二年级奥数列表法解应用题
罗列法 二年级奥数
罗列法二年级奥数
列举法也叫枚举法,是数学上常用的一种解决问题的方法。
列举法在小学数学中比较常见,比如解决鸡兔同笼问题,下面通过两道例题谈谈列举法在小学低年级的应用。
1、一个两位数,个位上的数字比十位上的数字少4,如果这两个数字互换位置,所得的数与原数相加等于110。
原来的数是多少?
思路分析:用列举法解决问题,个位上的数字比十位上的数字少4,有三种可能:51、62、73。
51交换两个数字的位置是15,51+15=66。
62交换两个数字的位置是26,62+26=88。
73交换两个数字的位置是37,73+37=110。
两个条件都符合的是:73。
2、一个防盗门的密码由四个数字组成,这四个数字之和是16,并且是从小到大相差2的4个数字。
这个防盗门的密码是多少?
思路分析:这道题也要用到列举法。
先把符合“从小到大相差2的4个数字”列举出来,有三种可能:0246,1357,2468。
0+2+4+6=12
1+3+5+7=16
2+4+6+8=20
两个条件都符合的正确答案是:1357。
小学数学思维训练之列表法解应用题
98
42
第一次前: 77
49
42
原来甲比乙多:77-49=28(元)
课堂练习
1.某月底,甲、乙、丙三人领取了数 额不同的奖金之后,甲把自己的一部分 奖金分给乙、丙二人,使他们的奖金额 各增加一倍;然后乙又拿出一部分奖金 分给甲、丙二人,使他们的奖金额各增 加一倍;接着,丙再拿出一部分奖金分 给甲、乙二人,使他们的奖金额各增加 一倍。这时,三人的奖金额都是24元。 问甲、乙、丙三人原来各领奖金多少元?
第十讲 用列表法解应用题
——逆推法
例1.袋里有若干个球,小明每次拿 出其中的一半再放回一个球,这样 共操作了5次,袋中还有3个球。问: 袋中原有多少个球?
答:原来袋 中有34个球。
列表法(逆推)解应用题步骤: ①找出各个事物的最终量
②找出完成这件事总共需要多少 个步骤 ③找出各个事物的之间如何变化
例题分析:
例3.甲、乙、丙三人共有人民币 168元,第一次甲拿出和乙相同的钱 数给乙;第二次乙拿出和丙相同的 钱数给丙;第三次丙拿出与此时甲 相同的钱数给甲.最后,甲、乙、 丙三人的钱数恰好相等,问原来甲 比乙多多少元?
单位:元
甲
乙
丙
次数
最后
56
56
56
第三次前: 28
56
84
第二次前: 28
课堂练习
6.有甲、乙两箱糖果,如果第一次 从甲箱拿出和乙箱同样多块糖果放 到乙箱里,第二次从乙箱拿出和甲 箱剩下的同样多块糖果放入甲箱, 这样拿4次后,甲、乙两箱糖果都是 16块.甲、乙两箱各有糖果多少块?
课堂练习
5.某孩子付一角钱进入第一家商店, 他在店里花了剩余的钱的一半,走出商 店时,又付了一角钱。之后,他又付一 角钱进入第二家商店,在这里他花了剩 余的钱的一半,走出商店时又付了一角 钱,接着他又用同样的方式进入第三和 第四家商店。当他离开第四家商店后, 这时他身上只剩下一角钱。那么他进入 第一家商店之前身上有多少钱?
用列表法解应用题(含答案)-
用列表法解应用题有些应用题的数量关系较为隐蔽,所求的问题有时又有几种可能,遇着这样的应用题,可以采用列举法来分析思考。
一般可以用列表的方式,把应用题的条件所涉及的数量关系或答案的各种可能一一列举出来,使人“了如指掌”,这样就能很快地把题目解答出来,这就是列举法。
【典型例题】例1:有一个伍分币,4个贰分币,8个壹分币。
要拿9分钱,有几种拿法?分析与解如果是随便拿9分钱,那是很容易的。
难就难在把所有的情况考虑全,既不遗漏,又不重复地全部解出来。
遇到这种情况就要应用列举法,把各种情况用列表的方法一一列举出来。
这样就可以做到不重复、不遗漏。
在列表中应先排伍分币,再排贰分币,最后排壹分币。
这样按顺序排,就可以保证既不重复,又不遗漏,解法见下表。
答:可以有7种拿法。
用列举法解题时,可以不再列式计算,如果要求列式计算,请你参考上面的表格,然后再列式计算。
为了保证结果的正确,你可以利用每次取出各种币的个数和每种币的币值进行口算验算。
如:第一种情况是()9分。
例2 奶奶今年60岁,孙女小军今年12岁。
几年后奶奶的年龄是孙女年龄的3倍?分析与解前面我们已经学过“年龄问题”,由于每个人年龄增长的年岁都是相同的,即奶奶长几岁,孙女也长几岁,她们年龄的差是不变的,奶奶总比孙女大(60-12=)48岁。
“几年后奶奶的年龄是孙女年龄的3倍”,这时奶奶的年龄比孙女的年龄大(3-1=)2倍。
抓住“差”和“倍”。
根据“差倍”问题的解法就可以列式计算。
解法1 (1)奶奶的年龄是孙女年龄的3倍时,孙女的年龄是:(岁)(2)孙女24岁时应该在几年以后:24-12=12(年)综合列式计算:(年)解法2 (年)你能说一说这种解法的理由吗?请试一试。
这道应用题还可以用列举法进行解答,它可以把抽象和复杂的思考过程变成表格的形式,这样虽然比较麻烦,但是简单明了,便于思考,易于解答,见下表。
解法3 见表:答:12年后奶奶的年龄是孙女年龄的3倍。
验算:(倍)例3 小聪和小明存有贰元的人民币共40元,且其中每人的钱数都是4元的整数倍,问他们每人可能有多少元?分析与解根据“小聪和小明存有贰元的人民币共40元”,可知=18+22=20+20 又根据每人的钱数都是4元的整数倍,所以应排除2+38,6+34,10+30,14+26,18+22,只有4+36,8+32,12+28,16+24,20+20符合题意。
奥数二年级讲义小二教案第十四讲列表尝试法
第十四讲列表尝试法对于比较复杂的问题,可以采用列表法进行尝试.例1 老大、老二、老三兄弟三人岁数之和是32岁,老大的岁数比老二大3岁,而且老大的岁数是老三的2倍,问兄弟三人各几岁?解:进行列表尝试:如果老三5岁,按题意可推算出老大5×2=10岁,老二10-3=7岁……由表可知,老大14岁,老二ll岁,老三7岁.例2 一次数学测验共10题,小明都做完了,但只得到29分.因为按规定做对一题得5分,做错一题扣掉2分.你知道小明做错了几道题吗?解:列表尝试,见表十四(2).由表中可见,小明做错了三道题.例3 甲乙二人岁数之和是99岁,甲比乙大9岁,而且甲的岁数的两个数字互相交换位置后恰是乙的岁数,问甲乙各多岁?解:列表尝试:甲十乙=99(岁),见表十四(3).由上表可知,甲54岁,乙45岁一例4 如果小方给小明一个玻璃球,两人的玻璃球数相等;如果小明给小方一个玻璃球,则小方的玻璃球数就是小明的两倍.问小明、小方原来各有几个玻璃球?由表1和表2,同时满足题目中两个条件的数是,小明5个球,小方7个球.注意:解这道题,依题意列出了两个表格,从而得出了问题答案,这样就更加拓宽了列表尝试法的使用范围.例5某学校的学生去郊游,中午开饭时,两个学生合用1只饭碗,三个学生合用1只菜碗,四个学生合用1只汤碗,共用了65只碗,问共有多少学生?解:一边猜,一边列表,可求出有60个学生.见表十四(5).注意:人数的取值是从“12”人开始的,其他各值也都是12的倍数,想一想,这是为什么?例6 240元钱平均分给若干人.正在分时,有一个人离开了,因而现在每人多分了1元.问现在有多少人?解:列表尝试.因为若240人分240元,每人分得l元;若是120人分,每人分得2元……见表十四(6).由上表可看出若是16人分240元,则每人分15元;若是走了1人剩15人分钱,则每人分得16元多分了l元,符合题目条件.可见现在人数是15人.注意:这道题的答案是在尝试过程中发现的,答案的获得几乎是“出乎意料”的.习题十四1.在一次数学考试中规定:做对一道题得5分,做错一道题扣3分.小伟做了10道题共得了34分,请问他做对了几道题?2.小燕今年10岁,爸爸40岁,爸爸的年龄是小燕的4倍.几年以后,爸爸的年龄正好是小燕的2倍?3.今年弟弟8岁,哥哥14岁,当两人的年龄之和是48岁时,两人年龄各几岁?4.松鼠采松子,晴天每天采20个,雨天每天采12个,共采了112个,平均每天采14个.问其中雨天是多少?5.100个人吃92个馒头,大人一人吃2个,小孩两人吃 1个,恰好吃完.问大人、小孩各多少人?6.兄弟两人去钓鱼,共钓了52条,其中弟弟钓的鱼是哥哥的2倍多1条,问两人各钓了多少条鱼?7.10元币和5元币共45张,合计350元.10元币多少张?5元币多少张? 。
小学奥数-列表法-练习题及答案
小学奥数-列表法-练习题及答案(A卷)一、填空题d天内观察天气,得出下列结论:(1)下七次雨,在上午或下午;(2)当天下午下雨时,上午是晴天;(3)一共有五个下午是晴天;(4)一共有六个上午是晴天,则d值是 .2.地理老师在黑板上画了一幅世界五大洲图形,并给每一个洲都写上一个代号,然后,请五个同学每人认出两个洲来,五个同学回答是:A:3号是欧洲,5号是美洲;B:4号是亚洲,2号是大洋洲;C:1号是亚洲,5号是非洲;D:4号是非洲,3号是大洋洲;E:2号是欧洲,5号是美洲.地理老师说:你们每个人都认为对了一半,请问每个代号各代表、、、、 .3.兄弟三人分24个苹果,每人所得个数分别等于其三年前各自的岁数,如果老三把所得苹果的一半平分给老大和老二,然后再把老二现有的苹果平均分给老大和老三,最后老大把现有的苹果的一半平均分给老二和老三,这时三人苹果数相等,那么兄弟三人各得、、 .4.三层书架上共放了192本书,现在先从上层取出与中层同样多的书放到中层,再从中层取同下层同样多的书放到下层,最后从下层取出与现在上层同样多的书放到上层,这时三层书架上的书正好相等.那么,上、中、下原来分别有书、、 .5.甲、乙、丙、丁各有故事书若干本,甲将自己的书拿出一部分分给乙、丙、丁,使他们的书增加1倍,然后,乙又拿出部分故事书分给甲、丙、丁,使他们的书增加1倍,接着丙也这样做,最后丁也这样做.此时他们手上分别有32本,那么甲、乙、丙、丁原来分别为________、_________、_________、_________本书.6.1991年王刚家有一只大母羊,第二年春天能生2只小公羊和3只小母羊,每只小母羊从第三年起每年也生2只公羊和3只母羊,到1996年底,王刚家共有只羊.7.一座下底面边长是10米的正方形石台,它的一个顶点A处有一个虫子巢穴,虫甲每分钟爬6厘米,虫乙每分钟爬10厘米,甲沿正方形的边由A→B→C→D→A不停的爬,甲先爬2厘米后,乙沿甲先爬行过的路线追赶甲,当乙遇到甲后,乙立即沿原路返回巢穴,然后乙再沿甲爬过的路线赶甲,…….在甲爬行的一圈内,乙最后一次追上甲时,乙爬了分钟.8.用绿、白两种颜色的小正方形瓷片400块铺成一块正方形墙面,这个墙面最外层铺的是白色瓷砖,由外到内的第二层是绿色瓷砖,第三层是白色瓷砖,第四层又是绿色……,那么,这个墙面上绿色瓷砖共块.9.今有甲、乙、丙三堆棋共98粒,先从甲中分棋子给另外两堆,使这两堆棋子数各增加一倍,再把乙这样分一次,最后丙也一样分一次,结果甲剩下24粒,乙有44粒,那么原来最多的是 ,有粒.×1992×1993×1994×1995×1996×1997×1998×1999中积的十位数字是 .二、解答题11.有1张伍元币,4张贰元币,8张壹元币.要拿出8元钱可以有多少种拿法?12.五年级四个班举行数学竞赛,小明猜的比赛结果是<3>班第一名:<2>班第二名,<4>班第四名,小华猜的名次依次是:<2>,<4>,<3>,<1>.已知<4>班是第二名,其它各班的名次两人均猜错了.这次比赛的名次排列是怎样?13.一辆客车沿11个站行走,每到一个站,上车的人中至少有一人到下一个站下车,那么这辆车至少要准备多少个座位?14.在1,2,3,……100这100个数中,有一些是3的倍数,如3,6,9,12,15等,也有些是5的倍数,如:5,10,15,……在这些3的倍数和5的倍数中各取一个数相加,至少可以得到多少种不同的和?———————————————答案——————————————————————一、填空题1. 且a+b+c=7,a=0,c+e=5,b+e=6,所以e=2,d=9.(2)由于每人说的话只对一半,由第三行知5号不是非洲;(3)由第一行知3号是欧洲;(4)由第四行知4号是非洲,再由第二行知2号是大洋洲.因此,1号是亚洲,2号是大洋洲,3号是欧洲,4号是非洲,5号是美洲.3. 13个;7个;4个.7. 213分钟5次,此时乙爬:0.5+2.5+10+40+160=213(分)×8块,列表:二、解答题12. <1>,<4>,<2>,<3>.14. 184种.设3的倍数为3m (1≤m ≤33),5的倍数为5n (1≤n ≤20),则它们的和表示为A=3 m +5 n .当m =1, n =1时,A 的最小值为8;当m =33, n =20时,AA 不能为9,10,12,15,192,195,197,198共8个(如下表)再去掉小于8的1,2,3,4,5,6,7,共七个,所以有11.1乙袋甲袋3倍取出24千克 ?千克设从甲袋中取出24千克盐后,甲袋的重量为1份,由已知: 甲袋盐剩下的重量:(24+28)÷(3-1)=26(千克) 两袋原各有盐的重量:26+24=50(千克). 12.由上图可以看出,原来甲筐苹果比乙筐多 5+7+5=17(千克),所以知:甲、乙两数之和是75,差为17. 甲筐苹果数=(75+17)÷2=46(千克) 乙筐苹果数=75-46=29(千克)小学奥数-列表法-练习题及答案(B 卷)一、填空题1.有甲乙两人进行汽车比赛,第一分钟内甲的速度为每秒6.6米,乙的速度为每秒2.9米.以后每分钟内的速度,甲总是前一分钟的两倍,乙总是前一分钟的三倍,出发后 分 秒乙追上甲.2.有100个人,第一位带有3元9角钱,第二位比第一位多1角,第三位比第二位多1角,……,以后每位总比前一位多一角.每人把自己所有的钱用来买练习本,练习本有两种,一种8角每本,一种5角每本.每人尽可能买5角一本的,这100人共买了 本8角的练习本.3.绕湖一周是24千米,小张和小王从湖边某一地点同时出发,反向而行,小王以4千米/小时速度每走1小时后休息5分钟,小张以6千米/小时速度每走50分钟后休息10分钟,问出发后 时 分两人第一次相遇.天能把洞挖通;这时大鼠挖了 厘米,小鼠挖了 厘米.5.甲、乙、丙三人共有棋子若干,甲先拿出自己棋子的一半平分给乙、丙;然后乙拿出现有的31平分给甲、丙;最后丙把自己的41棋子.6.号码分别为101,126,173,193的四个运动员进行乒乓球比赛,规定两个人比赛的盘数是它们的号码的和被3除所得的余数,那么打球盘数最多的运动员打了 盘.7.有50名学生参加联欢会,第一个到会的女生同全部男生握过手,第二个到会的女生只差1个男生没握过手,第三个到会的女生只差两个男生没有握过手,……这样,最后一个女生与7个男生握过后,那么,50名学生中,男生有 名.8.如下图:小正方形的边长是1厘米,依次作出下面图形.75千克乙筐 甲筐图上第一个图形的周长是10厘米,(1)36个正方形组成的图形周长是厘米.(2)周长是70厘米的图形,由个正方形组成.9.A,B,C,D,E五人在一次满分为100分的考试中都得了大于91分的整数分,如果A,B,C的平均分为95分;B,C,D的平均分为94分,A是第一名,ED是分.10.某月底,甲、乙、丙三人领了数额不同的奖金.如果把甲的一部分分给乙、丙两个人,使他们各增加一倍,然后乙又拿出一部分奖金分给甲、丙两人,使他们也增加一倍.最后丙也这样做了,这时,三人的奖金都是24元,求甲原来有元.二、解答题×1992×1992×……×1992(共1992个1992)的积的十位上的数是多少?×3×5×7×9×11……×1993×1995的积的末三位数字是多少?13.一个圆的周长是1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行,这两只蚂蚁每秒钟分别爬5.5厘米和3.5厘米,它们每爬1秒、3秒、5秒……(连续的奇数),就调头爬行,那么,它们相遇时已爬了多少秒?14.大圆是400米跑道,由A到B 200米,直线距离是50米,父子二人同时从A点出发逆时针方向沿跑道进行长跑,儿子跑大圈,父亲跑到B点便沿直线跑,父亲跑100米用20秒,儿子每100米用19秒.照这样算,儿子在跑第几圈时与父亲相遇?———————————————答案——————————————————————一、填空题1. 3分20秒.以一分钟为一段时间,逐段计甲比乙领先的距离,当此距离为0时,乙追上甲.时间(分) 1 2 3 4甲程(米) 396 1188 2772 5940乙程(米) 174 696 2262 6960领先(米) 222 492 510由表可知3分钟之后4分钟之前乙追上甲.205.25510)26.639.2(51033=÷=⨯-⨯÷秒)2. 200本.根据题意必须以每个人的钱数来选买这两种本.列表表示每人的钱数与相应的两种簿本).共有10本.所有的本数于是:10×(100÷5)=200(本)3. 2小时40分.时10分,张走了10+5÷(50÷10)=11(千米).此时相距24-(8+11)=5(千米),此时到相遇不会休息:5÷(4+6)=0.5(时)2时10分+30分=2时40分.a 粒48.7. 28名.设有a名女生,b名男生.根据题意,第a个到会女生的序号与同她握过手的男生有一+1=7,也就是 b – a =6,于是男生:(50+6)÷2=28(人).9. D =97分.由题意得:A+B+C =95×3 ①B+C+D =94×3 ②①-②得:A-D =3即 A =D+3 ③将③代入①得:B+C=282-D ④,可列下表:10.二、解答题====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集4[(1995+1)÷2-12]÷4=246……2,即为875.A 时比父亲慢2秒,他将继续跑,所以第3圈追上父.。
列表法在小学数学解决问题中的应用
列表法在小学数学解决问题中的应用
列表法是小学数学中常用的解题方法之一。
它通过将问题中的数据或条件逐一列出来,建立一个清晰的列表,帮助学生更好地理清思路,解决问题。
下面我们来看一些在小学数
学中常见的问题,以及如何运用列表法解决。
一、通过列举法解决问题
列举法是列表法中最简单和直接的一种形式。
它适用于一些需要找出所有可能情况的
问题。
例如:
1.在一个班级中,有10个男生和15个女生,请你列出所有可能的男女生分组情况。
解:我们可以使用一个列表来列出男生和女生分组的情况。
男生分组情况:(1,9)、(2,8)、(3,7)、(4,6)、(5,5)、(6,4)、(7,3)、(8,2)、
(9,1)、(10,0)
通过列举法,我们可以清晰地看到男生和女生分组的所有情况。
1.一个数加5的结果是8,这个数是多少?
数 + 5 = 8
通过观察列表,我们可以很容易地得到等式的解,即数=3。
数1 + 数2 = 12
(数1 + 数2) - 3 = ?
1.小明有5只红色的铅笔和3只蓝色的铅笔,请你分别列出小明拿出的所有铅笔的颜
色和数量。
红色铅笔数量:0、1、2、3、4、5
蓝色铅笔数量:8、7、6、5、4、3
通过分类讨论,我们可以清晰地看到小明拿出的所有铅笔的颜色和数量。
2.一架飞机上有80名乘客,其中男性占总人数的三分之一,女性比男性多25人,请
你分别列出男性和女性的数量。
男性数量:0、1、2、3、......、27、28
女性数量:80-男性数量+25
通过分类讨论,我们可以得到不同性别乘客的数量。
小学数学竞赛十二、用列表法解应用题(二)
十二、用列表法解应用题(二)前面两讲讲了用倒推法和列举法解应用题,但是,有些应用题单纯地用某种方法解答往往比较复杂,步骤也比较多。
如能综合地运用两种或几种不同的方法,那就比较灵活、简便了。
下面我们讲如何采用倒推法,再结合列举法或其他方法解应用题。
例1 一班、二班、三班各有不同数目的图书。
如果一班拿出本班的一部分图书分给二班、三班,使这两个班的图书各增加一倍;然后二班也拿出一部分图书分给一班、三班,使这两个班的图书各增加一倍;接着三班也拿出一部分图书分给一班、二班,使这两个班的图书各增加一倍。
这时,三个班的图书数目都是48本。
求三个班原来各有图书多少本?分析与解我们可采用倒推法,再结合列举法进行分析推理。
三个班的图书总数目是一个不变的数,在每一次重新变化后,这个总数目仍不变,由此,可从最后三个班的图书数目都是48本出发进行倒推,求每一次重新变化以前三个班各自的图书数目,逐步倒推出原有的图书数目。
依据题意可知,一班、二班的图书数目各增加一倍才是48本,因此增加前各应有24本,所以一班、二班的图书数目各应减半,还给三班。
其余各次,以此类推,把倒推解答的过程用下表表示:答:一班原有图书78本;二班原有图书42本;三班原有图书24本。
验算:为了保证解答的正确,可依据题意,从一班的78本出发,按题目中三次分配的情况进行计算,看是否可得每班的图书数目都是48本。
这样顺、逆全面考虑,就可确保解题正确。
一班拿出本班的一部分图书分给二班、三班,使二班的图书由42本增加到84本(增加1倍);使三班的图书由24本增加到48本(增加1倍);所以一班应有78-42-24=12(本);和上表中倒数第二行中的三个数都一致。
其余各次,以此类推进行验算。
例2 甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。
第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的足球中拿出与这时甲校个数相同的足球并入甲校。
【2年级奥数详解(上)】第15讲 列表推理
小学奥数创新体系2年级(上册授课详解) 最新讲义小学奥数第十五讲列表推理1.例题1答案:小猫住上层,小狗住中层,小猪住下层.详解:小猪住在下层,小猫不住在中层,所以小猫住在下层和上层,而下层小猪住,所以小猫住在上层.所以小狗住在中层.小猪小狗小猫上层××√中层×√×2.例题2答案:多多第一,毛毛第二,月月第三.详解:方法一:文字分析法.从月月说“我不是第一名,也不是第二名”可以判断月月是第三名;再从毛毛说“我不是第一名”,可以判断毛毛一定是第二名,那么多多就是第一名了.方法二:列表法.这里列表可以通过问题以人为行、名次为列或以名次为行、人为列,再从确定的开始填,一定是的画“√”,一定不是的画“×”.根据月月说:“我不是第一名,也不是第二名.”可以判断月月是第三名.那么如下表:月月多多毛毛一×二×三√××又根据毛毛说:“我不是第一名.”可以判断毛毛是第二名或第三名,又知月月是第三名,那么毛毛就是第二名.那么如下表:月月多多毛毛一××二××√三√××最后只有第一名,判定多多是第一名.那么如下表:月月多多毛毛一×√×二××√三√××3.例题3答案:赵叔叔是工人,刘叔叔是教师,魏叔叔是农民.详解:根据题目中的问题列表格,以人为行、职业为列或以职业为行、人为列.利用“(1)赵叔叔比教师体重重”和“(2)魏叔叔和教师体重不同”,可以知道赵叔叔和魏叔叔都不是教师,可以判断刘叔叔是教师.由“(1)赵叔叔比教师体重重”和“(3)赵叔叔和农民是朋友”可以知道赵叔叔不是教师也不是农民,可判断赵叔叔是工人,最后得出魏叔叔是农民.三个人的角色如下表:赵叔叔刘叔叔魏叔叔工人√××教师×√×农民××√。
奥数二年级列表法解题例题解析【三篇】
奥数二年级列表法解题例题解析【三篇】
导读:本文奥数二年级列表法解题例题解析【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【篇一】幼儿园把一批桔子分给小朋友.如果分给大班的学生每人5只余10只;如果分给小班的学生每人8只缺2只.已知小班比大班少3人,问这批桔子有多少只?【答案】
【篇二】 6.兄弟两人去钓鱼,共钓了52条,其中弟弟钓的鱼是哥哥的2倍多1条,问两人各钓了多少条鱼?【答案】【篇三】 5.100个人吃92个馒头,大人一人吃2个,小孩两人吃1个,恰好吃完.问大人、小孩各多少人?【答案】。
小学数学奥数解题技巧第十五讲 列表法
第十五讲列表法把应用题中的条件简要地摘录下来,列表分类整理、排列,并借助这个表格分析、解答应用题的方法叫做列表法。
在用列表法解题时,要仔细判断题中哪些数量是同一件事中直接相关联的,哪些数量是同一类的。
排列数量时,要尽量做到“同事横对”,“同名竖对”。
这就是说,要使同一件事中直接相关联的数量横向排列,使同一类的、单位名称相同的数量竖着排列,还要使它们的数位上、下对齐。
这样就可以在读题、列表的过程中正确识别数量,选择数量,理解数量之间的联系、区别,理清思路,为下一步的分析、推理作好准备。
(一)通过列表突出题目的解法特点有些应用题的解法具有一定的特点,如果把题中的条件按一定的格式排列,整理成表,则表格会起到突出题目解法特点的作用。
例1桌子上放着黄、红、绿三种颜色的塑料碗。
3只黄碗里放着51个玻璃球,5只红碗里放着75个玻璃球,2只绿碗里放着24个玻璃球。
要使每只碗里玻璃球的个数相同,每只碗里应放多少个玻璃球?(适于四年级程度)解:摘录题中条件,排列成表15-1。
表15-1求每只碗里应放多少个球,要先求出一共有多少个碗,和在这些碗中一共放了多少个球。
由于表15-1中把碗的只数排列在前一竖行,把球的个数排列在另一竖行,所以只要看着表15-1中竖着排列的碗的只数和球的个数,便可算出碗的总数和玻璃球的总数,从而使问题得以解决。
(51+75+24)÷(3+5+2)=150÷10=15(只)答:平均每只碗里应放15个玻璃球。
例2荒地村砂场用3辆汽车往火车站运送砂子,5天运了180吨。
照这样计算,用4辆同样的汽车15天可以运送多少吨砂子?(适于四年级程度)解:摘录题中条件,排列成表15-2。
表15-2解此题的要点是先求出单位数量。
表15-2中,由于汽车的辆数、运送的天数和吨数这三个直接相关联的数量排在同一横行,因此便于想到,180÷5得到3辆车1天运多少吨,180÷5÷3就得到一辆车一天运多少吨;接着便可想到求出4辆车1天运多少吨,15天运多少吨。
二年级数学思维奥数第23讲 列举解题
第23讲 列举解题知识导航:本节主要探究运用列举的方法解答应用题,列举法就是将符合题意的或者想到的解题方法一一写出来,再根据题目的要求,进行筛选、比较,从而解决问题。
这种方法有利于训练思维的灵活性,培养探究精神。
例题1 妈妈比小红的年龄大24岁,小红今年6岁,几年前,妈妈的年龄是小红的7倍?123456252627282930小红的年龄妈妈的年龄练习一1,小芳今年6岁,爸爸比她大25岁。
几年前,爸爸的年龄是小芳的6倍?2,爷爷今年60岁,比小明大54岁。
几年前,爷爷的年龄是小明的19倍?3,爸爸今年35岁,妈妈今年33岁,小力今年7岁。
几年前,爸爸妈妈的年龄和正好是小力的20倍?例题2 有10元币和5元币共6张,正好40元,10元币和5元币各是多少张?根据题意,结合“10元币和5元币共6张”,列表如下:55元1张5张50元2张4张45元3张3张40元4张2张35元5张1张合计5元币10元币从列举中就可以看出答案了。
练习二1,有10元币和2元币共5张,正好26元。
10元币和2元币各是多少张?2,有1元硬币和5角硬币共4个,正好3元。
1元硬币和5角硬币各有几个?3,有鸡和兔共6只,共16条腿。
鸡和兔各有几只?例题3 12个跳舞的小朋友排队,要使每排的人数相等,有几种排法?列出相庆的乘法算式。
根据题意,要使每排的人数相等,那么,每排人数×排数=12人,我们可以列举出积是12的乘法算式。
12346121264321排数(排)每排的人数(人)从列举中可以看出,有6种排法,相应的乘法算式有:1×12=12人,2×6=12人,3×4=12人,4×3=12人,6×2=12人,12×1=12人。
练习三1,8个小朋友排队,要使每排的人数相等,可以怎样排? 2,要把12盆花摆成几行,每行的盆数一样多,可以怎样摆? 3,10个小朋友排成人数相等的几队,可以怎样排?例题4 云云玩套圈游戏,规则如下:一次投圈5个,套中远处的大玩具得5分,套中近处的小玩具得1分。
小学数学奥数:“鸡兔同笼”13种解题方法
小学数学奥数:“鸡兔同笼”13种解题方法题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!鸡:0、3、5、7、9兔:14、11、9、7、5腿:56、50、46、42、38根据上面的表格数据,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列表法解应用题
例1:晚上小胖在灯下做作业,突然停电了,小胖去拉了2个开关。
妈妈回来了,在小胖房间里又拉了3下开关。
请你想一想,如果这时来电了,灯是亮着的还是不亮着的?
练习1:晚上奶奶家突然停电了,小胖去拉了2下开关。
调皮的表弟在小胖房间里又拉了4下开关。
请你想一想,如果这时来电了,灯是亮着的还是不亮着的?
例2:用数字1,2,3可以组成多少个没有重复数字的三位数?其中最大的那个是多少?最小的那个是多少?
练习2:用2,5,6可以组成几个没有重复数字的三位数,其中最大数和最小数的和是多少?
例3:丽丽有一件夹克衫和一件薄绒衫,还有三条不同颜色的裤子:黑裤子、红裤子、白裤子。
她想穿一套衣服去奶奶家,可以有几种不同的穿法?
练习3:欢欢有3件不同颜色的上衣(白色、黑色、灰色),4条不同颜色的裤子(蓝色、褐色、黄色、绿色)。
他要穿一套衣服去上学,可以怎么穿呢?
例4:小明今年18岁,妈妈的年龄比小明的2倍大1岁,爷爷的年龄比妈妈的2倍大1岁,三个人一共多少岁?
练习4:书架有上、中、下三层,上层有书28本,比中层多6本,比下层少6本,这个书架上一共有几本书?
例5:明明的爸爸和妈妈两人的年龄和是99岁,爸爸比妈妈大9岁,而且爸爸的年龄数的两个数字交换位置后,恰好是妈妈的年龄数,请你算一算明明的爸爸妈妈各是多少岁?
练习5:梨树、桃树、苹果树共有32棵,梨树比桃树多3棵,而且是苹果树的2倍,问:三种树各有几棵?
练习题
1、用8,5,2可以组成多少个没有重复数字的三位数?其中最大的那个数和最小的那个
数相差多少?
2、用0、2、6可以组成多少个没有重复数字的三位数?其中最大的和最小的数分别是多
少?
3、用数字2、5、6可以组成多少个没有重复数字的两位数?其中最大的那个是多少?最
小的那个又是多少?
4、红红、芳芳、青青三人去照相,摄影师要她们排成一行,有几种不同的排法呢?
5、五只苹果分别在三个不同的盘子里,每个盘子至少要有一个,共有几种不同的方法?
6、用数字0、2、6、9可以组成很多个没有重复数字的三位数,你知道其中最大那个是多
少?最小的好个又是多少?
7、甲、乙、丙三人的年龄和是38岁,丙的年龄是甲的一半,比乙小2岁,甲、乙、丙三
人各几岁?
8、去年甲的年龄是乙的2倍,甲比乙大2岁,今年甲、乙两人各几岁?
9、某商店规定可乐饮料1元一瓶,五个空瓶又可换一瓶可乐。
用80元钱买可乐,你知道
最多可以喝多少瓶可乐?
10、二(2)班22位小朋友共植树56棵,女生每人植2棵,男生每人植3棵,男生和女生
各有几人?。