二次函数与一次函数综合应用题赏析
2020年中考代数综合第4讲:二次函数图象与一次函数图象交点问题
2020 年中考代数综合第 4 讲:二次函数图象与一次函数图象交点问题【案例赏析】1.在平面直角坐标系xOy 中,抛物线y=+2x﹣a+1 与y 轴交于C 点,与x 轴交于A,B两点(点A在点B左侧),且点A的横坐标为﹣1.(1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为P′,求点P′的坐标;(3)将抛物线在A,B两点之间的部分(包括A,B两点),先向下平移3个单位,再向左平移m(m>0)个单位,平移后的图象记为图象G,若图象G 与直线PP'无交点,求m 的取值范围.2.抛物线y1=mx2+(m﹣3)x﹣3(m>0)与x 轴交于A、B 两点,且点A 在点B 的左侧,与y 轴交于点C,OB=OC.(1)求这条抛物线的表达式;(2)将抛物线y1 向左平移n(n>0)个单位,记平移后y 随着x 的增大而增大的部分为P,若点C 在直线y2=﹣3x+t 上,直线y2 向下平移n 个单位,当平移后的直线与P 有公共点时,求n 的取值范围.3.已知关于x 的一元二次方程mx2+(3m+1)x+3=0.(1)求证:该方程有两个实数根;(2)如果抛物线y=mx2+(3m+1)x+3与x轴交于A、B两个整数点(点A在点B左侧),且m 为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y=mx2+(3m+1)x+3 与y 轴交于点C,点B 关于y 轴的对称点为D,设此抛物线在﹣3≤x≤﹣之间的部分为图象G,如果图象G 向右平移n (n>0)个单位长度后与直线CD 有公共点,求n 的取值范围.【专项突破】4.已知关于x 的方程mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m 取任何实数时,方程总有实数根;(2)若关于x 的二次方程y=mx2﹣(3m﹣1)x+2m﹣2=0 的图象经过坐标原点,求抛物线的解析式;(3)在直角坐标系xOy 中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b 与(2)中的函数图象只有两个交点时,求b 的取值范围.5.已知关于x 一元二次方程x2﹣2(k+1)x+k2﹣2k﹣3=0 有两个不相等的实数根(1)求k 取值范围;(2)当k 最小的整数时,求抛物线y=x2﹣2(k+1)x+k2﹣2k﹣3 的顶点坐标以及它与x 轴的交点坐标;(3)将(2)中求得的抛物线在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线y=x+m 有三个不同公共点时m 值.低点的纵坐标为﹣4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D,点P 是抛物线对称轴上一动点,记抛物线在点A,B之间的部分为图象G(包含A,B两点).如果直线DP与图象G恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.7.在平面直角坐标系xOy 中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x 轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A 的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D 之间的部分记为图象G(包含C,D 两点).若过点A 的直线y=kx+b(k≠0)与图象G 有两个交点,结合函数的图象,求k 的取值范围.点.(1)求抛物线的表达式;(2)抛物线y=﹣x2+bx+c 在第一象限内的部分记为图象G,如果过点P(﹣3,4)的直线y=mx+n(m≠0)与图象G 有唯一公共点,请结合图象,求n 的取值范围.9.在平面直角坐标系xOy 中,抛物线C1:y=x2+bx+c 与x 轴交于点A,B(点A 在点B 的左侧),对称轴与x轴交于点(3,0),且AB=4.(1)求抛物线C1 的表达式及顶点坐标;(2)将抛物线C1平移,得到的新抛物线C2的顶点为(0,﹣1),抛物线C1的对称轴与两条抛物线C1,C2 围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点B.若直线l 与图形M 有公共点,求k 的取值范围.【参考答案】1.在平面直角坐标系xOy 中,抛物线y=+2x﹣a+1 与y 轴交于C 点,与x 轴交于A,B两点(点A在点B左侧),且点A的横坐标为﹣1.(1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为P′,求点P′的坐标;(3)将抛物线在A,B两点之间的部分(包括A,B两点),先向下平移3个单位,再向左平移m(m>0)个单位,平移后的图象记为图象G,若图象G 与直线PP'无交点,求m 的取值范围.【分析】(1)把A(﹣1,0)代入抛物线解析式,列出关于a 的一元一次方程,通过解该方程求得a 的值;(2)根据(1)中抛物线解析式求得顶点P 的坐标,然后由关于原点对称的两点的横、纵坐标均互为相反数来求点P′的坐标;(3)由点P、P′的坐标求得直线PP′的解析式,然后根据平移的性质并结合图形进行答题.【解答】解:(1)∵A(﹣1,0)在抛物线上,∴,∴解得a=﹣2.(2)∴抛物线表达式为y=﹣x2+2x+3.∴抛物线y=﹣x2+2x+3的顶点P的坐标为(1,4).∴.∵点P 关于原点的对称点为P',∴P'的坐标为(﹣1,﹣4).(3)直线PP'的表达式为y=4x,图象向下平移3个单位后,A'的坐标为(﹣1,﹣3),B'的坐标为(3,﹣3),若图象G 与直线PP'无交点,则B'要左移到M 及左边,令y=﹣3 代入PP',则,M 的坐标为,∴,【点评】本题考查了二次函数图象与几何变换,待定系数法求二次函数解析式以及二次函数图象上点的坐标特征.此题中的点A 的坐标是隐含在题中的一个已知条件.2.抛物线y1=mx2+(m﹣3)x﹣3(m>0)与x 轴交于A、B 两点,且点A 在点B 的左侧,与y 轴交于点C,OB=OC.(1)求这条抛物线的表达式;(2)将抛物线y1 向左平移n(n>0)个单位,记平移后y 随着x 的增大而增大的部分为P,若点C 在直线y2=﹣3x+t 上,直线y2 向下平移n 个单位,当平移后的直线与P 有公共点时,求n 的取值范围.【分析】(1)由抛物线的解析式易求点C 的坐标,进而可求出点B 的坐标,把点B 的坐标代入抛物线的解析式可求出m 的值,则抛物线的解析式也可求出;(2)由点C 在直线y2=﹣3x+t 上,可知t=﹣3,若y1 向左平移n 个单位后,则表达式为:y3=(x﹣1+n)2﹣4,若y2 向下平移n 个单位后,则表达式为:y4=﹣3x﹣3﹣n,要使平移后直线与P 有公共点,则当x=1﹣n,y3≤y4,进而可求出n 的取值范围.【解答】解:(1)∵抛物线与y轴交于点C,∴C(0,﹣3).∵抛物线与x 轴交于A、B 两点,OB=OC,∴B(3,0)或B(﹣3,0).∵点A 在点B 的左侧,m>0,∴抛物线经过点B(3,0).∴0=9m+3(m﹣3)﹣3.∴m=1.∴抛物线的表达式为y1=x2﹣2x﹣3;(2)由(1)可知:y1=x2﹣2x﹣3=(x﹣1)2﹣4,∵点C 在直线y2=﹣3x+t 上,∴t=﹣3,∴y2=﹣3x﹣3,y1 向左平移n 个单位后,则表达式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n 时,y 随x 增大而增大,y2 向下平移n 个单位后,则表达式为:y4=﹣3x﹣3﹣n,要使平移后直线与P 有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1.【点评】此题主要考查了二次函数综合以及二次函数的平移、二次函数和坐标轴的交点问题以及二次函数增减性等知识,熟练掌握二次函数的各种性质特别是平行的性质是解题关键.3.已知关于x 的一元二次方程mx2+(3m+1)x+3=0.(1)求证:该方程有两个实数根;(2)如果抛物线y=mx2+(3m+1)x+3与x轴交于A、B两个整数点(点A在点B左侧),且m 为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y=mx2+(3m+1)x+3 与y 轴交于点C,点B 关于y 轴的对称点为D,设此抛物线在﹣3≤x≤﹣之间的部分为图象G,如果图象G 向右平移n (n>0)个单位长度后与直线CD 有公共点,求n 的取值范围.【分析】(1)先求出根的判别式△,判断△的取值范围,即可得证;(2)根据求根公式表示出两根,由题意,求出m 的值,可得抛物线的解析式;(3)点求出点A,B,C,D 的坐标,根据待定系数法求出直线CD 的解析式,设平移后,点A,E的对应点分别为A′(﹣3+n,0),E′(﹣+n,),根据点在直线上,求出取值范围即可.【解答】(1)证明:由根的判别式,可得:△=(3m+1)2﹣4×m×3=(3m﹣1)2,∵(3m﹣1)2≥0,∴△≥0,∴原方程有两个实数根;(2)解:令y=0,那么mx2+(3m+1)x+3=0,解得:x1=﹣3,x2=﹣,∵抛物线与x 轴两个交点的横坐标均为整数,且m 为正整数,∴m=1,∴抛物线的解析式为:y=x2+4x+3;(3)如图,∵当x=0 时,y=3,∴C(0,3),∵当y=0 时,x1=﹣3,x2=﹣1,又∵点A 在点B 的左侧,∴A(﹣3,0),B(﹣1,0),∵点D 与点B 关于y 轴对称,∴D(1,0),设直线CD 的解析式为:y=kx+b,∴,解得:,∴直线CD 的表达式为:y=﹣3x+3,又∵当x=﹣时,y=,∴点E(﹣,),∴平移后,点A,E的对应点分别为A′(﹣3+n,0),E′(﹣+n,),当直线y=﹣3x+3 经过点A′(﹣3+n,0)时,得:﹣3(﹣3+n)+3=0,解得:n=4,当直线y=﹣3x+3经过点E′(﹣+n,),时,得:﹣3(﹣+n)+3=,解得:n =,当抛物线与直线相切情况,此时n=∴n 的取值范围是≤n≤.【点评】本题主要考查一元二次方程的解法,抛物线与x 轴的交点及二次函数的图象的性质,熟知抛物线与x 轴的交点坐标的横坐标即相应的一元二次方程的解是解决此题的关键.4.已知关于x 的方程mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m 取任何实数时,方程总有实数根;(2)若关于x 的二次方程y=mx2﹣(3m﹣1)x+2m﹣2=0 的图象经过坐标原点,求抛物线的解析式;(3)在直角坐标系xOy 中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b 与(2)中的函数图象只有两个交点时,求b 的取值范围.【分析】(1)本题中,二次项系数m 的值不确定,分为m=0,m≠0 两种情况,分别证明方程有实数根.(2)抛物线经过原点,c=0,列出方程即可解决.(3)列出方程组,有两个交点,△>0,即可求出b 的取值范围.【解答】解:(1)分两种情况讨论.①当m=0 时,方程为x﹣2=0,x=2.∴m=0 时,方程有实数根.②当m≠0 时,则一元二次方程的根的判别式△=[﹣(3m﹣1)]2﹣4m(2m﹣2)=9m2﹣6m+1﹣8m2+8m=m2+2m+1=(m+1)2≥0,∴m≠0 时,方程有实数根.故无论m 取任何实数时,方程恒有实数根.综合①②可知,m 取任何实数,方程mx2﹣(3m﹣1)x+2m﹣2=0 恒有实数根;(2)∵抛物线y=mx2﹣(3m﹣1)x+2m﹣2 经过原点,∴2m﹣2=0,∴m=1,∴抛物线解析式为y=x2﹣2x.(3)函数图象如图所示,由消去y 得到x2﹣3x﹣b=0,∵两个函数图象有两个交点,∴△>O,∴9+4b>0,∴b>﹣时直线y=x+b 与(2)中的函数图象只有两个交点.【点评】本题考查了一元二次方程的根的情况,二次函数与对应的一元二次方程的联系,讨论一次函数与二次函数图象交点的情况,记住两个函数图象有两个交点,说明方程组有两组解,利用判别式解决问题,属于中考常考题型.5.已知关于x 一元二次方程x2﹣2(k+1)x+k2﹣2k﹣3=0 有两个不相等的实数根(1)求k 取值范围;(2)当k 最小的整数时,求抛物线y=x2﹣2(k+1)x+k2﹣2k﹣3 的顶点坐标以及它与x轴的交点坐标;(3)将(2)中求得的抛物线在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线y=x+m 有三个不同公共点时m 值.【分析】(1)根据一元二次方程x2﹣2(k+1)x+k2﹣2k﹣3=0 有两个不相等的实数根,可知根的判别式△>0,即可求出k 的取值范围;(2)根据k 的取值范围可得当k=0 时,为k 最小的整数,进而可求出顶点坐标以及它与x 轴的交点坐标;(3)(2)画出此函数图象后,可发现,若直线与新函数有3个交点,可以有两种情况:①直线经过原二次函数与x 轴的交点A(即左边的交点),可将A 点坐标代入直线的解析式中,即可求出m 的值;②原二次函数图象x 轴以下部分翻折后,所得部分图象仍是二次函数,该二次函数与原函数开口方向相反、对称轴相同、与x 轴的交点坐标相同,可据此判断出该函数的解析式,若直线与新函数图象有三个交点,那么当直线与该二次函数只有一个交点时,恰好满足这一条件,那么联立直线与该二次函数的解析式,可化为一个关于x 的一元二次方程,那么该方程的判别式△=0,根据这一条件可确定m 的取值.【解答】解:(1)由题意,得△=4(k+1)2﹣4(k2﹣2k﹣3)=16k+16>0,∴k>﹣1,∴k 的取值范围为k>﹣1;(2)∵k>﹣1,且k 取最小的整数,∴k=0.∴y=x2﹣2x﹣3=(x﹣1)2﹣4,则抛物线的顶点坐标为(1,﹣4),∵y=x2﹣2x﹣3 的图象与x 轴相交,∴0=x2﹣2x﹣3,∴解得:x=﹣1 或3,∴抛物线与x轴相交于A(﹣1,0),B(3,0);(3)翻折后所得新图象如图所示.平移直线y=x+m 知:直线位于l1 和l2 时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点A(﹣1,0),∴0=﹣1+m,即m=1.②当直线位于l2 时,此时l2 与函数y=﹣x2+2x+3 的图象有一个公共点,∴方程x+m=﹣x2+2x+3,即x2﹣x﹣3+m=0 有两个相等实根,∴△=1﹣4(m﹣3)=0,即m=.当m=时,x1=x2=满足﹣1≤x≤3,由①②知m=1 或m=.【点评】此题考查了二次函数图象与坐标轴交点及顶点坐标的求法、函数图象交点以及根据值域确定二次函数参数取值范围的问题,综合性强,难度较大.6.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(﹣1,a),B(3,a),且最低点的纵坐标为﹣4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D,点P 是抛物线对称轴上一动点,记抛物线在点A,B之间的部分为图象G(包含A,B两点).如果直线DP与图象G恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.【分析】(1)根据点A、B 的坐标可以得到对称轴方程为x=1,结合已知条件得到该抛物线的顶点坐标为(1,﹣4),则易求该抛物线的解析式;(2)通过图象可以看出点B 纵坐标t 的取值范围.【解答】解:(1)∵抛物线y=2x2+mx+n过点A(﹣1,a),B(3,a),∴抛物线的对称轴x=1.∵抛物线最低点的纵坐标为﹣4,∴抛物线的顶点是(1,﹣4).∴抛物线的表达式是y=2(x﹣1)2﹣4,即y=2x2﹣4x﹣2.把A(﹣1,a )代入抛物线表达式,求出a=4;(2)∵抛物线顶点C(1,﹣4)关于y 轴的对称点为点D,∴D(﹣1,﹣4).求出直线CD 的表达式为y=﹣4.求出直线BD 的表达式为y=2x﹣2,当x=1 时,y=0.所以﹣4<t≤0.【点评】本题考查了待定系数法求二次函数解析式,二次函数图象与几何变换.需要学生具备画图的能力和识别图形的能力,要熟练掌握.7.在平面直角坐标系xOy 中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x 轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A 的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D 之间的部分记为图象G(包含C,D 两点).若过点A 的直线y=kx+b(k≠0)与图象G 有两个交点,结合函数的图象,求k 的取值范围.【分析】(1)把一般式配成顶点式即可得到A 点坐标;(2)已知BC=4,由(1)可知抛物线对称轴为x=1,所以可知B 点坐标,将其代入抛物线方程可求得m 的值,于是得到抛物线解析式;②由m=1即可得到B(﹣1,0),C(3,0),再求出D(0,﹣3),画出抛物线,通过画图可得当k>0 时,直线y=kx+b 过A、C 时,k 最大;当k<0,直线y=kx+b 过A、D 时,k 最大,然后分别求出两直线解析式即可得到k 的范围.【解答】解:(1)y=mx2﹣2mx+m﹣4=m(x﹣1)2﹣4,所以抛物线的顶点A的坐标为(1,﹣4);(2)①∵BC=4,抛物线的对称轴为x=1,点 B 在点C 左侧,∴点B坐标为(﹣1,0),点C坐标为(3,0),将B(﹣1,0)代入y=m(x﹣1)2﹣4,得:0=4m﹣4,解得m=1所以抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3;②B(﹣1,0),C(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则D(0,﹣3),如图,当直线y=kx+b 过A、C 时,直线解析式为y=2x﹣6;当直线y=kx+b 过A、D 时,直线解析式为y=﹣x﹣3,所以若过点A 的直线y=kx+b(k≠0)与图象G 有两个交点,k 的取值范围为0<k≤2 或﹣1≤k<0.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和一次函数图象的性质.8.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点.,(1) 求抛物线的表达式;(2) 抛物线 y =﹣x 2+bx +c 在第一象限内的部分记为图象 G ,如果过点 P (﹣3,4)的直线 y =mx +n (m ≠0)与图象 G 有唯一公共点,请结合图象,求 n 的取值范围.【分析】(1)将点 A 、B 坐标代入二次函数解析式即可求得;(2)如图,先求出直线 PB 解析式.从而知其与 y 轴的交点 E ,由图象知过点 P 的直线与 y 轴交点在 C 、E (含点 C ,不含点 E )之间时,与图象 G 有唯一公共点,据此解答可得.【解答】解:(1)将 A 、B 两点的坐标代入抛物线的表达式中,得:, 解得∴抛物线的表达式为 y =﹣x 2+2x +3.(2)设抛物线 y =﹣x 2+2x +3 与 y 轴交于点 C ,则点 C 的坐标为(0,3).抛物线 y =﹣x 2+2x +3 的顶点坐标为(1,4).设直线 PB 解析式为 y =kx +b ,将点 P (﹣3,4)、B (3,0)代入,得:,∴直线 PB 的表达式为,∴与 y 轴交于点 E (0,2).∵直线 PD 平行于 x 轴,∴与 y 轴交于点 F (0,4).由图象可知,当过点 P 的直线与 y 轴交点在 C 、E (含点 C ,不含点 E )之间时,与图象G 有唯一公共点,另外,直线 PD 与图象 G 也有唯一公共点,但此时 m =0.∴n 的取值范围是 2<n ≤3.【点评】本题主要考查待定系数法求二次函数的解析式及二次函数图象上的点的坐标特征,根据函数图象得出过点的直线与图象 G 有唯一公共点时,与 y 轴交点的范围是解题的关键,9. 在平面直角坐标系 xOy 中,抛物线 C 1:y =x 2+bx +c 与 x 轴交于点 A ,B (点 A 在点 B 的左侧),对称轴与 x 轴交于点(3,0),且 AB =4.(1) 求抛物线 C 1 的表达式及顶点坐标;(2) 将抛物线 C 1 平移,得到的新抛物线 C 2 的顶点为(0,﹣1),抛物线 C 1 的对称轴与两条抛物线 C 1,C 2 围成的封闭图形为 M .直线 l :y =kx +m (k ≠0)经过点 B .若直线 l 与图形 M 有公共点,求 k 的取值范围.,解得:【分析】(1)利用对称轴与x轴交于点(3,0),AB=4可得A,B坐标,将A,B坐标代入y=x2+bx+c 可得解析式,化为顶点式可得顶点坐标;(2)利用平移后的C2的顶点为(0,﹣1),可得抛物线C2的解析式,易得抛物线C1的对称轴x=3 与抛物线C2 的交点E,当直线l 过点B(5,0)和点D(3,﹣4)时,代入y=kx+m(k≠0)可得k BD,将点B(5,0)和点E(3,8)代入y=kx+m(k≠0)可得k BE,易得k 的取值范围.【解答】解:(1)∵抛物线C1的对称轴与x轴交于点(3,0),∴抛物线C1 的对称轴为直线x=3.又∵AB=4,∴A(1,0),B(5,0).∴解得∴抛物线C1 的表达式为y=x2﹣6x+5.即y=(x﹣3)2﹣4.∴抛物线C1的顶点为D(3,﹣4).(2)∵平移后得到的新抛物线C2的顶点为(0,﹣1),∴抛物线C2 的表达式为y=x2﹣1.∴抛物线C1 的对称轴x=3 与抛物线C2 的交点为E(3,8)①当直线l 过点B(5,0)和点D(3,﹣4)时,得解得k BD=2.②当直线l 过点B(5,0)和点E(3,8)时,得解得k BE=﹣4,∴结合函数图象可知,k 的取值范围是﹣4≤k≤2 且k≠0.【点评】本题主要考查了二次函数的性和二次函数图象与几何变换,利用代入法求交点是解答此题的关键.第21页(共21页)。
高三数学一次函数与二次函数试题答案及解析
高三数学一次函数与二次函数试题答案及解析1.已知函数.(1)当时,求函数的极值;(2)若函数在区间上是减函数,求实数a的取值范围;(3)当时,函数图象上的点都在所表示的平面区域内,求实数a的取值范围.【答案】(1)极大值;(2);(3).【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将代入中,对求导,令,,判断函数的单调性,所以当时,函数取得极值;第二问,将题目转化为在上恒成立,再转化为在上恒成立,再转化为,利用配方法求函数的最小值,解出a的取值范围;第三问,将题目转化为当时,不等式恒成立,即,讨论a的值,在每一种情况下判断单调性,求函数最值,验证.试题解析:(1)当时,,,由解得,由解得,故当时,的单调递增;当时,单调递减,∴当时,函数取得极大值.(2),∵函数在区间上单调递减,∴在区间上恒成立,即在上恒成立,只需2a不大于在上的最小值即可. 6分而,则当时,,∴,即,故实数a的取值范围是. 8分(3)因图象上的点在所表示的平面区域内,即当时,不等式恒成立,即恒成立,设(),只需即可.由,(ⅰ)当时,,当时,,函数在上单调递减,故成立.(ⅱ)当时,由,令,得或,①若,即时,在区间上,,函数在上单调递增,函数在上无最大值,不满足条件;②若,即时,函数在上单调递减,在区间上单调递增,同样在上无最大值,不满足条件.(ⅲ)当时,由,因,故,则函数在上单调递减,故成立.综上所述,实数a的取值范围是. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的极值.2.若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于________.【答案】1【解析】函数f(x)=x2-ax-a的图像为开口向上的抛物线,∴函数的最大值在区间的端点取得,∵f(0)=-a,f(2)=4-3a,∴或解得a=1.3.已知a、b为非零向量,,若,当且仅当时,取得最小值,则向量a、b的夹角为___________.【答案】【解析】设向量的夹角为,则,构造函数,因为当且仅当时,取得最小值,所以当时,函数有最小值,即时,函数有最小值,又,所以解得.【考点】1.向量;2.二次函数.4.已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.(1)求f(1)的值;(2)证明:a>0,c>0;(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.【答案】(1)f(1)=1. (2)见解析(3)见解析【解析】(1)解∵对x∈R,f(x)-x≥0恒成立,当x=1时,f(1)≥1,又∵1∈(0,2),由已知得f(1)≤=1,∴1≤f(1)≤1.∴f(1)=1.(2)证明∵f(1)=1,∴a+b+c=1.又∵a-b+c=0,∴b=.∴a+c=.∵f(x)-x≥0对x∈R恒成立,∴ax2-x+c≥0对x∈R恒成立.∴,∴∴c>0,故a>0,c>0.(3)证明∵a+c=,ac≥,由a>0,c>0及a+c≥2,得ac≤,∴ac=,当且仅当a=c=时,取“=”.∴f(x)=x2+x+.∴g(x)=f(x)-mx=x2+x+=[x2+(2-4m)x+1].∵g(x)在[-1,1]上是单调函数,∴2m-1≤-1或2m-1≥1.∴m≤0或m≥1.5.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题6.已知是虚数单位,以下同)是关于的实系数一元二次方程的一个根,则实数,.【答案】【解析】由题意是方程的另一根,因此,,.【考点】实系数二次方程的复数根.7.若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是________.【答案】2【解析】Δ=m2+8>0(m∈R),x2-x1==≥28.已知函数f(x)=(1)若x<a时,f(x)<1恒成立,求a的取值范围;(2)若a≥-4时,函数f(x)在实数集R上有最小值,求实数a的取值范围.【答案】(1)a≤log2(2)a>时,函数f(x)有最小值【解析】(1)因为x<a时,f(x)=4x-4×2x-a,所以令t=2x,则有0<t<2a.当x<a时f(x)<1恒成立,转化为t2-4×<1,即>t-在t∈(0,2a)上恒成立.令p(t)=t-,t∈(0,2a),则p′(t)=1+>0,所以p(t)=t-在(0,2a)上单调递增,所以≥2a-,所以2a≤,解得a≤log2.(2)当x≥a时,f(x)=x2-ax+1,即f(x)=+1-,当≤a时,即a≥0时,f(x)=f(a)=1;min当>a时,即-4≤a<0,f(x)=f=1-.min当x<a时,f(x)=4x-4×2x-a,令t=2x,t∈(0,2a),则h(t)=t2-t=-,=h=-;当<2a,即a> 时,h(t)min当≥2a,即a≤时,h(t)在开区间t∈(0,2a)上单调递减,h(t)∈(4a-4,0),无最小值.综合x≥a与x<a,所以当a> 时,1>-,函数f(x)=-;min当0≤a≤时,4a-4<0<1,函数f(x)无最小值;当-4≤a<0时,4a-4<-3≤1-,函数f(x)无最小值.综上所述,当a>时,函数f(x)有最小值.9.设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x +n)≥f(x),则称f(x)为M上的n高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是________.【答案】[2,+∞)【解析】即(x+k)2≥x2在[-1,+∞)上恒成立,即2kx+k2≥0在x∈[-1,+∞)上恒成立,故实数k满足2k>0且-2k+k2≥0,解得k≥2.10.已知函数的值域是,则实数的取值范围是 ( )A.;B.;C.;D..【答案】C【解析】二次函数的图象是开口向下的抛物线,最大值为4,且在时取得,而当或时,,(也可考虑在是单调递增,在上单调递减),故本题中的取值范围是.【考点】二次函数的的值域.11.已知向量,,其中.函数在区间上有最大值为4,设.(1)求实数的值;(2)若不等式在上恒成立,求实数的取值范围.【答案】(1)1;(2) .【解析】(1)通过向量的数量积给出,利用数量积定义求出,发现它是二次函数,利用二次函数的单调性可求出;(2)由此,不等式在上恒成立,观察这个不等式,可以用换元法令,变形为在时恒成立,从而,因此我们只要求出的最小值即可.下面我们要看是什么函数,可以看作为关于的二次函数,因此问题易解.试题解析:(1)由题得又开口向上,对称轴为,在区间单调递增,最大值为4,所以,(2)由(1)的他,令,则以可化为,即恒成立,且,当,即时最小值为0,【考点】(1)二次函数的单调性与最值;(2)换元法与二次函数的最小值.12.如图,长为20m的铁丝网,一边靠墙,围成三个大小相等、紧紧相连的长方形,那么长方形长、宽、各为多少时,三个长方形的面积和最大?【答案】小长方形的长和宽分别是,2.5时,三个长方形的面积最大为25.【解析】通过假设小长方形的一边再根据周长为20m,即可表示出小长方形的另一边.因为这三个长方形是大小相等长方形,所以可以表示出三个长方形的面积和并求出面积的最大值.本小题主要是以二次函数的最值为知识点形成一个简单的应用题.试题解析:设长方形长为x m,则宽为 m,所以,总面积= =.所以,当时,总面积最大,为25,此时,长方形长为 2.5 m,宽为 m.【考点】1.二次函数的应用.2.二次最的求法.13.已知点,点在曲线:上.(1)若点在第一象限内,且,求点的坐标;(2)求的最小值.【答案】(1);(2).【解析】 (1) 本小题可以通过坐标法来处理,首先根据点在第一象限内设其(),然后根据两点间距离公式,再结合点在曲线:上,联立可解得,即点的坐标为;(2) 本小题根据(1)中所得其中代入可得(),显然根据二次函数可知当时,.试题解析:设(),(1)由已知条件得 2分将代入上式,并变形得,,解得(舍去)或 4分当时,只有满足条件,所以点的坐标为 6分(2)其中 7分() 10分当时, 12分(不指出,扣1分)【考点】1.坐标法;2.二次函数求最值14.已知数列满足且是函数的两个零点,则等于()A.24B.32C.48D.64【解析】由题意,则,两式相除,所以成等比数列,成等比数列,而,则,所以,又,所以.故选D【考点】1.二次函数根与系数的关系;2.等比数列的性质.15.已知定义在R上的偶函数f(x)满足:∀x∈R恒有f(x+2)=f(x)-f(1).且当x∈[2,3]时,(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围为f(x)=-2(x-3)2.若函数y=f(x)-loga___________.【答案】.【解析】由题意得当时,即,又函数为偶函数,则有,所以,则有,可知函数的周期为2,并且当时,,可得函数在上的图像如图所示,要使在上至少有三个零点,则,且,所以,即,则.【考点】二次函数和对数函数的图像与性质.16.设不等式的解集为M.(1)如果,求实数的取值范围;(2)如果,求实数的取值范围.【答案】(1)或;(2).【解析】本题考查含参一元二次不等式的解法及二次函数图像的性质等基础知识,考查转化思想、分类讨论思想等数学思想方法.第一问,由于抛物线开口向上,要使不等式的解集不为,只需;第二问,一元二次不等式含参数,对应的一元二次方程是否有解取决于,所以本问讨论的三种情况,在每一种情况下,求出方程的根,写出不等式的解集,利用子集关系列出不等式,求的取值范围.试题解析:(1),,∴或. 4分(2)①当,即时,,满足题意; 6分②当时,或,时,,不合题意;时,,满足题意; 8分③当,即或时,令,要使,只需, 10分得,综上,. 12分【考点】1.二次函数的判别式;2.含参一元二次不等式的解法.17.已知函数的定义域是R,则实数的取值范围是( )A.(0,2)B.(-2,2)C.[-2,2]D.【解析】由已知得,恒成立,所以,解得.【考点】二次函数的图像与性质18.椭圆的左右焦点分别为、,点是椭圆上任意一点,则的取值范围是()A.B.C.D.【答案】D【解析】由椭圆定义知,,且椭圆的长轴长为,焦距为,所以,令,则,令,由二次函数的性质可知,函数在处取得最大值,即,函数在或处取得最小值,由于,故,即的取值范围是,故选D.【考点】1.椭圆的定义;2.二次函数的最值19.已知二次函数,满足,且,若在区间上,不等式恒成立,则实数m的取值范围为 .【答案】【解析】由可知,那么,所以由,化简整理得:,所以有,,所以二次函数的解析式为:.由已知得在区间上,不等式恒成立,即恒成立,只要即可.又,对称轴是,开口向上,所以函数在区间是单调递减的,所以函数在区间上的最小值是:,所以.【考点】1.求二次函数的解析式;2.二次函数的图像与性质;3.二次函数在闭区间上的最值;4.函数与不等式的恒成立问题20.已知函数,若且对任意实数均有成立.(1)求表达式;(2)当是单调函数,求实数的取值范围.【答案】(1);(2).【解析】本题考查导数的运算以及二次函数的判别式、单调性等基础知识,考查运算能力和分析问题解决问题的能力,考查数形结合思想.第一问,对求导得到解析式,因为,所以得到,又因为恒成立,所以,两式联立解出和,从而确定解析式;第二问,先利用第一问的结论,得到的解析式,再根据二次函数的单调性,确定对称轴与区间端点的大小关系解出的取值.试题解析:(1)∵,∴.∵,∴,∴,∴.∵恒成立,∴∴∴,从而,∴.(6分)(2) .∵在上是单调函数,∴或,解得,或.∴的取值范围为.(12分)【考点】1.导数的运算;2.二次函数的性质.21.设,二次函数的图象为下列之一,则的值为()A.B.C.1D.【答案】D【解析】因为,故对称轴不可能为轴,由给出的图可知对称轴在轴右侧,故,所以二次函数的图象为第三个图,图象过原点,故又,所以,选D.【考点】二次函数图象和性质.22.函数.若的定义域为,求实数的取值范围.【答案】.【解析】由的定义域为可知恒成立,这时要分和两种情况讨论,当时,比较简单,易得结果,当时,函数为二次函数,要使恒成立,由二次函数的图象应有,,如此便可求出的取值范围.试题解析:(1)当时,,的定义域为,符合题意;(2)当时,,的定义域不为,所以;(3)当时,的定义域为知抛物线全部在轴上方(或在上方相切),此时应有,解得;综合(1),(2),(3)有的取值范围是.【考点】二次函数、函数的定义域.23.二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.【答案】(1);(2).【解析】(1)根据二次函数满足条件,及,可求,,从而可求函数的解析式;(2)在区间上,的图象恒在的图象上方,等价于在上恒成立,等价于在上恒成立,求出左边函数的最小值,即可求得实数的取值范围.试题解析:(1)由,令,得;令,得.设,故解得故的解析式为.(2)因为的图像恒在的图像上方,所以在上,恒成立.即:在区间恒成立.所以令 ,故在上的最小值为,∴ .【考点】二次函数的性质.24.已知函数是二次函数,不等式的解集是,且在区间上的最大值为12.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【答案】(1);(2)①当,即时,;②当时,;③当,即时,.【解析】(1)由题意先设函数的解析式,再由条件解其中的未知数,可得二次函数解析式;(2)由(1)知函数的解析式,可得函数的对称轴为,再讨论对称轴是在区间上,还是在区间外,分别得的表达式.试题解析:(1)是二次函数,且的解集是可设 2分在区间上的最大值是由已知,得 5分. 6分(2)由(1)知,开口向上,对称轴为, 8分①当,即时,在上是单调递减,所以; 10分②当时,在上是单调递减,所以; 12分③当,即时,在对称轴处取得最小值,所以. 14分【考点】1、二次函数的解析式的求法;2、二次函数的性质.25.设为实数,则___________【答案】4【解析】本题先得到x的范围,然后利用配方法将关于x的二次函数配方,进而求出最大值。
专题5二次函数与一次函数的关系1(含解析)
专题5 二次函数与一次函数的关系1一、单选题(共6小题)1.直线y1=x+1与抛物线y2=﹣x2+3的图象如图,当y1>y2时,x的取值范围为()A.x<﹣2 B.x>1 C.﹣2<x<1 D.x<﹣2或x>12.若二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则常数k的值为()A.1 B.±1 C.﹣1 D.3.已知二次函数y=(a﹣1)x2﹣2x+1的图象与x轴有两个交点,则a的取值范围是()A.a<2 B.a>2 C.a<2且a≠1 D.a<﹣24.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.65.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),则下列说法错误的是()A.a+c=0B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2 C.当函数在x<时,y随x的增大而减小D.当﹣1<m<n<0时,m+n<6.如图是抛物线y=﹣(x+1)2+k的部分图象,其顶点为M,与y轴交于点(0,3),与x轴的一个交点为A,连接MO,MA.以下结论:①k=3;②抛物线经过点(﹣2,3);③S△OMA=4;④当x=﹣3+时,y>0.其中正确的是()A.①③B.②③C.①④D.②④二、填空题(共8小题)7.若二次函数y=x2+2x+a的图象与x轴有两个不相同的交点,则a的取值范围是.8.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=.9.二次函数y=ax2+bx+c(a≠0)中的自变量x与函数值y的部分对应值如下表:x…﹣﹣1﹣01…y…﹣﹣2﹣﹣2﹣0…则ax2+bx+c=0的解为﹣.10.如图,若抛物线y=ax2+h与直线y=kx+b交于A(3,m),B(﹣2,n)两点,则不等式ax2﹣b<kx﹣h的解集是﹣.11.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=.12.已知抛物线y=x2+(m+1)x﹣m﹣2(m>0)与x轴交于A、B两点,与y轴交于点C,不论m取何正数,经过A、B、C三点的⊙P恒过y轴上的一个定点,则该定点的坐标是.13.如图,抛物线的对称轴为直线x=1,点P、Q是抛物线与x轴的两个交点,点P在点Q的右侧,如果点P的坐标为(4,0),那么点Q的坐标为﹣.14.已知点P(x0,m),Q(1,n)在二次函数y=(x+a)(x﹣a﹣1)(a≠0)的图象上,且m<n下列结论:①该二次函数与x轴交于点(﹣a,0)和(a+1,0);②该二次函数的对称轴是x=;③该二次函数的最小值是(a+2)2;④0<x0<1.其中正确的是.(填写序号)三、解答题(共6小题)15.抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表x…﹣2﹣1012…y…0﹣4﹣408…(1)试确定该抛物线的对称轴及当x=﹣3时对应的函数值;(2)试确定抛物线y=ax2+bx+c的解析式.16.如图,抛物线y=﹣x2+bx+c与x轴负半轴交于点A,正半轴交于点B,OA=2OB=4.求抛物线的顶点坐标.17.如图,若二次函数y=x2﹣x﹣2的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点.(1)求A,B两点的坐标;(2)若P(m,﹣2)为二次函数y=x2﹣x﹣2图象上一点,求m的值.18.已知抛物线y=x2﹣4x+3(1)写出抛物线的开口方向,对称轴和顶点坐标;(2)求抛物线与x轴的交点坐标;(3)当y>0时,直接写出x的取值范围.19.如图,对称轴为直线x=﹣2的抛物线y=x2+bx+c与x轴交于A(﹣5,0),B(1,0)两点,与y轴相交于点C.(1)求抛物线的解析式,并求出顶点坐标.(2)若点P在抛物线上,且S△POC=4S△BOC,求出点P的坐标.20.已知抛物线y1=ax2+bx﹣3(a≠0)经过点(﹣2,﹣3).(1)若点A(1,m),B(3,n)为抛物线上的两点,比较m,n的大小.(2)当x≥﹣2时,y1≤﹣2,求抛物线的解析式.(3)无论a取何值,若一次函数y2=a2x+m总经过y1的顶点,求证:m≥﹣.专题5 二次函数与一次函数的关系1参考答案一、单选题(共6小题)1.【分析】根据函数图象,写出直线在抛物线上方部分的x的取值范围即可.【解答】解:由图可知,x<﹣2或x>1时,y1>y2.故选:D.【点评】本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.2.【分析】根据二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,可知当y=0时的△=0,从而可以求得k的值,本题得以解决.【解答】解:∵二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,∴当y=0时,0=kx2+2x﹣1,则△=22﹣4×k×(﹣1)=0,解得,k=﹣1,故选:C.【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.【分析】根据抛物线与x轴的交点问题得到△=22﹣4(a﹣1)>0,a﹣1≠0,然后解不等式即可.【解答】解:由题意得:,解得:.故选:C.【点评】本题考查了抛物线与x轴的交点,△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.4.【分析】利用判别式的意义得到△=42﹣4n=0,然后解关于n的方程即可.【解答】解:根据题意得△=42﹣4n=0,解得n=4,故选:C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程;△=b2﹣4ac决定抛物线与x轴的交点个数.5.【分析】A.把M、N的坐标代入解析式得到两个三元一次方程,进而可求得a+c的值,B.令y=0,求出△,判断图象与x轴的交点个数,根据根的个数与根的判别式的关系得解;C.求出对称轴,然后结合a的取值范围判断;D.根据a的取值范围,判断的箱号便可得结果.【解答】解:∵函数经过点M(﹣1,2)和点N(1,﹣2),∴a﹣b+c=2,a+b+c=﹣2,∴a+c=0,b=﹣2,∴A正确;∵c=﹣a,b=﹣2,∴y=ax2﹣2x﹣a,∴△=4+4a2>0,∴无论a为何值,函数图象与x轴必有两个交点,∵x1+x2=,x1x2=﹣1,∴|x1﹣x2|=2>2,∴B正确;二次函数y=ax2+bx+c(a>0)的对称轴x=﹣=,当a>0时,不能判定x<时,y随x的增大而减小;∴C错误;∵﹣1<m<n<0,a>0,∴m+n<0,>0,∴m+n<;∴D正确,故选:C.【点评】本题考查了抛物线与x轴的交点,交点坐标和系数的关系,熟悉抛物线的对称性及抛物线与x轴的交点坐标是本题的关键.6.【分析】①y=﹣(x+1)2+k=﹣x2﹣2x+k﹣1,故k﹣1=3,则k=4,即可求解;②函数的对称轴为:x=﹣1,故点(﹣2,3)在抛物线上,即可求解;③S△OMA===2≠4,即可求解;④x=﹣3+<﹣3,故y>0,即可求解.【解答】解:①y=﹣(x+1)2+k=﹣x2﹣2x+k﹣1,故k﹣1=3,则k=4,顶点为:(﹣1,4),故①错误,不符合题意;②函数的对称轴为:x=﹣1,故点(﹣2,3)在抛物线上,故符合题意;③S△OMA===2≠4,故不符合题意;④x=﹣3+<﹣3,故y>0,符合题意;故选:D.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.二、填空题(共8小题)7.【分析】由题意得:△=b2﹣4ac=4﹣4a>0,即可求解.【解答】解:由题意得:△=b2﹣4ac=4﹣4a>0解得:a<1,故答案为:a<1.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.8.【分析】利用抛物线与x轴的交点问题得到m2﹣m﹣1=0,则m2﹣m=1,然后利用整体代入的方法计算m2﹣m+5的值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=6.故答案为6.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.9.【分析】由二次函数y=ax2+bx+c(a≠0)过点(﹣1,﹣2),(0,﹣2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.【解答】解:∵二次函数y=ax2+bx+c(a≠0)过点(﹣1,﹣2),(0,﹣2),∴此抛物线的对称轴为:直线x=﹣,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(﹣2,0),∴ax2+bx+c=0的解为:x=﹣2或1.故答案为:x=﹣2或1.【点评】此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.10.【分析】根据二次函数和一次函数的图象和性质即可求解.【解答】解:∵抛物线y=ax2+h与直线y=kx+b交于A(3,m),B(﹣2,n)两点,∴不等式ax2﹣b<kx﹣h的解集为﹣2<x<3,故答案为:﹣2<x<3.【点评】本题考查了二次函数和不等式、二次函数与一次函数的交点,解决本题的关键是利用图象解决问题.11.【分析】y=0时可求出A、B两点的坐标,则可得线段AB的长,再求出顶点C的纵坐标.即可求出△ABC的面积.【解答】解:y=0时,0=x2﹣4x+3,解得x1=3,x2=1∴线段AB的长为2,∵与y轴交点C(0,3),∴以AB为底的△ABC的高为3,∴S△ABC=×2×3=3,故答案为:3.【点评】此题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确的得出有关点的坐标是解决问题的关键.12.【分析】根据已知条件得到求出OA=2,OB=m+2,OC=m+2,判断出∠OCB=∠OAF,根据三角函数的定义即可得到结论.【解答】解:令y=0,∴x2+(m+1)x﹣m﹣2=0,∴(x﹣1)[x+(m+2)]=0,∴x=1或x=﹣(m+2),∴A(1,0),B(﹣m﹣2,0),∴OA=1,OB=m+2,令x=0,∴y=﹣m﹣2,∴C(0,﹣m﹣2),∴OC=m+2,如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB===1,在Rt△AOF中,tan∠OAF===1,∴OF=1,∴点F的坐标为(0,1);故答案为:(0,1).【点评】此题主要考查了一元二次方程的根的判别式,圆周角定理,锐角三角函数,勾股定理,求出点A,B,C的坐标是解本题的关键.13.【分析】根据抛物线的对称轴结合点P的横坐标,即可求出点Q的横坐标,此题得解.【解答】解:∵抛物线的对称轴为直线x=1,点P的坐标为(4,0),∴点Q的横坐标为1×2﹣4=﹣2,∴点Q的坐标为(﹣2,0).故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点以及二次函数的性质,牢记抛物线的对称性是解题的关键.14.【分析】先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.【解答】解:①∵二次函数y=(x+a)(x﹣a﹣1),∴当y=0时,x1=﹣a,x2=a+1,即该二次函数与x轴交于点(﹣a,0)和(a+1,0).故①结论正确;②对称轴为:x==.故②结论正确;③由y=(x+a)(x﹣a﹣1)得到:y=(x﹣)2﹣(a+)2,则其最小值是﹣(a+)2,故③结论错误;④当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得0<x0≤;当P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,所求x0的取值范围0<x0<1.故④结论正确.故答案是:①②④.【点评】本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.三、解答题(共6小题)15.【分析】(1)根据抛物线的对称性质求得对称轴方程x==﹣,由图象的对称性质知当x=﹣3与x=2时所对应的函数值相等.(2)设抛物线解析式为y=a(x+2)(x﹣1)(a≠0),将点(0,﹣4)代入求得a的值,然后将该抛物线解析式转化为一般式即可.【解答】解:(1)由图表中的数据知,当x=﹣1与x=0所对应的函数值相等,则其对称轴方程x==﹣,由图象的对称性质知当x=﹣3与x=2时所对应的函数值相等,即当x=﹣3时对应的函数值是8;(2)根据表格中的数据知,抛物线与x轴的两交点坐标是(﹣2,0)、(1,0),故设抛物线解析式为y=a(x+2)(x﹣1)(a≠0),将点(0,﹣4)代入,得a(0+2)(0﹣1)=﹣4解得a=2故该抛物线解析式是:y=2(x+2)(x﹣1)=2x2+2x﹣4,即y=2x2+2x﹣4.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【分析】先写出A、B点的坐标,然后利用交点式写出抛物线解析式,再利用配方法得到抛物线的顶点坐标.【解答】解:∵OA=2OB=4,∴B(2,0),A(﹣4,0),∴抛物线解析式为y=﹣(x+4)(x﹣2),即y=﹣x2﹣2x+8,∵y=﹣(x+1)2+9,∴抛物线的顶点坐标为(﹣1,9).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.17.【分析】(1)解方程x2﹣x﹣2=0可得A,B两点的坐标;(2)把P(m,﹣2)代入y=x2﹣x﹣2得m2﹣m﹣2=﹣2,然后解关于m的方程即可.【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x1=﹣1,x2=2,∴A(﹣1,0),B(2,0);(2)把P(m,﹣2)代入y=x2﹣x﹣2得m2﹣m﹣2=﹣2,解得m1=0,m2=1,∴m的值为0或1.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.18.【分析】(1)先把一般式配成顶点式,然后根据二次函数的性质解决问题;(2)通过解方程x2﹣4x+3=0得抛物线与x轴的交点坐标;(3)写出抛物线在x轴上方所对应的自变量的范围.【解答】解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,所以抛物线的开口向上,抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1);(2)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以抛物线与x轴的交点坐标为(1,0),(3,0);(3)当x<1或x>3时,y>0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.19.【分析】(1)把A、B两点坐标代入,根据待定系数法可求得抛物线解析式,进而可求出顶点坐标;(2)根据S△POC=4S△BOC,可得P到OC的距离是OB的4倍,可得P点的横坐标,根据自变量与函数值的对应关系,进而得到点P的坐标.【解答】解:(1)把A(﹣5,0),B(1,0)两点代入y=x2+bx+c得,解得:,∴抛物线解析式为y=x2+4x﹣5,∴顶点坐标为(﹣2,9);(2)由S△POC=4S△BOC,得P到OC的距离是OB的4倍,即P点的横坐标为4或﹣4,当x=4时,y=42+4×4﹣5=19,P1(4,19)当x=﹣4时,y=(﹣4)2+2×(﹣4)﹣5=5,即P2(﹣4,3),综上所述:P1(4,19),P2(﹣4,3).【点评】本题考查了待定系数法求二次函数解析式,利用S△POC=4S△BOC得P到OC的距离是OB的4倍是解题关键.20.【分析】(1)抛物线y1=ax2+2ax﹣3,将点A、B坐标分别代入上式得:m=3a﹣3,n=9a+6a﹣3=12a﹣3,即可求解;(2)当x≥﹣2时,y1≤﹣2,则a<0,抛物线的顶点坐标为:(﹣1,﹣3﹣a),即﹣3﹣a=﹣2,解得:a=﹣1,即可求解;(3)y1的顶点坐标代入y2=a2x+m得:m=a2﹣a﹣3,∵1>0,故m有最大值,此时,a=,最小值为﹣,即可求解.【解答】解:(1)将点(﹣2,﹣3)坐标代入抛物线y1的表达式得:﹣3=4a﹣2b﹣3,解得:b=2a,故抛物线y1=ax2+2ax﹣3,将点A、B坐标分别代入上式得:m=3a﹣3,n=9a+6a﹣3=12a﹣3,故当a>0时,m<n,当a<0时,m>n;(2)当x≥﹣2时,y1≤﹣2,则a<0,抛物线的顶点坐标为:(﹣1,﹣3﹣a),即﹣3﹣a=﹣2,解得:a=﹣1,故抛物线的表达式为:y1=﹣x2﹣2x﹣3;(3)y1的顶点坐标代入y2=a2x+m得:m=a2﹣a﹣3,∵1>0,故m有最小值,此时,a=时,最小值为﹣,故m≥﹣.【点评】本题考查的是二次函数与不等式(组),要求学生对二次函数基本性质、不等式的求解非常熟悉,其中(3),用函数最值的方式求解m的取值范围,比较新颖.。
一次函数与二次函数的综合应用题
一次函数与二次函数的综合应用题一、引言在数学中,一次函数和二次函数是我们经常遇到的两种函数类型。
一次函数以y = ax + b的形式呈现,其中a和b是常数,而x是自变量。
二次函数则以y = ax^2 + bx + c的形式表达,其中a、b和c都是常数,而x依然是自变量。
本文将基于一次函数和二次函数,介绍它们在实际问题中的综合应用。
二、一次函数的综合应用1. 直线的运动一次函数可以应用于描述直线的运动情况。
假设有一个小车匀速地沿直线前进,设x表示时间(单位:秒),y表示小车距离起点的距离(单位:米),小车的速度为v(单位:米/秒)。
则可以建立起以下一次函数表示小车的位置:y = vx通过该函数,我们可以轻松计算在不同时间点小车的位置,并预测未来的移动情况。
2. 商品价格和销量的关系一次函数还可以应用于描述商品价格和销量之间的关系。
假设某商品的售价为p(单位:元),销量为s(单位:件),根据市场调研,得到以下一次函数表达式:s = -ap + b通过该函数,我们可以研究价格对销量的影响,并进行销售策略的调整。
三、二次函数的综合应用1. 抛体运动二次函数常用于描述抛体在空中的轨迹。
假设有一个物体以初速度v0竖直向上抛出,设x表示时间(单位:秒),y表示物体的高度(单位:米),加速度为g(单位:米/秒^2)。
则可以建立起以下二次函数表示物体的高度:y = -0.5gt^2 + v0t通过该函数,可以计算物体在不同时间点的高度,并分析物体的抛体运动规律。
2. 二次方程的解析二次函数也可以用于解决实际问题中的二次方程。
一个经典的例子是求解一个矩形地块的最大面积。
假设矩形地块的长度为x米,宽度为y米,已知周长为p米。
可以建立以下方程:2x + 2y = p根据周长的限制条件,我们可以得出以下表达式:x = (p-2y)/2,进而得到矩形地块的面积表达式:A = xy = (p-2y)y通过求解该二次函数的极值,即可得到矩形地块的最大面积。
高二数学一次函数与二次函数试题答案及解析
高二数学一次函数与二次函数试题答案及解析1.在自然条件下,某草原上野兔第n年年初的数量记为xn ,该年的增长量yn和 xn与的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,(1)证明:;(2)用 xn 表示xn+1;并证明草原上的野兔总数量恒小于m.【答案】(1)详见解析;(2),证明用数学归纳法,过程详见解析.【解析】(1)由已知可得yn 是xn的一个二次函数,利用配方法,注意到就可证明;(2)由已知有该年的增长量,所以第n+1年年初的的数量xn+1=xn+yn,代入即可用xn 表示xn+1;证明草原上的野兔总数量恒小于m,即证对一切非零自然数n,都有xn<m,可考虑用数学归纳法来证明:当n=1时显然成立;再假设当时,命题成立,则对n=k+1时,由于是xk的一个二次函数,结合二次函数的性质,可证成立,从而有对一切正整数n,,即是草原上的野兔总数量恒小于m.试题解析:(1)由题意知,配方得:∵∴当且仅当时,取得最大值,即(5分)(2)(8分)用数列归纳法证明:当n=1时,由题意知,故命题成立假设当时,命题成立是xk的一个二次函数,有对称轴,开口向下,由,则,于是在上均有=m取,即知,∴当时,命题成立,综上知,对一切正整数n,这就是说该草原上的野兔数量不可能无限增长(13分)【考点】1函数的概念;2.二次函数;3.数学归纳法.2.已知是方程的两根,且,,,求的最大值与最小值之和为().A.2B.C.D.1【答案】A【解析】设,根据题意,有,即则直角坐标平面内以为坐标的点的集合对应的区域如下图所示:则的值可看作是过动点和定点的直线的斜率;由图可知,,所以,的最大值与最小值之和为2.故选A【考点】1、一元二次方程根的分布;2、二元一次不等式所表示的平面区域;3、直线的斜率;4、数形结合.3.函数在上是增函数,则的取值范围是_【答案】(-∞,-6]【解析】由于函数在上是增函数,那么二次函数对称轴为,即可知只要,故答案为(-∞,-6]【考点】二次函数单调性点评:解题的关键是理解给定的区间是二次函数增区间的子区间,属于基础题。
二次函数与一次函数综合应用题赏析
二次函数与一次函数综合应用题赏析二次函数与一次函数是初中阶段两个非常重要的学习内容,同时也是各类考试的考查热点,综合考查两者的应用性问题就是其中常见的一类.下面给出两例,供大家复习时参考.例1 汽车在行驶中,由于惯性,刹车后还要向前滑行一段距离才能停住,我们称这段距离为刹车距离.刹车距离是分析事故的一个重要因素.在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米.查有关资料知,甲种车的刹车距离S 甲(米)与车速x (千米/时)之间有下列关系:20.10.01S x x =+甲;乙种车的刹车距离S 乙(米)与车速x (千米/时)的关系如图1所示.请你就两车的速度方面分析相碰的原因.解析:这是一例数学物理结合型应用性问题.综合考查二次函数与一次函数知识,以及数形结合,待定系数等思想方法.由12S =甲,可得:20.10.0112x x +=,解方程得123040x x ==-, (不合题意,舍去),∴甲车不超速;由图1知,可设乙车的刹车距离S 乙(米)与车速x (千米/时)的关系为S kx =乙,又∵60x =时,15S =乙,∴1560k =.解得14k =,∴14S x =乙,由1012S <<乙得1101 24x <<,∴40 48x <<.∴乙车超速.综上所述,就两车速度方面分析,相撞的原因在于乙车超速行驶.例2 某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和成本进行了调研,结果如下:每件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图2),每件商品的成本Q (元)与时间t (月)的关系可用一条抛物线的一部分上的点来表示(如图3).请你根据图象提供的信息回答:(1)每件商品在3月份出售时的利润(利润=售价-成本)是多少元?(2)求图3中表示的每件商品的成本Q (元)与时间t (月)之间的函数关系式(不要求写出自变量的取值范围);(3)你能写出三月份至七月份每件商品的利润W (元)与时间t (月)之间的函数关系式吗?(请写出计算过程,不要求写自变量的取值范围)若该公司共有此种商品30 000件,准备在一个月全部售完,请你计算一下至少可获利多少元.解析:该例是一道取材于商品销售的市场经济问题,除了考查二次函数与一次函数外,还涉及数形结合,配方法,待定系数及方程思想,综合性较强.(1)结合图2,图3信息易知每件商品在3月份出售时的利润为615-=(元);(2)由图3知:可设Q 与t 的关系式为2(6)4Q a t =-+,又∵3t =时,1Q =,∴2(36)41a -+=,∴13a =-.∴21(6)43Q t =--+; (3)由图2可设M kt b =+,∵3t =时,66M t ==,时,8M =,∵3668k b k b +=⎧⎨+=⎩,,解方程组得234k b ⎧=⎪⎨⎪=⎩,,∴243M t =+,∴2214(6)433W M Q t t ⎛⎫⎡⎤=-=+---+ ⎪⎢⎥⎝⎭⎣⎦ 221212(6)(1236)3333t t t t t =-+=-++221111(1036)(5)333t t t =-+=-+.当5t =时,113W =最小.∴30 000件商品一个月内售完,至少获利1130 000110 0003⨯=元.。
高三数学一次函数与二次函数试题答案及解析
高三数学一次函数与二次函数试题答案及解析1.设函数f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集为(-1,3).(1)求a,b的值;(2)若函数f(x)在x∈[m,1]上的最小值为1,求实数m的值.【答案】(1)a=-1,b=4 (2)1-【解析】(1)由条件得,解得:a=-1,b=4.(2)f(x)=-x2+2x+3,对称轴方程为x=1,∴f(x)在x∈[m,1]上单调递增.∴x=m时,f(x)=-m2+2m+3=1,min解得m=1±.∵m<1,∴m=1-.2.设为坐标原点,给定一个定点,而点在正半轴上移动,表示的长,则中两边长的比值的最大值为.【答案】【解析】由题意得:当时,取最大值,为.【考点】二次函数最值3.已知关于x的一元二次函数(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间[上是增函数的概率;(2)设点(,)是区域内的随机点,求函数上是增函数的概率.【答案】(1);(2)【解析】(1)考查古典概型,满足条件的是5个,总的基本事件个数是15个,求两者的比即可;(2)考查几何概型,求出满足条件的区域面积比上总的区域面积即可.试题解析:(1)∵函数的图象的对称轴为要使在区间上为增函数,当且仅当>0且,若=1则=-1;若=2则=-1,1;若=3则=-1,1;∴事件包含基本事件的个数是1+2+2=5,∴所求事件的概率为. 6分(2)由(1)知当且仅当且>0时,函数上为增函数,依条件可知试验的全部结果所构成的区域为,构成所求事件的区域为三角形部分.由∴所求事件的概率为. 12分【考点】(1)古典概型;(2)几何概型.4.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0【答案】A【解析】由f(0)=f(4)>f(1),可得函数图象开口向上,即a>0,且对称轴-=2,所以4a+b=0,故选A.5.对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是() A.(1,3)B.(-∞,1)∪(3,+∞)C.(1,2)D.(3,+∞)【答案】B【解析】f(x)=x2+(a-4)x+4-2a=(x-2)a+x2-4x+4,令g(a)=(x-2)a+x2-4x+4,由题意知即解得x>3或x<1,故选B.6.二次函数f(x)的二次项系数为正,且对任意x恒有f(2+x)=f(2-x),若f(1-2x2)<f(1+2x-x2),则x的取值范围是.【答案】(-2,0)【解析】【思路点拨】由题意知二次函数的图象开口向上,且关于直线x=2对称,则距离对称轴越远,函数值越大,依此可转化为不等式问题.解:由f(2+x)=f(2-x)知x=2为对称轴,由于二次项系数为正的二次函数中距对称轴越远,函数值越大, ∴|1-2x2-2|<|1+2x-x2-2|,即|2x2+1|<|x2-2x+1|,∴2x2+1<x2-2x+1,∴-2<x<0.7.“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【答案】(1)不能获利,政府每月至少补贴元;2、每月处理量为400吨时,平均成本最低.【解析】(1)该项目利润等于能利用的生物柴油价值与月处理成本的差,当时,,故,故该项目不会获利,而且当时,获利最大为,故政府每月至少不要补贴元;(2)每吨的平均处理成本为,为分段函数,分别求每段的最小值,再比较各段最小值的大小,取较小的那个值,为平均成本的最小值.试题解析:(1)当时,设该项目获利为,则,所以当时,.因此,该项目不会获利.当时,取得最大值,∴政府每月至少需要补贴元才能使该项目不亏损.(2)由题意可知,食品残渣的每吨平均处理成本为:①当时,,∴当时,取得最小值240;②当时,.当且仅当,即时,取得最小值200.∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.【考点】1、分段函数;2、二次函数的值域;3、基本不等式.8.已知点,点在曲线:上.(1)若点在第一象限内,且,求点的坐标;(2)求的最小值.【答案】(1);(2).【解析】 (1) 本小题可以通过坐标法来处理,首先根据点在第一象限内设其(),然后根据两点间距离公式,再结合点在曲线:上,联立可解得,即点的坐标为;(2) 本小题根据(1)中所得其中代入可得(),显然根据二次函数可知当时,.试题解析:设(),(1)由已知条件得 2分将代入上式,并变形得,,解得(舍去)或 4分当时,只有满足条件,所以点的坐标为 6分(2)其中 7分() 10分当时, 12分(不指出,扣1分)【考点】1.坐标法;2.二次函数求最值9.已知数列满足且是函数的两个零点,则等于()A.24B.32C.48D.64【答案】D【解析】由题意,则,两式相除,所以成等比数列,成等比数列,而,则,所以,又,所以.故选D【考点】1.二次函数根与系数的关系;2.等比数列的性质.10.已知函数若命题“”为真,则m的取值范围是___.【答案】【解析】命题“”为真,即方程有两个不相等的实数根,且至少有一个正根.因为函数为二次函数,开口向上,且.所以.即m的取值范围是.【考点】一元二次方程根的分布、命题11.设函数在区间上是增函数,则实数的最小值为 .【答案】【解析】函数的图象开口向上,对称轴为,由其在上是增函数得,所以,所以实数的最小值为.【考点】二次函数的单调性.12.已知二次函数,满足,且,若在区间上,不等式恒成立,则实数m的取值范围为 .【答案】【解析】由可知,那么,所以由,化简整理得:,所以有,,所以二次函数的解析式为:.由已知得在区间上,不等式恒成立,即恒成立,只要即可.又,对称轴是,开口向上,所以函数在区间是单调递减的,所以函数在区间上的最小值是:,所以.【考点】1.求二次函数的解析式;2.二次函数的图像与性质;3.二次函数在闭区间上的最值;4.函数与不等式的恒成立问题13.已知函数和.其中.(1)若函数与的图像的一个公共点恰好在轴上,求的值;(2)若和是方程的两根,且满足,证明:当时,.【答案】(1);(2)证明过程详见解析.【解析】本题考查一次函数与二次函数图像的关系以及作差法比较大小证明不等式问题,考查学生分析问题解决问题的能力.第一问,先求与轴的交点,由已知得此交点同时也在图像上,所以代入到解析式中,解出的值;第二问,作差法比较与的大小,再用作差法比较与的大小.试题解析:(1)设函数图象与轴的交点坐标为,又∵点也在函数的图象上,∴.而,∴.(4分)(2)由题意可知.∵,∴,∴当时,,即.(8分)又,,且,∴,∴,综上可知,.(13分)【考点】1.作差法比较大小;2.一次函数、二次函数.14.已知函数在区间上有最大值3,最小值2,则的取值范围是( ) A.B.C.D.【答案】D【解析】,当时取最小值2,又.作出其图象如图所示:结合图形可知:的取值范围是.【考点】二次函数的最值.15.函数.若的定义域为,求实数的取值范围.【答案】.【解析】由的定义域为可知恒成立,这时要分和两种情况讨论,当时,比较简单,易得结果,当时,函数为二次函数,要使恒成立,由二次函数的图象应有,,如此便可求出的取值范围.试题解析:(1)当时,,的定义域为,符合题意;(2)当时,,的定义域不为,所以;(3)当时,的定义域为知抛物线全部在轴上方(或在上方相切),此时应有,解得;综合(1),(2),(3)有的取值范围是.【考点】二次函数、函数的定义域.16.二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.【答案】(1);(2).【解析】(1)根据二次函数满足条件,及,可求,,从而可求函数的解析式;(2)在区间上,的图象恒在的图象上方,等价于在上恒成立,等价于在上恒成立,求出左边函数的最小值,即可求得实数的取值范围.试题解析:(1)由,令,得;令,得.设,故解得故的解析式为.(2)因为的图像恒在的图像上方,所以在上,恒成立.即:在区间恒成立.所以令 ,故在上的最小值为,∴ .【考点】二次函数的性质.17.已知二次函数.(1)若对任意、,且,都有,求证:关于的方程有两个不相等的实数根且必有一个根属于;(2)若关于的方程在上的根为,且,设函数的图象的对称轴方程为,求证:.【答案】(1)详见解析;(2)详见解析.【解析】(1)先构造新函数,利用证明方程有两个不相等的实数根,然后利用存在定理证明方程必有一个根属于,即利用来证明;(2)将的代入方程得到的表达式,结合证明.试题解析:(1)构造函数,由于函数为二次函数,所以,对于二次函数而言,,若,则有且有,从而有,这与矛盾,故,故方程有两个不相等,由于,,所以,由零点存在定理知,方程必有一个根属于;(2)由题意知,化简得,即,则有,,由于,则,故,即.【考点】1.二次方程根的个数的判断;2.零点存在定理;3.二次函数图象的对称轴18.若函数有两个零点,其中,那么在两个函数值中 ( ) A.只有一个小于1B.至少有一个小于1C.都小于1D.可能都大于1【答案】B【解析】若则不妨设,于是即,作图如图所示,显然可以发现点满足的区域有,于是,即在两个函数值中至少有一个小于1.【考点】本小题主要考查根的分布、零点、函数的图象等知识点,考查学生的理解、分析能力19.已知函数,若,且,则的最小值是 .【答案】【解析】画出函数图象,从图象上可知,所以由可得,所以,设,,当时,,当时,,所以函数在上的最小值为.【考点】二次函数、导数的应用.20.如果函数在区间上是减函数,那么实数的取值范围是()A.B.C.D.【答案】A.【解析】由二次函数在区间上为减函数,则,即.【考点】二次函数的性质.21.函数在区间上是增函数,则的取值范围是( )A.B.C.D.【答案】A【解析】函数的增区间为 ,由已知可得⋯①,⋯②由①②得: .【考点】二次函数的单调区间,不等式运算.22.对一元二次方程的两个根的情况,判断正确的是A.一根小于1,另一根大于3B.一根小于-2,另一根大于2C.两根都小于0D.两根都大于2【答案】A【解析】,所以该方程的两个根一个小于1,一个大于3.【考点】本小题主要考查一元二次方程的根的判断.点评:解决本小题的关键是根据已知条件得出,通过解一元二次不等式即可得根的情况,要注意数形结合的应用.23.(本题满分12分)设函数f(x)=x3-ax2+3x+5(a>0).(1)已知f(x)在R上是单调函数,求a的取值范围;(2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.【答案】(1) 0<a≤6 ;(2) [15,+∞).【解析】(1)f′(x)=3x2-ax+3, 2分其判别式Δ=a2-36.当0<a≤6时,f′(x)≥0恒成立, 4分此时f(x)在R上为增函数. 6分(2)a=2时,f′(x)=3x2-2x+3>0恒成立,因此f(x)在(-∞,+∞)上是增函数, 8分从而f(x)在[1,2]上递增,则f(x)=f(2)=15, 10分max要使f(x)≤m在x∈[1,2]上恒成立,只需15≤m,解得m∈[15,+∞).故m的取值范围是[15,+∞). 12分【考点】利用导数研究函数的单调性。
一次函数和二次函数综合应用
一次函数的奇偶 性:一次函数为 奇函数当且仅当 函数的图像关于 原点对称,即满 足f(-x)=-f(x)。
二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0 二次函数的对称轴为x=-b/2a,顶点坐标为(-b/2a, f(-b/2a)) 二次函数的开口方向由系数a决定,当a>0时,开口向上;当a<0时,开口向下 二次函数的最值出现在其顶点处,即f(-b/2a)
掌握基础知识:理解函数的概念、性质和图像,是提高解题能力的基础。 练习经典题型:通过练习经典题型,熟悉各种题型的特点和解题方法,提高解题的熟练度和速度。 归纳解题思路:对于不同类型的题目,归纳总结出相应的解题思路,形成自己的解题方法体系。
善于总结经验:在解题过程中,不断总结经验,发现自己的不足之处,及时调整学习方法,提高解题能力。
实际案例:一次函数和二次函数在 实际生产和生活中的应用实例
一次函数和二次函数的概 念和性质
一次函数和二次函数的图 像和性质
一次函数和二次函数的应 用题
一次函数和二次函数在数 学竞赛中的常见题型
PART FOUR
速度、时间、路程 问题
利润、成本、售价 问题
几何、面积问题
抛物线、最值问题
理解题意:仔细 阅读题目,明确 已知条件和未知 量。
大值
二次函数与x轴 交点个数由判别 式Δ决定,Δ>0 时有两个交点, Δ=0时有一个交 点,Δ<0时没有
交点
PART THREE
一次函数的应用:计算银行利息、 预测股票走势等
综合应用:解决实际问题,如最优 化问题、线性规划问题等
添加标题
添加标题
添加标题
添加标题
二次函数的应用:计算物体运动轨 迹、解决抛物线问题等
中考二次函数应用题(及答案解析)
中考二次函数应用题(及答案解析)二次函数应用题1.2022年2月,北京冬奥会成功举办,吉祥物纪念品等深受人们喜爱.某商店在冬奥会前购进数量相同的甲、乙两种纪念品,分别花费10400元,14000元,已知乙种纪念品比甲种纪念品每个进价多9元.(1)求甲、乙两种纪念品每个的进价.(2)经销中发现,甲种纪念品每个售价46元时,每天可售40个,乙种纪念品每个售价45元时,每天可售80个,商店决定甲种纪念品降价,乙种纪念品提价.结果甲种纪念品单价降1元可多卖4个,乙种纪念品单价提1元就少卖2个,若某天两种纪念品共销售140个,则这天最大利润是多少?2.2022年冬奥会成功在北京张家口举行,奥林匹克精神鼓舞了越来越多的年轻人从事冰雪运动,在长8m ,高6m 的斜面上,滑雪运动员P 从顶端腾空而起,最终刚好落在斜面底端,其轨迹可视为抛物线的一部分.按如图方式建立平面直角坐标系,设斜面所在直线的函数关系式为1y kx b =+,运动员轨迹所在抛物线的函数关系式为2214y ax x c =++,设运动员P 距离地面的高度为()m h ,腾空过程中离开斜面的距离为()m d ,回答下列问题:(1)分别求出1y 、2y 与x 之间的函数关系式;(2)求出d 的最大值和此时点P 的坐标.3.因为疫情,体育中考中考生进入考点需检测体温.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下: 时间x (分钟) 01 2 3 4 5 6 7 8 9 915x <≤ 人数y (人) 0 170 320 450 560 650 720 770 800 810 810 (1)研究表中数据发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x 之间的函数关系式.(2)如果考生一进考点就开始排队测量体温,体温检测点有2个,每个检测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?4.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?5.冰墩墩(BingDwenDwen ).是2022年北京冬季奥运会的吉样物.它将银猫形象与富有超能量的冰晶外壳结合.头部外壳造型取自冰雪运动头盔.装饰彩色光环.整体形象酷似航天员.冬奥会期间.某商家开始古样物“冰墩墩“纪含品的销售.每个纪念品进价40元.规定销售单价不低于44元.且不高于52元.销售期间发现.当销售单价定为44元时.每天可出售300个.销售单价每上涨1元.每天销量减少10个.现商家决定提价销售.设每天销售量为y 个.销售单价为x 元(1)求当每个纪念品的销售单价是多少元时.商家每天获利2400元:(2)将纪念品的销售单价定为多少元时.商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?6.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 7.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆;(2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?8.某市政府大力扶持大学生创业,小明在政府的扶持下投资销售一种进价为每千克6元的农产品.销售过程中发现,每天的销售量y (千克)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示,另外在销售过程中小明每天需要支付其他费用200元. 销售单价x (元/千克) 1011 销售量y (千克) 300 270(1)求y 与x 的函数关系式:(2)根据物价部门的规定,这种农产品的销售单价不得高于12元,那么如何定价才能使小明每天获得的纯利润最大?最大纯利润是多少元?9.为了优化人居环境、提升城市品质,某小区准备在空地上新建一个边长为8m 的正方形花坛;如图,该花坛由4块全等的小正方形组成.在小正方形ABCD 中,O 为对称中心,点E 、F 分别在AB 、AD 上,AE =AF ,G 、H 分别为BE 、DF 的中点.(1)设m AE x =,请用x 的代数式表示四边形OHFG 的面积S (单位:2m );(2)已知:小正方形ABCD 中,在△AFG 、四边形OHFG 内分别种植不同的花卉,每平方米的种植成本分别是80元、60元;其余部分种植草坪,每平方米的种植成本为95元.若另外的3块正方形区域也按相同方式种植,问:在这个花坛内种植花卉和草坪至少需要花费多少元?10.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.经调查,若该商品每降价0.5元,每天可多销售4件,设每件商品的售价下降x 元,每天的销售利润为w 元.(1)求w 与x 的函数关系式;(2)每天要想获得510元的利润,每件应降价多少元?(3)每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?【参考答案】二次函数应用题1.(1)甲、乙两种纪念品每个进价分别为26元、35元(2)2000元【解析】【分析】(1)设甲种纪念品每个进价为m 元,则乙种纪念品每个进价为()9m +元,根据购进甲乙两种纪念品的数量相等列出方程即可求解;(2)设甲种纪念品每个降价x 元,则每天销售甲种纪念品()404x +个,进而每天销售乙种纪念品140(404)(1004)x x -+=-个,表示出乙种纪念品的单价提高了多少元,最后利用甲乙两种纪念品的利润和等于一天的总利润列出函数关系式求解即可.(1)解:设甲种纪念品每个进价为m 元,则乙种纪念品每个进价为()9m +元 由题意,得10400140009m m =+.解得26m =.经检验26m =是原方程的解.此时935m +=.即甲、乙两种纪念品每个进价分别为26元、35元.(2)解:设甲种纪念品每个降价x 元,则每天销售甲种纪念品()404x +个.进而每天销售乙种纪念品140(404)(1004)x x -+=-个.比原来销售80个少(420)x -个,因此乙种纪念品的单价提高了(210)x -元.设每天的销售毛利为y 元,则(4626)(404)[4535(210)](1004)y x x x x =--++-+--.整理,得212(10)2000(520)y x x =--+≤≤.当10x =时,y 取得最大值,最大值为2000.即这一天销售的最大利润是2000元.【点睛】本题考查了分式方程的应用及二次函数性质的应用求最大值问题,解题的关键是理解题意,找出题目中数量关系,列出方程或函数关系式.2.(1)1364y x =-+,2211684y x x =-++; (2)max 85d =m ,P (4,5) 【解析】【分析】(1)把点(8,0)和(0,6)分别代入直线的函数关系式1y kx b =+,运动员轨迹所在抛物线的函数关系式2214y ax x c =++,,进而得出答案; (2)设与抛物线2211684y x x =-++相切,且与1364y x =-+平行的直线:334y x h =-+,那么切点就是所求的点P ,直线1364y x =-+与直线334y x h =-+之间的距离就是所求的距离.(1)解:把点(8,0)和(6,0)代入直线 1y kx b =+得,806k b b +=⎧⎨=⎩ 解得346k b ⎧=-⎪⎨⎪=⎩ ∴1364y x =-+把点(8,0)和(6,0)代入抛物线2214y ax x c =++得, 210=8846a c c⎧⨯+⨯+⎪⎨⎪=⎩ 解得186a c ⎧=-⎪⎨⎪=⎩ ∴2211684y x x =-++ (2)解:设与抛物线2211684y x x =-++相切的直线为334y x h =-+, 联立2y 与3y 得:211684x x -++34x h =-+, 化简得:20168x x h ++-=- ∵抛物线2y 与直线3y 相切∴20168x x h ++-=-有两个相等的实数根 ∴ ∆=114()(8)08h -⨯-⨯-= 解得8h =∴3384y x =-+ 联立抛2y 和3y 解得:45x y =⎧⎨=⎩ 此时点P 的坐标为(4,5)如图,过点A 作AC ⊥直线3y ,垂足为点C ,∵ 直线AC 与直线1y 垂直且过点A (0,6)∴直线AC 的解析式为4463y x =+联立3y 和4y 得34384463y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩解得242518225x y ⎧=⎪⎪⎨⎪=⎪⎩∴ 点C 的坐标为(2425,18225) 线段AC 的长度就是所求的 d ,max 408255d ===. 【点睛】本题考查了一次函数和二次函数图像的综合题,解题的关键是数形结合,熟练掌握抛物线的三种解析式,特别是顶点式;还要注意当直线与抛物线相切时距离最大;两条直线互相垂直的直线:121k k =-.3.(1)210180y x x =-+(2)排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)2【解析】【分析】(1)利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当x =7时,w 的最大值=490,当9<x ≤15时,210≤w <450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.(1)根据表格中数据可知,当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx ,将()()1,1703450,,代入,得 17093450a b a b =⎧⎨=⎩++ 解得:10180a b =-⎧⎨=⎩, ∴9分钟内y 与x 之间的函数关系式()21018009y x x x =-≤≤+; (2)设第x 分钟时的排队人数为w 人,()810915y x =<≤由题意可得:w =y −40x =210140(09)81040(915)x x x x x ⎧-≤≤⎨-≤⎩+<, ①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490,∴当x =7时,w 的最大值=490,②当9<x ≤15时,w =810−40x ,w 随x 的增大而减小,∴210≤w <450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x =0,解得:x =20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m 个检测点,由题意得:12×20(m +2)≥810,解得m ≥118, ∵m 是整数,∴m ≥118的最小整数是2, ∴一开始就应该至少增加2个检测点.【点睛】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y 与x 之间的函数关系式是本题的关键.4.(1)213482y x x =-++ (2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【解析】【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可. (1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得: 2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩,∴抛物线C 2的函数解析式为:213482y x x =-++; (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得: ﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1, 整理得:(m ﹣12)(m +4)=0,解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.5.(1)50元(2)52元;2640元【解析】【分析】(1)根据题意直接写出y 与x 之间的函数关系式和自变量的取值范围,根据销售量×(售价-进价)=2400,解方程求出在自变量范围内的解即可;(2)根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(1)解:由题意得:300104410740y x x =--=-+(), ∴y 与x 之间的函数关系式为107404452y x x =-+≤≤();当获利2400元时,由题意得:10740402400x x -+-=()(), 整理得:211432000x x -+=,解得:125064x x ==,,∵4452x ≤≤,∴50x =,∴当每个纪念品的销售单价是50元时,商家每天获利2400元;(2)根据题意得:2210740401011402960010572890w x x x x x =-+-=-+-=--+()()() ,∵-10<0,∴当57x <时,w 随x 的增大而增大,∵4452x ≤≤,∴当52x =时,w 有最大值,最大值为2640,∴将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润最大,最大利润是2640元.【点睛】本题考查了二次函数在实际生活中的应用以及一元二次方程的应用,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在2b x a=-时取得. 6.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.7.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=, ∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 8.(1)y =-30x +600(2)当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元【解析】【分析】(1)根据待定系数法设y =kx +b (k ≠0),代入数值组成二元一次方程组求解即可;(2)设每天获得的纯利润为W 元,可列出二次函数表达式,根据二次函数的性质可得.(1)解:设y =kx +b (k ≠0)根据题意得:10+=30011+=270k b k b ⎧⎨⎩, 解得:=-30=600k b ⎧⎨⎩∴y =-30x +600(2)解:设每天获得的纯利润为W 元,根据题意得:W =(-30x +600)(x -6) -200=-30x 2+780x -3800=-30(x -13)2+1270∵-30<0∴抛物线开口向下∵抛物线对称轴为x =13,销售单价不得高于12元∴当x ≤12时,W 随x 的增大而增大∴当x =12时,W 有最大值,W 最大值=-30× (12-13)2+1270=1240 (元)答:当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元【点睛】本题考查的是求一次函数的解析式和二次函数的应用,学会用待定系数法求解析式和求最大值是解题的关键.9.(1)21=44S x -+ (2)5475元【解析】【分析】(1)分别计算出AGF 和四边形AGOH 的面积即可得到答案;(2)首先计算出正方形ABCD 中种草坪部分的面积,再根据题意可用x 表示出总共的花费,最后根据二次函数的性质即得出答案.(1)解:∵AE x =,4AB =∴4BE x =-, ∴122EG BG x ==-, ∴112222AG AE EG x x x =+=+-=+, ∴2111()224122AGF AG A S F x x x x =⋅=⨯=++. ∵O 为对称中心,∴O 到AD 的距离等于O 到AB 的距离等于422=, ∴1=22242AGO AHO AGO AGOH S S G x S S A +==⋅⋅⨯+=四边形 ∴2211=4()444A OH GF AG S S x Sx x x -=+-+=-+四边形; (2) 解:在正方形ABCD 中,种植草坪的面积为221144()(4)1244AGF ABCD S S x S x x x --=⨯-+--+=-正方形, ∴在正方形ABCD 中,需要费用为2221180()60(4)95(12)515138044x x x x x x ++-++-=-+, ∴在这个花坛内种植花卉和草坪需要花费2224(5151380)2060552020(3)5475x x x x x -+=-+=-+.∴当3x =时,在这个大正方形花坛内种植花卉和草坪所需的总费用最低,为5475元.【点睛】本题考查了二次函数的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出等式.10.(1)w =−8x 2+32x +480;(2)每件商品应降价2.5元;(3)每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【解析】【分析】(1)设每件商品应降价x 元,由每件利润×销售数量=每天获得的利润可列出关于x 的关系式;(2)根据题意列出一元二次方程,解方程可得答案;(3)把w 关于x 的函数解析式配方成顶点式,再利用二次函数的性质可得答案.(1)解:由题意得w =(40−30−x )(4×0.5x +48)=−8x 2+32x +480, 答:w 与x 的函数关系式是w =−8x 2+32x +480;(2)解:由题意得,510=−8x 2+32x +480,解得:x 1=1.5,x 2=2.5,所以为尽快减少库存每件商品应降价2.5元;答:每天要想获得510元的利润,每件应降价2.5元.(3)解:∵w =−8x 2+32x +480=−8(x −2)2+512,∴当x =2时,w 有最大值512,此时售价为40−2=38(元),答:每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【点睛】此题主要考查了二次函数的应用,一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。
高一数学一次函数与二次函数试题答案及解析
高一数学一次函数与二次函数试题答案及解析1.已知函数是定义在R上的偶函数,且当时,.(1)现已画出函数在y轴左侧的图象,如图所示,请补出完整函数的图象,并根据图象写出函数的增区间;(2)求出函数的解析式和值域.【答案】(1)(﹣1,0),(1,+∞),图像见试题解析;(2),值域为。
【解析】(1)偶函数的图像关于轴对称,根据函数在y轴左侧的图象可以画出在在y轴右侧的图象,根据图像可写出的增区间。
(2)因为时,.则设,则,根据偶函数的定义,可求出的解析式,函数是分段函数,在各段上都是二次函数,利用配方法可求出的值域.试题解析:(1)因为函数为偶函数,故图象关于y轴对称,补出完整函数图象如图.所以的递增区间是(﹣1,0),(1,+∞). 6分由于函数为偶函数,则,又当时,.设x>0,则﹣x<0,所以时,,故的解析式为.由知的值域为 13分【考点】(1)偶函数的定义及图像的性质;(2)利用配方法求函数的值域。
2.已知二次函数,不等式的解集为.(1)求的解析式;(2)若函数在上单调,求实数的取值范围;(3)若对于任意的x∈[-2,2],都成立,求实数n的最大值.【答案】(1) ,(2)(3)-21.【解析】(1) 根据一元二次方程的根与一元二次不等式的解集关系,可列出两个独立条件,求出解析式. 依题得,为方程的两个实根,(2)二次函数单调性主要研究对称轴与定义区间相对位置关系,在上单调,二次函数开口向上,对称轴(3)恒成立问题,一般利用变量分离转化为最值问题. 依题得,只要,设当时,实数n的最大值为解:(1)依题得,为方程的两个实根,(2分)(4分)(5分)(2)在上单调,又二次函数开口向上,对称轴,(7分)(10分)(3)依题得,(12分)只要,(13分)设当时,(15分)(16分)【考点】一元二次方程的根与一元二次不等式的解集关系,二次函数单调性,不等式恒成立3.已知二次函数的二次项系数为,且不等式的解集为(1,3).⑴若方程有两个相等实数根,求的解析式.⑵若的最大值为正数,求实数的取值范围.【答案】(1),(2).【解析】(1)求二次函数解析式,一般用待定系数法,如何设二次函数解析式是解题关键.本题设零点式比较到位. ∵二次函数的二次项系数为,且不等式解集为(1,3),∴可设,且∴,由方程得,∵方程有两个相等的实根,∴或,而,∴从而,(2)由∴解得或.解:⑴∵二次函数的二次项系数为,且不等式解集为(1,3),∴可设,且 2分∴由方程得, 4分∵方程有两个相等的实根,∴或,而,∴从而 6分⑵由∴ 8分∴解得或 11分∴实数的取值范围是. 12分【考点】二次函数解析式4.已知,是R上的增函数,那么的取值范围是()A.B.C.D.【答案】A【解析】根据题题意:有解得故选A.【考点】1.分段函数的单调性;2.对数函数、一次函数的单调性.5.已知函数(),若的定义域和值域均是,则实数=【答案】2【解析】函数的对称轴为且开口向上,所以函数在单调递减,故【考点】二次函数的对称轴、开口方向、单调性、定义域、值域.6.若函数的定义域为,值域为,则实数的取值范围是 .【答案】【解析】解:配方可得:,当时,,当时,【考点】本题考查二次函数在闭区间上的最值,考查函数的定义域与值域,考查了配方法的应用.7.已知函数(Ⅰ)令,求关于的函数关系式及的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的的值.【答案】(Ⅰ)函数关系式,的取值范围(Ⅱ)函数的值域为,.【解析】(Ⅰ)先利用对数的运算性质转化成关于的函数,然后利用换元法转化为,最后通过解不等式求出t的范围.(Ⅱ)利用数形结合的方法观察出值域,同时指明函数取得最小值时的的值.本题最好的的方法就是数形结合,这样就比较直观的通过图像找出函数的最小值以及函数取得最小值时的的值.数形结合的方法是高考涉及到的重要的一种思想方法.试题解析:(Ⅰ).............2分令则,即 2分又,即(Ⅱ)由(Ⅰ),数形结合得当时,,当时, 2分函数的值域为 2分当时,,即, 2分【考点】1、对数的运算性质;2、数形结合的方法;3、二次函数求值域8.已知函数(1)若在[-3,2]上具有单调性,求实数的取值范围。
策略与技巧初中数学解题技巧解析二次函数与一次函数题
策略与技巧初中数学解题技巧解析二次函数与一次函数题策略与技巧:初中数学解题技巧解析解析二次函数与一次函数题初中数学对于很多学生来说是一个具有挑战性的科目。
尤其是在解决涉及二次函数和一次函数的问题时,很多学生常常感到困惑。
然而,只要我们掌握了一些解题的策略与技巧,就能更加轻松地应对这些题目。
在本文中,我们将探讨解析二次函数和一次函数题的一些实用技巧,帮助我们更好地理解和解决这类数学问题。
一、二次函数问题解析1. 确定函数的类型:先观察题目中给出的函数形式,判断是否为二次函数。
例如,当函数形式为y=ax^2+bx+c时,就可以判断为二次函数。
2. 求函数的导数:为了研究二次函数的凹凸性和最值等性质,我们需要求出函数的导数。
由于二次函数的导数仍然是一个一次函数,因此其求导的过程相对简单。
3. 找到顶点和对称轴:一般情况下,二次函数的顶点坐标对应着函数的最值。
通过求导可得到二次函数的对称轴,从而快速找到顶点的横坐标。
4. 求解方程:当涉及到求二次函数的零点时,我们可以使用因式分解、配方法或求根公式等方式。
这些方法皆可根据具体情况选择使用,以达到最简解。
二、一次函数问题解析1. 确定函数的类型:先观察题目中给出的函数形式,判断是否为一次函数。
例如,当函数形式为y=kx+b时,就可以判断为一次函数。
2. 画出函数图像:通过给定的斜率k和截距b,我们可以确定一次函数的直线方向和位置。
将该直线绘制在坐标系上可以帮助我们更好地理解问题并得出解答。
3. 运用函数性质:一次函数在凸性、最值等方面没有二次函数那么复杂,因此可以直接考虑函数性质。
例如,当x的系数为正数时,函数图像将上升;当x的系数为负数时,函数图像将下降。
4. 运用直线性质:根据直线性质,我们可以利用两点的坐标或一点的坐标与直线的斜率来解题。
通过求解方程组或利用一元一次方程可以计算出未知数的值。
综上所述,解析二次函数和一次函数题需要掌握一些基本的策略与技巧。
运用数学思想解决二次函数一次函数及方程等综合问题
运用数学思想解决二次函数一次函数及方程等综合问题数学思想是解决各种数学问题的基础,数学的各个分支都离不开数学思想。
二次函数、一次函数和方程是高中数学中的重要内容,其中许多问题需要运用数学思想才能得以解决。
一、二次函数问题1、最值问题对于二次函数$f(x)=ax^2+bx+c(a≠0)$,最值问题是常见的问题之一。
通过求导或者配方法可以得到二次函数的顶点坐标。
但是,在实际问题中,经常需要通过变量代换或者条件限制等方式来解决最值问题。
例如,某面积为$S$的矩形中,正好能容纳一个底边长为$x$的半圆形,问该矩形的长和宽分别为多少?解:设矩形的长和宽分别为$l$和$w$,则根据题意得到方程$\frac{πx^2}{4}=lw$。
要求矩形的长和宽的和最小,可以将$l+w$作为新的变量,即求$f(l,w)=l+w$的最小值。
将$l$用$\frac{πx^2}{4w}$表示代入函数中,得到$f(\frac{πx^2}{4w},w)=\frac{πx^2}{4w}+w$,对变量$w$求导,得到$\frac{df}{dw}=-\fr ac{πx^2}{4w^2}+1$。
令$\frac{df}{dw}=0$,得到$w=\frac{πx^2}{4}$。
将$w$代入原方程,解得$l=x$,因此矩形的长和宽分别为$\frac{πx}{2}$和$\frac{x}{2}$。
2、交点问题对于两个二次函数$f(x)=ax^2+bx+c$和$g(x)=dx^2+ex+f$,交点问题是常见的问题之一。
可以通过解方程或者配方法求解交点。
例如,已知$f(x)=x^2+2x+3$和$g(x)=3x^2-2x+5$,问两个函数有几个交点?解:将两个函数相减得到$h(x)=2x^2-4x+2=2(x-1)^2$,因此两个函数如果有交点,则交点的横坐标为$x=1$。
将$x=1$代入任一函数即可求得交点,$f(1)=6$,$g(1)=6$,因此两个函数有一个交点$(1,6)$。
二次函数和一次函数的复杂应用解法
二次函数和一次函数的复杂应用解法在数学学科中,二次函数和一次函数是常见的函数类型。
它们在各个领域的应用广泛,可以解决复杂的实际问题。
本文将介绍二次函数和一次函数的复杂应用解法,帮助读者更好地理解和应用这两类函数。
一、二次函数的复杂应用解法二次函数的一般形式为:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
通过对二次函数进行图像分析、求根、极值等操作,可以进行复杂应用解法。
以下将结合具体问题进行说明。
问题一:一个喷泉的水流高度可以用二次函数模型y=-2x^2+10x+15来表示,其中y表示水流的高度,x表示时间(单位为秒)。
问在何时水流的高度达到最大值,并求出最大值是多少。
解法:首先,观察二次函数的表达式可以发现,a=-2<0,所以抛物线开口向下,即存在最大值。
通过求导数可以得到函数的导函数为y'=-4x+10。
令导函数为零,得到x=2.5。
将x=2.5带入原函数可以求得y=18.75。
因此,在时间为2.5秒时,水流的高度达到最大值18.75。
问题二:一个飞机以速度v飞行,已知飞机起飞后的高度可以用二次函数模型h=-0.2t^2+15t+20来表示,其中h表示高度,t表示时间(单位为秒)。
问飞机经过多少秒后会降落到地面?解法:首先,观察二次函数的表达式可以发现,a=-0.2<0,所以抛物线开口向下,即存在与x轴交点。
令二次函数等于零,得到-0.2t^2+15t+20=0。
通过求解得到t≈25.51。
因此,飞机经过约25.51秒后会降落到地面。
二、一次函数的复杂应用解法一次函数的一般形式为:y=kx+b,其中k、b为常数,且k≠0。
一次函数常用于线性方程的建模和实际问题的解决。
以下将通过具体问题说明一次函数的复杂应用解法。
问题三:某公司甲部门新招募员工的每月薪资标准可以用一次函数模型y=2000x+5000来表示,其中y表示薪资金额,x表示工作年限。
问工作3年后的薪资金额是多少?解法:将x=3带入一次函数的表达式可以求得y=2000×3+5000=11000。
专题6二次函数与一次函数的关系2(含解析)
专题6 二次函数与一次函数的关系2一、单选题(共6小题)1.二次函数y=2x2﹣5x+3的图象与x轴的交点有()A.1个B.2个C.3个D.4个2.关于x的方程(x﹣3)(x﹣5)=m(m>0)有两个实数根α,β(α<β),则下列选项正确的是()A.3<α<β<5 B.3<α<5<βC.α<2<β<5 D.α<3且β>53.关于抛物线y=2(x﹣1)2+1,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而增大4.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠05.已知二次函数y=ax2+bx+c,当x=2时,该函数取最大值8.设该函数图象与x轴的一个交点的横坐标为x1,若x1>4,则a的取值范围是()A.﹣3<a<﹣1 B.﹣2<a<0 C.﹣1<a<1 D.2<a<46.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4 B.3 C.2 D.1二、填空题(共8小题)7.已知抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标为(﹣1,0),(3,0),当﹣2≤x≤5时,y的最大值为12,则该抛物线的解析式为﹣﹣﹣﹣.8.抛物线y=x2﹣3x+2与x轴交于点A、B,则AB=.9.如图,若抛物线y=ax2+h与直线y=kx+b交于A(3,m),B(﹣2,n)两点,则不等式ax2﹣b<kx﹣h的解集是﹣.10.抛物线y=(m﹣1)x2+4x+1与x轴有公共点,则实数m的取值范围是.11.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是﹣.12.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为直线x=﹣1.则该抛物线的解析式为﹣﹣.13.如图,在平面直角坐标系中,抛物线y=a(x﹣2)2+k(a,k为常数且a≠0)与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴与抛物线交于点D.若点A的坐标为(﹣4,0),则的值为.14.已知抛物线y=(x+1)2+k与x轴交于A、B两点,AB=4,点C是抛物线上一点,如果线段AC被y轴平分,那么点C的坐标为﹣﹣.三、解答题(共6小题)15.在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,4)三点.求这个二次函数的解析式.16.已知二次函数y=x2+3x+m的图象与x轴交于点A(﹣4,0)(1)求m的值;(2)求该函数图象与坐标轴其余交点的坐标.17.已知二次函数y=﹣x2+2x+8.(1)求二次函数图象与x轴的交点坐标和图象顶点的坐标.(2)x取什么值时,图象在x轴上方?x取什么值时,y的值随x值的增大而减小?18.抛物线y=﹣x2﹣x+6与x轴交于A、B两点,直线y=x+a与抛物线交于M、N两点,当∠MON=90°时,求a的值.19.如图,抛物线y=﹣2x2+4x与x轴交于O、B两点,C为顶点,点P为抛物线上一点,且△OPC是以OC为直角边的三角形,求P点坐标.20.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式;(2)若点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.专题6 二次函数与一次函数的关系2参考答案一、单选题(共6小题)1.【分析】△=b2﹣4ac=25﹣4×2×3=1>0,即可求解.【解答】解:△=b2﹣4ac=25﹣4×2×3=1>0,故二次函数y=2x2﹣5x+3的图象与x轴有两个交点,故选:B.【点评】本题考查的是抛物线与x轴的交点,主要考查根的判别式,要求学生非常熟悉函数与坐标轴的交点代表的意义.2.【分析】根据平移可知:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,依此画出函数图象,观察图形即可得出结论.【解答】解:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,画出函数图象,如图所示.∵抛物线y=(x﹣3)(x﹣5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x﹣3)(x﹣5)﹣m与x轴的交点坐标为(α,0)、(β,0),∴α<3<5<β.故选:D.【点评】本题考查了抛物线与x轴的交点、二次函数的图象以及平移的性质,依照题意画出函数图象,利用数形结合解决问题是解题的关键.3.【分析】利用二次函数的性质对A、C、D进行判断;通过判断2(x﹣1)2+1=0的根的情况对B进行判断.【解答】解:A、a=2>0,抛物线开口向上,所以A选项的说法正确;B、当y=0时,2(x﹣1)2+1=0,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线x=1,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线x=1,则当x>1时,y随x的增大而增大,所以D选项的说法正确.故选:B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.4.【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.5.【分析】根据二次函数y=ax2+bx+c,当x=2时,该函数取最大值8,可以写出该函数的顶点式,得到a<0,再根据该函数图象与x轴的一个交点的横坐标为x1,x1>4,可知,当x=4时,y>0,即可得到a的取值范围,本题得以解决.【解答】解:∵二次函数y=ax2+bx+c,当x=2时,该函数取最大值8,∴a<0,该函数解析式可以写成y=a(x﹣2)2+8,∵设该函数图象与x轴的一个交点的横坐标为x1,x1>4,∴当x=4时,y>0,即a(4﹣2)2+8>0,解得,a>﹣2,∴a的取值范围时﹣2<a<0,故选:B.【点评】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.6.【分析】由(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|知①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的;根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的;逐个判断之后,可得出答案.【解答】解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;故选:A.【点评】考查了二次函数图象与x轴的交点问题,理解“鹊桥”函数y=|ax2+bx+c|的意义,掌握“鹊桥”函数与y=|ax2+bx+c|与二次函数y=ax2+bx+c之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数y=ax2+bx+c与x轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.二、填空题(共8小题)7.【分析】根据抛物线与x轴的交点坐标知道该抛物线的对称轴是x=1,又由当﹣2≤x≤5时,y的最大值为12;①当a>0时,该抛物线的顶点坐标是(1,12).由此可设抛物线的解析式为y=a(x﹣1)2+12(a≠0).把点(﹣1,0)代入即可求得a的值.②当a<0时,(5,12)才是最大值,将点坐标代入抛物线解析式中,即可得出结论.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标为(﹣1,0),(3,0),∴对称轴是x=1,又∵当﹣2≤x≤5时,y的最大值为12,∴①当a<0时,抛物线的顶点坐标是(1,12).故设抛物线的解析式为y=a(x﹣1)2+12(a≠0).把点(﹣1,0)代入,得0=a(﹣1﹣1)2+12,解得a=﹣3,故该抛物线的解析式为y=﹣3(x﹣1)2+12.②当a>0时,由于|﹣2﹣1|<|5﹣1|,所以过(5,12)才是最大值,可得y=x2﹣2x﹣3故答案是:y=﹣3(x﹣1)2+12或y=x2﹣2x﹣3.【点评】本题考查了抛物线与x轴的交点,二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.8.【分析】先解方程x2﹣3x+2=0得到交点A、B的坐标为(1,0),(2,0),然后计算两交点间的距离.【解答】解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以抛物线y=x2﹣3x+2与x轴的交点A、B的坐标为(1,0),(2,0),所以AB=2﹣1=1.故答案为1.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.9.【分析】根据二次函数和一次函数的图象和性质即可求解.【解答】解:∵抛物线y=ax2+h与直线y=kx+b交于A(3,m),B(﹣2,n)两点,∴不等式ax2﹣b<kx﹣h的解集为﹣2<x<3,故答案为:﹣2<x<3.【点评】本题考查了二次函数和不等式、二次函数与一次函数的交点,解决本题的关键是利用图象解决问题.10.【分析】由题意得:△=42﹣4(m﹣1)=16﹣4m+4=20﹣4m≤0,即可求解.【解答】解:由题意得:△=42﹣4(m﹣1)=16﹣4m+4=20﹣4m≤0且m≠1,解得:m≥5,故答案为:m≥5.【点评】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.11.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.12.【分析】利用抛物线的对称性得到A点坐标为(﹣3,0),则可设交点式为y=a(x+3)(x﹣1),然后把C点坐标代入求出a即可.【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),对称轴为直线x=﹣1,∴A点坐标为(﹣3,0),设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得3=a×3×(﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3.故答案为y=﹣x2﹣2x+3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.13.【分析】利用二次函数的性质得到抛物线y=a(x﹣2)2+k的对称轴为直线x=2,根据抛物线的对称性得到CD=4,B点坐标为(8,0),则OB=8,从而得到的值.【解答】解:∵抛物线y=a(x﹣2)2+k的对称轴为直线x=2,而CD∥x轴,∴CD=4,∵A点坐标为(﹣4,0),∴B点坐标为(8,0),∴OB=8,∴==2.故答案为2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.14.【分析】根据题目中的函数解析式可以得到该函数的对称轴,然后根据抛物线y=(x+1)2+k与x轴交于A、B两点,AB=4,即可求得点A和点B的坐标,再根据点C是抛物线上一点,线段AC被y轴平分,即可求得点C的坐标.【解答】解:∵抛物线y=(x+1)2+k与x轴交于A、B两点,AB=4,∴该抛物线的对称轴是直线x=﹣1,∴点A的坐标为(﹣3,0),点B的坐标为(1,0)或点A的坐标为(1,0),点B的坐标为(﹣3,0),当点A的坐标为(﹣3,0)时,0=(﹣3+1)2+k,得k=﹣4,∵线段AC被y轴平分,点C是抛物线上一点,∴点C的横坐标为3,纵坐标为:(3+1)2﹣4=12,即点C的坐标为(3,12);当点A的坐标为(1,0)时,0=(1+1)2+k,得k=﹣4,∵线段AC被y轴平分,点C是抛物线上一点,∴点C的横坐标为﹣1,纵坐标为:(﹣1+1)2﹣4=﹣4,即点C的坐标为(﹣1,﹣4);故答案为:(3,12)或(﹣1,﹣4).【点评】本题考查抛物线与x轴的交点,二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答,注意点A有两种情况.三、解答题(共6小题)15.【分析】利用抛物线与x轴的两交点坐标,可设交点式y=a(x+1)(x﹣4),然后把C点坐标代入求出a即可.【解答】解:设y=a(x+1)(x﹣4),将C(0,﹣4)代入解析式得a×1×(﹣4)=4,解得a=﹣1,所以此函数的解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+3x+4.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了待定系数法求抛物线解析式.16.【分析】(1)将A点坐标(﹣4,0)代入y=x2+3x+m,即可求解;(2)令x=0时,则:y=﹣4,令y=0,则x2+3x﹣4=0,即可求解.【解答】解:(1)将A点坐标(﹣4,0)代入y=x2+3x+m得:16﹣12+m=0,解得:m=﹣4;(2)当x=0时,则:y=﹣4,∴函数图象与y轴的交点为(0,﹣4),令y=0,则x2+3x﹣4=0,解得x1=1,x2=﹣4∴函数图象与x轴的另一个交点为(1,0).【点评】本题考查的是抛物线与坐标轴的交点,是二次函数基础类题目.17.【分析】(1)令y=0,即可求得它与x轴的交点,再由抛物线的顶点坐标求得答案即可;(2)根据抛物线和x轴的交点坐标,再由抛物线的开口向下,即可得出x的取值范围;根据抛物线的性质,抛物线开口向下,在对称轴的左侧,y的值随x值的增大而减小,即可得出x的取值范围.【解答】解:(1)令y=0,得﹣x2+2x+8=0,解得x1=4,x2=﹣2,∴与x轴的交点坐标是(﹣2,0)(4,0),∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴顶点的坐标(1,9);(2)∵抛物线的开口向下,∴当﹣2<x<4时,抛物线在x轴上方.∵抛物线的开口向下,对称轴x=1,∴x>1,y的值随x值的增大而减小.【点评】本题考查了抛物线与x轴的交点问题,二次函数的性质以及待定系数法求二次函数的解析式,熟练掌握二次函数的性质是解决问题的关键.18.【分析】将y=﹣x2﹣x+6和y=x+a联立得到方程组,化简后得到x1•x2=a﹣6,y1•y2=(2a2﹣a﹣3),根据△MEO∽△OFN,得到ME•NF=EO•OF即x1•x2=y1•y2,解答即可.【解答】解:将y=﹣x2﹣x+6和y=x+a联立得到方程组:,消掉y化简得到:2x2+3x+(2a﹣12)=0,所以x1•x2=a﹣6,消掉x化简得到:4y2+(3﹣8a)y+(4a2﹣2a﹣6)=0,所以y1•y2=(2a2﹣a﹣3),这里要分情况讨论:第一,当a>6时,x1•x2>0 当a<6时,x1•x2<0,第二,当a<﹣1且a>时,y1•y2>0 当﹣1<a<时,y1•y2<0,根据以上情况分析:∵△MEO∽△OFN,∴ME•NF=EO•OF,x1•x2=y1•y2,可以得出当a<﹣1或a属于(,6)时有两个解,即6﹣a=(2a2﹣a﹣3),a=﹣3或.【点评】本题考查了抛物线与x轴的交点,结合一次函数与二次函数及相似三角形的性质是解题的关键.19.【分析】根据抛物线上点的坐标特征设P点坐标为(x,﹣2x2+4x),再利用两点间的距离公式得到OP2=x2+(﹣2x2+4x)2,PC2=(x﹣1)2+(﹣2x2+4x﹣2)2,再分类讨论:当∠PCO=90°时,根据勾股定理得OC2+PC2=OP2;当∠POC=90°时,根据勾股定理OC2+PO2=CP2,然后分别得到x的一元二次方程,解方程求出x即可得到满足条件的P点坐标.【解答】解:∵抛物线y=﹣2x2+4x,∴可设P点坐标为(x,﹣2x2+4x),∵C为抛物线顶点,∴C(1,2),则OC2=12+22=5,OP2=x2+(﹣2x2+4x)2,PC2=(x﹣1)2+(﹣2x2+4x﹣2)2,当∠PCO=90°时,OC2+PC2=OP2,即5+(x﹣1)2+(﹣2x2+4x﹣2)2=x2+(﹣2x2+4x)2,整理得4x2﹣9x+5=0,解得x1=1(舍去),x2=,此时P点坐标为(,);当∠POC=90°时,OC2+PO2=CP2,即5+x2+(﹣2x2+4x)2=(x﹣1)2+(﹣2x2+4x﹣2)2,整理得4x2﹣9x=0,解得x1=0(舍去),x2=,此时P点坐标为(,﹣),综上所述,满足条件的P点坐标为(,)或(,﹣).【点评】本题考查了抛物线与x轴的交点:二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△=b2﹣4ac决定抛物线与x轴的交点个数.也考查了两点间的距离公式和勾股定理.20.【分析】(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:,即可求解;(2)S=S四边形ADCP=S△APO+S△CPO﹣S△ODC,即可求解.【解答】解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:,故抛物线的表达式为:,则点C(0,2),函数的对称轴为:x=1;(2)连接OP,设点,则S=S四边形ADCP=S△APO+S△CPO﹣S△ODC==,∵﹣1<0,故S有最大值,当时,S的最大值为.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.。
二次函数与一次函数的综合应用
二次函数与一次函数的综合应用一、综合题1.我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W 万元.(毛利润=销售额−生产费用)(1)请直接写出y 与x 以及z 与x 之间的函数关系式;(写出自变量x 的取值范围)(2)求W 与x 之间的函数关系式;(写出自变量x 的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?2.如图,已知顶点为 (0,3)C - 的抛物线 2(0)y ax b a =+≠ 与 x 轴交于 A , B 两点,直线y x m =+ 过顶点 C 和点 B .(1)求 m 的值;(2)求函数 2(0)y ax b a =+≠ 的解析式;(3)抛物线上是否存在点 M ,使得 15MCB ∠=︒ ?若存在,求出点 M 的坐标;若不存在,请说明理由.3.已知二次函数 2222y x mx m m =-+--+ ( m 是常数).(1)若该函数图象与 x 轴有两个不同的公共点,求 m 的取值范围;(2)求证:不论 m 为何值,该函数图象的顶点都在函数 2y x =-+ 的图象上;(3)()11,P x y , ()22,Q x y 是该二次函数图象上的点,当 121x x << 时,都有 211y y << ,则 m 的取值范围是 .4.有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润 1y (万元)与投资成本x (万元)满足如图①所示的二次函数 21y ax = ;种植柏树的利润 2y (万元)与投资成本x (万元)满足如图②所示的正比例函数 2y =kx .(1)分别求出利润 1y (万元)和利润 2y (万元)关于投资成本x (万元)的函数关系式; (2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?5.如图,抛物线 21y ax c =+ 的顶点为 M ,且抛物线与直线 21y kx =+ 相交于 A B , 两点,且点 A在 x 轴上,点 B 的坐标为 (23),,连接 AM BM , .(1)a = , c = , k = (直接写出结果); (2)当 12y y < 时,则 x 的取值范围为 (直接写出结果);(3)在直线AB下方的抛物线上是否存在一点P ,使得 ABP ∆ 的面积最大?若存在,求出 ABP ∆的最大面积及点 P 坐标.6.已知抛物线y=12 x 2﹣4x+7与y= 12x 交于A 、B 两点(A 在B 点左侧). (1)求A 、B 两点坐标;(2)求抛物线顶点C 的坐标,并求△ABC 面积.7.如图1,抛物线y =ax 2+ax -2a (a <0)与x 轴交于A 、B 两点(A 在B 左边),与y 轴交于点C ,△ABC的面积为32(1)直接写出A 、B 两点坐标以及抛物线的解析式(2)点P (2,h )在抛物线上,点D 在第三象限的抛物线上,△APD =2△BAP ,求点D 的坐标(3)如图2,直线EF :y =mx +n (m >0)交抛物线于E 、F 两点,直线PF 、PE 分别与y 轴的正、负半轴交于N 、M 两点,OM·ON =4,求证:直线EF 必过定点,并求出这个定点的坐标8.如图,在平面直角坐标系中,直线 4y x =-+ 与x 轴、y 轴分别交于点A 、点B ,抛物线()213y x m n =--+ 的顶点P 在直线 4y x =-+ 上,抛物线与y 轴交于点C (点P 、C 不与点B 重合),以BC 为边作矩形BCDE ,且CD =2,点P 、D 在y 轴的同侧(1)写出n = ;点C 的纵坐标是 (都用含m 的代数式表示) (2)当P 在第一象限且在矩形BCDE 的边DE 上时,求抛物线对应的函数表达式 (3)设矩形BCDE 的周长为d (d >0),求d 与m 之间的函数表达式9.如图,在 Rt ABC 中, 90BCA ∠=︒ , CD AB ⊥ 于点 D , 1CD AD -= ,为了研究图中线段之间的关系,设 CD x = , BD y = ,(1)可通过证明ACD CBD ~ ,得到 y 关于 x 的函数表达式 y = ,其中自变量 x 的取值范围是 ;(2)根据图中给出的(1)中函数图象上的点,画出该函数的图象;(3)借助函数图象,回答下列问题:①BD 的最小值是 ;②已知当 AB CD k += 时,Rt ABC 的形状与大小唯一确定,借助函数图象给出 k 的一个估计值(精确到0.1)或者借助计算给出 k的精确值.10.如图,直线y=x+3与两坐标轴交于A ,B两点,抛物线y=x2+bx+c过A 、B 两点,且交x 轴的正半轴于点C 。
中考复习二次函数与一次函数综合运用
中考复习之一次函数与二次函数综合运用偏岭中学:于海洋【知识概述】:二次函数的综合运用是为考察学生综合运用知识的能力而设计的题目,常以中考压轴题出现,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此成为拉开分值而具有选拔功能。
有的学生对二次函数的综合题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高函数的综合题(压轴题)的得分率,解好函数的综合题(压轴题),本讲将以具体实例介绍几种常用的解题策略,从心理上打消望而生畏的忧虑,获得数学高分的制胜法宝。
【解题策略】1、以坐标系为桥梁,运用数形结合思想;2、以直线或抛物线知识为载体,运用函数与方程思想;3、利用条件或结论的多变性,运用分类讨论的思想;4、综合多个知识点,运用等价转换思想;5、分题分段得分:对题要理解多少做多少,最大限度地发挥自己的水平,做到得一分算一分。
课前热身:1一次函数b=的图像是一条(),当K>0时该()必经过kxy+()象限。
当K<0时,y随X的增大而()2,直线4y与X轴的交点坐标为(),与Y轴交点坐标为=x2-( )与坐标轴围成的面积为( )3直线42-=x y 与直线3-=x y 的交点坐标为( )4抛物线2x y =32--x 开口向( ),对称轴为( )顶点坐标( )与Y轴交点坐标为( ),与X轴有( )个点 5若抛物线322--=x x y 上有一点P,且P点的横坐标为a,则P点的纵坐标为( ),P点到X轴的距离为( )P点到X轴的距离为( )6将抛物线322--=x x y 化为顶点式为( ) 思维拓展例一:已知抛物线=y 2x c bx ++经过点A(3.0),B(0.3)①求抛物线的解释式和直线AB 的解析式。
②若点P 为直线AB 上方抛物线上一个动点,是否存在点P 使得S △ABP 面积最大?若存在求出P 点坐标,若不存在请说明理由。
高一数学一次函数与二次函数试题答案及解析
高一数学一次函数与二次函数试题答案及解析1.已知二次函数的二次项系数为,且不等式的解集为(1,3).⑴若方程有两个相等实数根,求的解析式.⑵若的最大值为正数,求实数的取值范围.【答案】(1),(2).【解析】(1)求二次函数解析式,一般用待定系数法,如何设二次函数解析式是解题关键.本题设零点式比较到位. ∵二次函数的二次项系数为,且不等式解集为(1,3),∴可设,且∴,由方程得,∵方程有两个相等的实根,∴或,而,∴从而,(2)由∴解得或.解:⑴∵二次函数的二次项系数为,且不等式解集为(1,3),∴可设,且 2分∴由方程得, 4分∵方程有两个相等的实根,∴或,而,∴从而 6分⑵由∴ 8分∴解得或 11分∴实数的取值范围是. 12分【考点】二次函数解析式2.已知,是R上的增函数,那么的取值范围是()A.B.C.D.【答案】A【解析】根据题题意:有解得故选A.【考点】1.分段函数的单调性;2.对数函数、一次函数的单调性.3.若函数在上单调递减,则的取值范围是A.B.C.D.【答案】C【解析】(1)当时,函数变为,由一次函数的性质知,在R上是减函数,符合题意;(2)当时,,对称轴为,根据在上单调递减,可判断出函数开口向上,解得:;综上:,故选:C.【考点】二次函数的图像与性质4.已知二次函数的图像顶点为,且图像在轴截得的线段长为6.(Ⅰ)求;(Ⅱ)若在区间上单调,求的范围.【答案】(Ⅰ);(Ⅱ)。
【解析】(Ⅰ)由题意可设函数的顶点式为,结合图像在轴截得的线段长为6可知,点即为函数图像与轴的交点,将点代入可求得的解析式;(Ⅱ)函数在上单调,可能有递增和单调递减两种情况,若在上单调增,则左端点;若在上单调减,则右端点.试题解析:(Ⅰ)由题意,过点,5分7分(Ⅱ)①在区间上单调增,则 10分②在区间上单调减,则,即 13分综上:时,在区间上是单调的. 14分【考点】二次函数的表达式,二次函数的图像及其单调性.5.把长为10cm的细铁丝截成两段,各自围成一个正方形,求这两个正方形面积之和的最小值。
二次函数和一次函数的综合应用
二次函数和一次函数的综合应用二次函数和一次函数是数学中常见的函数类型,它们在实际问题的解决中具有广泛的应用。
二次函数的一般形式为y=ax^2+bx+c,一次函数的一般形式为y=mx+n。
在本文中,将探讨二次函数和一次函数的综合应用,并通过实际问题的例子,说明它们在现实生活中的应用价值。
1. 抛物线的模型应用二次函数可以用来建立抛物线的模型,抛物线在现实生活中的应用非常广泛。
例如,在物理学中,当考虑抛体在空中自由落体运动时,可以使用二次函数来描述物体的运动轨迹。
另外,抛物线也可用于炮弹的射程计算、杆塔的线拉力计算等工程问题。
2. 二次方程的求解二次函数与二次方程密切相关,二次方程是二次函数的零点问题。
二次方程的求解是解决许多实际问题的基础。
例如,在物理学中,当考虑自由落体运动时,可以通过求解二次方程来计算物体的时间、速度等参数。
在经济学中,二次方程可以用来解决成本、收益、利润等问题。
在工程领域中,二次方程可以应用于建筑、设计、模拟等方面。
3. 直线与曲线的交点问题一次函数和二次函数之间的交点问题是实际生活中常见的问题。
例如,在经济学中,我们可以通过求解一次函数和二次函数的交点,来分析生产成本与产量之间的关系,或者评估销售利润和销售数量之间的关系。
在几何学中,我们可以通过求解二次函数与一次函数的交点,来解决线段和抛物线的交点问题。
4. 最优化问题二次函数和一次函数也常用于解决最优化问题。
例如,在经济学中,我们可以通过建立成本函数和收益函数来优化生产和经营决策。
通过研究二次函数的顶点来确定最大值或最小值。
在物理学中,最优化问题也广泛应用于动力学、力学等领域。
综上所述,二次函数和一次函数的综合应用非常重要,并在许多领域中发挥着重要的作用。
通过建立模型、求解方程、分析交点和解决最优化问题,我们可以利用二次函数和一次函数来解决现实生活中的实际问题。
这些方法不仅在学术研究中有重要意义,也对我们的日常生活产生了积极的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与一次函数综合应用题赏析
二次函数与一次函数是初中阶段两个非常重要的学习内容,同时也是各类考试的考查热点,综合考查两者的应用性问题就是其中常见的一类.下面给出两例,供大家复习时参考.
例1 汽车在行驶中,由于惯性,刹车后还要向前滑行一段距离才能停住,我们称这段距离为刹车距离.刹车距离是分析事故的一个重要因素.在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12
米.查有关资料知,甲种车的刹车距离S 甲(米)与车速x (千
米/时)之间有下列关系:20.10.01S x x =+甲;乙种车的刹
车距离S 乙(米)与车速x (千米/时)的关系如图1所示.
请你就两车的速度方面分析相碰的原因.
解析:这是一例数学物理结合型应用性问题.综合考查二次函数与一次函数知识,以及
数形结合,待定系数等思想方法.由12S =甲,可得:20.10.0112x x +=,解方程得
123040x x ==-, (不合题意,舍去),∴甲车不超速;由图1知,可设乙车的刹车距离S 乙(米)与车速x (千米/时)的关系为S kx =乙,又∵60x =时,15S =乙,∴1560k =.解得14k =,∴14S x =乙,由1012S <<乙得1101 24
x <<,∴40 48x <<.∴乙车超速.综上所述,就两车速度方面分析,相撞的原因在于乙车超速行驶.
例2 某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和成本进行了调研,结果如下:每件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图2),每件商品的成本Q (元)与时间t (月)的关系可用一条抛物线的一部分上的点来表示(如图3).
请你根据图象提供的信息回答:
(1)每件商品在3月份出售时的利润(利润=售价-成本)是多少元?
(2)求图3中表示的每件商品的成本Q (元)与时间t (月)之间的函数关系式(不要求写出自变量的取值范围);
(3)你能写出三月份至七月份每件商品的利润W (元)与时间t (月)之间的函数关
系式吗?(请写出计算过程,不要求写自变量的取值范围)若该公司共有此种商品30 000件,准备在一个月全部售完,请你计算一下至少可获利多少元.
解析:该例是一道取材于商品销售的市场经济问题,除了考查二次函数与一次函数外,还涉及数形结合,配方法,待定系数及方程思想,综合性较强.
(1)结合图2,图3信息易知每件商品在3月份出售时的利润为615-=(元);
(2)由图3知:可设Q 与t 的关系式为2(6)4Q a t =-+,又∵3t =时,1Q =,
∴2(36)41a -+=,∴1
3a =-.∴21(6)43
Q t =--+; (3)由图2可设M kt b =+,∵3t =时,66M t ==,时,8M =,∵3668
k b k b +=⎧⎨+=⎩,,解方程组得234k b ⎧=⎪⎨⎪=⎩
,,∴243M t =+,∴2214(6)433W M Q t t ⎛⎫⎡⎤=-=+---+ ⎪⎢⎥⎝⎭⎣⎦ 221212(6)(1236)3333t t t t t =-+=-++221111(1036)(5)333
t t t =-+=-+.当5t =时,113W =最小.∴30 000件商品一个月内售完,至少获利1130 000110 0003
⨯=元.。