半导体材料第9讲-III-V族化合物半导体的外延生长PPT课件

合集下载

III-V族半导体材料

III-V族半导体材料

III-V族半导体III-V族化合物是化学元素周期表中的IIIA族元素硼、铝、镓、铟、铊和VA族元素氮、磷、砷、锑、铋组成的化合物。

通常所说的III-V半导体是由上述IIIA族和VA族元素组成的两元化合物,它们的成分化学比都是1:1。

砷化镉砷化镉是一种灰黑色的半导体材料,分子式为Cd3As2。

它的能隙有0.14eV,与其他半导体相比较窄。

砷化铝砷化铝(Aluminium arsenide)是一种半导体材料,它的晶格常数跟砷化镓类似。

砷化铝的晶系为等轴晶系,熔点是1740 °C,密度是3.76 g/cm?,而且它很容易潮解。

它的CAS 编号为22831-42-1。

碲化铋碲化铋是一种灰色的粉末,分子式为Bi2Te3。

碲化铋是个半导体材料,具有较好的导电性,但导热性较差。

虽然碲化铋的危险性低,但是如果大量的摄取也有致命的危险。

碳化硅碳化硅(SiC)为由硅与碳相键结而成的陶瓷状化合物,碳化硅在大自然也存在罕见的矿物,莫桑石。

制造由于天然含量甚少,碳化硅主要多为人造。

最简单的方法是将氧化硅砂与碳置入艾其逊电弧炉中,以1600至2500°C高温加热。

发现Top 爱德华·古德里希·艾其逊在1893年制造出此化合物,并发展了生产碳化硅用之艾其逊电弧炉,至今此技术仍为众人使用中。

性质Top 碳化硅。

性质碳化硅至少有70种结晶型态。

α-碳化硅为最常见的一种同质异晶物,在高于2000°C高温下形成,具有六角晶系结晶构造(似纤维锌矿)。

β-碳化硅,立方晶系结构,与钻石相似,则在低于2000 °C生成,结构如页面附图所示。

虽然在异相触媒担体的应用上,因其具有比α型态更高之单位表面积而引人注目,但直至今日,此型态尚未有商业上之应用。

因其3.2的比重及高的升华温度(约2700 °C),碳化硅很适合做为轴承或高温炉之原料物件。

在任何已能达到的压力下,它都不会熔化,且具有相当低的化学活性。

半导体材料学习资料:三五族化合物半导体的外延生长

半导体材料学习资料:三五族化合物半导体的外延生长
第七章 Ⅲ-Ⅴ族化合物外延生长
气相外延生长VPE(vapor phase epitaxy, VPE) 卤化物法(Ga/AsCl3/H2体系) 氢化物法(Ga/HCl/AsH3/H2体系) 金属有机物气相外延生长MOVPE
液相外延生长LPE 分子束外延生长MBE
薄膜制备技术
1.物理气相沉积(Physical Vapor Deposition,PVD)
化学气相沉积(CVD)
化学气相沉积(CVD)也称为气相外延(Vapor-phase epitaxy ,VPE),是通过气体化合物间的化学作用而形成外延层的工艺. CVD工艺包括 常压化学汽相淀积(APCVD)(Atmospheric pressure CVD) 低压化学汽相淀积(LPCVD) 等离子增强化学汽相淀积(PECVD)(Plasma Enhanced CVD) 金属有机化学气相沉积(MOCVD) 激光化学气相沉积等
9
模具方面应用
➢工模具在工业生产中占有重要的地位,如何提高工模具 的表面性能和使用寿命一直是材料与工艺研究的重点之 一,CVD技术在工模具上的推广应用,对传统的工模具 制造是个突破。 ➢金属材料在成形时,会产生高的机械应力和物理应力, 原来工模具的抗磨能力,抗接触能力及摩擦系数等机械 性能是靠基体材料来实现的,采用该技术后,CVD的TiN 涂层作为表面保护层。
11
微电子技术
在半导体器件和集成电路的基本制造流程中,有 关半导体膜的外延,P-N结扩散元的形成、介质隔离、 扩散掩膜和金属膜的沉积等是工艺核心步骤,化学气相 沉积在制备这些材料层的过程中逐渐取代了如硅的高温 氧化和高温扩散等旧工艺,在现代微电子技术中占主导 地位,在超大规模集成电路中,化学气相沉积可以用来 沉积多晶硅膜,钨膜、铅膜、金属硅化物,氧化硅膜以 及氮化硅膜等,这些薄膜材料可以用作栅电极,多层布 线的层间绝缘膜,金属布线,电阻以及散热材料等。

《半导体材料》PPT课件

《半导体材料》PPT课件
• 电子能级:能量单位是电子伏特(ev), 代表一个电子从低电势处移动到高出1V的 电势处所获得的动能。
• 价电子层:给定一种原子,最外部的电子 层就是价电子层,对原子的化学和物理性 质具有显著的影响。
精选课件ppt
6
• 固体能带论:解释了固体材料中电子怎样 改变轨道能级。
• 离子:当原子失去或得到一个或多个电子 时成为离子。
精选课件ppt
46
• 当扩散运动和漂移运动达到动态平衡时, 交界面形成稳定的空间电荷区,即PN结 处于动态平衡。PN结的宽度一般为0.5um。
• PN结在未加外加电压时,扩散运动与漂移 运动处于动态平衡,通过PN结的电流为零。
精选课件ppt
47
2.9半导体二极管的结构 1.点接触型二极管的结构
精选课件ppt
精选课件ppt
25
精选课件ppt
26
硅的熔点是1412℃,是一种质硬的脆性材料,变 形很容易破碎,与玻璃相似。可以抛光得像镜面 一样平整。
本征半导体: 不含任何杂质和缺陷的纯净半导体, 其纯度在99.999999%(8~10个9)。
掺杂半导体:把特定的元素引入到本征半导体中, 可提高本征半导体的导电性。
Jn qDnn J p qDpp
精选课件ppt
39
总的电流扩散密度为:
J Jn Jp
qD nnqD pp
精选课件ppt
40
2.6载流子的迁移率 迁移率:漂移速度与外加电场强度之间的比例常数。
v E
载流子被电场加速的同时,将与晶格格点和晶格 中的杂质碰撞产生散射,各种散射机构决定了载 流子的迁移率的大小。
介电常数:介电材料是电容器中的关键部 分。介电常数K已经成为一个重要的半导体 性能参数。

半导体材料课件III-V族化合物半导体的特性 GaAs单晶的生长方法

半导体材料课件III-V族化合物半导体的特性 GaAs单晶的生长方法
光探测器
高效太阳电池
霍尔元件
吉林大学电子科学与工程学院
半导体材料
GaAs在我们日常生活中的一些应用
遥 控 器 是 通 过 GaAs 发 出 的 红 外光把指令传给主机的。
家电上的红色、绿色指示灯是 以 GaAs 等 材 料 为 衬 底 做 成 的 发光二极管。
吉林大学电子科学与工程学院
CD, DVD,BD光盘是用以 GaAs为衬底制成的GaAlAs激 光二极管进行读出的。
吉林大学电子科学与工程学院
半导体材料
非凝聚体系p-T-x相图各投影图的含义
GaAs体系 p-T-x相图
¾G a - A s 的 T - x 图 , 反 映 体 系sGaAs+l+g三相平衡时的 温度与xAs组成的关系。
质很不相同,把这种不对称性叫做极性
吉林大学电子科学与工程学院
半导体材料
极性(闪锌矿是非中心对称的)
[111]

[111]

表面A

ⅤⅤ ⅢⅢ

[1 1 1]


表面B
[1 1 1]
闪锌矿结构在[110]面上的投影 显示在[111]方向和[1 1 1] 方向的差别
吉林大学电子科学与工程学院
半导体材料
从垂直[111]方向看,GaAs是一系列由Ga原子和As 原子组成的双原子层,因此晶体在对称晶面上的性 质不同。如[111]和[111]是不同的。 III族:A原子,对应的{111}面称为A面 V族:B原子,对应的{111}面称为B面 ¾ A—B组成的双原子层称为电偶极层 ¾ A边和B边化学键,有效电荷不同,电学和化学性
直接3.4eV 间接2.26eV 直接 1.43eV 直接 0.73eV

半导体材料最新ppt课件[文字可编辑]

半导体材料最新ppt课件[文字可编辑]

1.2.2 化合物半导体:
?化合物半导体材料的种类繁多,性能各异,因此用途也就多种多样。 ?化合物半导体按其构成的元素数量可分为二元、三元、四元等。 ?按其构成元素在元素周期表中的位置可分为III-V 族、II-IV-V族等等。 ?如果要问哪些化合物是半导体,哪些不是,有没有规律性?应该回答说,规律性 是有的,但还没有找到一个严密的公式可以毫无例外地判断某个化合物是否属于半 导体。 ?常用的方法是先找到一个已知的化合物半导体,然后按元素周期表的规律进行替 换(参照图1.1) 。
1.2.3 固溶半导体
?由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质, 就称为固溶半导体,简称固溶体或混晶。 ?因为不可能作出绝对纯的物质,材料经提纯后总要残留一定数量的杂质,而且半导 体材料还要有意地掺入一定的杂质,在这些情况下,杂质与本体材料也形成固溶体, 但因这些杂质的含量较低,在半导体材料的分类中不属于固溶半导体。 ?另一方面,固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比 所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及 有关性质也随之变化。 ?固溶体增加了材料的多样性,为应用提供了更多的选择性。 ?为了使固溶体具有半导体性质常常使两种半导体互溶,如Si1-xGex(其中x <1);也 可将化合物半导体中的一个元素或两个元素用其同族元素局部取代,如用Al来局部取 代GaAs中的Ga,即Ga1-xAlxAs,或用In局部取代Ga,用P局部取代As形成Ga1xInxAs1-yPy 等等。 ?固溶半导体可分为二元、三元、四元、多元固溶体;也可分为同族或非同族固溶体 等(见表1.1 )。
薄膜在半导体材料中占有重要的地位。 ?在熔体生长单晶的方法出现不久,就开始了汽相生长薄膜的工作。但直到硅晶 体管的平面工艺出现以后,硅的外延生长才被提上了日程,因为这种器件要求 在一个有一定的厚度的低电阻率的硅片上,有一较高电阻率单晶的薄层。 ?发展起来的化学汽相外延法,一直到今天仍旧是生产硅外延片的唯一的方法。 外延技术给化合物半导体解决了一系列晶体制备的难题,包括提高纯度、降低 缺陷、改善化学配比、制作固溶体或异质结等。 ?一些微波二极管、激光管、发光管、探测器等,都是在外延片上作成的。 ?除采用化汽相外延法外,又于1963年开发成功了液相外延,不久又出现了金 属有机化学汽相外延等。 ?1969年在美国工作的江畸玲于奈和朱肇祥首先提出了超晶格的概念,用当时 的晶体生长与外延技术是生长不出这种材料的,因为它要求材料有原子级的精 度。 ?为此研究成功了分子束外延,用此方法于1972年生长出超晶格材料。 从此开始了半导体的性能在微观尺度上的可剪裁阶段。

III-V族化合物的外延生长

III-V族化合物的外延生长

MOVPE(Metalorganic VPE)

基本原理 或
RnM+XHn→MX+nRH RnM+XR’n→MX+n(R-R’n)
R、R’为烷基,M为II、III族元素;X为V、 VI族元素
MOVPE对源材料的基本要求
室温下为液体,且有合适的蒸气压 外延生长温度下可以完全分解而贮存温度下 又是稳定的 反应活性不强,不与其他源发生预沉积 毒性尽可能低,价格低

LPE的优点
设备简单 生长温度低,350~900℃ 生长速度较快 0.1mm/min 外延层中点缺陷、位错较低 不使用剧毒、强腐蚀性原料 掺杂剂选择范围广

LPE的主要问题
外延层的表面形貌较差 厚度不易控制,很难生长单分子层或超薄层 不易进行异质外延和生长晶格失配较大外延 层(<1%)
3.
4.
5.
适应性强,可以生长多种化合物半导体外延材料 可通过精确控制各种气体流量控制外延层组分、 厚度及电学、光学性质 可生长原子级的超薄层及多层、异质机构材料; 易于生长超晶格、量子阱等微结构材料 单温区外延,需要控制的参数少,易于生长大面 积薄膜,易于产业化 源及产物中不含HCl,设备不被腐蚀,自掺杂低

由于AlCl3易与石英反应管发生反应,故不宜 用CLVPE生长AlGaAs固溶体外延材料
CLVPE生长优点:设备简单,可以沉积出高纯 外延材料 缺点:由于GaCl是在源区由化学反应生成 的,其分压重现性较差 HVPE

HVPE生GaAs
体系:Ga-HCl-AsH3-H2 主要反应 优点:Ga(GaCl)和As4(AsH3 )的输入量可 以分别控制,并且AsH3的输入可以在Ga源的 下游,因此不存在Ga源饱和的问题,所以Ga 源稳定 CLVPE、HVPE生长GaAs中Si沾污 H2+HCl+SiO2 SiHCl+H2

半导体材料硅外延生长PPT教案

半导体材料硅外延生长PPT教案
与衬底中杂质反型者取负号。
N气,N基座,N系统,杂质不是来源衬底片,因此称为外掺杂 N扩散,N衬底,N邻片的杂质来源于衬底片,通称为自掺杂
2.外延生长的掺杂
5-3-2外延中杂质的再分布
• 外延层中含有和衬底中的杂质不同 类型的杂质,或者是同一种类型的 杂质,但是其浓度不同。
• 通常希望外延层和衬底之间界面处 的掺杂浓度梯度很陡,但是由于高 温下进行外延生长,衬底中的杂质 会进入外延层,使得外延层和衬底 处的杂质浓度变平。
5-3-3 外延层生长中的自掺杂
自掺杂效应:衬底中的杂质进入气相中再掺入外延层
抑制自掺杂的途径:
一:减少杂质由衬底逸出 1.使用蒸发速度较小的杂质做衬底和埋层中的杂质 2.外延生长前高温加热衬底,使硅衬底表面附近形成一杂质耗尽 层,再外延时杂质逸出速度减少可降低自掺杂 3.采用背面封闭技术,即将背面预先生长高纯SiO2或多晶硅封闭 后再外延,可抑制背面杂质的蒸发而降低自掺杂。 4.采用低温外延技术和不含有卤原子的硅源。 5.采用二段外延生长技术 即先生长一段很短时间的外延层,然后停止供源,只通氢气驱除 贮存在停滞层中的杂质,再开始生长第二段外延层,直到达到预 定厚度 二:采用减压生长技术 使已蒸发到气相中的杂质尽量不再进入外延层 一般在1.3103~2104Pa的压力下进行。
(7)可以生长不能拉制单晶材料,如GaN,三、四元系化合物的 单晶层等。
利用外延片制作半导体器件,特别是化合物半导体器件绝大多数是制 作在外延层上,因此外延层的质量直接影响器件的成品率和性能。 一般来说外延层应满足下列要求:
(1)表面应平整,光亮,没有亮点,麻坑,雾渍和滑移线等表面缺陷。 (2)晶体完整性好,位错和层错密度低。对于硅外延来说,位错密度应
(9)对于化合物半导体外延层和异质结外延热稳定性要好。

《半导体材料》课件

《半导体材料》课件
解决策略
解决可靠性问题需要从材料的设计、制备、封装、测试等各个环节入手,加强质量控制和可靠性评估。
半导体材料的环境影响与可持续发展
环境影响
半导体材料的生产和使用过程中会对环境产生一定的影响,如能源消耗、废弃物处理等。
可持续发展
为了实现可持续发展,需要发展环保型的半导体材料和生产技术,降低能源消耗和废弃物排放,同时 加强废弃物的回收和再利用。
《半导体材料》ppt 课件
目录
CONTENTS
• 半导体材料简介 • 半导体材料的物理性质 • 常见半导体材料 • 半导体材料的制备与加工 • 半导体材料的发展趋势与挑战
01
半导体材料简介
半导体的定义与特性
总结词
半导体的导电能力介于导体和绝缘体 之间,其电阻率受温度、光照、电场 等因材料的制备技术
制备技术
为了获得高性能的半导体材料,需要 发展先进的制备技术。这包括化学气 相沉积、分子束外延、离子注入等。
技术挑战
制备技术面临的挑战是如何实现大规 模生产,同时保持材料的性能和均匀 性。
半导体材料的可靠性问题
可靠性问题
随着半导体材料的广泛应用,其可靠性问题越来越突出。这包括材料的稳定性、寿命、可靠性等方面的问题。
VS
电阻率
电阻率是衡量材料导电能力的物理量。半 导体的电阻率可以通过掺杂等方式进行调 控,从而实现对其导电性能的优化。
光吸收与发光特性
光吸收
半导体具有吸收光子的能力,当光子能量大于其能带间隙时,电子从价带跃迁至导带, 产生光电流。
发光特性
某些半导体在受到激发后可以发出特定波长的光,这一特性使得半导体在发光器件、激 光器等领域具有广泛应用。
离子束刻蚀
利用离子束对材料进行刻蚀,实现纳米级加工。

第四章:化合物半导体材料《半导体材料》课件共49页文档

第四章:化合物半导体材料《半导体材料》课件共49页文档
GaAs在无线通讯射频前端应用具有高工作频率、 低噪声、工作温度使用范围高以及能源利用率高 等优点,因此在未来几年内仍是高速模拟电路, 特别是功率放大器的主流制程技术。
手机是促进GaAs IC市场增长的主 要动力
根据Strategy Analytics的报告,手机仍将是促进砷化 镓(GaAs)IC市场增长的主要动力。
化物半导体材料
III-V族化合物半导体材料 II-VI族化合物半导体材料
4.1 常见的III-V化合物半导体
化合物 晶体结 带隙
ni

un
up
GaAs 闪锌矿 1.42 1.3×106 8500
320
GaP 闪锌矿 2.27
150
120
GaN 纤锌矿 3.4
900
10
InAs 闪锌矿 0.35 8.1×1014 3300
计算:GaAs 300 K和400 K下的带隙
晶体结构
金刚石结构 闪锌矿结构 纤锌矿结构
离子键和极性
共价键--没有极性 离子键--有极性
两者负电性相差越到,离子键成分越大, 极性越强。
极性的影响
(1)解理面--密排面 (2)腐蚀速度--B面易腐蚀 (3)外延层质量--B面质量好 (4)晶片加工--不对称性
光纤通信具有高速、大容量、信息多的特点,是构筑 “信息高速公路”的主干,大于2.5G比特/秒的光通信 传输系统,其收发系统均需要采用GaAs超高速专用电路。
随着光电子产业和自动化的发展,用作显示器件LED、 测距、玩具、条形码识别等应用的高亮度发光管、可见 光激光器、近红外激光器、量子阱大功率激光器等均有 极大市场需求,还有GaAs基高效太阳能电池的用量也十 分大,对低阻低位错GaAs产业的需求十分巨大而迫切。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性质 用来生长化合物晶体的各组分和掺杂剂都以气态通入反 应器。因此,可以通过精确控制各种气体的流量来控制外 延层的成分、导电类型、载流子浓度、厚,度等特性。可 以生长薄到零点几纳米,纳米级的薄层和多层结构。
(2) 反应器中气体流速快,可以迅速改变多元化合物组 分和杂质浓度
反应器中气体流速快,因此,在需要改变多元化合物组 分和杂质浓度时,反应器中的气体改变是迅速的,从而可 以使杂质分布陡峭一些,过渡层薄一些,这对于生长异质 和多层结构无疑是很重要的。
半导体材料
III-V族化合物半导体的外延生长
1
第七章 III-V族化合物半导体的外延生长
内容提要:
气相外延生长VPE 卤化物法 氢化物法 金属有机物气相外延生长MOVPE
液相外延生长LPE 分子束外延生长MBE
2
气相外延生长
气相外延生长(vapor phase epitaxy, VPE) 发展较早,主要有以下三种方法: 卤化物法 (Ga/AsCl3/H2体系) 氢化物法 (Ga/HCl/AsH3/H2体系) 金属有机外延法
5
6
氢化物法外延生长GaAs
氢化物法是采用Ga/HCI/AsH3/H2体系,其生长机理 为 Ga (l) + HCl (g) = GaCl (g) + ½ H2(g) AsH3 (g) = ¼ As4(g) + 3/2 H2(g) GaCl (g) + ¼ As4(g) + ½ H2(g) = GaAs (s) + HCl (g)
11
MOVPE的特点
(3) 晶体生长是以热分解方式进行,是单温区外延生长, 需要控制的参数少,设备简单。便于多片和大片外延生长, 有利于批量生长。
(4) 晶体的生长速度与金属有机源的供给量成正比,因 此改变其输入量,可以大幅度地改变外延生长速度。
(5) 源及反应产物中不含有HCl一类腐蚀性的卤化物, 因此生长设备和衬底不被腐蚀,自掺杂比较低。
金属有机物化学气相沉积(Metal Organic Chemical Vapor Deposition,MOCVD)自20世 纪60年代首次提出以来,经过70年代至80年代的 发展,90年代已经成为砷化镓、磷化铟等光电子 材料外延片制备的核心生长技术,特别是制备氮 化镓发光二极管和激光器外延片的主流方法。
9
金属有机化合物的名称及其英文缩写
三甲基镓 三甲基铟 三甲基铝 三乙基镓 三乙基铟 二甲基锌 二乙基锌 二甲基镉 二乙基镉
Tri-methyl-gallium TMG.TMGa
Tri-methyl-indium TMI.TMIn
Tri-methyl-alumium TMAI
Tri-ethyl-gallium TEG.TEGa
不同厂家和研究者所生产或组装的MOVPE设备往往是不同的,但 一般来说,都由以下几部分组成:
此外,MOVPE可以进行低压外延生长(LP-MOVPE. Low Pressure MOVPE),比上述常压MOVPE的特点更 加显著。
12
MOVPE设备
MOVPE设备分为卧式和立式两种,有常压和低压,高频感应加热 和辐射加热,反应室有冷壁和热壁的。
因为MOVPE生长使用的源是易燃、易爆、毒性很大的物质,并且 常常用来生长大面积、多组分超薄异质外延层。因此,设备要求考虑 系统气密性好,流量、温度控制精确,组分变换要迅速,整个系统要 紧凑等等。
4Ga + xAs4 = 4GaAsx ( x<1 ) 而HCI在高温下同Ga或GaAs反应生成镓的氯化物,它的主反应为
2Ga + 2 HCl = 2 GaCl + H2 GaAs + HCl = GaCl + ¼ As4 + ½ H2
4
卤化物法外延生长GaAs
GaCI被H2运载到低温区,如此时Ga舟已被As饱和,则 As4也能进入低温区, GaCI在750℃下发生歧化反应,生 成GaAs,生长在放在此低温区的衬底上(这个低温区亦称 沉积区), 6GaCl + As4 = 4 GaAs + 2 GaCl3 有H2存在时还可发生以下反应 4GaCl + As4 + 2H2 = 4 GaAs + HCl 反应生成的GaCl3被输运到反应管尾部,以无色针状物析 出,未反应的As4以黄褐色产物析出。
Tri-ethyl-indium
TEI.TEIn
Di-methyl-zincDMZnຫໍສະໝຸດ Di-ethyl-zinc
DEZn
Di-methyl-cadmium DMCA
Di-ethyl-cadmium DECA
10
MOVPE的特点
MOVPE具有下列的特点: (1)可以通过精确控制各种气体的流量来控制外延层的
这种方法,Ga(GaCI)和As4(AsH3)的输入量可以分别控 制,并且As4的输入可以在Ga源的下游,因此不存在镓源 饱和的问题,所以Ga源比较稳定。
卤化物和氢化物法生长GaAs除了水平生长系统外,还 有垂直生长系统,这种系统的基座大都是可以旋转的,因 此其均匀性比较好。
7
金属有机物化学气相沉积
到目前为止,从生长的氮化镓外延片和器件的性 能以及生产成本等主要指标来看还没有其它方法 能与之相比。
8
MOVPE技术
MOVPE (Metal organic Vapor Phase Epitaxy)技术是 生长化合物半导体薄层晶体的方法,最早称为MOCVD 。 近年来从外延生长角度出发,称这一技术为MOVPE。 它是采用Ⅲ族、Ⅱ族元素的有机化合物和V族、Ⅵ族元素 的氢化物等作为晶体生长的源材料,以热分解方式在衬底 上进行外延生长Ⅲ一V族,Ⅱ一Ⅵ族化合物半导体以及它 们的多元化合物的薄层单晶。 Ⅱ族金属有机化合物一般使用它们的烷基化合物,如Ga、 Al、In、Zn、Cd等的甲基或乙基化合物:Ga(CH3)3、 Ga(C2H5)3等,
3
卤化物法外延生长GaAs
Ga/AsCl3/H2体系气相外延原理及操作
高纯H2经过AsCl3鼓泡器,把AsCl3蒸气携带入反应室中,它们在 300~500℃的低温就发生还原反应,
4AsCl3 + 6H2 = As4 + 12 HCl 生成的As4和HCI被H2带入高温区(850℃)的Ga源(也称源区)处,As4 便溶入Ga中形成GaAs的Ga溶液,直到Ga饱和以前,As4不流向后 方。
相关文档
最新文档