水源热泵采暖设计方案

合集下载

水源热泵方案

水源热泵方案

一、项目概况北京某办公楼位于城南,该办公楼为改造项目,地上五层,地下一层,总建筑面积约8000平米。

需解决夏季空调制冷,冬季供暖问题,全年保持室温在18℃-25℃。

二、制冷供暖解决方案1、风冷热泵加辅助电加热方案利用风冷热泵实现夏季制冷,冬季供暖考虑到风冷热泵机组在室外温度-8℃时启动困难,需增加辅助电加热。

2、水源热泵方案该方案要求在建筑物附近打三口井,井深80-100米,一口抽水,出水量为100M3/h,两口井回灌,保持地下水资源稳定,利用井水作为冷热源,水源热泵机组夏季制冷,冬季供暖满足办公楼要求。

三、负荷计算及机组1. 设计依据、范围及原则本方案包含某办公楼的空调制冷供暖系统,包括冷热源、设备选型及末端系统方案。

能够独立实现夏季制冷,冬季供暖。

保证大楼的正常使用。

2. 空调冷热负荷计算考虑到该建筑主要为办公室,根据国家标准单位建筑面积制冷负荷选取100W/M2, 建筑总冷负荷约为800KW。

单位建筑面积供暖热负荷选取60W/M2, 建筑总热负荷约为480KW。

3. 机组设备选型及技术参数选择方案时应该考虑节省投资和保障该建筑正常制冷供暖要求。

风冷热泵机组设计装机容量为835.2KW,配置风冷热泵机组MTD-80SH叁台。

水源热泵机组设计装机容量为930KW,配置水源热泵机组MSRB80壹台。

表一机组选型项目风冷热泵水源热泵设备名称风冷冷(热)水机组水源热泵机组设备型号MTD-80SH MSRB80数量3台1台单台制冷量278.4KW 930KW单台制热量304KW 1116KW总制冷量835.2KW 930KW总制热量912KW 1116KW总耗电量262.2KW 178.8KW单台外形尺寸长4320mm 3640mm宽2110mm 1300mm高2130mm 2200mm表中机组的设计装机容量基本满足大楼的需求。

4.风冷热泵机组由于存在在室外温度-8℃时启动困难,需增加功率为480KW的辅助电加热设备,解决在严寒情况下供暖问题。

水源热泵供暖方案

水源热泵供暖方案

水源热泵供暖方案概述水源热泵是一种环保、高效的供暖方式。

它利用水体中的热能来产生热量,通过热泵系统将低温热能转化为高温热能,提供舒适的室内供暖。

本文将介绍水源热泵供暖的原理、优势和适用场景,并提供一种基于水源热泵的供暖方案。

原理水源热泵供暖系统主要由水源热泵机组、地源热沟和室内热交换器组成。

其工作原理如下:1.水源热泵机组通过冷水管从水源中吸收低温热量,经过压缩机提升温度,并将高温热量释放到热水管。

2.高温热水通过地源热沟流向室内,经过热交换器与室内空气进行热交换,将热量释放到室内供暖。

3.冷却后的水再次流回水源中,循环往复。

由于水体的热容量较大,水源热泵供暖系统能够稳定提供连续的高效供暖。

优势与传统的供暖方式相比,水源热泵供暖具有以下优势:1.环保节能:水源热泵利用水体中的热能来产生热量,不需燃烧化石燃料,减少了对环境的污染,同时也大大降低了暖气系统的能耗。

2.稳定供暖:水源热泵供暖系统能够稳定提供连续的高效供暖,不受气温变化的影响。

3.节省空间:与传统的暖气片相比,水源热泵供暖系统不需要大量的散热器,节省了室内空间。

4.多功能:水源热泵供暖系统可以通过换向阀实现冷暖两用,既能供暖也能制冷,提高了系统的使用灵活性。

适用场景水源热泵供暖系统适用于各种建筑场景,特别适合以下情况:1.新建楼宇:在新建楼宇中,可以提前规划水源热泵供暖系统,减少后期改造成本。

2.低温区域:水源热泵供暖系统适用于低温区域,无论在寒冷的冬季还是湿冷的春秋季节都能提供舒适的供暖。

3.高耗能建筑:高耗能建筑对供暖负荷的要求较高,水源热泵供暖系统可以满足其高效供暖的需求。

4.环保要求高的场所:对于追求环保的建筑场所,水源热泵供暖系统是一种高效、低碳的供暖选择。

水源热泵供暖方案在水源热泵供暖方案中,可采用以下具体措施来实现供暖:1.安装水源热泵机组:选择合适容量的水源热泵机组,机组包括压缩机、蒸发器、冷凝器和控制系统等。

2.建设地源热沟:开挖地下热沟,将地沟与水源热泵机组相连,用于水的循环流动。

完整版水源热泵方案

完整版水源热泵方案

中天大厦采用水源热泵采暖/制冷的方案用心感受,用心创造目录[content]一、前言以往,办公用房及大型建筑多为双系统解决采暖和制冷,即冬季燃煤锅炉供暖或集中供热,夏季制冷由水冷式冷水中央空调机组或用风冷民用家用小型空调。

水源热泵是一种利用地下浅层地热资源,既可供热又可制冷的高效节能空调系统。

该系统通过输入少量高品位的电能,实现低温位热能向高温位转移。

地表水的热能是基本恒定的,在冬季作为热泵供暖的热源和夏季作为空调的冷源,即在冬季,把地能中的热量"取"出来提高温度后,供给室内采暖;夏季把室内的热量取出来,通过地表水(或介质)释放到地下。

通常水源热泵消耗lkW的能量,用户可以得到4kW以上的热量或冷量。

与电锅炉和燃料锅炉供热系统相比,只能将90%以上的电能或70~90%的燃料内能转化为热量,供用户使用。

因此,水源热泵要比电锅炉节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量。

由于水源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达4.4~5.4,与传统的空气源热泵相比,效率要高出40%左右,制冷时其运行费用为普通中央空调的50~60%,与风冷民用家用小型空调相比,制冷时节约运行费用60~70%。

水源热泵作为一种被国家计委、国家科委、建设部列入“十一五”规划的新技术,它有如下特点:A.属于可再生能源。

B.高效节能及低价位的运行费用。

C.环境效益显著。

D.一机多用,即可以采暖,又可以制冷,还可以全天提供生活用热水,省去了采暖设施及生活热水系统的投资。

在诸多的热泵机组品牌中意大利克莱门特机组,由于拥有独特的蒸发器专利技术,其效率比世界任何厂家生产的同类型最好的机组高出11%以上,降低了运行费用。

意大利克莱门特水源热泵,由于具有独特的系统控制技术及压缩机生产技术,是目前唯一拥有能够一次性将3℃以上可利用温度,由机组蒸发器全部提取,减少了机组对井水流量的需求,大幅度减少打井的一次性投资。

水源热泵方案设计思路

水源热泵方案设计思路

水源热泵方案设计思路一、现场查活了解建筑物概况:建筑的结构、维护和保温、层数、层高、用途、客户现在和未来可能的需求;建筑面积、空调面积、生活热水使用概况、配电情况(功率、电压、电流)、机房空间、机房位置。

了解基本地理情况:地理位置、周围地貌、气象参数、未来地域发展规划、地下构造等。

二、建筑冷、热负荷计算列出进行负荷计算的标准和依据,对建筑进行冷、热负荷计算。

在确定建筑负荷时,必须考虑到未来较长时间的气候变化情况。

通过对建筑负荷的计算和评估,可以确定水源井换热器的吸热和放热的绝对量值。

2.热指标中已包括约10%的管网热损失在内。

三、画系统原理图做方案之前,简要画出机房系统原理图,明确系统的工作原理和系统所需的主要设备。

系统原理图的绘制有利于列设备清单和进行设备选型。

四、设备选型1、水源热泵机组选型根据该工程的冷、热负荷情况,选用较为成熟的水源热泵机组。

根据生活热水负荷以及生活热水的使用情况确定是否选用带热回收的热泵机组。

2、水泵的选型(1)潜水泵的选型根据建筑的冷、热负荷和井水进、出机组的温差,计算出所需的水量,确定井用潜水泵的流量。

考虑井水侧的沿程阻力损失和局部阻力损失,确定潜水泵的扬程。

夏季:'11111Q Q cop ⎛⎫=+ ⎪⎝⎭式中,'1Q ——夏季向水源井内的释热量,kW ;1Q ——建筑物的冷负荷,kW ;1cop ——机组制冷工况时的效率。

'111Q m C t ∙=∙∆ 式中,1m ∙——井水的质量流量;C ——水的比热;1t ∆——井水出、入机组的温差。

冬季:'22211Q Q cop ⎛⎫=- ⎪⎝⎭式中,'2Q ——冬季从水源井中的吸热量,kW ; 2Q ——建筑物的热负荷,kW ;2cop ——机组制热冷工况时的效率。

'222Q m C t ∙=∙∆ 式中,2m ∙——井水的质量流量;选取1m ∙和2m ∙中的较大者作为井用潜水泵的流量。

水源热泵方案设计思路

水源热泵方案设计思路

水源热泵方案设计思路一、项目前期调研在设计水源热泵方案之前,需要对项目进行充分的前期调研。

这包括了解项目所在地的气候条件、地质水文情况、建筑物的用途和功能、用户的需求和期望等。

1、气候条件了解当地的气温、湿度、降雨量、太阳辐射等气候参数,这些参数将直接影响水源热泵系统的负荷计算和设备选型。

2、地质水文情况对项目所在地的地质结构、地下水水位、水质、水温等进行勘察和分析。

地下水的水量和水温是决定水源热泵系统能否稳定运行的关键因素。

如果采用地表水作为热源或热汇,还需要了解河流、湖泊的流量、水质等情况。

3、建筑物用途和功能不同类型的建筑物(如住宅、商业、工业等)对空调系统的需求和使用时间不同。

例如,商业建筑在白天的空调负荷较大,而住宅建筑在晚上的负荷较大。

了解建筑物的用途和功能有助于合理确定系统的运行模式和设备容量。

4、用户需求和期望与用户进行充分沟通,了解他们对室内温度、湿度、舒适度的要求,以及对系统运行成本、维护管理等方面的期望。

二、负荷计算负荷计算是水源热泵方案设计的基础。

准确的负荷计算可以为设备选型和系统优化提供依据,确保系统能够满足建筑物的冷热需求。

1、建筑围护结构传热计算根据建筑物的结构、材料、朝向、窗户面积等参数,计算通过墙体、屋顶、窗户等围护结构的传热量。

2、室内人员、设备、照明散热计算考虑建筑物内人员的数量、活动情况,以及设备、照明的功率和使用时间,计算室内的散热负荷。

3、新风负荷计算根据建筑物的使用功能和人员密度,确定新风量,并计算新风处理所需的冷热量。

4、同时使用系数和负荷系数的确定考虑建筑物内不同区域、不同设备的使用时间和负荷变化情况,确定同时使用系数和负荷系数,以对计算得到的负荷进行修正。

三、水源系统设计水源系统是水源热泵系统的重要组成部分,其设计的合理性直接影响系统的性能和运行效率。

1、水源类型选择根据项目所在地的地质水文条件和用户需求,选择合适的水源类型。

常见的水源类型有地下水、地表水(河流、湖泊)和城市再生水等。

住宅小区海水源热泵方案

住宅小区海水源热泵方案

住宅小区海水源热泵方案海水源热泵是一种利用海水作为热源或冷源的热泵系统,适用于住宅小区的供暖和制冷。

海水源热泵系统具有以下优势:节能、环保、稳定可靠、运行成本低等。

本文将介绍住宅小区海水源热泵方案的设计原理、系统组成以及实施步骤。

住宅小区海水源热泵系统的设计原理是利用海水的稳定温度作为热源或冷源,通过热泵技术实现供暖和制冷。

具体而言,海水中的热量通过换热器传输给热泵系统,在热泵系统中经过压缩、膨胀等过程完成热能的转换,然后将热能通过供暖或制冷系统输送到住宅中,从而实现供暖和制冷的目的。

海水供水系统包括泵站、管路和阀门等设备,其作用是将海水抽取到热泵系统中进行能量转换。

泵站负责将海水从海域或海港抽取至供暖/制冷系统;管路负责将海水输送至热泵系统;阀门用于控制海水的流量和流向。

热泵系统包括换热器、压缩机、膨胀阀和冷凝器等设备,其作用是实现能量的转换和传输。

换热器用于将海水中的热量传递给压缩机;压缩机将高温高压的气体冷凝为高温低压的气体,并将其输送至膨胀阀;膨胀阀将高温低压的气体膨胀为低温低压的气体;冷凝器用于将低温低压的气体中的热量释放至供暖/制冷系统。

供暖/制冷系统是最终实现供暖和制冷的部分,包括暖气片、地暖系统、空调等设备。

供暖系统通过循环泵将热能输送至暖气片或地暖系统,使住宅得到舒适的供暖;制冷系统通过制冷剂的循环实现空调的制冷效果,为住宅提供凉爽的环境。

首先,进行可行性研究和技术评估,了解地区的海水资源情况、住宅的能源需求以及热泵技术的适用性和经济性。

然后,进行初步设计和方案论证,确定海水供水系统和热泵系统的规模、配置和布局。

同时,对供暖/制冷系统进行设计,确定具体的供暖设备和制冷设备。

接下来,进行系统的详细设计和施工准备,包括选购设备、制定施工方案、编制施工图纸等。

然后,开始系统的施工和安装,依据施工方案和施工图纸完成设备的安装、管道的敷设和电气的接线等工作。

最后,进行系统的调试和运行,包括设备的启动、管路的冲洗和供暖/制冷系统的调节等。

方案说明(水源热泵)3.15

方案说明(水源热泵)3.15

开元新村供暖系统设计说明一、工程概况本项目为开元新村,位于济南市商河县,建筑面积约9万平方米,住宅。

供热面积9万平米。

地热条件:井出水温度为56度左右,出水量80m³/h。

二、冷热负荷估算住宅楼采暖形式为地板辐射采暖,总热负荷为3420kw,热指标为38w/㎡。

三、选型说明1、主机方案:用户侧热水供回水温度为35/45℃,地热水出水温度56℃。

本方案首先采用地热水通过板式换热器与供暖水换热后供给4.5万平方住宅建筑,地热水出板式换热器(温度28℃),再进入板式换热器后进行余热回收后排放。

选用一台全封闭螺杆热泵机组1台WCFXHP41TG,基本满足使用要求。

单台WCFXHP41TG机组制热量为1518kw,输入功率为308.6kW,热水出水温度45℃。

热源水进水温度20℃,出水温度15℃.2、机房附属设备配置方案:热水循环泵:(1)换热器加热供水系统选用1台型号为KQL100/160-22/2的立式水泵,流量为160m³/h,扬程32m,电机功率为22kW,二用一备,满足使用要求。

采暖板式换热器:1台,一次水侧56/28℃,二次水侧45/35℃,一次水流量为80,二次水流量为160m³/h,换热量1520kw。

热回收换热器:1台,一次侧28/20℃,二次侧20/16℃,二次侧循环泵KQL100/160,流量130 m ³/h,扬程24m,换热量746kw。

为保证换热效果与设备的使用寿命,在空调水管路管路中各加一个电子除垢仪,补水采用软化水,热源水经过除砂器和井水处理仪后进入板换。

供暖热水采用定压补水装置补水定压。

需要配置流量200m³,扬程22m自来水加水泵2台,1用一备。

3、初投资概算1、主机造价单位:人民币元2、机房附属设备及工程造价单位:人民币元本报价中电缆引至我方控制柜。

4、投资概算汇总表单位:人民币元一次换热:。

水源热泵系统施工设计方案

水源热泵系统施工设计方案

水源热泵系统施工设计方案I. 引言水源热泵系统是一种使用地下水或湖水等水源作为热源或冷源的供暖和制冷系统。

本施工设计方案旨在提供水源热泵系统施工的详细步骤和要求,以确保系统建设的质量和可靠性。

II. 工程概述本工程计划在XXX(具体位置)建设一座水源热泵系统,供应该区域的供暖和制冷需求。

该系统将由以下关键组件构成:水源井,水泵,换热器,温度控制装置和传输管道。

III. 施工步骤1. 水源井建设- 进行地质勘测,确定水源井开凿的最佳位置。

- 使用适当的机械设备,按照设计要求开凿水源井。

- 安装井筒、过滤器和抽水设备,确保地下水能够流入后续处理系统。

2. 换热器安装- 根据设计方案,在建筑物内部选择适当的位置安装换热器。

- 确保换热器与水源井之间的传输管道长度最小化,有效减少能量损失。

- 安装并连接换热器的进、回水管道,确保流体循环顺畅。

3. 水泵系统建设- 根据需求,选择合适的水泵类型和规格,确保水源从水井流入换热器的稳定供应。

- 安装水泵和管道,保证水源能够流入系统,并稳定运行。

4. 温度控制装置安装- 针对建筑物的需求,选择适当的温度控制装置,如温控阀或温度传感器。

- 安装温度控制装置,并设置合适的温度范围,以确保系统能够自动调节水源温度。

5. 传输管道建设- 根据系统布局设计,铺设合适的传输管道,并确保良好的隔热性能。

- 安装管道支架和接头,保证管道的牢固连接和稳定性。

IV. 安全与质量控制1. 施工安全- 所有施工人员必须严格遵守相关的安全规范和操作规程,佩戴个人防护装备。

- 施工现场必须设置明显的安全警示标志,并定期进行安全检查和巡视。

2. 质量控制- 施工过程中必须严格按照设计图纸和规范要求进行操作。

- 所有材料必须符合相关标准,质量要求严格控制,确保施工质量。

- 进行必要的检测和测试,如压力测试、温度测试等,确保系统的运行性能和安全性。

V. 环境保护1. 垃圾处理- 施工过程中产生的垃圾必须妥善处理,分类回收可回收物品,严禁乱倒乱扔。

水源热泵设计完整方案

水源热泵设计完整方案

水源热泵设计完整方案
项目背景
某公司要在新建办公楼中安装空调,为了减少能源消耗并满足
环保要求,决定使用水源热泵。

方案概述
本方案旨在为该公司提供水源热泵设计方案,满足新办公楼空
调需求。

设计要点
1. 采用水源热泵系统,通过水循环来完成热的传递,减少能耗。

2. 风机盘管宜选用静压小、风量大的品牌,结合水泵组成系统。

3. 管道宜采用热传导性能较好的材料,如钢材、铜材等,以保
证系统的热传递效率。

4. 综合考虑气候条件,建议选择散热面积适合的散热器。

设计步骤
1. 确定冷热水温度范围及负荷流量。

2. 选定合适的水源热泵型号和组合。

3. 根据选型结果,确定空调末端设备数量和型号,如风机盘管、新风机组等。

4. 设计管道布局方案,确定管径和绝缘层厚度等。

5. 设计散热器,确定散热面积和材料等。

6. 绘制水源热泵系统图。

7. 编写设计说明,包括建议型号、技术参数、维护要求等。

设计效果
本方案基于水源热泵系统,配合其他末端设备和散热器,可为
新办公楼提供舒适的室内空气环境,同时减少能源消耗,满足环保
要求。

总结
水源热泵系统具有能耗低、环保等优点,在新建办公楼中应用
前景广阔。

本方案提供完整的设计方案,并严格按照设计流程进行
操作,保证最终设计效果的高质量和高效率。

1万平方米小区水源热泵方案(冷暖)

1万平方米小区水源热泵方案(冷暖)

一、建筑概况本工程为1万平方米小区中央空调+生活热水系统。

项目所在地吉林省。

本方案设计采用水源热泵系统,设置一个集中冷热源机房,满足用户冬季供暖,夏季制冷及24小时生活热水的需求。

二、空调方案及相关系统比较(一)常规的能源方式燃气及燃煤锅炉供热,燃气燃烧后会产生CO2等温室物质,煤燃烧后燃烧产物包括CO2、CO、NOX、SO2烟尘等有害物质,排入大气,对环境造成污染。

两者都消耗传统的一次能源,受能源危机影响,当今一次能源价格不断上涨,造成后期运行成本的增加。

燃气锅炉需设调压站等设备,燃煤锅炉需设煤场,两种锅炉都需设消防设施,因此机房面积较大。

据世界能源委员会(WEC)2004年能源调查表明,石油可开采年限40年、天燃气60年、煤炭200年。

市政热力国家前期投入很大,大量消耗一次能源,供热时间受制于市政热力。

直燃机本身体积较大,而且要设置调压站等,机房面积与冷水机组+燃气锅炉类似,也需消耗传统的一次能源,供热与燃气锅炉类似。

冷水机组需配备冷却塔,冷却塔耗水量较大,水份蒸发对周边环境有一些影响。

其与燃气燃煤等供热方式结合提供冷热负荷,机房总体面积大。

家用空调安装于各个室内,供冷热能力小,可以单个房间进行温度调控,但其室外机影响建筑美观。

另其无法满足大空间建筑的冷热需求。

(二)可再生的能源方式利用太阳能可实现采暖,但太阳能的利用受天气限制,在阴雨天、雪天、雾天等其他阳光较弱的条件无法利用,会导致供暖系统无法持续运行,达不到正常采暖的需求。

为了防止这类情况发生需另加辅助供暖系统,这样就造成初投资的增加。

另利用太阳能需很大的空间来铺设太阳能板,中大型建筑无法满足其要求。

风能的利用目前暂时停留在发电项目上。

若要采用风能发电来驱动制冷或采暖设备,在风力发电设备投资及占地面积上需要很大的投入,以目前的项目规划来看,利用风能来实现供热及供冷是不现实的。

潮汐能仅能用于发电。

本项目不紧挨海岸,潮汐能的利用无法实现。

生物质能对农村及郊区有农作物的地区有重要意义,但不适宜作为城市供暖能源大面积推广。

建筑节能水源热泵设计方案

建筑节能水源热泵设计方案

建筑节能水源热泵设计方案一、背景简介随着能源危机的加深和环保意识的提高,建筑节能已成为亟待解决的问题。

传统的取暖与制冷设备对环境的负面影响逐渐显现,急需一种清洁、高效的替代方案。

水源热泵作为一种新兴的节能技术,凭借其高效节能和环保的特点越来越受到人们的关注。

本文将围绕建筑节能水源热泵的设计方案展开论述。

二、设计思路1. 建筑结构与热源互动水源热泵系统依靠周围水源的稳定温度来进行热交换,因此建筑的结构要充分考虑与热源的互动。

建筑物最佳的热源接口应尽量与地下水储能层相连接,以保证水源的稳定性。

同时,建筑物的外墙保温材料要选择具有良好导热特性的材料,以保证建筑与环境之间的热交换效果。

2. 水源选取与回用水源热泵系统首先需要选择合适的水源。

地下水和湖泊是常见的选择,但在选择时需考虑水质、水体温度和水流量等因素。

另外,在回用水方面也要充分考虑,合理利用建筑内部的废水、雨水等资源作为水源补充。

3. 系统热泵与控制系统热泵是水源热泵系统的核心,可根据不同需求选择空气源、地源或水源热泵。

选择合适的热泵型号时,要综合考虑热泵的制冷/制热性能系数(COP)和运行能力。

同时,控制系统也是设计中不可忽视的一部分,合理设置系统参数,实现智能化控制,可提高整个系统的运行效率。

三、技术措施1. 热泵循环系统的设计建筑节能水源热泵设计中,热泵循环系统是至关重要的部分。

系统中的水槽、水泵、换热器、膨胀阀等组件都需要合理配置,以实现能量的高效转换和传输。

此外,合理设置水泵的运行时间和流量,以及优化水槽和热交换器的尺寸,都是提高系统效能的关键。

2. 节能控制策略的运用在设计方案中,采用节能的控制策略非常重要。

例如,系统通过自动感应与调整的方式,实现热泵进出水温度的平衡;运用智能控制算法,实现对热泵运行状态的监测和优化。

通过这些措施,能够充分发挥热泵系统的节能潜力,有效降低能耗。

四、经济效益分析建筑节能水源热泵设计方案不仅具备清洁、高效的特点,同时也能够带来可观的经济效益。

水源热泵设计方案

水源热泵设计方案

水源热泵设计方案介绍水源热泵(Water Source Heat Pump,WSHP)是一种利用地下水或湖泊水体作为热源或热泵系统排热的热泵系统。

本文将介绍水源热泵的基本原理和设计方案,以实现高效、节能的供暖和制冷。

基本原理水源热泵利用热力循环的原理,通过不同温度工质之间的传热来实现能量转换。

其基本原理如下:1.蒸发换热器:地下水或湖泊水体通过蒸发换热器吸收热量,使水体温度降低。

2.压缩机:通过压缩机提高蒸发压力,使蒸发温度升高,进一步增加系统的热效率。

3.冷凝换热器:经过压缩后的蒸汽或气体通过冷凝器释放热量,使水体温度升高。

4.膨胀阀:膨胀阀控制系统的压力,使压力降低,从而降低蒸发温度,循环继续。

设计方案水源热泵设计方案需要考虑以下几个关键因素:1. 热负荷计算在确定水源热泵的型号和容量之前,需要进行热负荷计算。

热负荷计算包括室内外温度差、建筑外墙材料、建筑面积、建筑朝向等因素。

通过计算得到的热负荷可以帮助选用适当容量的水源热泵。

2. 地下水或湖泊水体的选择水源热泵需要从地下水或湖泊水体中吸收热量或排热。

选择合适的水源需要考虑水体的温度、流量和水质等因素。

水源温度越高,系统的热效率越高,但也需要注意水体的可持续性和环境保护。

3. 设备布局和管道设计水源热泵系统的设备布局和管道设计对系统性能和效率有重要影响。

设备应该放置在通风良好、易于维护的位置,同时要注意避免设备之间的相互干扰和噪音传递。

管道设计应合理布置,减少压力损失和能量损失。

4. 控制系统设计水源热泵的控制系统设计应考虑系统的自动化程度和能耗控制。

通过合理设置温度控制器、压力传感器和流量计等设备,可以实现系统的智能控制和优化调节,提高能源利用效率。

5. 维护与保养水源热泵系统需要定期检查和保养,以确保其良好的运行状态。

定期清洁和更换过滤器、检查管道是否漏水、清除水垢等工作可以保证系统的正常运行,并延长设备的使用寿命。

结论水源热泵是一种高效、节能的供暖和制冷系统。

地下室水源热泵系统设计与施工方案

地下室水源热泵系统设计与施工方案

地下室水源热泵系统设计与施工方案一、引言地下室作为建筑物的一部分,通常存在着温度较低、湿度较高等问题。

为了提高地下室的舒适性和能源利用效率,我们提出了一种地下室水源热泵系统设计与施工方案。

本文将详细介绍该方案的设计原理、施工步骤和预期效果,以期为地下室热环境改善工作提供参考。

二、设计原理地下室水源热泵系统是利用地下水的稳定温度作为热源或冷源,通过水源热泵机组进行热能的转换和调节,进而实现地下室的供暖、制冷和热水供应。

该系统的设计原理如下:1. 热泵循环原理该系统采用热泵的循环工作原理。

通过压缩机将地下水的热能进行抽取和增压,使其温度提高,然后通过冷凝器释放热量,将制冷剂的温度降低。

之后,通过膨胀阀降低压力,使制冷剂蒸发吸收热量,从而产生冷气或热水。

2. 地下水利用原理地下水温度较地表温度更为稳定,利用地下水作为热源或冷源可以获得更高的能源利用效率。

通过地下水井和地下水管道,将地下水引入到热泵机组进行能量转换,从而满足地下室的供暖和制冷需求。

三、施工方案根据以上设计原理,我们提出了以下地下室水源热泵系统的施工方案:1. 设计前期工作首先,需要对地下室的结构和温湿度状况进行详细调查和分析。

根据调查结果,确定热泵机组的安装位置、地下水井的位置和规模,以及地下水管道的布置方案。

2. 地下水井的施工建设地下水井是该系统的关键步骤之一。

需要选择合适的井位,并进行地下水井的钻探和开凿工作。

确保井筒的稳定和出水量的充足,以满足系统的热量需求。

3. 管道铺设和连接将地下水井与热泵机组之间的地下水管道进行铺设和连接。

应注意管道的材质选择和防水措施,以确保地下水的稳定供应和管道的安全运行。

4. 热泵机组的安装选择合适的热泵机组,根据地下室的供暖和制冷需求进行安装。

在安装过程中,注意与地下水井和地下水管道的连接,确保热泵机组的正常运行。

5. 系统调试和监测完成系统的安装后,进行系统的调试和监测工作。

通过检查各个部件的运行状态、温度、压力等参数,确定系统能够正常工作,并进行必要的调整和优化。

水源热泵方案设计说明[1].

水源热泵方案设计说明[1].

水源热泵设计方案单位:空调有限公司日期: 2011年06月目录一、水源热泵工程设计方案说明二、水源热泵报价一览表三、水源热泵机组简介及配置清单四、水源热泵机组部分销售业绩一览表五、售后服务承诺六、公司资质水源热泵方案设计说明一、工程概况本工程为北京市通州宋庄镇北寺生态园,建筑面积约5100平米,其中生态园建筑面积3100平方米,办公和住宿2000平方米。

二、设计范围水源热泵机房、水井和末端系统。

三、设计依据1. 《采暖通风与空气调节设计规范》(GB50019-2003)2. 《实用供热空调设计手册》3. 《建筑设计防火规范》GBJ16-874. 《通风与空调工程施工质量验收规范》GB50243-20025. 《建设工程设计常用技术措施·暖通》四、室外设计气象参数名称单位夏季冬季空调室外计算干球温度℃ 33.8-12空调室外平均不保证50h 的湿球温度℃26.5-空气调节日平均温度℃29-空调室外计算相对湿度%7741通风室外计算干球温度℃ 30-5通风室外计算%62-相对湿度室外风速m/s 1.9 3大气压力mmHg 751 767最大冻土深度cm -85五、 空调冷热负荷计算建筑用途建筑面积冷负荷指标热负荷指标 冷量计算热量计算 M2 W/M2 W/M2 KW KW生态园 3100 260 180 806 558办公/住宿2000220180440360合计 5100 1246 918经计算系统总冷负荷为1246KW,总热负荷为918KW。

考虑到实际的使用率与使用情况,冷负荷选择860kw;六、冷热源设备选型空调系统工程选用何种设计方案主要从以下几个方面来考虑:A、能源状况:考虑工程所在地的环境因素,电力、水资源、城市煤气、天然气等的供应与价格;B、室外气象参数;C、建筑物的用途、工艺和使用特点;D、空调设备质量和运行效果;E、系统方案的优化设计,整个工程的初投资与运行费用、日常维护等方面的费用减少;F、鉴于以上原因,我公司在设备的选型设计上考虑采用水源热泵(水源侧为供回水井)。

水源热泵设计方案

水源热泵设计方案
1.系统设计遵循国家和地方的相关法律法规。
2.选用设备符合行业标准和环保要求。
3.施工和运行维护过程中,严格执行安全生产和环境保护规定。
六、实施与监管
1.施工前进行全面的技术交底,确保施工队伍理解设计意图。
2.施工过程中,实施严格的质量控制和进度管理。
3.验收阶段,对照设计方案和施工规范,确保系统质量。
4.系统设计符合相关行业标准,确保运行安全可靠。
五、实施与验收
1.施工前,组织专业人员进行技术培训,确保施工质量。
2.严,加强质量监督,发现问题及时整改。
4.工程验收时,对照设计方案和施工标准,确保工程质量。
六、运行维护
1.建立完善的运行管理制度,确保系统安全、高效运行。
-确保系统根据室内外环境变化自动调节运行状态,以达到最佳能效。
四、详细设计
1.供暖系统
-采用地板辐射供暖方式,提供均匀、舒适的室内温度。
-设计合理的供暖参数,保证供暖效果的同时,减少能耗。
2.制冷系统
-结合风机盘管和新风系统,提供清凉的室内环境。
-优化制冷系统设计,确保运行效率和节能效果。
五、合法合规性评估
七、运行与维护
1.建立完善的运行管理制度,规范操作流程。
2.定期对系统进行维护和检查,预防性排除故障。
3.对运行人员进行专业培训,提升其对系统的管理和应急处理能力。
八、结论
本水源热泵设计方案旨在为特定区域提供一种高效、环保、经济的供暖和制冷解决方案。通过科学的设计、精细的实施和严格的运行维护,本系统将有效提高能源利用效率,降低环境负担,为用户提供舒适的室内环境。本方案的实施将对推动区域能源结构的优化升级,促进绿色低碳发展产生积极影响。
水源热泵设计方案

水源热泵方案书

水源热泵方案书

30000平米住宅水源热泵方案书xxxxxxxx有限公司xxxxxxxx有限公司2012年6目录第一部分水源热泵系统简介 (3)一、环保效益显著 (3)二、高效节能 (3)三、运行稳定可靠 (4)四、一机多用,应用范围广 (4)五、自动化程度高 (4)六、投资的经济性 (4)第二部分项目概况 (4)第三部分方案设计 (5)一、设计思路 (5)二、设计依据 (5)三、负荷计算 (6)四、系统设计及设备选型 (6)1、热泵主机设备的选型: (6)2、机房流量的确定 (7)五、机房设计 (8)六、机房配电容量 (9)第四部分运行费用分析 (9)一、系统运行参数 (9)二、采暖运行费用 (9)第五部分投资概算 (10)第六部分地源热泵工程山西业绩表 (11)第一部分水源热泵系统简介水源热泵系统包括地下水源热泵系统、地表水源热泵系统,是以地下水、浅层岩土、江河湖海水以及城市原生污水作为冷热源,通过消耗部分电能,进行能量交换后,为建筑供冷、供热及生活热水的可再生能源中央末端系统。

该系统冬季时借助水源热泵机组,消耗少量电能,将地下水、浅层岩土、地表水以及污水中的低位热能,提升为高位热能,供建筑采暖;夏季则相反,把室内的热量排出,释放到地下水、浅层岩土、地表水以及污水中,以达到为建筑制冷的目的。

它具有以下优点:一、环保效益显著水源热泵系统利用地下水、地表水、浅层岩土及污水作为冷热源,供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却塔,避免了冷却塔的噪音及霉菌污染。

不产生任何废渣、废水、废气和烟尘,不会给城市带来热岛效应。

因此,水源热泵是一种环保效益非常显著的环保设备,而且利用的是可再生能源,与国家可持续发展的战略目标一致。

二、高效节能地下水、浅层岩土、地表水等冬季比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高;夏季温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。

水源热泵设计方案

水源热泵设计方案

水源热泵热水机组设计方案方案目录方案概述2第一章水源热泵中央空调介绍2第二章水源热泵中央空调相关政策依据3第三章方案设计6第四章工程概算8第五章水源热泵系统技术特点9第六章公司简介错误!未定义书签。

第七章工程清单目录错误!未定义书签。

方案概述本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术.它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上.第一章水源热泵中央空调介绍一、水源热泵现状及政策依据水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视.水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。

瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。

1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六--《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。

其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。

建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目.2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容.2005年2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。

与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策.这一举措极大的促进了我国地源热泵技术的发展。

北京市第一个地温空调工程—-蓟门饭店(两会代表驻地)已运行七年.运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用.二、水源热泵工作原理水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术.它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。

水源热泵方案

水源热泵方案

水源热泵方案一、水源热泵空调系统介绍水源热泵空调系统是利用地下水,通过水泵把地下水提取出来,从而实现地下水和空调主机的能量提取目的。

夏季通过机组将房间内的热量转移到地下,对房间进行降温。

冬季通过热泵将地下水中的热量转移到房间,对房间进行供暖,实现了能量的季节转换。

机组运行过程:冬天热泵中制冷剂正向流动,压缩机排出的高温高压R22气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压变为低温低压的液体进入蒸发器,从地下循环液中吸取低温热后相变为低温低压的饱和蒸汽后进入压缩机吸气端,由压缩机压缩排出高温高压气体完成一个循环。

如此循环往复将地下低温热能“搬运”到室内,从而不断的向用户提供45℃-50℃的热水。

夏天热泵中制冷剂逆向流动,与用户换热的冷凝器变为蒸发器从集水器中的低温水(7-12℃)提取热能,与地下水的蒸发器变为冷凝器向地下水排放热量,如此循环往复连续地向用户提供7-12℃的冷水。

二、水源空调系统的特点〈1〉水源热泵与常规空调技术相比有着无可比拟的优势。

〈2〉利用可再生能源:属可再生能源利用技术水源热泵从常温地下水中吸热或向其排热,利用的是可再生的清洁能源,可持续使用。

〈3〉高效节能,运行费用低:属经济有效的节能技术水源热泵的冷热源温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得水源热泵比传统空调系统运行效率要高40%,因此要节能和节省运行费用40%左右。

另外,地下水温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。

在制热制冷时,输入1KW的电量可以得到5KW以上的制冷制热量。

运行费用比常规中央空调系统低40%左右。

〈4〉节水省地:1)以水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染。

2)省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观(5)环境效益显著该装置的运行没有任何污染,在供热时,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,不会产生城市热岛效应,对环境非常友好,是理想的绿色环保产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

魏县盛世御景
水源热泵采暖设计方案
一、设计方案:
本小区采暖面积45000㎡,楼层高21m,地板采暖,保温节能楼。

二、热负荷:
单位热负荷按45W/㎡,总负荷为45000㎡×45=2025KW。

三、水源热泵选型:
选型:根据热量2025KW,我公司选用浙江国祥(王牌冷气)产品,运行方式为满液式无极调速,满液运行比干式运行费用低20%,选用型号为KCWF-1270CR,2台,单台制热量1009KW,总制热量2018KW,满足供暖要求。

KCWF-1270CR水源热泵主机技术参数如下:
四、配套水泵选型:
1、循环泵流量163t/h,扬程28m,3台,二运一备,型号KQL125/160-22/2。

2、补水泵流量6t/h,扬程35m,2台,一运一备,型号KQL40/170-2.2/2。

3、补水采用变频补水,变频器采用ABB品牌。

4、地下水流量160t/h,需打井6眼,二抽四回,井出水量85t/h。

5、软化水采用6t/h,韩国进口归丽晶。

6、DN900除砂罐1台。

五、供货范围及价格:
辛集市益洁节能设备有限公司
2014-4-24。

相关文档
最新文档