板式吊耳设计计算书

板式吊耳设计计算书
板式吊耳设计计算书

抚顺石化分公司120万吨/年催化中压加氢精制(改质)装置

精制反应器(R-101)反应器吊耳设计参考

基本参数:

筒体最小壁厚135mm

封头最小壁厚:80mm

筒体内直径:3613mm

封头半径:1834mm

注:○1L2公式仅适用于标准椭圆形封头

式中:δ—封头名义厚度;

h1—封头曲面高度;

h2—封头直边高度;

对其它形式封头,L2由设计者自定。

吊耳板材质:Q235-A

许用应力[σ]:130Mpa

许用剪应力[τ]:91Mpa

角焊缝系数:Φn:0.7

动载综合系数:K=1.65

吊耳竖向载荷

Q=332235kg

Fv=332235÷2×K=332235÷2×1.65=274093.8 kg

吊角A-A截面拉应力:

σ= Fv/S(H-D)= 274093.8/(10-0.13)(53-18)= 274093.8/523.11=523.96kg/cm2σ<[σ],满足要求。

垫板焊缝剪应力:

τ= Fv/0.707 a [2(L sp+ H sp )-8×2+2π2]

=274093.8/0.707×3.6[2(45.5+93 )-8×2+2π2]

=274093.8/696.26

=393.66 kg/cm2

τ<[τ],满足要求。

吊耳板焊缝剪应力:

τ= Fv/0.707 aΦn[2(L sp-G+ L1 )+0.5πF+H-F-8r+2πr]

=274093.8/0.707×3.6×0.7[2(45.58+22 )+0.5π15+53-15-8×4+2π×4]

=274093.8/368.34

=744.13 kg/cm2

τ<[τ] ,满足要求。

吊耳受弯状态分析:

R A=P/2(2+3λ)

R B=-3Pm/2l

M A=-Pm

M B=Pm/2

A-C段Q X=-P M X=-Px

B-C段Q X=3Pm/2l M X=-Px+R A(x-m)

计算吊耳水平状态下受力状态:

P=274093kg

吊耳强度计算书(知识浅析)

计算 结论 1.原始数据: 1.1 最大起吊重量:4780kg 1.2 吊耳数量和分布:2只对称分布 1.3 吊耳尺寸及焊接方式,见图1 1.4 吊耳材质:20钢 1.5 吊耳的抗拉强度:σb =410Mpa 2. 计算公式 2.1 吊耳的允许负荷计算公式: n CD P =…………………………………………………(1) 式中: P ? 吊耳允许负荷(N ) D ? 起重量(包括工艺加强材料)(N ) C ? 不均匀受力系数 C =1.5~2 n ? 同时受力的吊耳数,n=2 2.2 吊耳的强度校验公式 2.2.1正应力 ][min σσ

σ?钢材的屈服极限,按选用的钢材厚度取值。 s 计算结论

0钢 δ>16~25mm, s σ=325Mpa; 2.3 吊耳的焊缝强度计算公式 本结构中:a )吊耳底面(如图1所示,110mm 焊接面)焊接于井座配对法兰之上,焊接时不开坡口;同时b )吊耳侧面(如图1所示,150mm 焊接面)焊接于侧板(扬水管)上,焊接时不开坡口。 我们只按a )情况进行计算。公式如下: ][D h h ττ≤= ∑l a (5) 式中:D-作用于吊耳上的垂直拉力(N ); a- 焊缝宽度尺寸,如图2所示,K 2/2a = ∑l-焊缝总长度,mm [τh ]-焊缝许用切应力(N/mm 2),[τh ]=0.18σb =73.8Mpa 3. 计算 3.1吊耳的允许负荷计算 将D=4780×9.81N=46892N ,C=1.5.N=2代入公式 n CD P =……………………………………………………(1) 得P=35169N 3.2 吊耳强度校验 3.2.1 正应力 将P=35169N ,F min =80×25mm 2=2000mm 2,代入公式 m in F P = σ…………………………………………(2) 得σ=17.6Mpa σ=17.6Mpa ﹤[σ]=108.3Mpa 3.2.2 切应力 将P=35169N ,A min =150×25mm 2=3750mm 2,代入公式 ][min ττ

某楼梯计算书(结构设计)

1 板式楼梯: TB1 1.1 基本资料 1.1.1 工程名称: 工程一 1.1.2 楼梯类型: 板式 A 型 ( ╱ ),支座条件: 两端弹性 1.1.3 踏步段水平净长 L sn = 2520mm ,梯板净跨度 L n = L sn = 2520mm , 梯板净宽度 B = 2350mm 1.1.4 低端支座宽度 d l = 200mm ,高端支座宽度 d h = 200mm 计算跨度 L 0 = Min{L n + (d l + d h ) / 2, 1.05L n } = Min{2720, 2646} = 2646mm 1.1.5 梯板厚度 h 1 = 120mm 1.1.6 踏步段总高度 H s = 1500mm ,楼梯踏步级数 n = 10 1.1.7 线性恒荷标准值 P k = 1kN/m ; 均布活荷标准值 q k = 3.5kN/m ψc = 0.7, ψq = 0.4 1.1.8 面层厚度 c 1 = 25mm ,面层容重 γc2 = 20kN/m 顶棚厚度 c 2 = 20mm , 顶棚容重 γc2 = 18kN/m 楼梯自重容重 γb = 25kN/m 1.1.9 混凝土强度等级为 C30, f c = 14.331N/mm f t = 1.433N/mm f tk = 2.006N/mm E c = 29791N/mm 1.1.10 钢筋抗拉强度设计值 f y = 360N/mm E s = 200000N/mm 纵筋的混凝土保护层厚度 c = 15mm 1.2 楼梯几何参数 1.2.1 踏步高度 h s = H s / n = 1500/10 = 150mm 踏步宽度 b s = L sn / (n - 1) = 2520/(10-1) = 280mm 踏步段斜板的倾角 α = ArcTan(h s / b s ) = ArcTan(150/280) = 28.2° 踏步段斜板的长度 L x = L sn / Cos α = 2520/Cos28.2° = 2859mm 1.2.2 踏步段梯板厚的垂直高度 h 1' = h 1 / Cos α = 120/Cos28.2° = 136mm 踏步段梯板平均厚度 T = (h s + 2h 1') / 2 = (150+2*136)/2 = 211mm 1.2.3 梯板有效高度 h 10 = h 1 - a s = 120-20 = 100mm 1.3 均布永久荷载标准值 1.3.1 梯板上的线载换算为均布恒荷 g k1 = P k / B = 1/ 2.35 = 0.43kN/m 1. 3.2 梯板自重 g k2 = γb ·T = 25*0.211 = 5.28kN/m 1.3.3 踏步段梯板面层自重 g k3 = γc1·c 1·(n - 1)(h s + b s ) / L n = 20*0.025*(10-1)*(0.15+0.28)/2.52 = 0.77kN/m 1.3.4 梯板顶棚自重 g k4' = γc2·c 2 = 18*0.02 = 0.36kN/m g k4 = g k4'·L x / L n = 0.36*2.859/2.52 = 0.41kN/m 1.3.5 均布荷载标准值汇总 g k = g k1 + g k2 + g k3 + g k4 = 6.88kN/m 1.4 均布荷载的基本组合值 由可变荷载控制的 Q(L) = γG ·g k + γQ ·q k = 1.2*6.88+1.4*3.5 = 13.16kN/m 由永久荷载控制的 Q(D) = γG1·g k + γQ ·ψc · q k = 1.35*6.88+1.4*0.7*3.5 = 12.72kN/m 最不利的荷载基本组合值 Q = Max{Q(L), Q(D)} = Max{13.16, 12.72} = 13.16kN/m 1.5 梯板的支座反力 永久荷载作用下均布反力标准值 R k (D) = 8.67kN/m 可变荷载作用下均布反力标准值 R k (L) = 4.41kN/m 最不利的均布反力基本组合值 R = 16.58kN/m 1.6 梯板斜截面受剪承载力计算 V ≤ 0.7·βh ·f t ·b ·h 0 V = 0.5·Q ·L n ·Cos α = 0.5*13.16*2.52*Cos28.2° = 14.6kN R = 0.7·βh ·f t ·b ·h 0 = 0.7*1*1433*1*0.1 = 100.3kN ≥ V = 14.6kN ,满足要求。 1.7 正截面受弯承载力计算 1.7.1 跨中 M max = Q ·L 02 / 10 = 13.16* 2.6462 /10 = 9.21kN ·m A s = 262mm a s = 19mm ,ξ = 0.065,ρ = 0.26%; 实配纵筋: 10@200 (A s = 393); 最大裂缝宽度 ωmax = 0.209mm 1.7.2 支座 M min = -Q ·L 02 / 20 = -13.16* 2.6462 /20 = -4.61kN ·m A s = 129mm a s = 19mm ,ξ = 0.032,ρ = 0.13%; ρmin = 0.20%, A s,min = 240mm 实配纵筋: 10@200 (A s = 393); 最大裂缝宽度 ωmax = 0.054mm 1.8 跨中挠度验算 1.8.1 挠度验算参数 按荷载效应的标准组合计算的弯矩值 M k = 7.27kN ·m 按荷载效应的准永久组合计算的弯矩值 M q = 5.80kN ·m 1.8.2 荷载效应的标准组合作用下受弯构件的短期刚度 B s 1.8.2.1 裂缝间纵向受拉钢筋应变不均匀系数 ψ σsk = M k / (0.87h 0·A s ) (混凝土规范式 8.1.3-3) σsk = 7267478/(0.87*101*279) = 296N/mm 矩形截面,A te = 0.5·b ·h = 0.5*1000*120 = 60000mm ρte = A s / A tk (混凝土规范式 8.1.2-4) ρte = 279/60000 = 0.00465 <0.01,取 ρte = 0.01 ψ = 1.1 - 0.65f tk / (ρte ·σsk ) (混凝土规范式 8.1.2-2) ψ = 1.1-0.65*2.01/(0.01*296) = 0.66 1.8. 2.2 钢筋弹性模量与混凝土模量的比值: αE = E s / E c = 200000/29791 = 6.71 1.8.2.3 受压翼缘面积与腹板有效面积的比值 γf ' 矩形截面,γf ' = 0 1.8. 2.4 纵向受拉钢筋配筋率 ρ = A s / (b ·h 0) = 279/(1000*101) = 0.00276 1.8.2.5 钢筋混凝土受弯构件的短期刚度 B s 按混凝土规范式 8.2.3-1 计算: B s = E s ·A s ·h 02 / [1.15ψ + 0.2 + 6·αE ·ρ / (1 + 3.5γf ')] = 200000*279*1012 /[1.15*0.66+0.2+6*6.71*0.00276/(1+3.5*0)] = 532.42kN · m 1.8.3 考虑荷载长期效应组合对挠度影响增大影响系数 θ

吊装中吊耳的选择与计算

钢结构吊装吊耳的选择与计算

前言 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。

一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式: 图例1为方形吊耳,是钢构件在 吊装过程中比较常用的吊耳形式,其 主要用于小构件的垂直吊装(包括立 式和卧式) 图例2为D型吊耳,是吊耳的普 遍形式,其主要用于吊装时无侧向力较 大构件的垂直吊装。这一吊耳形式比较 普遍,在构件吊装过程中应用比较广 泛。 图例3为可旋转式垂直提升吊耳, 此吊耳的形式在国外的工程中应用比 较多,它可以使构件在提升的过程中沿 着销轴转动,易于使大型构件在提升过 程中翻身、旋转。

图例4为斜拉式D型吊耳,此 吊耳主要用于构件在吊装时垂直方 向不便安装吊耳,安装吊耳的地方与 吊车起重方向成一平面角度。 图例5为组合式吊耳之一,在 吊装过程中比较少见,根据其结构 和受力形式可用于超大型构件的吊 装,吊耳安装方向与构件的起重方 向可成一空间角度。 图例6为D型组合式吊耳,可 用于超大型构件的垂直吊装, 在D型吊耳的两侧设置劲板 可抵抗吊装过程中产生的瞬 间弯距,此外劲板还可以增加 吊耳与构件的接触面积,增加焊缝长度,增加构件表面的受力点。减少吊装过程中构件表面因过度应力集中而将母材撕裂的现象。 图例7为民建钢结构中钢骨柱安装时常用的吊耳,其特点为吊耳与钢骨柱连接耳板合二为一,快皆、方便、经济便于安装和施工,是民建钢结构中钢骨柱安装时最为常见的吊耳形式之一。如下图所示:

框架综合楼毕业设计楼梯计算书

5 楼梯的计算 取一部楼梯进行计算,本建筑采用现浇整体板式楼梯,如下图所示。楼梯踏步尺寸为150270mm mm ?,楼梯采用25C 混凝土,板采用235HPB 级钢筋,梁采用 335HRB 级钢筋,楼梯上均布活荷载标准值为22.5/k q KN m =。 5.1 梯段板的设计: 板式楼梯由梯段板,平台板和平台梁三种构件组成,设计时按以下次序进行。 5.1.1 梯段板数据 板倾斜角 270 cos 0.87308.8 α= = =,取1m 宽板带进行计算。 5.1.2 确定板厚 板厚要求36003600 14412025 3025 30 n n l l h mm = ==,取板厚 120h mm =。 5.1.3 荷载计算 恒荷载: 水磨石面层: (0.3 0.15)0.00817.8 0.214/0.3 K N m +??= 水泥砂浆找平层: (0.270.15)0.0220 0.62/0.27 K N m +??= 踏步自重: 0.270.1525 1.88/20.27KN m ??=? 混凝土斜板: 0.1225 3.43/0.874K N m ?= 板底抹灰: 0.0217 0.39/0.874 K N m ?= 栏杆自重: 0.4/K N m 合计: 6.93/K N m 活荷载 活荷载标准值:2.5/KN m 荷载总计 基本组合的总荷载设计值:p+q 6.93 1.2+2.5 1.411.82/KN m =??=

5.1.4 内力计算 跨中弯矩: 2211 ()11.82 2.9710.431010 n M g q l KN m = +=??=? 5.1.5 配筋计算 板保护层厚度20h mm =,有效高度012020100h mm =-=。 6 221010.43100.1081.09.61000100s c M f bh αα?===??? 11080.11 ξ=== 210 1.09.610001000.108 493.71210 c S y f bh A mm f αξ ????= = = 选配8@100φ,2503S A mm =。 分布钢筋8φ,每级踏步下配一根。 5.2 平台板设计 5.2.1确定板厚 板厚取100h mm =,板跨度01500150200501200l mm =--+=,取1m 宽板带进行计算。 5.2.2 荷载计算 恒荷载: 水磨石面层: 0.00817.80.142K N m ?= 20mm 水泥砂浆找平层 0.02200.40K N m ?= 平台板 0.125 2.5/K N m ?= 板底抹灰 0.02170.34K N m ?= 合计: 3.38/K N m 活荷载: 活荷载标准值: 2.5/K N m 荷载总计:

吊装大件吊耳受力计算

一、吊耳的计算 大型设备的吊装方案的安全平稳实现与吊耳结构形式有直接关系。当正确合理的吊装方案确定后,根据起吊设备的结构特点、外形尺寸,设计出结构合理、 利于操作、安全可靠的吊耳是一个很关键的问题。 目前所使用的吊耳主要分两大类:管式吊耳与板式吊耳,其中板式吊耳在电力建设应用很多,下面主要介绍板式吊耳的计算。 板式吊耳的基本形式如下图所示: 板式吊耳 为了增加板式吊耳的承载能力,可以在耳孔处贴上两块补强环(如下图所示),图中的肋板是为了增加板式吊耳的侧向刚度和根部的焊缝长度而设置的。 带有补强环的板式吊耳 板式吊耳的计算方法很多,据笔者统计有近10种之多,下面主要介绍两种,第一种是根据实践经验简化后的计算方法,第二种就是著名的拉曼公式。 1、简化算法

(1)拉应力计算 如上图所示,拉应力的最不利位置在 c - d 断面,其强度计算公式为: 2()P R r 其中:σ—c-d 截面的名义应力, P —吊耳荷载,N [σ]—许用应力,MPa ,一般情况下, 1.5s (2)剪应力计算 如图所示,最大剪应力在 a-b 断面,其强度计算公式为: ()p P A R r 式中:[τ]—许用剪应力,MPa , 3 (3)局部挤压应力计算局部挤压应力最不利位置在吊耳与销轴结合处,其强度计算公式为: c c P d 式中:c :许用挤压应力,MPa , 1.4c 。 (4)焊缝计算: A :当吊耳受拉伸作用,焊缝不开坡口或小坡口,按照角焊缝计算: h h e w k P h l P —焊缝受力, N

k —动载系数,k=1.1, e h —角焊缝的计算厚度,0.7e f h h ,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; h —角焊缝的抗压、抗拉和抗剪许用应力,2h ,为母材的基本许 用应力。 B :当吊耳受拉伸作用,焊缝开双面坡口,按照对接焊缝计算: (2)h h k P L 式中: k —动载系数,k=1.1; L —焊缝长度,mm ; δ—吊耳板焊接处母材板厚,mm ; h —对接焊缝的纵向抗拉、抗压许用应力,0.8h ,为母材的基本许用应力。 2、拉曼公式 目前,国内很多规范和标准采用了著名的拉曼公式, 现根据《水利水电工程 钢闸门设计规范》(SL74-95)介绍吊耳的计算. (1)吊耳的宽度、厚度与吊耳孔直径的关系(下图),可按下式选用:

楼梯计算书

楼梯计算书 Prepared on 22 November 2020

一、示意图 : 二、基本资料: 1.依据规范: 《建筑结构荷载规范》(GB 50009-2001) 《混凝土结构设计规范》(GB 50010-2002) 2.几何参数: 楼梯净跨: 16000L mm = 楼梯高度: mm H 1600= 梯板厚: 250t mm = 踏步数: 15n =(阶) 上平台楼梯梁宽度: 1 300 b mm = 下平台楼梯梁宽度: 2 300 b mm = 3.荷载标准值: 可变荷载:2 3.50/q kN m = 面层荷载:2 1.70/m q kN m = 栏杆荷载: 1.00/f q kN m = 4.材料信息: 混凝土强度等级: C35 2 16.7c f N mm = 钢筋强度等级: 400HRB 2 360.00 /y f N mm = 抹灰厚度:20.0 c mm = 320 /s R kN m = 梯段板纵筋合力点至近边距离: 25s a mm = 支座负筋系数: 0.25α= 三、计算过程: 1.楼梯几何参数: 踏步高度:h = 踏步宽度:b = 计算跨度:L 0 = L 1+(b 1+b 2)/2 = 6++/2 =

梯段板与水平方向夹角余弦值:cos 0.97α= 2.荷载计算( 取 B = 1m 宽板带): (1) 梯段板: 面层: 3.453 /km g kN m = 自重: 7.19 /kt g kN m = 抹灰: /2010.02/0.970.412/ks S g R Bc cos kN m α==??= 恒荷标准值: 3.4537.190.412112.055/k km kt ks f g g g q k g N m ==+++=+++ 恒荷控制: ()() 1.35 1.40.7 1.3512.055 1.40.71 3.50 19.7 /n n k P G P G g Bq kN m =??=????==+ +活荷控制: ()() 1.2 1.4 1.212.055 1.41 3.50 19.366/n n k P G P L g Bq kN m ===???=+ + 荷载设计值: 准永久组合:12.0550.3 3.513.105/q kN m =+?= 3.斜截面受剪承载力计算: 满足要求 4.正截面受弯承载力计算: 1 1.0α=, 0 250 25225h mm =-=,则有

API 吊耳强度计算公式

Padeye Strength Check Calculation Padeye Details吊耳参数 Padeye thickness (t)吊耳厚度20 mm Padeye outer radius ?吊耳外圆半径45 mm Hole size (φ)吊耳孔径35 mm Width at base (W)吊耳根部宽度120 mm Height of hole (h)吊耳孔高度100 mm Material材料Q235 Shackle (selected by Owner)选用钢丝绳参数 Shackle WLL 钢丝绳额定载荷 4 T >2T OK! Pin Diameter (d) 卸扣销子直径32 mm Allowable Stress许用应力 Yield point (δy)材料屈服极限235 MPa Allowable shearing stress (0.4δy)许用切应力94 MPa Allowable bearing stress (0.9δy)许用挤压应力211.5 MPa Allowable combined stress (0.6δy)许用组合应力141 MPa Design Load 设计载荷 SWL (Q) 额定载荷 2 T Force direction to horizontal plane (θ)载荷方向与水平面夹 60 degree 角 Dynnamic load Factor (Sf)动态载荷系数 2.0 Design load on padeye (F=Sf*Q*9.81*1000)吊耳设计载荷39240.00 N Vertical Force (Fv=F*sin(θ))垂直载荷33982.84 N In-plane horizontal force (Fh=F*cos(θ))16991.42 N Out-plane horizontal force (Fh0=0.05*9.81*Q*1000) 981.00 N Shearing stress (pin tearout) 剪切应力计算 Shear stress (fv=F/(2*(R-0.5φ)*t)吊耳承受的剪切应力35.7 MPa <94MPa OK! Bearing stress at hole 挤压应力计算 Bearing stress (fp=F/(d*t)吊耳承受的挤压应力61.3 MPa <211.5MPa OK! Combined stress at base 吊耳根部综合应力计算 Tension stress (ft=Fv/(W*t)吊耳根部拉应力14.2 MPa In-plane shearing stress (fv=Fh/(W*t)) 7.1 MPa Out-plane shearing stress (fvo=Fho/(W*t) 0.41 MPa In-plane bending moment (M1=Fh) 1699141.8 N.mm Out-plane bending moment (M2=Fh0*h) 98100 N.mm In-plane bending stress (fa=M1/(t*W^2/6) 35.4 MPa Out-plane bending stress (fa0=M2/(t*W^2/6) 12.26 MPa Combined stress at padeye base 42.1 MPa <141MPa OK! (f max=SQRT(ft^2+fa^2+fa0^2+3*(fv+fvo)^2)

焊接吊耳的设计计算

焊接吊耳的设计计算 焊接吊耳的设计计算及正确使用方法 1. 目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠, 保证安全施工。 2. 编制依据 《钢结构设计规范》(GB-1986) 3. 适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。 4. 一般规定 4.1 使用焊接吊耳时,必须经过设计计算。 4.2 吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3 吊耳孔应用机械加工,不得用火焊切割。 4.4 吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5 吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6 吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7 吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8 吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。 5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A,A断面,其强度计算公式为: σ,N,S σ?,σ, 1

式中:σ――拉应力 N――荷载 S――A-A断面处的截面积 1 ,σ,――钢材允许拉应力 σ单位:N/mm2 δ ? 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37,11.0,170,I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。 吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m?,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或 8),123.75KN(或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5,15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m?,4.5d×d,19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤)

楼梯设计计算书

第五部分:承台配筋 5.1单桩及二桩以上承台配筋说明 本工程涉及到的单桩及二桩以上(四桩)承台厚度以及配筋均以构造要求为准,混凝土强度等级为C30,保护层厚度取到30mm,其他具体信息详见结施-04 5.2二桩承台——深受弯构件配筋 本工程涉及到的二桩承台的混凝土强度等级为C30,保护层厚度取到30mm,配筋信息参照《2004浙G24_图集_钢筋混凝土圆桩承台》→CTn2G-XX选用表(C30混凝土,φ600圆桩)→CTn2G-19和CTn2G-20两者之间的信息进行折中选取。 有关于二桩承台的具体配筋信息详见结施-04。

第六部分:楼梯设计 6.1楼梯梯段斜板设计 斜板跨度可按净跨计算。对斜板取1m 宽作为其计算单元。 6.1.1确定斜板厚度t 斜板的水平投影净长12700n l mm = 斜板的斜板向净长: 1227002700 3020()300cos 0.894n n l l mm a = == = 斜板的厚度: 21111 ( ~)(~)3020100~120()25302530 n t l x mm ===取t=100mm 6.1.2荷载计算(楼梯梯段斜板) 6.1.3荷载效应组合 由可变荷载效应控制的组合 1 1.27.0 1.4 2.011.20(/)p x x kN m =+= 由永久荷载效应控制的组合 2 1.357.0 1.40.7 2.011.41(/)p x x x kN m =+=>1p 所以选由永久荷载效应控制的组合进行计算,取 11.41(/)p kN m =

斜板的内力一般只需计算跨中最大的弯距即可,考虑到斜板两端均与梁整浇,对板的约束作用,取跨中最大的弯距 2 11.412.78.32(.)10 x M kN m = = 6.1.5 配筋计算 06 22 106 201002080() 8.32100.1091.011.9100080 0.5(10.5(10.9428.3210368() 3000.94280 s c s S y s h mm M x a a f bh x x x r M x A mm f r h x x =-=====+=+==== 选用受力钢筋 10@180(2435S A mm =) 分布钢筋8@200φ 其它楼梯的算法同上,具体配筋结构详见结施-13。 6.2 平台板设计 6.2.1平台板的计算简图 平台板为四边支承板,长宽比 为 3000 2.21380 =>1,宜按双向板计算。取1m 宽作为计算单元。TL -1截面尺寸是250x500。 平台板计算简图: 由于平台板两端均与梁整浇,所以,计算跨度取净跨为L3N=1480MM. 平台板厚度1100t mm =

钢结构吊装吊耳的计算

钢结构施工总结 ——钢结构吊装吊耳的选择 前言: 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。 一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式:

图例1为方形吊耳,是钢构件在吊装 过程中比较常用的吊耳形式,其主要用 于小构件的垂直吊装(包括立式和卧式) 图 例2为D型吊耳,是吊耳的普遍形式,其主要用于吊装时无侧向力较大构件的垂直吊装。这 一吊耳形式比较普遍,在构件吊装过程中应用比较广泛。 图例3为可旋转式垂直提升吊耳,此 吊耳的形式在国外的工程中应用比较多, 它可以使构件在提升的过程中沿着销轴转 动,易于使大型构件在提升过程中翻身、 旋转。 图 例4为斜拉式D型吊耳,此吊耳主要用于构件 在吊装时垂直方向不便安装吊耳,安装 吊耳的地方与吊车起重方向成一平面 角度。 图例5为组合式吊 耳之一,在吊装过程中

吊耳计算

[]22 v 22k P R r f d R r σδ+=?≤- (1) 式中: k —动载系数,k=1.1; —板孔壁承压应力,MPa ; P —吊耳板所受外力,N ; δ—板孔壁厚度,mm ; d —板孔孔径,mm ; R —吊耳板外缘有效半径,mm ; r —板孔半径,mm ; []v f —吊耳板材料抗剪强度设计值,N/mm 2; 载荷P=25t 的板式吊耳,材质Q345A 。选择55t 卸扣,卸扣轴直径70mm ,取板孔r=40mm ,R=150mm ,,030mm δ=。Q345A 强度设计值[]v f =180Mpa 。 拉曼公式校核吊耳板孔强度 σ=1.1×25×9800/30×80×(22500+1600)/22500-1600)=129 Mpa <180Mpa 故安全。 a. 当吊耳受拉伸作用,焊缝不开坡口或小坡口时,属于角焊缝焊接,焊缝强度按《钢结构设计规范》中式7.1.3-1校核,即: w f f f e w N f h l σβ=≤? (2) 式中: f σ—垂直于焊缝方向的应力,MPa ; N —焊缝受力, N=kP=1.4P, 其中k=1.4为可变载荷分项系数,N; e h —角焊缝的计算厚度,0.7e f h h =,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; f β—角焊缝的强度设计增大系数,取 1.0f β=;

w f f —角焊缝的强度设计值,N/mm 2; 抬尾吊耳在受力最大时为拉伸状态,按吊耳受拉伸校核焊缝强度。 由式(2)按角焊缝校核 f =1.4×25×98000/0.7×10(600-2×10)1.22×2=34.6MPa <180Mpa

钢楼梯计算书

单跑钢楼梯设计计算书 一.设计资料 1设计规范 《建筑结构荷载规范GB 50009-2012》 《钢结构设计规范GB 50017-2003》 2计算参数 2.2上平台梁 上平台跨(mm) 1200

3荷载组合 基本组合 1.2D+1.4L 1.35D+0.98L 标准组合 1.0D+1.0L 1.0L 二.验算结果 1楼梯内力简图 1.1轴力图

1.2剪力图 9.地3 1.3弯矩图

&756*7562S 2 2.1受弯强度 控制工况:1.2D+1.4L 弯矩计算结果:Mmax = 11.538 kN*m(有限元计算结果) b = Mmax / (丫x * W) =1.1538e+007 / (1.05 * 2.338e+005) =47 N/mm2 < 215 N/mm 2 结果判断:满足 2.2受剪强度 控制工况:1.2D+1.4L 剪力计算结果:Vmax = 3.709 kN(有限元计算结果) T = 1.5 * Vmax / A = 1.5 * 3709 / 3624 = 1.535 N/mm 2 < 125 N/mm 结果判断:满足 2.3挠度 控制工况:D+L 3 = 4.715 mm < 4243 / 250 = 16.97 mm有限元计算结果) 结果判断:满足 控制工况:L 3 = 4.249 mm < 4243 / 300 = 14.1 4 mm(有限元计算结果) 结果判断:满足 3

控制工况:1.2D+1.4L 弯矩计算结果:Mmax = 8.756 kN*m(有限元计算结果) b = Mmax / (丫x * W) =8.756e+006 / (1.05 * 2.338e+005) =35.67 N/mm2 < 215 N/mm 2 结果判断:满足 3.2受剪强度 控制工况:1.2D+1.4L 剪力计算结果:Vmax = 9.348 kN(有限元计算结果) T = 1.5 * Vmax / A = 1.5 * 9348 / 3624 = 3.869 N/mm 2 < 125 N/mm 结果判断:满足 3.3挠度 控制工况:D+L 3 = 0.1229 mm < 4243 / 250 = 16.97 mm 结果判断:满足 控制工况:L 3 = 0.1113 mm < 4243 / 300 = 14.1 4 mm(有限元计算结果)结果判断:满足 4 4.1受弯强度 控制工况:1.2D+1.4L 弯矩计算结果:Mmax = 8.756 kN*m(有限元计算结果) b = Mmax / (丫x * W) =8.756e+006 / (1.05 * 2.338e+005) =35.67 N/mm2 < 215 N/mm 2 结果判断:满足 4.2受剪强度 控制工况:1.2D+1.4L 剪力计算结果:Vmax = 9.348 kN(有限元计算结果) T = 1.5 * Vmax / A = 1.5 * 9348 / 3624 = 3.869 N/mm 2 < 125 N/mm 2 结果判断:满足4.3挠度 控制工况:D+L 3 = 0.1229mm < 4243 / 250 = 16.97 mm(有限元计算结果) 结果判断:满足 控制工况:L 3 = 0.1113 mm < 4243 / 300 = 14.1 4 mm(有限元计算结果) 结果判断:满足 5

钢丝绳、吊耳验算(知识材料)

吊耳 (2)选用钢丝绳 钢柱重量按3吨、吊绳与水平面夹角大于30度计算,每根钢丝绳,实际承受的拉力值P根据计算公式P=q/2cosα P——每根钢丝绳所受的拉力(N); Q——起重设备的重力(N); n——使用钢丝绳的根数; a——钢丝绳与铅垂线的夹角。 通过计算得出每根钢丝受拉值不大于1.7321吨。 该钢丝绳按作无弯曲吊索考虑,选用Φ16mm钢丝绳(6*37+1)

纤维芯钢丝绳公称抗拉强度为:1670kg/mm2 根据型号、直径和公称抗拉强度查得钢丝绳的破断拉力总和为: ∑P破=15737.4KG 。取折减系数α=0.82 P允许破断拉力=α*ΣP破=12904.7KG 则安全系数为:K=P允许破断拉力/ P=12904.7/1732.1=7.45 当钢丝绳作无弯曲吊索用时安全系数取6--7,以上计算安全系数为7.45,大于标准安全系数取值。 所以吊绳选用直径16mm钢丝绳可以满足要求。 (3)卸扣(卡环)选用:按卡环容许荷载近似计算式:[Fk]=(35~40)d2 式中:[Fk]—卡环容许荷载,取值为14.7kN; d—卡环直径); 35~40—公式系数,取37.5 可得d2=[Fk]/37.5=14700/37.5=392mm2, d≈19.8mm。 选用M-DW2.5卸扣,其d值为20mm,使用负荷为25kN>14.7kN,能满足要求。 (4)钢柱计算吊耳受力验算:

吊耳图: 根据剪应力公式: v f <=n A Q 剪应力τ Q=P/ψ P---为耳板荷载值,钢柱重3T ,每个耳板P1.5T=1500*9.8N=14700N 。 Ψ---吊装过程中产生的动荷载系数,一般取值为1.3~1.5之间,取1.5 An---剪切面面积=板厚b*剪切面长h=14mm*25mm=350mm2。 fv---吊耳材料的抗剪设计值,钢材抗剪设计强度为抗拉设计强度的0.58倍,吊耳材质为Q345B ,抗拉设计强度为470~630Mpa ,取600Mpa ,fv=0.58*600=348Mpa) τ剪应力=14700/1.5/350=29N/mm2

焊接吊耳的设计计算

焊接吊耳的设计计算及正确使用方法 1.目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠,保证安全施工。 2.编制依据 《钢结构设计规范》(GB-1986) 3.适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。4.一般规定 4.1使用焊接吊耳时,必须经过设计计算。 4.2吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3吊耳孔应用机械加工,不得用火焊切割。 4.4吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。

5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A-A断面,其强度计算公式为: σ=N/S1σ≤[σ] 式中:σ――拉应力 N――荷载 S1――A-A断面处的截面积 [σ]――钢材允许拉应力 σ单位:N/mm2 δ ≤ 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37-11.0-170-I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。

吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m㎡,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或8)=123.75KN (或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5=15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m㎡=4.5d×d=19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤) 此公式二十年前在一本起重机方面的书上学的,工作中运用较方便。对照钢丝绳表查,基本上符合6乘19纤维芯钢丝绳公称抗拉强度1670兆帕的钢丝绳最小破断拉力。 起重吊运用时应将破断拉力除以安全系数6倍等于安全负荷。 圆形钢丝绳直径20mm,公称抗拉强度1700,求最小破断拉力???? 给你说个简单的估算公式:P=50*D*D 式中P---钢丝绳的破断拉力,单位:Kgf;D ---钢丝绳的直径,单位:毫米.适用在钢丝强度为1600-1700MPa的情况下.在吊装作业中,钢丝绳的许用拉力不能等于破断拉力,应低于破断拉力,许用拉力可按下式求得:〔P〕=P/K 式中,:〔P〕---钢丝绳的许用拉力,亦叫安全拉力,单位:Kgf;P---钢丝绳的破断拉力,单位:Kgf;K---安全系数(一般取3-6,特殊情况下,按施技术工要求去执行). 实例:寸绳:直径26-28之间,10倍安全系数可吊3.3T P=26*26*50=33800kg/10=3380kg ≈3.3T P= 10*10*50=5000kg/10=500kg

钢楼梯计算书

清河4#钢梯计算书 项目编号: No.1项目名称: XXX项目 计算人: XXX设计师专业负责人: XXX总工 校核人: XXX设计师日期: 2015-XX-XX 中国建筑科学研究院

目录 一. 设计依据........................................................................................................................................................................................... 二. 计算软件信息................................................................................................................................................................................... 三. 结构模型概况................................................................................................................................................................................... 1. 系统总信息................................................................................................................................................................................. 2. 楼层信息..................................................................................................................................................................................... 3. 各层等效尺寸............................................................................................................................................................................. 4. 层塔属性..................................................................................................................................................................................... 四. 工况和组合....................................................................................................................................................................................... 1. 工况设定..................................................................................................................................................................................... 2. 工况信息..................................................................................................................................................................................... 3. 构件内力基本组合系数............................................................................................................................................................. 五. 质量信息........................................................................................................................................................................................... 1. 结构质量分布............................................................................................................................................................................. 2. 各层刚心、偏心率信息............................................................................................................................................................. 六. 立面规则性....................................................................................................................................................................................... 1. 楼层侧向剪切刚度..................................................................................................................................................................... 2. [楼层剪力/层间位移]刚度.......................................................................................................................................................... 3. 各楼层受剪承载力..................................................................................................................................................................... 4. 楼层薄弱层调整系数................................................................................................................................................................. 七. 抗震分析及调整............................................................................................................................................................................... 1. 结构周期及振型方向................................................................................................................................................................. 2. 各地震方向参与振型的有效质量系数..................................................................................................................................... 3. 地震作用下结构剪重比及其调整............................................................................................................................................. 4. 偶然偏心信息............................................................................................................................................................................. 八. 结构体系指标及二道防线调整....................................................................................................................................................... 1. 竖向构件倾覆力矩及百分比(抗规方式) .................................................................................................................................. 2. 竖向构件地震剪力及百分比..................................................................................................................................................... 3. 单塔多塔通用的框架0.2Vo(0.25Vo)调整系数......................................................................................................................... 九. 变形验算........................................................................................................................................................................................... 1. 普通结构楼层位移指标统计..................................................................................................................................................... 十. 抗倾覆和稳定验算........................................................................................................................................................................... 1. 抗倾覆验算................................................................................................................................................................................. 2. 整体稳定刚重比验算................................................................................................................................................................. 3. 二阶效应系数及内力放大.........................................................................................................................................................十一. 超筋超限信息............................................................................................................................................................................... 1. 超筋超限信息汇总.....................................................................................................................................................................十二. 指标汇总.......................................................................................................................................................................................

相关文档
最新文档