用。
二、人类基因组功能分析人类基因组的功能分析是基因组学的一个重要研究方向。
通过对人类基因组的分析,可以深入了解人类基因的编码序列,以及这些编码序列所编码的蛋白质的功能。
除此之外,还可以探究非编码RNA对人类基因组的调控作用。
下面将分别对这些方面进行探讨。
1. 基因的编码序列分析人类基因组中的基因数量和功能是多样化的。
由于基因是一个有一定功能的DNA序列,因此对基因组中的基因序列进行分析就可以了解这些基因的功能。
此外,基因组中的基因序列也是人类遗传疾病的一个重要研究方向。
可以通过对基因序列的突变进行分析,深入了解遗传疾病的发生机制。
2. 蛋白质的功能分析蛋白质是由基因编码而来的一种生物大分子,能够参与到人类的大量生物过程中。
对于蛋白质功能的深入了解,有利于探究人类疾病的发生机制,并提供针对性的治疗方案。
分子生物学第三章 基因与基因组的结构与功能
3.1 基因的概念
基因(gene):是原核、真核生物以及病毒的
DNA和RNA分子中具有遗传效应的核苷酸序
列,是遗传的基本单位和突变体及控制性状
的功能单位。
结构基因
包括:
(编码蛋白质、tRNA、rRNA)
调控基因
(编码调控蛋白)
• 基因通过复制、转录和翻译合成蛋白质以及
• 有关基因的命名方法现在并没有严格的统一。
随着分子生物学的飞速发展。许许多多的基 因组都已大规模被测序,更多的基因也不断 的被鉴定。因而十分需要一个统一的命名方 法。
• 为便于学习理解,根据现代分子生物学中目
前使用最多的方法暂归纳如下:
• 1)用三个小写英文斜体字母表示基因的名
称,例如涉及乳糖(lactose)代谢相关的酶 基因lac;涉及亮氨酸(Leucine)代谢相关 的酶基因leu。
7)植物基因的命名
目前还没有适用于植物的惯用命名法 多数用1~3个小写英文斜体字母表示。 如:hsp90,热激蛋白基因
Oryza sativa,Arabidopsis thaliana
OsAthsp90;
Athsp90;Athsp90.3; Athsp90.6
• 8)脊椎动物基因的命名 • 用描述基因功能的1~4个小写字母和数字
• 2)在三个小写英文斜体字母后面加上一个斜体大写
字母表示其不同的基因座。全部用正体时表示蛋白 产物和表型
• 例如,对于大肠杆菌和其他细菌,用三个小写字母
表示一个操纵子,接着的大写字母表示不同基因座,
lac 操纵子的基因座:lacZ,lacY,lacA;其表达
产物蛋白质则是lacZ,lacY,lacA。
3第三章 基因与基因组的结构和功能
(七)基因常常成簇排列,没有间隔序列或间隔序列很小。功 能相关蛋白质基因在基因组的1个或几个特定部位,丛集成 簇被转录成多顺反子,然后加工成各种蛋白质的mRNA模板。 如腺病毒晚期基因。 (八)不规则的结构基因 1.几个结构基因的编码区不规则,因此有些结构基因无翻译 起始序列。 2.有的mRNA(=gene)没有5’帽子,但有翻译增强子。 (九)DNA或RNA 1种病毒基因组只是1种核酸。
(三)连续的和不连续的基因 病毒基因结构特征往往与其 宿主细胞基因结构相似。 原核病毒(如噬菌体)基因是连续的,没有内含子; 真核病毒(如多瘤病毒)基因是不连续的,有内含子。 有意思的是,有些真核病毒的内含子或其中的一部分对 某一基因来说是内含子,对另一基因却是外显子。 如SV40和多瘤病毒的早期区域就是这样的。 除了(+)RNA病毒外,真核病毒基因都是先转成mRNA前 体,再经过剪接等步骤能成为成熟的mRNA.
存在重叠基因 Sanger在x174噬菌体DNA的全部序列后发现了重 叠基因现象。发现其中的9个基因是重叠的。 a) 一个基因完全在另一个基因里面,如基因B 在基因A里面,基因E在基因D内。 b)部分重叠,基因K和基因C部分重叠 c)两个基因只有一个碱基对的重叠,如D基因的 终止密码子的最后一个碱基是J基因起始密码子 的第一个碱基。 基因之间的间隔区很小
腺病毒基因组
腺病毒是一种无外壳的双链DNA病毒,基因组长约 36kb, 由于每条DNA链的5’-端同相对分子质量为55X103Da 的蛋白质分子共价结合,可以出现双链DNA的环状结 构。人体腺病毒已知有33种,分别命名为adl~ad33 人类腺病毒基因组包括早期基因E1A、E1B、E2A、 E2B、E3和E4 以及晚期基因L1、L2、L3、L4和L5 早期基因在病毒感染后的复制前开始转录。 腺病毒DNA可以整合到感染细胞或转化的细胞DNA 中,在腺病毒感染许可性的人类细胞时,病毒DNA与 宿主细胞DNA也可以发生重组。
基因与基因组的结构和功能
基因的结构和编码区和终止子组成。基因的编码方式可以是直接编码蛋白质 的mRNA,也可以是通过多个mRNA剪接变体实现。
基因组的定义
基因的功能及其调控
基因的功能涵盖了几乎所有生物过程。基因的表达可以通过转录因子、环境 信号和表观遗传调控等多种方式进行调控。
基因组是一个生物体细胞中所有基因的集合。它包含了编码蛋白质的基因以 及非编码RNA的序列。
基因组的组成和大小
基因组的组成包括核苷酸序列和非编码区域。核苷酸序列是基因组中编码蛋白质和RNA的基本单位。基因组的 大小可以根据不同生物体的复杂性而异。
基因与表型的关系
基因决定了生物体的遗传特征和表型表达。不同基因的组合以及基因和环境之间的相互作用决定了个体的表型。
基因与基因组的结构和功 能
在这个演讲中,我们将探讨基因和基因组的组成和功能。了解基因的定义, 构成成分以及基因组的组成和大小将有助于我们深入了解基因与表型之间的 关系以及基因的功能和调控。
基因的定义
基因是DNA分子上一段能够编码蛋白质的序列。这些蛋白质在细胞中扮演着 各种重要的功能角色。
基因的组成成分
基因组的结构与功能(分子生物学))
微卫星DNA:是由短的重复单元序列串联构成的 重复序列,重复单元一般为1~6bp,重复次数10~60次 左右,重复序列长度一般小于150bp。
如(AC)n
(TG)n
(CGG)n
➢ If not specified, “genome” usually refers to the nuclear genome
基因组的结构与功能(分子生物学))
基因组的结构与功能(分子生物学))
基因组的结构与功能(分子生物学))
不同的生物体,其基因组的大小和复杂 程度 各不相同
进化程度越高的生物其基因组越复杂
基因组的结构与功能(分子生物学))
Fragile syndrome
the Fragile X Mental Retardation 1 Gene (FMR1) trinucleotide repetitive sequence (CGG) expansion
基因组的结构与功能(分子生物学))
many CGG tandem repeats in the 5’UTR Normal individuals have 5 to 50 CGG repeats FXS carriers have 53-200 repeats (premutation) Premutation does not cause mental retardation, but there is a high risk when it is passed to the next generation through a female Affected individuals have more than 230 repeats (full mutation) In the full mutation, the FMR1 gene is “shut off” and prevents the production of the FMR1 protein, which is considered important for brain development Girls are only carriers of the disorder, so they show less severe effects
人类基因组结构与功能研究
人类基因组结构与功能研究近年来,人类基因组结构与功能研究已成为科学研究的热点之一。
随着技术的不断进步,人们对基因组的认识不断深入,并在这个领域开展了许多重要的研究和发现。
本文主要从基因组的结构、功能及其研究方法等方面进行阐述。
一、基因组的结构基因组是指一个生物体内的全部基因组成的集合体。
在人类基因组研究中,我们主要关注的是人类的基因组。
人类基因组是由三亿个碱基对构成的,并被分为23对染色体。
其中22对是自动体染色体,还有一对是性染色体(XX或XY)。
每个基因组中包含数以万计的基因,它们是构成我们身体的蛋白质编码序列。
基因的编码序列是由DNA确定的,DNA由四种核苷酸基组成。
基因的编码序列包含了决定生命的所有信息,包括人体的结构、功能、代谢、发育和遗传信息等。
基因组的结构可以被理解为一个庞大的拼图,每个基因都是这个拼图中的一块,它们的排列顺序和连接方式决定了生物体的性状和特征。
二、基因组的功能基因组的主要功能是控制生物体的生长、发育、代谢和遗传等方面的特征。
它包含了所有蛋白质编码基因的信息,还包括RNA 基因和其他非编码区域的信息。
通过对基因组功能及其调控的研究,我们可以更好地理解疾病的发生和发展,并为疾病的防治提供更加精确、有效的策略。
例如,许多与癌症相关的基因异常,就可以通过基因组研究发现和研究,从而为癌症的预防和治疗提供依据。
三、基因组的研究方法1. 基因组学研究方法基因组研究方法包括基因序列分析、基因组关联分析、基因表达分析等。
其中,基因序列分析是最为基础和关键的一种研究方法。
通过测定DNA的序列,研究人员可以确定某个基因是否存在突变、缺失或复制,还可以找到可能引起疾病的基因突变。
基因组关联分析则可以帮助我们了解各种人类特征和疾病与基因组之间的关系。
另外,基因表达分析可以揭示基因在不同组织和疾病状态下的表达情况,这对于了解疾病发生机制及治疗有很重要的意义。
2. CRISPR/Cas9技术CRISPR/Cas9技术是目前基因组研究领域最为前沿和热门的研究工具之一。
基因组的结构与功能
基因组的结构与功能基因组是指生物体中所有遗传信息的总和,它决定了生物体的形态、行为和功能。
基因组的结构与功能密不可分,本文将探讨基因组的结构以及不同结构对生物体功能的影响。
一、基因组的结构基因组由DNA分子组成,包括编码蛋白质的基因和非编码区域。
基因组结构的主要特点有以下几个方面:1.基因的组织方式基因可以通过多种方式组织在基因组中,包括单基因、基因簇和基因簇群。
单基因指的是一个基因编码一个蛋白质,而基因簇指的是多个相邻的基因在基因组上连续排列,与同一功能或同一代谢途径相关。
基因簇群则是多个基因簇在基因组上的聚集。
2.编码和非编码区域基因组不仅包含编码蛋白质的基因,还包括一些非编码区域,如启动子、转录因子结合位点和调控区域等。
这些非编码区域在调控基因的表达和功能发挥方面起着重要的作用。
3.基因组的重复序列基因组中存在着大量的重复序列,包括简单重复序列和复杂重复序列。
简单重复序列是指重复单元较短的序列,如微卫星和重复序列等;复杂重复序列则是指重复单元较长的序列,如转座子和线粒体基因等。
这些重复序列在基因组的结构和功能中发挥着重要的作用。
二、基因组的功能基因组的功能主要体现在遗传信息的传递和生物体的发育、适应和进化等方面。
以下是基因组功能的几个方面:1.基因的表达基因组中的基因通过转录和翻译过程转化为蛋白质,并通过蛋白质的表达实现生物体的各种功能。
基因的表达过程受到基因组结构的影响,包括启动子的位置、转录因子结合位点的分布和染色质的结构等。
2.基因的调控基因组中的非编码区域在基因调控中起着至关重要的作用。
通过转录因子的结合和染色质的重塑等机制,非编码区域可以调控基因的表达,影响生物体的发育和适应。
3.基因组的遗传基因组中的遗传信息可以通过复制和分离过程传递给下一代。
基因组的结构和功能决定了遗传信息的稳定性和可遗传性,并在进化过程中起到重要的作用。
4.基因组的进化基因组的结构和功能在进化过程中发生变化,产生新的基因和功能。
人类基因组和基因的结构与功能研究
人类基因组和基因的结构与功能研究在二十世纪初期,生物学家开始探究人类基因组的组成和功能。
尽管这些研究的初始成果较少,但是随着生物技术的发展和计算机技术的迅速进步,我们现在已经拥有了相当完整的人类基因组序列。
这项工作推动了人类基因组和基因研究的广泛发展,带来了各种各样的应用和改进。
基因是生命的基本单位,它们控制着生物体的发育和功能,决定了我们的身体、认知和行为。
基因是由一连串的核苷酸组成,核苷酸是由碱基、磷酸和脱氧核糖组成的。
四种碱基是腺嘌呤、鸟嘌呤、胸腺嘧啶和鳗鱼胺酸,它们按照特定的规则组成了基因。
人类基因组预计含有大约二十四万个基因,包括许多重要的基因家族,如代谢途径、免疫系统、细胞周期和细胞信号传导等。
近年来,专家们已经制定了大量的基因研究计划,涉及从基因敲入到基因编辑和替换等技术,以及从基因表达到基因调控的各种分子机制。
这些新技术本质上都是基于人类生命的遗传学研究。
透彻地理解人类基因组和基因的结构和功能,才能为人类健康提供必要的支持。
在此背景下,许多大型研究计划已经启动,如人类基因组计划(HGP)、千人基因组计划、亚洲基因组计划(AGP)等。
人类基因组计划是一项全球范围内的研究计划,旨在识别人类基因组的所有基因,并确定它们的位置及其功能。
该计划于1990年启动,历时十三年,于2003年6月发布了完整的人类基因组序列。
该计划为人类基因组的研究奠定了基础,为人类基因组的研究提供了极大帮助。
随着研究计划的不断推进,我们对人类基因组和基因的组成和功能有了更深入的了解。
例如,我们现在知道,基因的表达很受环境和外部信号的影响,并且在不同的细胞类型和组织中有差异。
同时,我们还发现因人类基因组和基因的存在出现了许多不同的变异,这些变异会对人类的稳定性产生影响,从而导致各种疾病。
因此,对基因的研究也为治疗和预防许多疾病提供了新思路。
例如,通过基因编辑和替换技术,科学家可以修补或替换破坏性的基因,从而治疗一些遗传病。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.有重叠基因
8.含有不规则结构基因
病毒基因组核酸的主要类型
DNA
双链DNA:HBV 单链DNA:M13噬菌体
分类
RNA
双链RNA 单链负股RNA 单链正股RNA
正股(+):序列与mRNA相同的链 负股(-):序列与mRNA互补的链
4、现代基因阶段:编码基因的主要编码产物 是多肽链,另外还包括许多编码RNA的基 因。
现代基因概念:操纵子、转座子、断裂基 因、重叠基因、假基因……
基因的基本结构
5’…...AGCCGACTATGTCGAAGCTT…..…GCTTGACTATAAGACA……3’
3‘…...TCGGCTGATACAGCTTCTAA…..…CGAACTGATATTCTGT……5‘ 转录调控区 贮存RNA或蛋白质结构信息区 转录终止区
典型病毒基因组介绍
SV40病毒基因组
.
双链环状DNA:5243bp
早期转录区:一个基因(2个蛋白质 t,T)
调控区(400bp):复制起始点,启动子,增强子 晚期转录区:先转录出一个多顺反子mRNA VP1 mRNA VP2 mRNA VP3 mRNA AUG 位于VP2和 VP3内 VP3比VP2N端少1/3
基因?
3.1 基因的概念
基因(gene)是DNA和RNA分子中具有遗传效 应的核苷酸序列,是遗传的基本的单位。
包括:编码基因与非编码区
从生化学上来说指的是一段DNA或RNA 顺序,该顺序可以产生或影响某种表型, 可以由于突变生成等位基因变异体。 从遗传学上来说代表一个遗传的功能单位, 同时也是一个交换单位和突变单位。
3. 4 病毒及其基因组
3.4.1病毒基因组的一般特点及病毒的核酸
病毒基因组的特点 1.基因组大小相差很大: 2.核酸结构多样性:
HBV:3.2kb 痘病毒:300 kb DNA或RNA 单链或双链 合环状分子或线性分子
3.编码序列>90%(基因组)
4. 多为单拷贝,即每个基因只出现一次
基因组的功能是贮存和表达遗传信息。 主要由两种基因组组成
核基因组 核外基因组:质粒基因组、线粒体基因组、叶
绿体基因组等
重要的遗传信息存在于核基因组内
基因组的结构主要指不同的基因
功能区域在核酸分列中的分布和排
布情况。
基因及基因组的大小与C值矛盾
C值(C-value):单倍体基因组中的全部DNA量。 C值悖论:基因组的大小和DNA含量随着生物进化 复杂程度的增加而逐步上升,但也有另外。变形虫 的C值是人的200倍
90%
形成gag蛋白
10%形成gag- pol 蛋白
剪接后形成env mRNA
3.4.2 噬菌体基因组
•
重叠基因 : 不同基因的核苷酸序列有时是可以共用的。也
就是说,它们的核苷酸序列是彼此重叠的,这样的2个基因
被称为重叠基因。 ① 两个或两个以上的基因共有一段DNA序列或者是指一段 DNA序列为两个或两个以上基因的组成部分。 ②重叠方式有大基因内包含小基因,前后两个基因首尾重 叠等。
(1)一般特征
Hale Waihona Puke 病毒(+)股RNA为2个拷贝,基本结构为:
5'帽- R - U5 - PB - - DLS - - gag - pol - env -(onc-)- C-PB+-U3-R-poly(A)n 病毒颗粒中有两条相同的正股RNA+两条来自宿主细胞的
tRNA
A:编码区:所有逆转录病毒均含有3个基本结构基因
(2)前病毒基因组的转录和翻译
A:逆转录病毒基因组的复制和转录都需要经过 DNA 中间体才能完成.
RNA病毒
DNA前病毒
RNA病毒
(cDNA)
末端形成新的重复序列(U3-R-U5)称长末端重复 序列(LTR) long terminal repeat
B:翻译 多顺反子mRNA
gag-------------------pol(无起始密码子)
第二阶段
1.
摩尔根时代赋予基因以物质的内涵。 随后摩根通过对果蝇的研究提出了基因的连 锁遗传规律,并定义了经典的基因概念。 (经典基因概念:基因是孤立地、排列在染 色体上的实体,具有特定功能,能独立发生 突变的遗传交换的、“三位一体”的、最小 的遗传单位。呈线性排列在染色体上的遗传 实体。)
3、顺反子阶段:顺反子就是一段核苷酸序列, 能编码一条完整的多肽。
RNA噬菌体 MS2,R17,f2和Qβ的重叠
3.5 细菌基因组
基因概念的发展大致上分以下几个阶段:
1.
孟德尔所阐明的基因观—— “基因是生物体 传递遗传信息和表达遗传信息的基本物质单 位”。
1865年,奥地利神父孟德尔从7个豌豆性状 的实验提出了“遗传因子假说”(每个性状 由定位在染色体上的遗传因子控制,并提出 了遗传因子的分离与自由组合的两大遗传规 律性)。
基因结构
3.2
基因的命名法
基因原则:简明、独特、能够表达基因
的特征或功能
基因符号:独特、简短、仅含拉丁字母
和阿拉伯数字,不应有标点符号。
3.3基因组
基因组(genome):细胞或生物体内一套完整单体 的遗传物质的总和;或所含有的全部基因。 如人: 22常+ X, Y,+ 线粒体基因组
.
内含子1 UAA 内含子2
前体mRNA
剪接方式2: 去除内含子2
UAA t -mRNA
剪接方式1: 去除内含子1
T-mRNA
T- 抗原
分布于核内:100 KD 分布于胞浆内:18 KD
t-抗 原
T - 抗原和t-抗原mRNA前体的不同剪接方式
2 、逆转录病毒 (retroviruses , HIV) .
gag: pol: 病毒衣壳蛋白 肽链内切酶,一个逆转录酶,一个与前病毒整 合相关的酶 env: 包膜蛋白 B:非编码区: 与基因组复制和基因表达有关 A: B: C: R区: 两端的重复序列,与cDNA合成有关 引物结合区(primer binding site, PB) U区: U3 含强启动子,起始转录RNA. U5 与转录终止和加polyA有关 D: DLS--C区: DLS:两条病毒(+)RNA链结合位点 : 包装信号:RNA装入病毒颗粒 C: 调控区.