频率域图像增强

合集下载

第4讲频率域图像增强

第4讲频率域图像增强

F(u)e j2ux/ M
aue j 2ux/ M
u
u
(3)离散形式
F(u)
1
M 1
f (x)e j2ux/ M
M x0
M 1
f (x) F(u)e j2ux/ M
u0
系数1/M也可以放在反变换前, 有时也可在傅立叶正变 换和逆变换前分别乘以(1/M )1/2。
• 对高频成分的通过使图像锐化——高通滤波 • 高通和低通的关系
– Hhp(u,v) = 1 - Hlp(u,v) – 即低通阻塞的频率是能够通过高通的
• 理想高通滤波器的定义
– 一个二维的理想高通滤波器(ILPF)的转换函数满足 (是一个分段函数)
其中:D0 为截止频率
D(u,v)为距离函数 D(u,v)=(u2+v2)1/2
– 低通滤波器 – 高通滤波器 – 同态滤波器
低通滤波器的基本思想

G(u,v)=F(u,v)H(u,v)
– F(u,v)是需要钝化图像的傅立叶变换形式
– H(u,v)是选取的一个滤波器变换函数
– G(u,v)是通过H(u,v)减少F(u,v)的高频部分来 得到的结果
– 运用傅立叶逆变换得到钝化后的图像。
二阶GLPF 无振铃
• 高斯LPF r=30
ILPF r=30
第4讲 频率域图像增强
• 4.1 卷积 • 4.2 傅立叶变换 • 4.3 平滑频率域滤波器——低通滤波器 • 4.4 频率域锐化滤波器——高通滤波器 • 4.5 同态滤波器
2
频率域锐化滤波器
• 对F(u,v)的高频成分的衰减使图像模糊——低 通滤波
• 一个截止频率在与原点距离为D0的n阶Butterworth 低通滤波器(BLPF)的变换函数:

第四章频率域图像增强

第四章频率域图像增强

图像傅立叶变换的物理意义
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空 间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示 空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图 像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表 示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。 为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱 图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并 不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶 频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域 点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么 理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来 讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立 叶变换后的频谱图,也叫功率图
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质 ✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现
➢图像的频率指什么?
✓ 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面
Mx0
u=0,1,2,…,M-1
✓ 给定F(u),通过傅里叶反变换可以得到f(x)
f(x)
1
M1
j2ux
F(u)e M
Mu0
x=0,1,2,…,M-1
傅里叶变换
一维离散傅里叶变换及反变换
✓ 从欧拉公式 e j cos j sin
F (u)
1
M 1

第四章频率域图像增强

第四章频率域图像增强

一、频率域介绍
低通滤波器
低通滤波函数
原图
低通滤波结果:模糊
一、频率域介绍
高通滤波器
高通滤波器:使高频通过而使低频衰减的滤波器
被高通滤波的图像比原始图像少灰度级的平滑 过渡而突出边缘等细节部分
对比空间域的梯度算子、拉普拉斯算子
一、频率域介绍
高通滤波器
高通滤波函数
原图
高通滤波结果:锐化
G(u,v)=F(u,v)H(u,v)
最后将G(u,v)进行IDFT变换即可得到频域滤波后 的图像
频域滤波的步骤
具体实施步骤如下: (1)用(-1)x+y乘以输入图像f(x,y)来进行中心变换;
f ( x, y)(1)x y F (u M / 2, v N / 2)
(2)由(1)计算图像的DFT,得到F(u,v); (3)用频域滤波器H(u,v)乘以F(u,v); (4)将(3)中得到的结果进行IDFT; (5)取(4)中结果的实部; (6)用(-1)x+y乘以(5)中的结果,即可得滤波图像。
uv
理想低通滤波器举例
500×500像素的原图 图像的傅里叶频谱
圆环具有半径5,15,30,80和230个像素 图像功率为92.0%,94.6%,96.4%,98.0%和99.5%
理想低通滤波器举例——具有振铃现象
结论:半径越小,模糊越大;半径越大,模糊越小
原图
半径是5的理想低通 滤波,滤除8%的总功 率,模糊说明多数尖 锐细节在这8%的功率 之内
二、频率域平滑滤波器
理想低通滤波器
总图像功率值PT
M 1 N 1
PT P(u, v)
u0 v0
P(u, v) | F (u, v) |2 R(u, v)2 I (u, v)2

频率域图像增强

频率域图像增强

理想低通滤波器
截止频率 为分别设 置为
10,30,60,1 60和460
由于高频成分包含有大量的边缘信息,因此采用该滤波器在去 噪声的同时将会导致边缘信息损失而使图像边模糊。
布特沃斯低通滤波器
n阶布特沃斯滤波器的传递函数为:
D0是截止频率。对于这个点的定义,我们可以这样理解,使 H(u,v)下降为最大值的某个百分比的点。
理想低通滤波器
第一幅图为理想低通滤波器变换函数的透视图 第二幅图为图像形式显示的滤波器 第三幅图为滤波器径向横截面
振铃
附录
产生的原因图像在处理过程中的信息量的丢失,尤其是高频 信息的丢失
由卷积定理可知,频率域下的理想低通滤波器H(u, v)必定存在 一个空间域下与之对应的滤波函数h(x, y),且可以通过对H(u,v)作傅 里叶逆变换求得。产生振铃效应的原因就在于,理想低通滤波器在 频率域下的分布十分线性(在D0处呈现出一条垂直的线,在其他频 率处呈现出一条水平的线),那么不难想象出对应的h(x,y)将会有类 似于sinc函数那样周期震荡的空间分布特性。正是由于理想低通滤 波器的空间域表示有类似于sinc函数的形状,位于正中央的突起使 得理想低通滤波器有模糊图像的功能,而外层的其他突起则导致理 想低通滤波器会产生振铃效应。
H(u,v) =-4π2[(u-P/2)2=(v-Q/2)2] =-4π2D2(u,v)
所以我们就可以得到拉普拉斯图像由下式 ▽
▽2f(x,y)=ζ -1[H(u,v)F(u,v)]
相比较其他滤波器不同的是,一般我们经过逆傅里叶变化就可以得到图像了而我 们需要如下实现
g(x,y)=f(x,y)+c ▽2f(x,y)
我们可以从两者之间的剖面图进行比较,GLPF没有 BLPF那样紧凑。 但是重要的是,GLPF中没有振铃。

图像处理课件04频率域图像增强

图像处理课件04频率域图像增强

u 0,1,, M 1 v 0,1,, N 1
反变换: f ( x, y ) F (u , v) e j 2 ( ux / M vy / N )
u 0 v 0 M 1 N 1
x 0,1, , M 1 y 0,1, , N 1
一般F(u,v)是复函数,即:
1
2
5
20
3、高斯低通滤波器(GLPF)
H (u, v) e
D 2 u ,v / 2 2
令 D0
H (u, v) e
2 D 2 u ,v / 2 D0
当D(u, v) D0
H (u, v) 0.607
有更加平滑的过渡带,平滑后的图象没有振铃现象 与BLPF相比,衰减更快,经过GLPF滤波的图象比 BLPF处理的图象更模糊一些
高通滤波与低通滤波的作用相反,它使高频分量顺 利通过,而使低频分量受到削弱。
H hp (u, v) 1 H lp (u, v)
与低通滤波器相对应,频率域内常用的高通滤波器 有3种: 1. 理想高通滤波器 2. 巴特沃斯高通滤波器 3. 高斯高通滤波器
空间域滤波和频率域滤波之间的对应 关系
卷积定理:
f ( x, y) h( x, y) F (u, v) H (u, v)
f ( x, y)h( x, y) F (u, v) H (u, v)
冲激函数
M 1 N 1 x 0 y 0
s( x, y) A ( x x , y y ) As( x , y )
频率域的基本性质:
低频对应着图像的慢变化分量。
较高的频率对应着图像中变化较快的灰度级。
变化最慢的频率成分(原点)对应图像的平均灰度级。

数字图像处理之频率域图像增强

数字图像处理之频率域图像增强
易于分析和处理。
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS

频域图像增强

频域图像增强
常数以将一些低频分量加回到滤波结果中,从而 获得较好的视觉效果
对转移函数乘以一个常数k ,加一个常数c He(u, v) = kH(u, v) + c
Ge(u, v) = kG(u, v) + cF(u, v)
6.2 高通滤波器
2)高频提升滤波器 把原始图乘以一个放大系数A再减去低通图
GHB(u,v) AF(u,v) FL(u,v) (A1)F(u,v) FH(u,v)
当A = 1时,就是普通的高通滤波器。当A > 1,原始图的一部分与高通图相加,恢复了部分高 通滤波时丢失的低频分量,使得最终结果与原图 更接近
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
6.3 带阻带通滤波器
用合适的滤波器滤波、反变换、取指数。
6.4 同态滤波器
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
6.5 空域技术与频域技术
1.空域技术的频域分析
借助频域的概念对空域滤波的工作原理进行 分析常比较直观
空域的平滑滤波对应频域的低通滤波 空域的锐化滤波对应频域的高通滤波 频域里低通滤波器的转移函数应该对应空域 里平滑滤波器的模板函数的傅里叶变换 频域里高通滤波器的转移函数应该对应空域 里锐化滤波器的模板函数的傅里叶变换
3、结果进行傅里叶反变换,得到增强的图像。
第6章 频域图像增强
6.1 低通滤波器 6.2 高通滤波器 6.3 带阻带通滤波器 6.4 同态滤波器 6.5 空域技术与频域技术
6.1 低通滤波器

频域图像增强

频域图像增强
2 1 2 2
其 W 带 宽 , 0为 射 心 D(u, v) =[u + v ] 中 为 的 度 D 放 中 。
例6.4.1放射对称的带阻滤波器的透射示意图。 6.4.1放射对称的带阻滤波器的透射示意图。 类似 n阶放射队乘的巴特沃思带阻滤波器。
1 H(u, v) = D(u, v)W 1+[ 2 ]2n D (u, v) − D2 0
2、空域技术或频域技术的选择 如果两个域内的滤波器具有相同的尺寸,则 借助开傅立叶变换在频域中进行滤波的效 率更高。 但在空域中常可以适用较小的滤波器来达到 相似的滤波效果,所以计算量反而较小。
if if
D(u, v) ≤ D 0 D(u, v) > D 0
2、理想低通滤波器的模糊 会造成图像模糊和“振铃”现象/ 会造成图像模糊和“振铃”现象/效应出现。 如果 D 较小,则使h(x, y) 产生数量较少, 0 但较宽的同心圆环,并使 g(x, y) 模糊得比 较厉害。 如果 D 较大,则使 h(x, y)产生数量较多, 0 但较窄的同心圆环,并使 g(x, y) 模糊得比 较少。 如果 D 超出 F(u, v)定义域则相当于不滤波。 0
1 2 2 1 2 2
D (u, v) =[(u −u0 )2 + (v −v0 ) ] 1
D (u, v) =[(u +u0 )2 + (v + v0 ) ] 2
图6.4.1是一个典型的带阻滤波器的透视示意图
设计成除去以原点为中心的一定频率范围
1 H(u, v) = 0 1 如 (u, v) < D −W / 2 D 0 如 0 −W / 2 ≤ D(u, v) ≤ D +W / 2 D 0 如 (u, v) > D +W / 2 D 0

《频域图像增强》课件

《频域图像增强》课件
《频域图像增强》PPT课 件
在本课程中,我们将探索频域图像增强的概念、原理和应用。了解傅里叶变 换、频率域滤波、统计频域增强方法和空间频率滤波等常见技术。
什么是频域图像增强
频域图像增强是一种图像处理技术,通过在图像的频域进行操作,改善图像 的质量和增强图像的细节。它基于信号处理和数学变换的原理,可以优化图 像的视觉效果。
常见的频域图像增强技术
傅里叶变换
通过将图像转换到频域,可以分析和改变图像 的频率成分。
统计频域增强方法
通过统计图像的频域特征,可以对图像进行增 强和修复。
频率域滤波
利用频域滤波器,可以增强或抑制图像的特定 频率成分。
空间频率滤波
利用空间领域和频率领域的关系,可以改善图 像的细节和对比度。
频域图像增强的应用领域
频域图像增强的作用和意义
频域图像增强可以提高图像的可视性,使图像更清晰、更鲜艳。它可以增强图像的细节,并减少噪点和模糊。 频域图像增强在许多应用领域都起到重要的作用。
频域图像增强的基本原理
频域图像增强的基本原理是将图像转换到频域,并利用频域滤波和变换等方法对图像进行处理。通过对图像的 频域表示进行操作,可以改变图像的频率分布,从而改善图像的质量。
挑战:频域图像增强需要高级数学和信号处理技术,同时需要根据具体应用 场景选择适当的算法和参数。
1 医学图像处理
频域图像增强在医学影像诊断和治疗中起着重要作用,帮助医生提取和分析图像特征。
2 航空航天图像处理
频域图像增强可以改善航空航天图像的清晰度和对比度,提高目标检测和识别的准确性。
3 摄影图像处理
频域图像增强可用于提升摄影作品的质量,改善细节和色彩还原。
频域图像增强的优势和挑战

第四讲频率域图像增强 65页PPT文档

第四讲频率域图像增强 65页PPT文档
空间域和频率域中的滤波器组成了傅里叶变换对。
高斯函数在空域和频域的对应关系式:
H(u)u2/22
h(x)2 Ae 222x2
1D高斯低 通滤波器
H(u)Ae(u2v2)/22
h (x)2 Ae 2 2 1 2(x2y2)
2D高斯低 通滤波器
结论:1)H (u) 有宽的轮廓,则h(x)有窄的轮廓,反之亦然。 2)频率域滤波器越窄,滤出的低频成分越多,图 像被模糊,在空域则滤波器越宽,模板越大。
G (u , v)=H (u , v) X F (u , v)
例二、显示重要特征的傅里叶谱
注:原始图像中有约±450的强 边缘和两个白色的氧化物 突 起。
注:傅里叶频谱显示了±450的强 边缘,在垂直轴偏左的部分有 垂直成分(对应两个氧化物 突 起)。
频域滤波的基本步骤:
1)用 (-1)x+y 乘以输入图像进行中心变换; 2)计算1)处理后图像的DFT,即 F (u , v); 3)用滤波器函数 H (u , v)乘以 F (u , v);即
G (u , v)=H (u , v) x F (u , v) 4) 求 G (u , v)的IDFT; 5) 得到4)的IDFT的实部; 6)用 (-1)x+y 乘以 5)的结果。
频域滤波的基本步骤
DFT
滤波器 H (u , v)
IDFT
F (u , v)
H (u , v) F (u , v)
前处理
2D低通滤波器
2D高通滤波器
滤波器原 点为0, 因此几乎 没有平滑 的灰度级 细节
陷波滤波器对图像的影响 ( 陷波滤波器将原点设置为0 平均灰度为0,因而需要标定)
高通滤波器对图像的影响 (滤波器函数加上滤波器高度一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率域图像增强
频率域图像增强
高频提升过滤举例——频率域滤波
频率域图像增强
• 高频提升加强
高频提升加强举例
陷波滤波器举例
由于图像平均值为0而产生整体平均灰 度级的降低
频率域滤波
• 低通滤波器:使低频通过而使高频衰减的滤 波器
– 被低通滤波的图像比原始图像少尖锐的细节部分 而突出平滑过渡部分 – 对比空间域滤波的平滑处理,如均值滤波器
• 高通滤波器:使高频通过而使低频衰减的滤 波器
– 被高通滤波的图像比原始图像少灰度级的平滑过 渡而突出边缘等细节部分 – 对比空间域的梯度算子、拉普拉斯算子
频率域图像增强
• 傅里叶变换的频率分量和图像空间特征之 间的联系
– 变化最慢的频率成分(u=v=0)对应一幅图像的平 均灰度级
频率域滤波
• 傅里叶变换的频率分量和图像空间特征之 间的联系(续)
– 当从变换的原点移开时,低频对应着图像的 慢变化分量,如图像的平滑部分 – 进一步离开原点时,较高的频率对应图像中 变化越来越快的灰度级,如边缘或噪声等尖锐 部分
低通滤波器和高通滤波器举例
低通滤波器和高通滤波器举例
– 因为F(0,0)已被设置为0,所以几乎没有平滑 的灰度级细节,且图像较暗 – 在滤波器中加入常量,以使F(0,0)不被完全消 除,如图所示,对滤波器加上一个滤波器高度 一半的常数加以改进(高频加强)
频率域滤波
• 空间域滤波和频率域滤波之间的对应关系
频率域图像增强
频率域图像增强
• 频率域滤波 • 频率域平滑(低通)滤波器 • 频率域锐化(高通)滤波器
频率域图像增强
• 为什么要在频率域研究图像增强
– 可以利用频率成分和图像外表之间的对应关系。 一些在空间域表述困难的增强任务,在频率域中变 得非常普通 – 滤波在频率域更为直观,它可以解释空间域滤波 的某些性质 – 给出一个问题,寻找某个滤波器解决该问题,频 率域处理对于试验、迅速而全面地控制滤波器参数 是一个理想工具 – 一旦找到一个特殊应用的滤波器,通常在空间域 采用硬件实现它
f(x,y)*h(x,y),在每 个冲激处复制h(x,y) 的过程,振铃现象
频率域图像增强
• 巴特沃思低通滤波器
巴特沃思低通滤波器
应用:可用于平滑处理,如图像由于量化不足产生虚假轮 廓时,常可用低通滤波进行平滑以改进图像质量。通常, BLPF的平滑效果好于ILPF(振铃现象)。
巴特沃思低通滤波器 n=2
频率域滤波
• 频率域的滤波步骤
频率域滤波
• 频率域滤波
频率域滤波
• 频率域滤波的基本步骤
频率域滤波
• 一些基本的滤波器:如何作用于图像?
– 陷波滤波器 – 低通(平滑)滤波器 – 高通(锐化)滤波器
频率域滤波
• 陷波滤波器
– 设置F(0,0)=0(结果图像的平均值为零),而保 留其它傅里叶变换的频率成分不变 – 除了原点处有凹陷外,其它均是常量函数 – 由于图像平均值为0而产生整体平均灰度级的 降低 – 用于识别由特定的、局部化频域成分引起的 空间图像效果
• 理想高通滤波器
理想高通滤波器
频率域图像增强
• 巴特沃思高通滤波器
二阶巴特沃思高通滤波器
频率域图像增强
• 高斯高通滤波器
高斯高通滤波器
频率域图像增强
• 频率域的拉普拉斯算子定义
频率域图像增强
• 原点从(0,0)移到(M/2,N/2),所以,滤波函数 平移为
频率域图像增强
频率域图像增强
• 从原始图像中减去拉普拉斯算子部分,形 成g(x,y)的增强图像
拉普拉斯举例说明
频率域图像增强
• 频率域锐化滤波器
– 理想高通滤波器 – 巴特沃思高通滤波器 – 高斯高通滤波器 – 频率域的拉普拉斯算子 – 钝化模板、高频提升滤波和高频加强滤波
频率域图像增强
• 为什么要进行高频提升和高频加强?
巴特沃思低通滤波器
频率域图像增强
• 高斯低通滤波器
高斯低通滤波器
高斯低通滤波器
频率域图像增强
• 结论
– GLPF不能达到有相同截止频率的二阶BLPF的 平滑效果 – GLPF没有振铃 – 如果需要严格控制低频和高频之间截至频率 的过渡,选用BLPF,代价是可能产生振铃
频率域图像增强
• 低通滤波器的应用实例:模糊,平滑等
– 字符识别:通过模糊图像,桥接断裂字符的 裂缝 – 印刷和出版业:从一幅尖锐的原始图像产生 平滑、柔和的外观,如人脸,减少皮肤细纹的 锐化程度和小斑点 – 处理卫星和航空图像:尽可能模糊细节,而 保留大的可识别特征。低通滤波通过消除不重 要的特征来简化感兴趣特征的分析
频率域滤波
频率域滤波
频率域滤波
• 结论(低通滤波器)
频率域滤波
• 结论(高通滤波器)
– 空间域滤波器有正值和负值,一旦值变为负 数,就再也不会变为正数
• 为什么频率域中的内容在空间域要使用小 空间模板
– 频率域可以凭直观指定滤波器 – 空间域滤波效果取决于空间模板的大小
频率域中的滤波器组成 了傅里叶变换对 – 给出在频率域的滤波器,可以通过反傅里叶变换 得到在空间域对应的滤波器,反之亦然 – 滤波在频率域中更为直观,但在空间域一般使用 更小的滤波器模板 – 可以在频率域指定滤波器,做反变换,然后在空 间域使用结果滤波器作为在空间域构建小滤波器模 板的指导
字符识别举例
用于机器识别系统识别断裂字符的预处理
人脸图像处理
卫星图像处理
频率域图像增强
• 频率域锐化滤波器
– 理想高通滤波器 – 巴特沃思高通滤波器 – 高斯高通滤波器 – 频率域的拉普拉斯算子 – 钝化模板、高频提升滤波和高频加强滤波
频率域锐化滤波器
频率域锐化滤波器
频率域图像增强
• 频率域平滑滤波器
– 理想低通滤波器 – 巴特沃思低通滤波器 – 高斯低通滤波器 – 应用实例
频率域图像增强
• 频率域平滑滤波器
– 边缘和噪声等尖锐变化处于傅里叶变换的高 频部分 – 平滑可以通过衰减高频成分的范围来实现 – 理想低通滤波器:尖锐 – 巴特沃思低通滤波器:处于理想和高斯滤波 器之间 – 高斯低通滤波器:平滑
频率域图像增强
• 理想低通滤波器
频率域图像增强
• 理想低通滤波器
说明:在半径为D0的圆内,所有频率没有衰减地通过滤 波器,而在此半径的圆之外的所有频率完全被衰减掉
频率域图像增强
• 理想低通滤波器
理想低通滤波器举例
理想低通滤波器举例——具有振铃现象
频率域图像增强
频率域函数H(u,v) 模糊且半径为5的 ILPF 对应空间域h(x,y) 中心开始的圆环周期 f(x,y)由黑色背景 下5个明亮的像素组 成,明亮点可看作 冲激
频率域滤波
• 卷积定理
– 上式说明空间域卷积可以通过F(u,v)H(u,v)的乘积 进行反傅里叶变换得到
– 说明空间域乘法可以通过频率域的卷积获得 – 上述两个公式主要为两个函数逐元素相乘的乘法
频率域滤波
• 定义:在(x0,y0),强度为A的冲激函数表示 为 ,定义为
频率域滤波
频率域滤波
频率域滤波
相关文档
最新文档