freescale智能车技术报告
飞思卡尔智能车大赛杭州电子科技大学杭电二队智能车技术报告
本设计采用单片机(MC9S12DG128)作为智能小车的检测和控制核心。
路径识别采用CMOS 摄像头,车速检测采用红外对管和编码盘,由MOS管组成H桥来控制驱动电机正反转的快速切换,利用PWM技术控制小车的运动速度及运动方向。
基于这些完备而可靠的硬件设计,还设计了一套PID优化算法,编写了全闭环运动控制程序,经反复测试,取得了较好的效果。
第一章引言.1 智能车系统研究内容智能车系统要求以MC9S12DG128为核心,能够自主识别路线,在专门设计的跑道上自动识别道路行驶,以最快的速度跑完全程。
其主要研究内容包括以下几个部分:电源、路径识别、直流电动机驱动及运动控制等。
1.1.1 电源根据智能车系统各部件正常工作的需要,对配发的标准车模用7.2V 1800mAh Ni-cd电池进行电压调节。
其中,单片机系统、车速传感器电路需要5V电压,摄像头的12V工作电压由DC-DC升压回路提供,伺服电机工作电压范围4.8V到6V,直流电机经过H桥路由7.2V 1800mAh Ni-cd蓄电池直接供电。
1.1.2 路径识别路径识别模块是智能车系统的关键模块之一,路径识别方案的好坏,直接关系到最终性能的优劣。
在高速度和预先判断算法的前提下,摄像头可能是寻找路径规迹的最好选择。
因为MC9S12DG128的运算处理和AD采样速度有限,因此确定合理的采样次数和合理的处理摄像头的数据是十分重要的。
舍弃非关键数据进行数据简化和制定高效率的路径规划也是一个难题。
1.1.3 直流电动机驱动直流电机的控制一般由单片机产生的PWM信号配以H桥路来完成。
为了得到更大的驱动电流和较好的刹车效果,选用低内阻的MOS管和适当的反向驱动也是必需的。
MOS管我们选取了IRF4905和IRFZ48N,在MOS管子的驱动方面我们直接使用IR公司的IR4427双道驱动芯片。
具体的H桥电路见图1.1 。
1.2 智能车制作情况整个智能车控制系统分为4部分电路板,分别为路径识别模块,单片机模块,直流电机驱动模块和速度检测模块,还有串口通讯及调试接口。
智能平衡车实验报告
一、实验目的1. 了解智能平衡车的工作原理和设计方法。
2. 掌握基于PID控制的智能平衡车的硬件电路设计和软件编程。
3. 熟悉倾角融合算法和机器人控制算法在实际应用中的实现。
4. 培养动手能力和创新意识。
二、实验原理智能平衡车是一种集传感器技术、微控制器技术和电机驱动技术于一体的智能移动设备。
它通过测量车身倾角,利用PID控制算法控制电机驱动车轮,使车身保持平衡。
实验中,我们采用ARM Cortex-M4内核的Freescale K60单片机作为主控制器,对加速度计和陀螺仪的数据进行融合,实现车身倾角的最优估计。
三、实验器材1. 主控电路板:Freescale K60单片机2. 电机驱动电路:MOS电机驱动模块3. 传感器:加速度计、陀螺仪4. 电源:锂电池5. 平衡车模型四、实验步骤1. 硬件电路设计(1)主控电路板:将Freescale K60单片机与加速度计、陀螺仪、电机驱动电路连接,搭建主控电路板。
(2)电机驱动电路:设计MOS电机驱动电路,实现电机的高速、高效驱动。
2. 软件编程(1)倾角融合算法:采用卡尔曼滤波算法对加速度计和陀螺仪数据进行融合,得到车身倾角。
(2)PID控制算法:编写PID控制算法,通过比例、积分、微分三部分的线性叠加实现控制。
(3)直立控制算法:根据倾角反馈,调整电机驱动,使车身保持平衡。
3. 调试与优化(1)调整PID参数:通过调整比例、积分、微分参数,使平衡车在倾斜时能够快速恢复平衡。
(2)优化算法:根据实验结果,对倾角融合算法和PID控制算法进行优化。
五、实验结果与分析1. 实验结果通过实验,我们成功实现了基于PID控制的智能平衡车的设计与实现。
在实验过程中,平衡车在倾斜时能够迅速恢复平衡,证明了所设计的PID控制算法的有效性。
2. 结果分析(1)倾角融合算法:卡尔曼滤波算法能够有效融合加速度计和陀螺仪数据,提高倾角估计的准确性。
(2)PID控制算法:通过调整PID参数,使平衡车在倾斜时能够快速恢复平衡,证明了PID控制算法在智能平衡车控制中的有效性。
飞思卡尔智能车技术报告
第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告学校:队伍名称:参赛队员:带队教师:关于技术报告和研究论文使用授权的说明本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:带队教师签名:日期:摘要随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。
同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。
本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。
机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。
软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。
另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。
关键字:智能车摄像头图像处理简单算法闭环控制无线调试第一章引言飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。
飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的认可和信任。
其中在8 位、16 位及32 位汽车微控制器的市场占有率居于全球第一。
飞思卡尔公司生产的S12 是一个非常成功的芯片系列,在全球以及中国范围内被广泛应用于各种汽车电子应用中。
2024年飞思卡尔智能车总结(四篇)
2024年飞思卡尔智能车总结关于飞思____智能车轨迹追踪竞赛飞思____智能车竞赛,由飞思____公司赞助,是一项全国本科院校共同参与的科技竞赛活动。
今年,安徽省有幸成为第____届省级赛区,我们专科院校也有幸参与其中。
基于专业的匹配,我们系在本专业中选拔了一些同学,我非常荣幸能与我的团队并肩合作。
由于我们学校初次参加,缺乏经验,指导老师正与我们一起逐步探索解决方案。
我们选择使用B型车进行光电寻迹任务。
根据任务需求,老师将其划分为几个关键模块(寻迹模块、电源模块、驱动模块、测速模块),我负责的是寻迹模块的构建。
起初,对于黑白寻迹,我仅感到“神秘”。
通过查阅资料和老师的指导,我理解了其寻迹原理。
这主要基于黑白颜色对光的反射差异(白色完全反射,黑色完全吸收)来识别黑白线。
由于我们之前未接触过传感器知识,对此领域略感模糊,因此我专门投入时间学习传感器,理解了其在电路中的功能。
接下来,我们面临材料选择的挑战,市场上的光电管种类繁多,各校使用的也不尽相同。
我们需要找到一款适合我们车辆的光电管。
我最初在网上找到一些电路图,并购买了一些光电管进行焊接,但结果并未达到预期。
我一度认为问题出在光电管上,但即使更换为光电发射与接收一体管,问题仍未解决。
在一段时间的停滞和反复试验后,我尝试调整了与接收管串联的电阻值(从10k改为100k),意外地提高了接收距离,达到十几厘米。
这仍不理想,因为为了防止光电管之间的相互影响,每个光电管都需要加上套管,而我们购买的光电管无法满足这一要求。
经过深入研究,查阅资料,以及反复实验,我们最终选择了____公司的光电管(型号)。
我想强调的是,他人的经验可以作为参考,但不一定适用于我们自身,就像我之前选择的光电管电路图,可能在某些情况下适用,但在我们的特定需求下并不理想。
在探索阶段,逐步实验始终是至关重要的。
确定光电管后,我们进入了电路焊接阶段。
我们借鉴了其他学校的经验,初步决定使用____来配置光电管。
第五届飞思卡尔智能车大赛华中科技大学电磁组技术报告
第五届飞思卡尔杯全国大学生智能汽车竞赛技 术 报 告学校:华中科技大学队伍名称:华中科技大学五队参赛队员:方华启张江汉诸金良带队教师:何顶新罗惠关于技术报告和研究论文使用授权的说明本人完全了解第五届全国大学生“飞思卡尔”杯智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:带队教师签名:日期:目录第1章引言 (1)1.1 概述 (1)1.2 全文安排 (2)第2章电路设计 (3)2.1 电路系统框图 (3)2.2 电源部分 (4)2.3 电机驱动部分 (5)2.4 电磁传感器 (6)第3章机械设计 (8)3.1 车体结构和主要参数及其调整 (8)3.2 舵机的固定 (10)3.3 传感器的固定 (11)3.4 编码器的固定 (11)第4章软件设计 (12)4.1 程序整体框架 (12)4.2 前台系统 (13)4.3 后台系统 (13)4.4 软件详细设计 (14)第5章调试 (15)第6章全文总结 (16)6.1 智能车主要技术参数 (16)6.2 不足与改进 (16)6.3 致谢与总结 (17)I参考文献 (18)附录A 源代码 (18)II第1章引言第1章引言教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国大学生数学建模、电子设计、机械设计、结构设计等4大竞赛的基础上,委托教育部高等学校自动化专业教学指导分委员会主办每年一度的全国大学生智能汽车竞赛(教高司函[2005]201号文)[1]。
为响应教育部的号召,本校积极组队参加第五届“飞思卡尔”杯全国大学生智能汽车竞赛。
从2009 年12 月开始着手进行准备,历时近8 个月,经过设计理念的不断进步,制作精度的不断提高,经历 2 代智能车硬件平台及相关算法的改进,最终设计出一套完整的智能车开发、调试平台。
飞思卡尔智能车大赛技术报告 吴学沛
2.2.1 元件设计 ................................................................................................................ 4 2.2.2 算法设计 ................................................................................................................ 4
2.3 转向控制设计 .................................................................................................6
2.3.1 元件设计 ................................................................................................................ 6 2.3.2 算法设计 ................................................................................................................ 6
飞思卡尔智能车技术报告
第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告学校:队伍名称:参赛队员:带队教师:关于技术报告和研究论文使用授权的说明本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:带队教师签名:日期:摘要随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。
同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。
本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。
机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。
软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。
另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。
关键字:智能车摄像头图像处理简单算法闭环控制无线调试第一章引言飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。
飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的认可和信任。
其中在8 位、16 位及32 位汽车微控制器的市场占有率居于全球第一。
飞思卡尔公司生产的S12 是一个非常成功的芯片系列,在全球以及中国范围内被广泛应用于各种汽车电子应用中。
飞思卡尔智能车大赛同济大学一队技术报告
参加比赛的智能车最终采用视觉CCD摄像头用于采集赛道黑线信息,识别黑线位置;以脉宽调制(PWM)方式控制舵机转角;采用砰-砰控制对驱动电机进行闭环速度控制。
在具体的试验赛道中进行调试,取得了较好的效果。
第一章引言1.1 开发背景介绍本课题来源于“飞思卡尔”杯第二届全国大学生智能车竞赛,采用飞思卡尔16 位微控制器MC9S12DG128B作为核心控制单元,自主构思控制方案及系统设计,包括传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等,完成智能车的工程制作及调试。
最终完成后的智能车能够自主识别黑色导引线,巡线高速平稳行驶。
参加比赛的智能车最终采用视觉CCD摄像头用于采集赛道黑线信息,识别黑线位置;以脉宽调制(PWM)方式控制舵机转角;采用砰-砰控制对驱动电机进行闭环速度控制。
在具体的试验赛道中进行调试,取得了较好的效果。
1.2 章节安排论文章节安排如下:第一章引言,主要介绍本论文的选题背景与意义。
第二章智能车总体设计方案,介绍智能车系统的总体构架和主要部件,并且在多种方案中进行比较,最终选择了合适的方案。
第三章机械结构分析与设计,对智能车的重心分布以及四轮参数调整等问题做了分析。
第四章智能车硬件电路设计,给出了智能车的硬件电路。
第五章控制策略与软件实现,在多种控制方案中进行比较,最终确定合适的转向舵机和驱动电机的控制方案。
第六章测试与实验数据分析,结合实际测试结果,对得到的数据进行分析,进一步改进算法及相关参数。
第七章结论,对本论文的主要工作进行总结,提出智能车系统的不足之处与改进方案。
第二章智能车总体设计方案2.1 智能巡线车方案比较2.1.1 黑线识别方案在黑线识别方面,通常采用的传感方案有两种:红外传感器方案、视觉CCD传感方案。
两种方案各有优缺点:红外光电管方案的优点是:对单片机资源消耗少;响应速度快,但是明显的缺点是:受制于传感器的数量,赛道空间分辨率低;对于智能车前方路面不能预判,前瞻性差。
飞思卡尔智能车大赛合肥工业大学一队技术报告
本队在小车制作过程中,先对比赛内容,要求与规则进行了详细分析,然后按照要求制订了几种设计方案,并对几种方案进行比较敲定最后方案。
根据方案完成小车的总体设计和详细设计(包括底层硬件设计和总体软件设计),在完成了车模组装和改造后,完成了各个模块的硬件电路设计与安装,并进行了控制算法的设计和软件实现,最后进行了整车的调试和优化。
第一章引言1.1 智能车制作概述本队在小车制作过程中,先对比赛内容,要求与规则进行了详细分析,然后按照要求制订了几种设计方案,并对几种方案进行比较敲定最后方案。
根据方案完成小车的总体设计和详细设计(包括底层硬件设计和总体软件设计),在完成了车模组装和改造后,完成了各个模块的硬件电路设计与安装,并进行了控制算法的设计和软件实现,最后进行了整车的调试和优化。
1.2 参考文献综述方案设计过程中参考了一些相关文献,如参考文献所列。
例如文献1与2 单片机嵌入式系统在线开发方法。
文献3与4是计算机控制技术,参考了其中PID控制策略。
文献5到8是介绍了微处理器MC9S12DG128芯片。
文献9到11介绍了CCD图像传感器的应用和一些数据处理方法,等等。
1.3 技术报告内容与结构本文的主要内容框架如下:第一章:引言。
大概介绍了智能车的制作过程,参考文献说明和内容框架。
第二章:设计方案概述。
介绍了各种方案,以及选择该方案的原因。
第三章:模型车机械调整。
介绍了小车机械结构的调整和传感器的安装步骤。
第四章:硬件电路设计。
这部分是小车的硬件实现,主要给出了小车的总体结构与各个模块的硬件电路设计。
第五章:控制算法实现。
本章详细介绍了各个方案采用的算法。
第六章:调试及模型车技术参数。
介绍了调试使用的工具与具体调试过程,最后给出了整车的技术参数。
第七章:总结。
对整个模型车制作过程的总结,指出试验中发现的问题和进一步改进的方向。
第二章设计方案概述2.1 总体设计由于赛道整体布局未知,因此先保证小车在各种不同环境下能够稳定运行,再进行速度的提升。
飞思卡尔智能车比赛技术报告
第三届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告学校:北京理工大学队伍名称:傲雄车队参赛队员:刘鑫杨磊韩立博带队教师:张幽彤冬雷关于技术报告和研究论文使用授权的说明本人完全了解第三届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:刘鑫杨磊韩立博带队教师签名:张幽彤日期:2008.8.20摘要本文介绍了北理傲雄车队队员们在准备第三届Freescale智能车大赛过程中的工作成果。
智能车的硬件平台采用带MC9S12DP512处理器的S12环境,软件平台为CodeWarrior IDE 4.6开发环境,车模采用大赛组委会统一提供的1:10 的仿真车模。
文中介绍了智能小车控制系统的软硬件结构和开发流程。
整个系统涉及车模机械结构调整、传感器电路设计及信号处理、控制算法和策略优化等多个方面。
为了提高智能赛车的行驶速度和可靠性,试验了多套方案,并进行升级,结合Labview 仿真平台进行了大量底层和上层测试,最终确定了现有的系统结构和各项控制参数。
关键字:智能车,激光管,PID控制第一章引言 11.1 赛事介绍 11.2 方案介绍 11.3 技术报告内容安排 2第二章技术方案概要说明3第三章机械设计43.1 PCB板的安装 43.2 前轮参数调整 53.3 舵机的升高方案 63.4 齿轮传动机构调整73.5 速度传感器的安装固定73.6. 后轮差速机构调整8第四章硬件电路设计94.1 S12单片机最小系统94.2 路线识别电路设计124.3 电源管理电路设计144.4 电机驱动电路设计154.5 串行通讯接口电路154.6 速度检测模块164.7 现场调试模块17第五章软件设计195.1 主程序设计 195.2 总体控制流程图 195.3 工作原理205.4.1 PID控制205.4.2 PID参数的整定 215.5 小车控制策略225.6 软件开发环境22第六章模型车各项参数266.1 车模基本尺寸266.2 电路功耗及电容总容量266.3 传感器及伺服电机数量266.4 赛道信息检测精度、频率 26第七章结论277.1 本系统的所具有的特点277.2 本系统存在的问题277.3 本系统可行的改进措施28参考文献29附录A 模型车控制主程序代码I第一章引言1.1 赛事介绍受教育部高等教育司委托,高等学校自动化专业教学指导分委员负责主办全国大学生智能车竞赛。
飞思卡尔智能车大赛华东理工大学1队技术报告
第一章引言1.1 大赛情况介绍第二届“飞思卡尔”杯全国大学生智能车竞赛沿袭了第一届的举办模式,由飞思卡尔半导体有限公司提供赞助,教育部自动化专业指导委员会主办、清华大学承办,总决赛将于2007年8月24-27日在上海交通大学举行。
作为教育部主办的全国大学生五大竞赛之一,本届智能车大赛在规模和参赛队伍数量上比上届都有了大幅的提高。
本次大赛基本规则为使用大赛组委会统一提供的竞赛车模,采用飞思卡尔16位微控制器MC9S12DG128[1]作为核心控制单元,自主构思控制方案及系统架构设计,包括传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等,完成智能车的工程制作及调试,于指定日期与地点参加比赛。
同时要求车模改装完毕后,尺寸不能超过:250mm 宽和400mm长,高度无限制,赛道要求宽度不小于600mm,跑道表面为白色,中轴有连续黑线作为引导线,黑线宽25mm。
本技术报告所介绍的就是本队(华东理工大学1队)为参赛而准备的智能赛车方案。
文中,我们将系统地介绍本赛车系统的相关参数和性能,分别从软件设计、硬件结构、机械调整、控制策略等方面对赛车方案进行详细地阐述。
1.2 赛车设计方案综述通过我们对第一届智能车大赛结果以及资料的分析,发现虽然采用光电传感器构成“线型检测阵列”的方案[2]简单易行,但是作为赛车道路检测传感器,其检测精度低、前瞻距离短、耗电量大的缺点很明显。
通过分析比较,我们发现在赛车图像采集模块中,采用摄像头方案与光电传感器方案相比,检测前瞻距离大、范围宽、检测道路参数多,优势明显。
因此此次设计中我们选择摄像头作为寻线传感器[3],充分利用摄像头的优点,实现赛道的路径识别和车体运行控制。
1.3 本文结构本技术报告正文部分共分为六个部分,其中第一章为引言,简单介绍比赛背景、本队采用设计方案综述以及本技术报告的结构。
第二章将介绍我队对赛车机械结构的安装和调整,使其结构更适应在赛道上的行驶。
北航计控实验--飞思卡尔小车实验报告
成绩《计算机测控系统》实验报告院(系)名称自动化科学与电气工程学院专业名称自动化学生学号学生姓名指导教师董韶鹏2018年06月同组同学实验编号03组一、实验目的1.了解计算机控制系统的基本构成和具体实现方法。
2.学会使用IAR软件的基本功能,掌握K60单片机的开发和应用过程。
3.学会智能小车实验系统上各个模块的使用,掌握其工作原理。
二、实验内容1、了解各模块工作原理,通过在IAR环境编程,实现和演示各个模块的功能。
2、编写程序组合各个模块的功能,让小车能够沿着赛道自行行使。
三、实验原理小车的主板如下图所示:主板上包括Freescale MK60DN512ZVLQ10核心板,J-Link下载调试接口,编码器接口,电机驱动接口,舵机接口,CCD结构等主要功能模块接口,无线模块接口,蓝牙模块接口,OLED接口等主要功能模块和相应的辅助按键和电路。
在本次实验中我们主要使用的接口为编码器接口,CCD接口,舵机接口,电机驱动接口,OLED接口来控制小车运行,采用7.2V电池为系统供电。
我们采用512线mini 编码器来构成速度闭环控制,采用OV7725来进行赛道扫描,将得到的图像二值化,提取赛道信息,并以此控制舵机来进行转向。
四、实验步骤4.1车架及各模块安装4.1.1小车整体车架结构车模的整体结构如上图所示,包含地盘,电机等,为单电机驱动四轮车。
车模为但电机驱动,电机安装位置如下:4.1.2摄像头的固定和安装摄像头作为最重要的传感器,它的固定和安装对小车的影响是十分巨大的,摄像头的布局和安装取决于系统方案,反过来又会影响系统的稳定性与可靠性以及软件的编写。
我们的车模为四轮车,所以摄像头架在车子的中间部分,介于电池和舵机之间,这样节省空间而且也不会让重心偏移太大,而摄像头的角度也很有讲究,角度低的时候能看到很远的赛道信息,但是图像较为模糊,不适合图像处理的编写,角度较高是,能看到的图像信息较少,但是分辨率明显更好,在程序的编写中,我们发现摄像头视野的宽广往往直接影响赛道信息提取的精准度。
飞思卡尔智能车大赛合肥工业大学二队智能车技术报告
第一章引言教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国数学建模、电子设计、机械设计、结构设计等4大专业竞赛的基础上,经研究决定,委托高等学校自动化专业教学指导分委会主办自2006年每年一度的全国大学生智能汽车竞赛。
全国大学生智能汽车竞赛暨第一届“飞思卡尔”杯全国大学生智能汽车邀请赛已于2006年8月20~21日在清华大学圆满结束。
第二届“飞思卡尔”杯全国大学生智能汽车竞赛决赛将于2007年8月24~27日在上海交通大学举办。
智能小车采用飞思卡尔公司的MC9S12DG128B作为主控芯片,配合有传感器、电机、舵机、电池以及相应的驱动电路,再加上信息处理和控制算法,它能够自主识别路径,控制模型车高速稳定运行在跑道上。
本队主要参考了《单片机嵌入式应用的在线开发方法》、《学做智能车挑战“飞思卡尔”杯》、智能模型车底盘浅析和单片机及其他芯片的数据手册,掌握了如何利用嵌入式软件开发工具软件CodeWarrior进行在线开发,并熟悉了小车的机械部分调整的相关理论。
本文将从设计制作主要思路、实现技术、电路设计、机械设计、软件设计、开发工具和制作调试过程以及主要技术参数等方面进行具体阐述。
第二章智能车设计概述2.1 设计制作主要思路基于对第一届比赛的部分了解,绝大多数小车的探测部分为光敏管,由于自身物理特性的限制使得探测的信息量小,对于跑道的前瞻探测距离短,直接影响比赛控制策略,限制赛车速度。
因此针对这一点,本次参赛智能小车采用面阵CCD获取赛道信息,可增大获取的信息量,增长探测距离,为提高赛车速度给予硬件支持。
2.2 实现技术小车的制作主要分为系统硬件设计、机械设计和系统软件设计三大部分。
其中系统硬件设计主要包括CCD路径识别模块、电源管理模块、测速模块、键盘显示模块、直流电机驱动模块、舵机转向模块和控制模块等。
机械设计主要涉及到小车的机械调整、CCD传感器的固定和测速传感器的安装定位等。
系统软件设计主要由CCD信号提取和控制算法两部分组成。
(完整word版)飞思卡尔智能车技术报告
集成化的设计思路的好处是原件密度高,系统可以小型化一体化,通过综合考虑各方面因素,在确定了系统最终硬件方案不做大的更改的情况下,在确保了系统可靠性的前提下,最终选择了一体化,集成化的硬件设计思路。使车体硬件电路布局紧凑,稳定可靠。
3、大前瞻,高分辨率方案。
在光电传感器的安装不影响赛车行驶的前提下,尽可能的提高传感器前瞻,更大的前瞻,能为赛车提供更多的信息,更能让赛车提前作出决策。
3.5.2主销内倾角
主销内倾角是指主销在汽车的横向平面内向倾斜一个角度,即主销轴线与地面垂直线在汽车横向断面内的夹角。主销内倾角也有使车轮自动回正的作用。通常汽车主销内倾角不大于80。
2.5.3前轮外倾角
通过车轮中心的汽车横向平面与车轮平面的交线与地面垂线之间的夹角称为“前轮外倾角”。轮胎呈现“八”字形张开时称为“负外倾”,而呈现“V”字形张开时称为“正外倾”。一般前轮外倾角为10左右。
4.5速度检测模块
为了使车在跑的过程中能快速加速,及时减速除了要有好的算法来控制,还依赖于速度闭环返回的速度脉冲值的可靠度和精确度,因此为了提高检测精度,最后选用了精度较高的光电编码器,光电编码器使用5V-24V电源,输出12.5%-85%VCC的方波信号。
9.2存在的不足
9.3可改进的方法
第十章参考文献
第一章引言
1.1方案介绍
系统硬件设计可以说是整个智能车设计的基础和重中之重。正确的硬件设计方向与思路,是系统稳定可靠的基础,功能强大的硬件系统,更为软件系统的发挥提供了强大的平台。、
1、整车低重心设计。
通过以往几届比赛的经验我们看到,往往重心低,体积小巧,布局紧凑的赛车更能取得好的成绩。、于是,我们通过合理布局电路板和各种传感器,尽可能地降低整车重心。在不影响传感器前瞻,或者不过度牺牲传感器性能的情况下,尽量降低光电传感器的高度,以提高赛车的侧翻极限。
飞思卡尔智能车总结范本(二篇)
飞思卡尔智能车总结范本先静下心来看几篇技术报告,可以是几个人一起看,边看边讨论,大致了解智能车制作的过程及所要完成的任务。
看完报告之后,对智能车也有了大概的了解,其实总结起来,要完成的任务也很简单,即输入模块-控制-输出。
(1)输入模块。
各种传感器(光电,电磁,摄像头),原理不同,但功能都一样,都是用来采集赛道的信息。
这里面就包含各种传感器的原理,选用,传感器电路的连接,还有传感器的____、传感器的抗干扰等等需要大家去解决的问题。
(2)控制模块。
传感器得到了我们想要的信息,进行相应的ad转换后,就把它输入到单片机中,单片机负责对信息的处理,如除噪,筛选合适的点等等,然后对不同的赛道信息做出相应的控制,这也是智能车制作过程中最为艰难的过程,要想出一个可行而又高效的算法,确实不是一件容易的事。
这里面就涉及到单片机的知识、c语言知识和一定的控制算法,有时为了更直观地动态控制,还得加入串口发送和接收程序等等。
(3)输出模块。
好的算法,只有通过实验证明才能算是真正的好算法。
经过分析控制,单片机做出了相应的判断,就得把控制信号输出给电机(控制速度)和舵机(控制方向),所以就得对电机和舵机模块进行学习和掌握,还有实现精确有效地控制,又得加入闭环控制,pid算法。
明确了任务后,也有了较为清晰的控制思路,接下来就着手弄懂每一个模块。
虽然看似简单,但实现起来非常得不容易,这里面要求掌握电路的知识,基本的机械硬件结构知识和单片机、编程等计算机知识。
最最困难的是,在做的过程中会遇到很多想得到以及想不到的事情发生,一定得细心地发现问题,并想办法解决这些问题。
兴趣是首要的,除此之外,一定要花充足的时间和精力在上面,毕竟,有付出就会有收获,最后要明确分工和规划好进度。
飞思卡尔智能车总结范本(二)刚进入大学半年,我就有幸参加飞思____智能车比赛。
说实话,刚报名参加这项赛事的时候我只是抱着好奇的心态去参加,可是真的进入了这个团队的时候,我发现这个活动是多么的吸引我,让我顿时在枯燥的学习生活中找到了乐趣。
飞思卡尔智能车西北工业大学一队技术报告
飞思卡尔智能车-西北工业大学一队技术报告第一届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告学校:西北工业大学队伍名称:西北工业大学一队参赛队员:杨隽楠樊兆第二章系统总体方案宾梁化勇带队教师:曲仕茹关于技术报告和研究论文使用授权的说明本人完全了解第一届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:杨隽楠樊兆宾梁化勇带队教师签名:曲仕茹日期:26-8-1目录第一章引言 (5)1.1 制作完成状况 (5)1.2 报告的主要内容 (5)第二章系统总体方案 (7)2.1 图像检测部分 (7)2.2 数据处理部分 (8)2.3 行驶控制部分 (8)2.3.1 直流电动机控制 (9)2.3.2 舵机控制 (9)第三章系统硬件设计 (12)3.1 系统结构与功能框图 (12)3.2 模块设计 (12)3.2.1 LM1881模块电路原理及功能.133.2.2 二值化模块电路原理及功能.. 133.2.3 MC33886模块原理及功能 (14)3.3 稳压电路设计 (15)3.3.1 LM1117降压电路 (15)3.3.2 升压模块设计 (15)3.4 电路板设计与布线 (17)3.4.1 电源布线 (17)3.4.2 信号线布线 (18)第四章系统软件设计 (20)4.1 系统初始化 (21)4.2 视频图像信号采集算法 (22)4.3 控制算法设计 (22)4.3.1 黑线中心检测算法 (22)4.3.2 电机及舵机控制算法 (26)第五章模型车机械部分设计及主要参数说明 (28)5.1 车模安装 (28)5.2 CCD的安装 (28)5.3 电路板布局与安装 (28)5.4 模型车主要技术指标说明 (29)第六章系统调试部分 (30)6.1 图像采集模块调试 (30)6.2 舵机安装及调试 (30)6.3 驱动电机调试 (31)参考文献...................................................... X XXII 附录............................................................. X XXIV第一章引言1.1 制作完成状况我队按照组委会的要求以MC9S12DG128B单片机作为控制核心,采集视频图像信号,并通过对采集获得的图像进行分析,获得路况信息,据此控制小车的舵机转角与直流电机转速,实现小车在白底跑道上沿黑色标线行驶的功能。
飞思卡尔智能车电磁组技术报告
第十届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告摘要本文以第十届全国大学生智能车竞赛为背景,介绍了基于电磁导航的智能赛车控制系统软硬件结构和开发流程。
该系统以Freescale半导体公司32 位单片机MK60DV510ZVLQ100为核心控制器,使用IAR6.3程序编译器,采用LC选频电路作为赛道路径检测装置检测赛道导线激发的电磁波来引导小车行驶,通过增量式编码器检测模型车的实时速度,配合控制器运行PID控制等控制算法调节驱动电机的转速和转向舵机的角度,实现了对模型车运动速度和运动方向的闭环控制。
同时我们使用集成运放对LC选频信号进行了放大,通过单片机内置的AD采样模块获得当前传感器在赛道上的位置信息。
通过配合Visual Scope,Matlab等上位机软件最终确定了现有的系统结构和各项控制参数。
实验结果表明,该系统设计方案可使智能车稳定可靠运行。
关键字:MK60DV510ZVLQ100,PID控制,MATLAB,智能车第十届全国大学生智能汽车邀请赛技术报告目录第一章引言 (5)第二章系统方案设计 (6)2.1系统总体方案的设计 (6)2.2系统总体方案设计图 (6)电磁传感器模块 (7)控制器模块 (7)电源管理模块 (7)编码器测速模块 (7)舵机驱动模块 (8)起跑线检测模块 (8)人机交互模块 (8)测距模块 (8)第三章机械结构调整与优化 (8)3.1智能车前轮定位的调整 (8)主销后倾角 (9)3.1.2主销内倾角 (9)3.1.3 前轮外倾角 (10)3.1.4 前轮前束 (10)3.2 舵机的安装 (11)3.3编码器安装 (12)3.4车体重心调整 (12)3.5传感器的安装 (13)3.6测距模块的安装 (14)第四章硬件电路设计 (15)4.1单片机最小系统 (15)4.2电源管理模块 (16)4.3电磁传感器模块模块 (17)4.3.1 电磁传感器的原理 (17)4.3.2 信号的检波放大 (18)4.4编码器接口 (19)4.5舵机驱动模块 (20)4.6电机驱动模块 (20)4.7人机交互模块 (21)第五章控制算法设计说明 (22)5.1主要程序流程 (22)5.2赛道信息采集及处理 (23)5.2.1 传感器数据滤波及可靠性处理 (23)5.2.2 位置偏差的获取 (25)5.3 控制算法实现 (27)5.3.1 PID算法原理简介 (27)5.3.2基于位置式PID的方向控制 (31)5.3.3 基于增量式PID和棒棒控制的速度控制 (31)5.3.4 双车距离控制和坡道处理 (33)第六章系统开发与调试 (34)6.1开发环境 (34)6.2上位机显示 (35)6.3车模主要技术参数 (36)第七章存在的问题及总结 (37)7.1 制作成果 (37)7.2问题与思考 (37)7.3不足与改进 (37)参考文献 (38)附录A 部分程序代码 (39)第十届全国大学生智能汽车邀请赛技术报告第一章引言随着科学技术的不断发展进步,智能控制的应用越来越广泛,几乎渗透到所有领域。
飞思卡尔智能车大赛华东理工大学二队技术报告毕业设计(论文)word格式
设计自动控制器是制作智能车的核心环节。
自动控制器是以单片机为核心,配合有传感器、电机、舵机、电池、以及相应的驱动电路,它能够自主识别路径,控制模型车高速稳定运行在跑道上。
第一章前言1.1“飞思卡尔〞杯全国大学生智能汽车比赛背景介绍“飞思卡尔〞杯全国大学生智能车邀请赛是在飞思卡尔半导体公司资助下举办的以S12 单片机为核心的大学生课外科技竞赛。
使用大赛组委会统一提供的竞赛车模、转向舵机、直流电机和可充电式电池,采用飞思卡尔16 位微控制器MC9S12DB128B作为核心控制单元,自主构思控制方案及系统设计,包括传感器信号采集处理、控制算法及执行、电机驱动、转向舵机控制等,完成智能车工程制作及调试,于指定日期与地点参加场地比赛。
比赛成绩主要由赛车在现场成功行驶完赛道的时间为主。
全国大学生智能汽车竞赛所使用的车模是一款带有差速器的后轮驱动模型赛车,它由大赛组委会统一提供。
参赛队伍通过设计单片机的自动控制器控制模型车在封闭的跑道上自主循线运行。
在保证模型车运行稳定,即不冲出跑道的前提下,跑完两圈的时间越小成绩越好。
设计自动控制器是制作智能车的核心环节。
自动控制器是以单片机为核心,配合有传感器、电机、舵机、电池、以及相应的驱动电路,它能够自主识别路径,控制模型车高速稳定运行在跑道上。
比赛跑道外表为白色,中心有连续黑线作为引导线,黑线宽25cm。
比赛规那么限定可赛道宽度和拐弯最小半径等参数,赛道具体形状在比赛当天现场公布。
控制器自主识别引导线并控制模型车沿着赛道运行。
在严格遵守规那么中对于电路限制条件,保证智能车可靠运行前提下,电路设计尽量简洁紧凑,以减轻系统负载,提高智能车的灵活性,同时坚持充分发挥创新原那么,以简洁但功能完美为出发点,并以稳定性为首要前提,实现智能车快速运行。
比赛要求控制器必须采用MC9S12DB128B作为系统唯一控制处理器。
系统开发工具及在线调试工具可以自选〔可选择使用CodeWarrior 3.1 作为开发软件,选择清华大学制作的BDM 调试工具进行在线调试〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告附件A程序源代码附件B模糊算法在智能车控制中的应用学校:中国民航大学队伍名称:航大一队参赛队员:贾翔宇李科伟杨明带队教师:丁芳孙毅刚关于技术报告和研究论文使用授权的说明本人完全了解第三届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:带队教师签名:日期:目录第一章引言 (1)第二章智能车设计制作思路以及实现方案概要 (2)第三章硬件电路设计 (4)3.1 黑线检测电路 (4)3.2系统电路 (4)3.2.1 单片机最小系统 (5)3.2.2 接口电路 (5)3.2.3 调试电路 (5)3.2.4 电源电路 (5)3.3电机驱动电路 (6)3.4 测速电路 (6)第四章机械改造及电路板设计安装 (7)4.1 机械部分安装及改造 (7)4.1.1 舵机的改造 (7)4.1.2 前轮定位 (7)4.2 传感器的设计及安装 (7)4.2.1 黑线检测传感器 (7)4.2.2 测速传感器 (8)4.3 电机驱动电路板的设计及安装 (8)4.4 系统电路板的固定及连接 (9)4.5 整体结构总装 (9)第五章微处理器控制软件主要理论、算法说明及代码介绍 (10)5.1模糊控制原理 (10)5.2 控制算法说明 (10)5.3 程序代码介绍 (11)5.4 数字滤波器设计 (13)5.4.1传感器基准值初始化滤波器设计 (13)5.4.2行驶过程中采样信号滤波器设计 (13)第六章安装调试过程 (15)第七章EEPROM辅助调试 (16)7.1 EEPROM概述 (16)7.2 EEPROM擦除和编程步骤 (16)7.3 EEPROM编程命令字及其含义 (17)7.4 EEPROM使用中可能遇到的问题进行说明 (17)7.4.1如何修改ROM/RAM/EEPROM的地址 (17)7.4.2 如何将EEPROM中的数据读出 (18)第八章模型车主要技术参数说明 (19)第九章总结 (20)1第一章引言全国大学生飞思卡尔杯智能汽车竞赛已经成功举办过两届了,智能汽车的速度越来越快,技术也越来越高。
在同一模型车、电机、舵机和电池并相对限制处理芯片的情况下进行公平竞争是这一赛事的最大特色。
本届智能汽车竞赛还将光电管和CCD分组进行比赛,进一步提高了竞争的公平性。
另外,智能车设计的专业知识面涉及广泛,自动控制、模式识别、传感器技术、汽车电子、电气、单片机控制和机械设计等都要进行融合,因此这也从一个方面体现了一所高校的综合科技实力。
我校是首次参加智能汽车竞赛,一切都是从零开始。
我们参加了光电组的比赛,智能车在设计制作的过程中分成了三个部分:软件设计、硬件电路设计和机械结构调整。
这半年多来,从熟悉开发软件、选择传感器、编程调试、到智能车机械结构的调整,开始举步为艰,在老师的指导和鼓励下一步一个脚印地走了过来,到现在的自信满满。
在智能车的制作过程中参考学习了大量相关文献,其中主要包括卓晴、黄开胜、邵贝贝等编著的《学做智能车》,这本书介绍了汽车机械结构、电机驱动、道路识别、自动控制以及单片机应用开发等多方面的专业知识。
以及邵贝贝编著的《单片机嵌入式应用的在线开发方法》,这本书主要介绍如何针对飞思卡尔的HCS12微控制器进行软件开发。
还有大量关于控制算法的书籍和期刊文章,在算法和设计上为我们提供了很大的帮助。
整个技术报告由八章组成,其中第一章和第八章分别为引言和结论,第二章到第七章是正文部分。
正文部分是整个技术报告的核心部分,其中,第二章主要是说明智能车设计制作的主要思路以及实现的技术方案;第三章是对我们自行设计的电路板进行说明;第四章主要介绍机械部分安装及改造、传感器的设计安装、系统电路板的固定及连接等;第五章对微处理器控制软件的主要理论、算法及代码设计进行了介绍;第六章是对开发工具、制作、安装、调试过程的说明;第七章是模型车主要技术参数的说明。
1第二章智能车设计制作思路以及实现方案概要以MC9S12DG128B单片机为控制核心,反射式红外光电传感器为道路识别手段的智能车,可将整个智能车系统分为七大部分:识别道路的光电传感器、速度检测、MCU、直流电机驱动部分、舵机驱动部分、电源模块和调试接口等。
系统各部分之间的联系如图2.1所示。
图2.1 系统框图通过单片机控制的红外传感器的开关,赛道黑线信息由单片机AD口读取,然后解算出相对位置的偏移量,并控制舵机的方向。
速度检测信号经单片机处理后控制调节直流电机,使智能车速度控制在一个合理范围内。
根据飞思卡尔杯全国大学生智能汽车竞赛的比赛规则,智能车应在规定的轨道上以最快的速度行驶,并且不允许冲出跑道,所以下面主要对路面信息采集、舵机的控制以及直流电机三个部分的设计进行介绍:1、路面信息采集:采用RPR220反射式红外传感器进行路面信息的采集,路面信息的准确性直接影响到控制决策的准确性。
根据红外传感器的输出值,可以得到智能车相对黑线的位置,从而控制智能车向相应的方向转向,使其不会冲出跑道。
2、舵机的控制:由于舵机的反应需要一定的时间,所以当智能车经过转弯处时,应当将其速度适当降低,使得舵机有足够的偏转量,并能减少侧滑,保证小车能够顺利经过弯道。
为了提高舵机的反应速度,可以通过改变舵机的安装位置,并且适当加长舵机力臂,效果较为明显。
2第二章智能车设计制作思路以及实现方法概要3、直流电机的控制:直流电机是智能车的动力来源,直接决定智能车的速度,所以对智能车速度的控制也就是对直流电机的控制。
在对直流电机的控制中,采用了模糊PID算法,可针对不同情况适当地改变PID参数,使系统始终处在较好的工作状态,达到加速、减速灵敏以及稳定性好的目的。
第三章硬件电路设计整个电路系统需要完成对黑线和速度的检测,信号由单片机处理后通过执行器控制模型车的速度与方向,为了便于系统的设计、安装及可靠性,将模型车所有电路集成于四大电路板中,分别为黑线检测电路板、系统电路板、电机驱动电路板和测速电路板。
3.1 黑线检测电路对于黑线检测,采用集收发于一体的红外传感器RPR220。
为增大模型车的前瞻性,必须增加传感器的有效探测距离,加大发光二极管的发射功率,所以需要采用大电流脉冲方式来驱动发光二极管。
单片机驱动能力有限,因此需要大电流的驱动芯片,可以使用两片ULN2003芯片,并采用共阳法,串入的电位器用于调节发射电流强度,传感器电路如图3.1所示。
图3.1 红外传感器RPR220驱动电路3.2系统电路作为整个智能车系统中最复杂的电路部分包含了单片机最小系统电路、接口电路、调试电路、所有电源电路。
原理图如图3.2所示。
第三章硬件电路设计图3.2 系统电路原理图3.2.1 单片机最小系统本系统是以MC9S12DG128芯片为核心,采用16MHz晶振的并联振荡电路,引以lm2575稳压电源为其提供5V电压,加以复位电路和跳线置位电路使其运行于单片模式。
3.2.2 接口电路接口电路引出了单片机上的2路IOC口,4路PWM口,8路A、B、H 、M和16路AD口。
AB用于控制红外传感器RPR220的开关,并用AD口读取传感器的输出信号。
H口平时作为输入口,用于读取拨码开关的编码。
M口和串口一起用于无线模块。
PWM口用来控制电机与舵机。
IOC口用以捕捉测速传感器输出信号的电平跳变。
3.2.3 调试电路电路中的BDM接口用于程序的下载和调试,另外还引出了RXD、TXD用于串口通信。
3.2.4 电源电路整个电源系统都集成于此电路板上,分别为单片机系统、传感器系统、电机驱动电路和舵机供电。
为减少单片机受电池电压降低带来的影响,选择低压降的LM2940稳压芯片为其供电。
而传感器系统的需要较大功率的电源,所以第三届全国大学生智能汽车竞赛技术报告采用转换效率很高的LM2575稳压电源芯片。
电机和舵机则都直接用电池电源供电。
3.3电机驱动电路为增大电机的驱动能力,电路采用两片MC33886并联方式,具体电路如图3.3所示。
对于芯片的控制信号输入引脚采取了直接并联的方式,而输入的驱动电源和输出控制电机引脚采用了分开引线的方式,便于测试单片芯片的好坏。
输出端口在驱动电机前由导线将其并联。
图3.3 两片MC33886并联电路3.4 测速电路测速电路采用的是红外对射传感器,检测与后轮车轴同步的自制编码盘。
实验结果表明输出信号无需整形就可被单片机IOC口捕捉到,因此测速电路可采用最简单的通用红外传感器检测电路,具体电路如图3.4所示。
图3.4 测速传感器检测电路第四章机械改造及电路板设计安装4.1 机械部分安装及改造4.1.1 舵机的改造由于采用普通方式安装舵机时力臂太短,反应速度过慢,严重影响了赛车的速度,而且左右连杆长度不一,可能会造成左右转向不一。
因此对于舵机的改装采用了立式安装方式,调整连杆长度,使其安装于小车中间位置,做到左右对称。
舵机底部增加了铝合金架构垫片,以加长舵机的力臂,提高了舵机的灵敏度。
实际改装如图4.1所示。
图4.1 舵机改装图4.1.2 前轮定位为使智能车直线行驶稳定,转向轻便,转向后能自动回正,并且减少轮胎和转向系零件的磨损等,需要对智能车的前轮进行适当的定位。
其中包括:对主销后倾角进行了调整,使其介于2~3度之间;对主销内倾角调整到1度左右;前轮前束的值为1~2㎜,保证了智能车转向和直行的性能。
4.2 传感器的设计及安装4.2.1 黑线检测传感器图4.2 黑线检测传感器实图第三届全国大学生智能汽车竞赛技术报告在智能车上,检测黑线的传感器是由14个红外传感器组成的,这些传感器成一字排开,并且成等距分布,如图 4.2 所示。
传感器套有热缩管,以减少外界环境光的影响,提高监测精度和稳定性。
由于传感器监测距离有限,为使智能车具有最大的前瞻性,以规则允许的最大尺寸将电路板安装在智能车的最前部,由一个合金钢片支架与车身相连。
4.2.2 测速传感器测速传感器是由红外对管和自制光码盘组成的,当智能车行驶时,测速传感器能够输出一定频率的脉冲,根据这些脉冲就可以得到此时的行驶速度。
测速传感器安装在车身的后部,码盘与后轮连接在一起,随着后轮的转动而转动,具体如图4.3所示。
图4.3测速传感器安装图4.3 电机驱动电路板的设计及安装电机驱动电路需要流经较大的电流,而且赛车加减速时电流变化也很剧烈,驱动芯片MC33886发热较严重,为此采用大面积覆铜和风冷的方法为芯片散热降温。
电路板为自制的伪双层PCB板,除两片MC33886朝上以外,其他所有元件都置于另一面,芯片底部涂有硅胶,便于导热。