电涌保护器(SPD)工作原理及结构

合集下载

电涌保护器SPD PPT

电涌保护器SPD PPT
6
4
2.5
1.5
注: 1 Ⅰ类 —含有电子电路的设备,如计算机、有电子程序控制的设备;2 Ⅱ类— 如家用电器和类似负荷;3 Ⅲ类— 如配电盘,断路器,包括线路、母线、分线盒、开关、插座等固定装置的布线系统,以及应用于工业的设备和永久接至固定装置的固定安装的电动机等的一些其他设备; 4 Ⅳ类—如电气计量仪表、一次线过流保护设备、滤波器。
电涌保护器SPD
产品市场部
Confidential Property of Schneider Electric
Confidential Property of Schneider Electric |
雷电防护发展历史
Page 2
综合防雷系统
外部防雷
内部防雷
合理的选用SPD
合理的设计SPD
为什么要设计SPD
过电压的类别
Page 6
20 x Un
5 x Un
大气过电压
操作过电压
无论是大气过电压,还是操作过电压,都有可能造成设备的提前老化,甚至直接损毁
Confidential Property of Schneider Electric |
SPD作用
Page 7
过电压超过设备绝缘耐冲击电压Uw
4 kV 过电压
Confidential Property of Schneider Electric |
Uc的选择
GB 50057-2010/GB 50343-2012
Page 20
Confidential Property of Schneider Electric |
放电能力的选择
GB 50057-2010
Page 3
Confidential Property of Schneider Electric |

浪涌保护器的工作原理(SPD)

浪涌保护器的工作原理(SPD)

浪涌保护器的工作原理(SPD)浪涌保护器(SPD)的工作原理如下:在正常运行期间(例如,在没有浪涌的情况下),电涌保护器对安装它的电路系统没有影响。

它的作用类似于开路,并保持有源导体和大地之间的隔离。

当发生电压浪涌时.地凯科技浪涌保护器会在几纳秒内降低其阻抗并转移脉冲电流。

电涌保护装置的行为类似于闭合电路,过电压短路并限制在下游连接的电气设备的可接受值。

一旦脉冲浪涌停止,浪涌保护装置将恢复到其原始阻抗并返回到开路状态。

如果没有电涌保护装置,浪涌会到达电气设备。

如果浪涌超过电气设备的脉冲耐受电压,隔离度会降低,脉冲电流会自由流过设备,从而损坏设备。

图1通过在有源导体和接地(TT网络)之间使用电涌保护装置,可以限制过电压并安全地转移放电电流,从而在相和大地之间建立等电位连接。

图2电涌保护装置中使用的技术电涌保护装置包含至少一个非线性组件,其电阻随施加在其上的电压的功能而变化。

基于火花隙的浪涌保护装置它们被称为开关浪涌保护装置。

火花隙是由两个紧密靠近的电极组成的组件,它们将电路的一部分与另一部分隔离到一定的电压水平。

这些电极可以在空气中或用气体封装。

在系统正常运行期间(在额定电压下),火花隙不会在两个电极之间传导电流。

在存在电压浪涌的情况下,随着电极之间形成电弧,火花隙的阻抗迅速降低到O.IT。

,通常在100ns内。

电涌结束时电弧熄灭,恢复隔离。

图3压敏电阻电涌保护装置压敏电阻是阻抗由电压控制的元件,具有连续但不线性的“U与I的函数”。

基于压敏电阻的浪涌保护器件,也称为电压限制,其特点是当不存在浪涌时(通常高于IMQ)具有高阻抗。

当发生浪涌时,压敏电阻的阻抗在几纳秒内迅速降至1Q以下,允许电流流动。

压敏电阻在放电浪涌后恢复其隔离特性。

压敏电阻的一个特点是,流过压敏电阻的电流可以忽略不计,称为剩余电流IPE(IOO至200UA)。

图4火花隙与压敏电阻的比较火花隙的主要特征是它们能够管理来自直接雷击的大量能量,而压敏电阻的保护水平非常低(因此性能很高),并且动作迅速。

电涌保护器(SPD)工作原理和结构

电涌保护器(SPD)工作原理和结构

编订:__________________审核:__________________单位:__________________电涌保护器(SPD)工作原理和结构Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-8242-61 电涌保护器(SPD)工作原理和结构使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。

下载后就可自由编辑。

电涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。

电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。

用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。

一、SPD的分类:1、按工作原理分:(1).开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。

用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

(2).限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。

用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

SPD基础及参数(精编文档).doc

SPD基础及参数(精编文档).doc

【最新整理,下载后即可编辑】电涌保护器SPD电涌保护器surge protective device (SPD) 指目的在于限制瞬态过电压和分走电涌电流的器件。

它至少含有一个非线性元件,过去常称为“避雷器”或“过电压保护器”。

电涌(又称浪涌)和峰值电压电涌和峰值电压(脉冲)是指“常规”电压的增加,通常由剧烈变动或电力需求的增加而引起。

打开大功率电器、吸尘器、空调、洗衣机都可以引发电涌和峰值电压。

任何一种类型的干扰都能够损坏电子设备。

超出实际维修范围。

另外,恶劣天气(闪电)和电力公司的日常拉关闸及维修工作都会给电源线带来破坏性的电涌。

为什么需要电涌保护器?即使是很小的电涌或峰值电压也可以最终摧毁或影响昂贵的电子设备的性能,如电脑、电话、传真、电视、音频/视频设备和其它家用电器和工具。

电脑芯片的普遍使用越发需要电涌保护,因为这些芯片往往对电压波动都十分敏感。

电涌保护器如何工作电涌保护器像电力海绵一样,能够吸收危险的额外电压,防止大多数这样的电压进入您的敏感设备。

具有电话线保护功能的防涌插座可给您的用电设备提供最完备的保护,以防受到有害电涌侵害。

电涌和尖峰电压会通过电话和电源线破坏或降低您贵重电子设备的性能水平。

完善的电涌保护功能可随时保护诸如计算机、电话机、调制解调器、电视机及其它家庭电子设备和电器用具。

防浪涌插座,可以使您的用电设备及电话设备防雷击、稳定工作、延长电器使用寿命。

产品特点:保护电话/DSL/宽带线路保护高达45,000安的最大尖峰电流提供高达1780焦耳能级的最大保护过滤电磁/无线电频率干扰(EMI/RFI)在1纳秒内响应以保护设备电涌保护器电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。

电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器

电涌保护器

电涌保护器百科名片电涌保护器电涌保护器surge protective device (SPD) 指目的在于限制瞬态过电压和分走电涌电流的器件。

它至少含有一个非线性元件,过去常称为“避雷器”或“过电压保护器”。

目录电涌(又称浪涌)和峰值电压电涌保护器作用电涌保护器如何工作产品介绍:电涌保护器一、SPD的分类:二、SPD的基本元器件及其工作原理:??三、SPD的基本电路电涌(又称浪涌)和峰值电压电涌保护器作用电涌保护器如何工作产品介绍:电涌保护器一、SPD的分类:二、SPD的基本元器件及其工作原理:??三、SPD的基本电路四、电涌保护器的主要参数展开编辑本段电涌(又称浪涌)和峰值电压电涌和峰值电压(脉冲)是指“常规”电压的增加,通常由剧烈变动或电力需求的增加而引起。

打开大浪涌[1]功率电器、吸尘器、空调、洗衣机都可以引发电涌和峰值电压。

任何一种类型的干扰都能够损坏电子设备。

超出实际维修范围。

另外,恶劣天气(闪电)和电力公司的日常拉关闸及维修工作都会给电源线带来破坏性的电涌。

电涌性能特点· B+C级保护通流量大,残压极低,响应时间快;·采用最新灭弧技术,彻底避免火灾;;·采用温控保护电路,内置热保护;·自带远程告警干接点,便于远程监控;·配备雷电计数器,准确记录雷击次数;·带有电源状态指示灯,指示浪涌保护器工作状态;·核心元件采用国际知名品牌,性能优异;·结构严谨,工作稳定可靠。

编辑本段电涌保护器作用保护电话/DSL/宽带线路保护高达45,000安的最大尖峰电流提供高达1780焦耳能级的最大保护过滤电磁/无线电频率干扰(EMI/RFI)在1纳秒内响应以保护设备即使是很小的电涌或峰值电压也可以最终摧毁或影响昂贵的电子设备的性能,如电脑、电话、传真、电视、音频/视频设备和其它家用电器和工具。

电脑芯片的普遍使用越发需要电涌保护,因为这些芯片往往对电压波动都十分敏感。

浪涌保护器(SPD)保护模式详解

浪涌保护器(SPD)保护模式详解

浪涌保护器(SPD)保护模式详解浪涌保护器( SPD )保护模式详解——瑞隆源电子一、SPD保护模式的定义用以限制瞬时过电压和泄放电涌电流的电器,它至少应包括一种非线性元件。

在一般平时的工作中也称“浪涌保护器”、“浪涌防护器”、“电涌保护器”、“防雷器”等。

二、浪涌保护器的保护模式1.什么是保护模式:SPD可连接在L(相线)、N(中性线)、PE(保护线)间,如L-L、L-N、L-PE、N-PE,这些连接方式称为保护模式,它们与供电系统的接地型式有关。

按GB50054-95《低压配电设计规范》规定,供电系统的接地型式可分为:TN-S 系统(三相五线)、TN-C系统(三相四线)TN-C-S系统(由三相四线改为三相五线)、IT系统(三相三线)和TT系统(三相四线,电源有一点与地直接连接,负荷侧电气装置外露可导电部分连接的接地极与电源接地极无电气联系)。

目前,浪涌保护器的保护模式大部分是4个保护模式(L-PE,N-PE),即三根火线分别与保护线,中性线与保护线连接。

4模式保护,见图1的最右边的4个模式。

还有一部分是全模式(L-L、L-N、L-PE、N-PE),即三根火线之间,三根火线分别与保护线,三根火线分别与中性线,中性线与保护线。

全模式最多有10模式,在常用的3相星形接地方式中就是10模式。

2.全模保护的浪涌保护器的结构:深圳市瑞隆源电子有限公司专业制作各种不同规格的陶瓷气体放电管,放电管,防雷器,避雷器等等。

TEL=0755********在我国通常使用的4模式保护器中(参照IEC标准),常用的是4个单片组合在一起,三个单片分别连接火线与保护线(L1-G,L2-G,L3-G)另一个单片连接中性线与保护线(N-G)。

4模式的浪涌保护设备没有对浪涌电流经过的所有可能的线路都进行保护,如火线—火线之间(L1-L2,L1-L3,L2-L3),火线—中性线(L1-N,L2-N,L3-N)。

而北美电气电子工程师学会(IEEE)对电涌保护设备有明确规定:用于3相4线+地电路的电涌保护设备需要对电流经过的所有可能的线路进行保护,它们包括L-L,L-N,L-G,N-G。

SPD的工作原理

SPD的工作原理

SPD的工作原理SPD,即“Surge Protective Device”,是一种用于保护电气设备免受过电压浪涌(电涌)损害的装置。

在电力系统中,由于雷击、电网故障或其他原因,可能会产生瞬态过电压,这些过电压会对电气设备造成严重的损坏甚至导致设备故障。

SPD的工作原理是通过引导和分散过电压,将其导向地或其他低阻抗路径,从而保护电气设备。

下面将详细介绍SPD的工作原理。

1. SPD的基本组成部分SPD由以下几个主要组成部分构成:- 金属氧化物压敏电阻(MOV):用于分散和吸收过电压。

- 电气连接器:用于将SPD与电源和设备连接。

- 熔断器:用于保护SPD内部电路免受过电流损害。

- 接地电极:用于引导和分散过电压到地。

2. SPD的工作原理当电力系统中出现过电压时,SPD会迅速响应并将过电压引导到地。

具体工作原理如下:- 当电力系统中的过电压超过SPD的额定电压时,SPD内的MOV将开始工作。

- MOV是一种电阻值随电压变化的元件,当电压低于其额定电压时,其电阻值非常高,几乎不导电。

但当电压超过其额定电压时,MOV的电阻值会急剧下降,形成一条低阻抗路径,将过电压引导到地。

- 同时,SPD内的熔断器会检测过电流。

如果过电流超过SPD的额定电流,熔断器会自动切断电路,保护SPD内部电路免受过电流损害。

- 最后,SPD的接地电极将过电压导向地,确保电气设备和人员的安全。

3. SPD的特点和优势SPD具有以下特点和优势:- 高响应速度:SPD能够在毫秒级别内响应过电压,保护电气设备免受损害。

- 高能量吸收能力:SPD能够吸收大量的过电压能量,保护电气设备不受损害。

- 长寿命:SPD的使用寿命长,能够经受多次过电压冲击。

- 安全可靠:SPD能够确保电气设备和人员的安全,减少事故和损失的发生。

- 安装方便:SPD可以与电源和设备直接连接,安装简单方便。

4. SPD的应用领域SPD广泛应用于各个领域,包括:- 住宅和商业建筑:用于保护电气设备免受雷击和电网故障的影响。

SPD的工作原理

SPD的工作原理

SPD的工作原理SPD(Surge Protective Device)是一种用于保护电气设备免受电涌冲击的装置。

它可以有效地降低或者消除由于雷电、电网故障或者其他电源干扰引起的过电压,从而保护设备免受损坏。

SPD的工作原理基于电气设备的特性和电涌的产生机制。

当外部电涌冲击到达电气设备时,SPD会迅速引导电涌流入地,从而将过电压降低到安全水平。

它通过以下几个步骤实现这一过程:1. 检测:SPD内部装有一个电压传感器,用于检测电气系统中的过电压情况。

一旦检测到过电压,SPD将即将启动保护机制。

2. 分离:SPD内部还有一个分离器,用于将电气设备与电源分离。

这样可以防止过电压传播到电气设备,从而保护其安全运行。

3. 导流:SPD内部的导流器会将电涌流引导到地线上。

这样可以将过电压降低到安全水平,防止其对电气设备造成伤害。

4. 恢复:一旦过电压消失,SPD会自动恢复正常工作状态。

它会重新连接电气设备与电源,确保设备能够正常运行。

SPD的工作原理主要依靠其内部的电子元件和电气设计。

其中最重要的是元件之间的连接和电路的布局。

合理的电路设计可以确保SPD能够快速、准确地检测和响应过电压,并将其导流到地线上。

同时,高质量的电子元件可以提供更好的保护性能和更长的使用寿命。

需要注意的是,SPD只能提供暂时的过电压保护,不能长期承受过大的电涌。

因此,在选择和安装SPD时,需要根据实际情况和设备的要求进行合理的选择和布置。

此外,定期检查和维护SPD也是确保其正常运行和保护设备的重要措施。

综上所述,SPD的工作原理是通过检测、分离、导流和恢复等步骤来保护电气设备免受电涌冲击。

合理的电路设计和高质量的电子元件是确保SPD有效工作的关键。

正确选择、安装和维护SPD对于保护设备的安全运行至关重要。

电涌保护器(SPD)工作原理和结构

电涌保护器(SPD)工作原理和结构

电涌保护器(SPD)工作原理和结构电涌保护器(SPD)是一种用于保护电气设备不受电涌(过电压)损坏的装置。

电涌保护器的工作原理是通过限制与分散电涌能量来保护设备免受电涌的影响。

电涌保护器主要由以下几个部分组成:保护元件、排气管、限流元件和接线端子。

保护元件是电涌保护器最关键的部分,它是根据特定的电压和电流条件下工作的元件,能够在受到电涌冲击时迅速响应并分散电涌能量。

排气管是负责将电压引导到地线的部分,它能够将电涌引导到大地中去。

限流元件是用来限制电流流过装置的元件,防止电流过大而损坏保护元件。

接线端子则是用于连接电涌保护器与电路的部分。

电涌保护器的工作原理可以分为两个阶段:导电阶段和隔离阶段。

在导电阶段,当电涌进入电涌保护器时,保护元件立即响应,并开始导电。

保护元件可以是可变电阻、元件间的气隙等。

这些保护元件的电性能能够使电涌电流经过它们而不损坏设备。

电涌保护器还会将电流引导到排气管中,通过排气管将电压引导到地线。

这一过程能够迅速降低电压,保护设备免受电涌的影响。

在隔离阶段,电涌保护器将设备与电网之间隔离,防止电涌通过电涌保护器进一步传导到设备上。

这样,即使电涌再次出现,也不会对设备造成损害。

隔离阶段的关键部分是限流元件,它可以限制电流流过电涌保护器,防止电流过大而损坏保护元件。

电涌保护器的结构可以根据其使用场合和功能的不同而有所不同。

一般来说,电涌保护器通常由金属外壳、保护元件、排气管、限流元件和接线端子组成。

金属外壳是用来保护内部元件不受外界的影响,防止受到物理损坏。

保护元件是电涌保护器的核心部分,它可以是采用不同材料制成的元件,如气体放电管、压敏电阻等。

排气管是用来将电压引导到大地中去的部分,一般由金属材料制成,可以承受较大的电流和电压。

限流元件是用来限制电流流过电涌保护器的部分,防止电流过大而损坏保护元件。

接线端子则是用于连接电涌保护器与电路的部分,它可以是螺钉、插座等形式。

总而言之,电涌保护器通过限制和分散电涌能量来保护设备免受电涌损坏。

电涌保护器SPD的工作原理

电涌保护器SPD的工作原理

电涌保护器SPD的工作原理电涌保护器适用于220/380V低压电源保护,是一种非线性元件,根据IEC标准规定,电涌保护器是主要抑制传导过来的线路过电压和过电流的装置。

电涌保护器起到保护作用,基本要求是必须承受预期通过的雷电电流,并且通过电涌最大钳压,有效熄灭在雷电流通过后产生的工频续流,把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但至少包含一个非线性电压限制元件。

常用电涌保护器有MOV(MetalOxideVaristor)同气体放电管等。

电涌包含强大的能量因此不能被阻止。

基于这种原因,保护敏感电气设备免受电涌损坏的策略是把电涌从设备分流后流入大地。

浪涌保护器MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。

当产生浪涌时MOV立即动作,响应时间为1~3毫微秒。

MOV中的"V"是变阻器,在响应的一瞬间,MOV的电阻从最大值降到近乎零欧姆,过电流经MOV流入大地。

被保护电气设备继续在正常工作电压下运行。

其半导体元件具有随电压变化而改变电阻的性质。

当电压低于某个特定值时,半导体中的电子运动产生高电阻。

反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻降低接近零欧姆。

电压正常,浪涌保护器MOV闲在一旁,不影响电力线路。

价浪涌保护器MOV优劣的指标:(1)箝位电压:表示将导致MOV接通地线的电压值。

箝位电压越低,表示保护性能越好。

(2)能量吸收/耗散能力:此标称值表示浪涌保护器在烧毁前能够吸收多少能量,单位为焦耳。

其数值越高,保护性能就越好。

(3)响应时间:浪涌保护器不会立刻断开,它们对电涌做出响应会有略微的延迟。

另一种常见的浪涌保护装置是气体放电管。

这些气体放电管作用与MOV相同,它们将多余电流从火线移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。

浪涌保护器有关知识

浪涌保护器有关知识

浪涌保护器的具体作用与原理1.主要结构及工作原理电涌保护器的工作原理见示意图,两个电极分别与L(或者N)和PE线相联,两个电极之间形成一个电气间隙。

电网在不超过最大持续运行电压的情况下运行时,两个电极之间呈高阻状态。

如果电网因雷击或者操作过电压使两个电极之间的电压超过点火电压时,间隙被击穿,通过弧光放电将过电压能量释放。

冲击波过后,电弧将被由分弧片和灭弧室组成的灭弧系统熄灭,恢复到高阻状态。

图1 原理示意图2.作用BY系列电涌保护器采用了一种非线性特性极好的压敏电阻,在正常情况下,电涌保护器外于极高的电阻状态,漏流几乎为零,保证电源系统正常供电。

当电源系统出现上述情况的过电压时,电涌保护器立即在纳秒级的时间内迅速导通,将该过电压的幅值限止在设备的安全工作范围内。

同时把该过电压的能量释放掉。

随后,保护器又迅速的变为高阻状态,因而不影响电源系统的正常供电。

浪涌保护器,也叫防雷器.是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。

当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

泻流开启时间和泻流量是衡量它标准.我现在一般一级用70KA的二级用40KA的,再就是在楼顶上的用的大些一般也是40KA 100KA的还没有碰到过浪涌保护器的作用雷电放电可能发生在云层之间或云层内部,或云层对地之间;另外许多大容量电气设备的使用带来的内部浪涌,对供电系统(中国低压供电系统标准:AC 50Hz 220/380V)和用电设备的影响以及防雷和防浪涌的保护,已成为人们关注的焦点。

云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。

一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。

大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。

SPD基本常识、应用及注意事项

SPD基本常识、应用及注意事项

SPD基本常识、应用及注意事项1、SPD 概述2、SPD 在网络机房中的应用3、SPD 应用中的几个问题4、SPD 安装注意事项xx-9-27引言电涌保护器(Surge Protective Device,SPD)又称浪涌保护器,是用于带电系统中限制瞬态过电压和导引泄放电涌电流的非线性防护器件,用以保护耐压水平低的电器或电子系统免遭雷击及雷击电磁脉冲或操作过电压的损害。

近年来,电子信息系统(如电视、电话、通信、计算机网络等)发展迅猛,电子信息设备大量涌现和普及。

这类系统和设备往往比较昂贵和重要,其工作电压、耐压水平很低,极易受到雷电电磁脉冲的危害,为此需采用SPD 做过电压保护。

由于各国遵循的标准不一样,产品的规格没有统一,参数的标识也各自有侧重,远不如其他电气产品规范,这就给设计选型带来很大不便。

在工程设计中,常见品牌按产地划分主要可分为国产产品、欧洲产品和美洲产品。

国产产品参数设置较乱,规格多样,残压较高。

规范产品的型号设置有的仿欧洲产品,有的遵循国标定参数,大部分产品都标注 In与 Imax。

由于国产产品对应用场所要求较低,建筑物等级不高,设备耐压值大,所以一些参数要求可适当放松。

欧洲产品一般标注最大放电电流,产品型号也是根据这个参数设定的。

例如欧洲某着名品牌 XXX65、XXX40,其中数值65、40 就是 Imax。

但我国标准明确规定要用标称放电电流In 来进行选型,这是目前在工程设计中遇到的一个尴尬情况。

经查该产品资料,XX65的 In 值不超过20 kA,XX40 的 In 值不超过15 kA。

如果依照 GB50343 建议值,这两种产品只能用于设备末端三级保护,但在实际设计中,却装在了一、二级上,这明显与国家标准的选型参数不符,且残压较高,普通型号一般超过1200 V,一旦接线环境不好,很容易突破设备耐压值。

一般欧系产品 Uc 值较小,且投机取巧标注线电压,因此在选型时,较容易出现误导。

低压配电系统的电涌保护器(SPD)

低压配电系统的电涌保护器(SPD)

低压配电系统的电涌保护器(SPD)第一部分:性能要求和实验方法1总则1.1使用范围GB18802的本部分使用对于间接雷电和直接雷电影响或其他瞬时过电压的电涌进行保护的电器。

这些电器被组装后连接到交流额定电压不超过1000V(有效值)、50/60HZ或直流电压不超过500V的电路和设备。

本部分规定这些电器的性能特性、标准实验方法和额定值,这些电器至少包含一用来限制电涌电压和泄放电涌电流的非线性的原件。

1.2规范性引用文件下列文件中的条款通过GB18802的本部分的引用而成为本部分的条款。

凡是注口期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注口期的引用文件,其最新版本适用于本部分。

GB2099.1—1996家用和类似用途插头插座第1部分:通用要求(eqvIEC60884-l:1994)GB/T4207-1984固体绝缘材料在潮湿条件下相比漏电器痕指数和耐漏电起痕指数的测定方法(eqvIEC60112:1979)GB4208—1993外壳防护等级(IP代码)(evqIEC60529:1989)GB5013—1997(全部)额定电压450/750V及以下橡皮绝缘电缆(idtIEC620245)GB5203—1997(全部)额定电压450/750V及以下聚氯乙烯绝缘电缆(idtIEC620227)GB/T5169.10—1997电工电子产品着火危险试验试验方法灼热丝试验方法总则(ldtIEC60695-2-1/0:1994)GB10963—1999家用及类似场所涌过电流保护断路器(idi!EC60947-l:1999)GB/T14048.1—2000低压开关设备和控制设备总则(eqvIEC60947-1:1999)GB14048.5-1993低压开关设备和控制设备控制电路电器和开关元件第1部分:机电式控制电路电器(eqvEC609947-5-1:1990)GB/T16927.1—1997高电压试验技术第一部分:一般试验要求:(eqvEEC60060-1:1989)GB/T16935.1—1997低压系统内设备的绝缘配合第一部分:原理、要求和试验(idtIEV60664-1:1992)GB/T17627.1-1998低压电气设备的高电压试验技术第一部分:定义和试验要求(eqvIEC61180-1:1992)IEC60364-4-442:1993建筑物的电气装置第4部分:安全性保护第44章:防过电压保护第442节:防高压系统对地之间故障的低压装置保护IEC60364-4-442::1993建筑物的电气装置第5部分:电气设备的使选用第534节:过电压保护装置IEC60999(全部)连接设备与铜导线电气连接的螺钉和无螺钉夹紧器的安全要求IEC61643-12连接低压配电系统的电涌保护器第12部分:选择和使用原则2使用条件2. 1.1频率:电源的交流频率在48HZ和62HZ之间2. 1.2电压:持续施加在SPD的连接线端子之间的电压不应超过其最大持续工作的电压。

SPD的定义及基本原理

SPD的定义及基本原理
优点:通流量大 反映时间快 残压低无续流 热稳定性好
缺点:无声音报警 无计数器
工艺特点:一体化避雷器的电路结构紧凑,充分发挥了氧化锌电阻反映时间快的特点,有结合了气体放电管具有较高通流能力的优点。在电路上避雷器使用了较多的氧化锌电阻来提高整体避雷器的通流能力,用气体放电管作为备用放电通道。基于这种完善的电路结构使避雷器的使用寿命大大提高。 工程应用: 一体化避雷器根据型号的不同广泛应用与B、C、D各种安装环境。由于是一体化设计,所以更适合在不具备安装距离的场合使用。(IEC规定B、C、D模块化避雷器三级间的最短距离在10M以上)
分类
从组合结构分;现在市场上的避雷器有几下几种:
1) 间隙类————开放式间隙、密闭式间隙
2) 放电管类———开放式放电管密封式放电管
3) 压敏电阻类——单片、多片
4) 抑制二极管类
5) 压敏电阻/气体放电管组合类----简单组合、复杂组合
6) 碳化硅类
2.4 抑制二极管类防雷器
抑制二极管类防雷产品主要是网络等信号避雷产品中大量的应用,主要采用的器件有P*KE(雪崩管)等系列等产品。工作原理是基于PN结反向击穿保护。
优点:残压低 动作精度高 反应时间快无续流 体积小
缺点:通流量小
2. 5压敏电阻/气体放电管组合类
2.5.1简单组合避雷器 组合式避雷器典型结构是N-PE结构形式,这种避雷器与单一结构的避雷器相比,综合了两种不同产品的优点,而减少了单一器件的缺点。
工程应用:该种结构的避雷器主要应用在电源系统做B级避雷器使用。但由于避雷器自身的原因容易引起火灾,避雷器动作后(飞出)脱离配电盘等事故。根据型号的不同适合与各种配电制式。 工程安装时一定要考虑安装距离,避免引起不必要的损失和事故。

浪涌保护器作用原理及其接线图

浪涌保护器作用原理及其接线图
浪涌保护器,也是随着社会的进步,尤其在新楼房中随处可见它的身影。
浪涌保护器作用原理及其接线图
———————————————————————————————— 作者:
———————Βιβλιοθήκη ———————————————————————— 日期:
浪涌保护器作用原理及其接线图
浪涌保护器也叫做(电涌保护器)(简称SPD),适用于交流50/60HZ,额定电压220V至380V的供电系统(或通信系统)中,对间接雷电和直接雷电影响或其他瞬时过压的电涌进行保护,适用于家庭住宅、第三产业以及工业领域电涌保护的要求,具有相对相,相对地,相对中线,中线对地及其组合等保护模式。
浪涌也叫突波,就是超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲,可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

电涌保护器(SPD)工作原理和结构

电涌保护器(SPD)工作原理和结构

电涌保护器(SPD)工作原理和结构电涌保护器(SUrgeprotectionDeViCe)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPDC电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。

用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。

一、SPD的分类:1、按工作原理分:1 .开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。

用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

2 .限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。

用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

3 .分流型或扼流型分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。

用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。

(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。

二、SPD的基本元器件及其工作原理:1 .放电间隙(又称保护间隙):它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线Ll或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。

什么是浪涌保护器或避雷器及其原理和符号

什么是浪涌保护器或避雷器及其原理和符号
2、放电间隙和压敏电阻的工作原理虽然有差异,但是基本的特性非常相似:在没有过电压时,他们的阻抗都非常高,一般是兆欧级,几乎相当于断路。当出现过电压时,阻抗迅速下降到几欧,浪涌电流就会通过浪涌保护器流入地,而不会进入设备,同时,由于浪涌保护器的这时的阻抗很小,它的两遍电压也比较小,同时因为他和被保护的设备并联,也就防止设备承受较大的浪涌电压。这样,就起到了泄流和限压的效果。
三、浪涌保护器:
浪涌保护器,简称SPD,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置,主要用于限制过电压和泄放电涌电流。浪涌保护器一般是与被保护的设备并联,当产生过电压时,可以起到分流和限压的效果。防止过大的电流与电压对设备产生损害。
四、浪涌保护器的工作原理:
1、浪涌保护器的核心元件是内部的一个非线性元件。根据非线性元件的不同,浪涌保护器可以分为开关型(核心元件主要为放电间隙)和限压型(核心元件主要为压敏电阻)。
一、浪涌定义:
浪涌(surge),又称为电涌、突波,是指瞬间超出稳定值的峰值,包括浪涌电压和浪涌电流。
二、浪涌的原因:
供电系统的浪涌主要来自两方面的原因:外部(雷电原因)和内部(电气设备启停和故障等)。浪涌的特点往往是时间很短(雷电造成的过电压往往在微秒级,电气设备造成的过电压往往在毫秒级),但是瞬时的电压和电流极大,极有可能对用电设备和电缆造成危害,所以需要浪涌保护器对它们进行保护。

电涌保护器内部结构

电涌保护器内部结构

电涌保护器内部结构电涌保护器(Surge Protective Device,简称SPD)是一种用于保护电子设备免受瞬态电压和电流浪涌的影响的装置。

以下是电涌保护器内部结构的详细介绍,主要包括以下九个方面:1.放电间隙:放电间隙是电涌保护器的一个重要组成部分,它由两个金属电极组成,用于限制浪涌电流。

放电间隙的结构可分为气体放电间隙和液体放电间隙。

在电涌电压作用下,两电极之间的气体或液体介质被击穿,产生放电现象,从而消耗浪涌能量。

2.电阻:电阻是电涌保护器中的另一个重要元件,主要作用是在电源线电压波动时,控制浪涌电流的通过量。

电阻的阻值可根据设备的额定电压和电流进行选择,以确保在正常电源条件下,电流能够稳定地通过电涌保护器。

3.压敏电阻(MOV):压敏电阻是一种特殊的电阻器,其电阻值会随着电压的变化而变化。

在电源线电压异常时,压敏电阻的阻值会迅速降低,使得过大的电压被限制在一定范围内,从而保护设备不受电压波动的影响。

4.热敏电阻:热敏电阻是一种对温度敏感的电阻器,其电阻值会随着温度的变化而变化。

在电涌保护器中,热敏电阻被用于监测内部元件的温度,防止因温度过高而损坏设备。

5.半导体元件:半导体元件在电涌保护器中起到控制电流和电压的作用。

它能够吸收多余的浪涌能量,并将其转化为热能或电能进行释放,从而保护设备的安全稳定运行。

6.电磁元件:电磁元件主要是由线圈和铁芯组成,用于减少电磁干扰。

在线圈中通入变化的电流时,会产生磁场,该磁场会在铁芯中产生吸力或斥力,从而降低外部电磁场对电涌保护器内部元件的影响。

7.电子控制单元(ECU):电子控制单元是电涌保护器的大脑,负责控制和监测电涌保护器的性能。

它能够实时监测输入和输出电压、电流等信息,并具有自我保护功能。

当检测到异常情况时,电子控制单元会及时触发保护机制,限制浪涌电流的通过量,从而保护设备免受损坏。

8.连接端子:连接端子是电涌保护器与设备电源线之间的连接部分,主要作用是确保良好的导电性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电涌保护器(SPD)工作原理及结构电涌保护器(Surge protectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为"避雷器"或"过电压保护器"英文简写为SPD。

电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。

用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。

一、SPD的分类:1、按工作原理分:1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。

用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。

用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

3.分流型或扼流型分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。

用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。

(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。

二、SPD的基本元器件及其工作原理:1.放电间隙(又称保护间隙):它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。

这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。

改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。

2.气体放电管:它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。

为了提高放电管的触发概率,在放电管内还有助触发剂。

这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻:它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。

它的工作原理相当于多个半导体P-N 的串并联。

压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。

压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。

压敏电阻的使用条件有:压敏电压:UN≥[(√2×1.2)/0.7]U0(U0为工频电源额定电压)最小参考电压:Ulma≥(1.8~2)Uac(直流条件下使用)Ulma≥(2.2~2.5)Uac(在交流条件下使用,Uac为交流工作电压)压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K 为残压比,Ub为被保护设备的而损电压。

4.抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区(图19),由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。

抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7。

抑制二极管的技术参数主要有(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。

(2)最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最高电压。

(3)脉冲功率:它是指在规定的电流波形(如10/1000μs)下,管子两端的最大箝位电压与管子中电流等值之积。

(4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。

此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。

(5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。

(6)响应时间:10-11s5.扼流线圈:扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,如图15e所示,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。

扼流线圈使用在平衡线路中能有效地抑制共模干扰信号(如雷电干扰),而对线路正常传输的差模信号无影响。

这种扼流线圈在制作时应满足以下要求:1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

6. 1/4波长短路器1/4波长短路器是根据雷电波的频谱分析和天馈线的驻波理论所制作的微波信号电涌保护器,其结构如图21所示。

这种保护器中的金属短路棒长度是根据工作信号频率(如900MHZ或1800MHZ)的1/4波长的大小来确定的。

此并联的短路棒长度对于该工作信号频率来说,其阻抗无穷大,相当于开路,不影响该信号的传输,但对于雷电波来说,由于雷电能量主要分布在n+KHZ以下(如图22所示),此短路棒对于雷电波阻抗很小,相当于短路,雷电能量级被泄放入地。

由于1/4波长短路棒的直径一般为几毫米,因此耐冲击电流性能好,可达到30KA(8/20μs)以上,而且残压很小,此残压主要是由短路棒的自身电感所引起的,其不足之处是工频带较窄,带宽约为2%~20%左右,另一个缺点是不能对天馈设施加直流偏置,使某些应用受到限制。

三、SPD的基本电路电涌保护器的电路根据不同需要,有不同的形式,其基本元器件就是上面介绍的几种,一个技术精通的防雷产品研究工作者,可设计出五花八门的电路,好似一盒积木可搭出不同的结构图案。

研制出既有效又性能价格比好的产品,是防雷工作者的重任。

构筑和作用于建筑物内部的防雷工程称内部防雷工程。

内部防雷工程主要有屏蔽、防雷器和等电位连接三部分组成。

建筑物内部防雷工程涉及面较宽,面对的是包括感应雷、球雷、传导雷或因线路上浪涌高电压所造成电网波动在内的众多损害,归纳起来危害最大的主要方面是高电压引入。

高电压引入是指雷电高电压通过金属线引导到其他地方和室内造成破坏的雷害现象。

高电压引入的电源有三种:其一是直击雷直接击中金属导线,让高压雷电以波的形式沿着导线两边传播而引入室内;第二种是来自感应雷的高电压脉冲,即由于雷雨云对大地放电;或雷雨云之间迅速放电形成的静电感应和电磁感应,感生出几KV到几十KV至数百KV的地电位反击,这种反击会沿着电力系统的零线,保护接地线和各种形式的接地线,以波的形式传入室内或传播到更大的室内范围,造成大面积的危害。

雷击电子设备的途径和损坏机理雷击电子设备的途径,雷击电子设备的途径可分为三种情况:(一)雷电直接击中电子设备网络物理落雷点为电源高电压侧,雷电沿供电线路侵入到电子设备系统供电部分,产生过电流与过电压造成网络供电系统的UPS电源损坏、断电、致使整个系统瘫痪。

雷电直击网络无线通信的天线,沿天馈进入网络系统,造成通信接口、接收系统、室内单元、路由器等网络主要通信设备损坏?lt;/P>雷击网络通信有线线路(如光缆、DDN、帧中继、X.25专线、电话线)产生强大的机械力,猛烈的冲击波,炽热的高温使通信线路损坏;过电压过电流沿通信有线线路侵入到网络系统内,造成路由器、交换机及前端设备的损坏。

(二)感应过电压1.回路感应过电压由于网络系统在建筑物内大量布设各种导体线路(如电源线、数据通信线、天馈线),这些线路网络结构布局错综复杂,在建筑物内部的不同空间位置上构成许多回路,当建筑物遭雷击或邻近地区雷电放电时,将在建筑物内部空间产生脉冲暂态磁场,这种快速变化的磁场交链这些回路后,将在回路中感应出暂态过电压,危及与这回路相接的电子设备。

2.线路感应过电压是网络通信线路上感应过电压,分静电感应与电磁感应1)静电感应主要是指架空线路设于雷击点附近,由雷云团先导通道中充满电荷,对架空线产生静电感应作用累积大量相反电荷,当雷云主放电开始,雷云中电荷速中和,从而使架空线上原先被束缚的电荷被速释放,形成暂态过电压波。

这种波以接近光速向架空线两测传播,侵入导线路端接的网络设备将其损坏。

2)当雷电直接击在避雷针、避雷带上时,由于雷电流幅值大,波头陡度高,在雷电流的通道附近形成一个很强的感应电磁场。

这强大的感应电磁场将直接感应在电源线或网络通信设备上,形成感应过电压侵入到网络系统中,损坏网络设备。

高强度(30KA雷电流)雷电放电可以对距离雷击点1KM范围内网络系统产生电磁感应作用,造成系统设备损坏。

据统计,这种感应雷击占计算机雷击事故的70%以上。

3.耦合与转移过电压雷击引起暂态高电压或过电压常常可以通过网络线路耦合或转移到网络设备上,(三)雷击地电位抬高入侵建筑物在遭受直接雷击时,雷电流将沿建筑物防雷系统中各引下线和接地体入地,在此过程中,雷电流将在防雷系统中产生暂态高电压,如果引下线与周围网络设备绝缘距离不够且设备与避雷系统不共地,将在两者之间出现很高的电压,并会发生放电击穿,导致网络设备严重损坏,甚至人身安全。

这种由于接地技术处理不当引起地电位的反击,造成整个网络系统设备全部击毁。

相关文档
最新文档