立体几何:三垂线定理及其逆定理
三垂线定理及其逆定理
三垂线定理及其逆定理知识点:1.三垂线定理;;2.三垂线定理的逆定理;3.综合应用; 教学过程:1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直;已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α⊂a AO ⊥。
求证:a PO ⊥; 证明: 说明:(1)线射垂直(平面问题)⇒线斜垂直(空间问题);(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理;(3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。
(4)直线a 与PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。
求证:PC BC ⊥。
例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。
求证:,PO BD PC BD ⊥⊥。
PBB例4.在正方体1AC 中,求证:11111,AC B D AC BC ⊥⊥;2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明: 说明:例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。
求证:(1)AD BC ⊥;(2)点A 在底面BCD 上的射影是BCD ∆的垂心;PDAB C1A C例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上已知: 求证:说明:可以作为定理来用。
例5.已知:Rt ABC ∆中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3PAB PAc π∠=∠=。
(1)求PA 与面ABC 所成的角的大小;(2)当PA 的长度等于多少的时候,点P 在平面ABC 内的射影恰好落在边BC 上;B作业:1.正方体1111D C B A ABCD -,,E F 分别是1,A A AB 上的点,1EC EF ⊥. 求证: 1EF EB ⊥。
高中立体几何 三垂线定理
三垂线定理说明( 三垂线定理说明(6)
• 平行于平面α的直线a,如果垂直于 平行于平面α的直线a
斜线OP在平面α内的射影OA,那么 斜线OP在平面α内的射影OA,那么 直线a也垂至于斜线OP,它在解某些 直线a也垂至于斜线OP,它在解某些 较复杂的问题时可能化难为易
P a
立体几何——三垂线定理 立体几何——三垂线定理
写在前面的话
• 高三同学在对立体几何的基本知识进行了系统
的复习之后,对于比较重要的定理、概念以及 在学习过程中感到难于掌握的问题进行综合性 的专题复习是很必要的。在专题复习中应通过 分类、总结,提高对所学内容的认识和理解。 今天我和大家共同探讨高中立体几何中的三垂 线问题。
D1 C1 B1 A1
∴ AC1 ⊥ 平面 A1 BD
D C A B
三垂线定理说明( 三垂线定理说明(8)
• 应用这两个定理时,首先要明确是针对
哪个平面应用定理,尤其是应注意此平 面非水平面放置的情况,然后再明确斜 线、垂线、斜线的射影及面内直线的位 置,有时需要添加其中某些线,这样可 以确保正确应用定理
建议对其掌握不好的同学,一方面扎 实基础,牢牢掌握三垂线定理的各种 情况,另一方面所作相关练习,重点 突破
• 祝大家学习成功,高考顺利!
连结CD,由三垂线定理可知,CD ⊥ AB, ∴ CD为 ABC中AB边上的高线且满足垂足在AB内, 同理可证 ABC中BC边、AC边上的高线的垂足也在BC、AC内 ∴ ABC的垂心在 ABC内,故 ABC为锐角三角形
P A D B C
一些例子
• 判定空间中两条直线相互垂直 证明:由余弦定理,
b2 + c2 − a 2 cos ∠CAB = 2bc ( x2 + z 2 ) + ( x2 + y2 ) − ( y 2 + z 2 ) = 2 x2 + z 2 x2 + y 2 = 2x 2 x +z
三垂线定理及其逆定理
三垂线定理及其逆定理知识点:1.三垂线定理;;2.三垂线定理逆定理;3.综合应用; 教学过程:1.三垂线定理:平面内一条直线,如果和这个平面一条斜线在平面内射影垂直,那么这条直线就和这条斜线垂直;已知:,PA PO 分别是平面α垂线和斜线,AO 是PO 在平面α射影,,a α⊂a AO ⊥。
求证:a PO ⊥; 证明: 说明:(1)线射垂直(平面问题)⇒线斜垂直(空间问题);(2)证明线线垂直方法:定义法;线线垂直判定定理;三垂线定理; (3)三垂线定理描述是PO(斜线)、AO(射影)、a(直线)之间垂直关系。
(4)直线a 及PO 可以相交,也可以异面。
(5)三垂线定理实质是平面一条斜线和平面内一条直线垂直判定定理。
例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。
求证:PC BC ⊥。
例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 中点。
求证:,PO BD PC BD ⊥⊥。
PBB例4.在正方体1AC 中,求证:11111,AC B D AC BC ⊥⊥;2.写出三垂线定理逆命题,并证明它正确性; 命题: 已知: 求证: 证明: 说明:例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。
求证:(1)AD BC ⊥;(2)点A 在底面BCD 上射影是BCD ∆垂心;PDAB C1A C例 3.求证:如果一个角所在平面外一点到角两边距离相等,那么这点在平面内射影在这个角平分线上 已知: 求证:说明:可以作为定理来用。
例5.已知:Rt ABC ∆中,,3,42A AB AC π∠===,PA 是面ABC 斜线,。
(1)求PA 及面ABC 所成角大小;(2)当PA 长度等于多少时候,点P 在平面ABC 内射影恰好落在边BC 上;B作业:1.正方体1111D C B A ABCD -,,E F 分别是1,A A AB 上点,1EC EF ⊥. 求证: 1EF EB ⊥。
立体几何专题之三垂线定理
写在最后的话
三垂线定理是立体几何的重点定理, 建议对其掌握不好的同学,一方面 扎实基础,牢牢掌握三垂线定理的 各种情况,另一方面所作相关练习, 重点突破 祝大家学习成功,高考顺利!
谢谢大家!
பைடு நூலகம் �
P A D B C
一些例子
判定空间中两条直线相互垂直
证明:由余弦定理, b2 + c2 a 2 cos ∠CAB = 2bc ( x2 + z 2 ) + ( x2 + y2 ) ( y 2 + z 2 ) = 2 x2 + z 2 x2 + y 2 = 2x2 2 x +z
2 2
P C A B
A B
C B1 A1 α O D
举一个例子
分析:①因为AB 平面α,又因为AB ⊥ AC , AB ⊥ BD,则应想到AB也垂直于AC,BD 在平面α内的射影A1C,B1 D ②因为AA1 = BB1 = 7cm且AA1 BB1, 所以A1 B1 = AB = 5cm ③因为直角 A1CO 直角 B1 DO (锐角,直角边), 所以A1O = 2.5cm ④因为A1C = AC 2 AA12 = 15cm 所以CD = 2CO = 2 A1C 2 + A1O 2 = 2 85cm
P a O α
A
三垂线定理说明( 三垂线定理说明(2)
如果平面α内的直线a垂直于斜线 OP的射影OA,那么α必垂直于斜线 OP;反之也成立
P a O α
A
三垂线定理说明( 三垂线定理说明(3)
满足条件(2)的直线a必垂直于斜 线及射影所确定的平面
P a O α
A
三垂线定理说明( 三垂线定理说明(4)
三垂线定理及其逆定理
三垂线定理的逆定理
在平面内的一条直线,如果和这个平面的一 条斜线垂直,那么,它也和这条斜线的射影垂直。
P
已知:PA,PO分
别是平面 的垂线和斜
线,AO是PO在平面
A
O a 的射影,a ,a ⊥PO
α
求证:a ⊥AO
线射垂直 定逆定理理线斜垂直
三垂线定理: 在平面
内的一条直线,如果和这个平 面的一条斜线的射影垂直,那 么,它就和这条斜线垂直。
三垂线定理及其逆定理
P
A
2020/8/10
B C
如图,在正方体ABCD-A1B1C1D1中,DD1⊥ 平面AC,DD1为平面AC的垂线,BD1为平面AC的 斜线。
D1
思考:
A1
1、直线BD,AC和BD1之间有 怎样的位置关系?
D
2、总结:
A
C1 B1
C
B
三垂线定理:在平面内的一条直线,如果它和这个
D1
C1
A1 D
A
B1
C FE
B
影,则 a⊥b
(× )
⑶ 若a是平面α的斜线,直线b α
且b垂直于a在一平面β内的射
影则a⊥b
(× ) D
⑷ 若a是平面α的斜线,b∥α,直线
b垂直于a在平面α内的射影,
A
则 a⊥b
(√ )
C1 B1
C B
例2 在四面体ABCD中,已知AB⊥CD,AC⊥BD 求证:AD⊥BC
证明:作AO⊥平面BCD于点O,
连接BO,CO,DO,则BO,
A
CO,DO分别为AB,AC,
AD在平面BCD上的射影。
∵AB⊥CD,∴BO⊥CD,
同理CO⊥BD,
三垂线定理及三垂线逆定理
BC ⊥ PC
A O BPB=PC, M是BC的中点, 求证:BC⊥AM P
C A M
证明: PB=PC
B M= M C
BC ⊥ PM
B BC⊥AM
PA⊥平面PBC
我们要学会从纷繁的已知条件和各式各样的位置 图形中找出或者创造出符合三垂线定理的条件
P
解 题 回 顾
证明: 连结AC, CC1⊥平面ABCD BD⊥AC AC1⊥BD 同理AC1⊥A1B
D
D1 C A A1
B1
B
AC1⊥平面BA1D.
本节课到此结束,请同学们课后再 做好复习与作业。谢谢!
作业:见题单
再见!
例 在空间四边形ABCD中,已知 CD ⊥ AB , BD ⊥ AC. 求证:BC ⊥ AD . 证明:
A
作AO⊥平面BCD于点O CD ⊥ AB
CD ⊥ BO
同理 BD ⊥ CO O是△BCD的垂心 BC ⊥ DO AO⊥平面BCD BC ⊥ AD.
B O D
C
例 在正方体ABCD—A1B1C1D1中, C1 求证:AC1⊥平面BA1D.
在平面内的一条直线,如果和这个平面的一 条斜线垂直,那么它也和这条斜线的射影垂直.
三垂线定理的逆定理
在平面内的一条直线,如果和这个平面的一条斜线 的射影垂直,那么它就和这条斜线垂直.
线射垂直
定 理
逆 定 理
P
a
线斜垂直
A
O
在平面内的一条直线,如果和这个平面的一 条斜线垂直,那么它也和这条斜线的射影垂直.
α
A
O
a
P
α
P
A O
a
A
C
三垂线定理及其逆定理
三垂线定理及其逆定理【学习内容分析】“三垂线定理”是安排在“直线与平面的垂直的判定与性质”后进行学习的。
它是线面垂直性质的延伸。
利用三垂线定理及其逆定理,可将空间两直线垂直与平面两直线垂直进行互相转化,具体应用表现例如辅助我们做二面角平面角等。
所以在立体几何中有核心定理的作用。
【课程目标】一.知识与技能目标理解和掌握三垂线定理及其逆定理的内容、证明和应用。
二.过程与方法目标1通过对定理的学习,培养学生观察、猜想和论证数学问题的能力。
三.情感、态度和价值观目标3、培养学生逻辑推理证明的能力和相互转化的思想。
【教学重点和难点】一.教学重点定理的理解和运用二.教学难点如何在具体图形中找出适合三垂线定理(或逆定理)的直线和平面。
【教学方法】以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,运用小组学习合作探究。
【教学过程】一复习引入:1.复习提问1、回顾直线与平面垂直的相关性质以及射影、斜线等概念;设计意图(因为平面的垂线、平面的斜线及射影是三垂线定理的基础,直线与平面垂直的判定与性质又是证明三垂线定理的基本方法,因此我用提问的形式让学生温故知新,作好新课的铺垫。
)2.有意设疑,引入新课。
平面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。
那么平面的斜线与平面内的直线在什么情况下是垂直的呢?学生思考后,我再引导学生利用三角板和直尺在桌面上搭建模型(如图),使直尺与三角板的斜边垂直,引导学生猜想发现规律。
经过实验,发现直尺与三角板在平面内的直角边垂直时便与斜边垂直。
启发学生把猜想、实验后得到的结论总结出来,表达成数学命题:平面内的一条直线如果和平面的斜线的射影垂直,那么就和平面的这条斜线垂直(板书)设计意图(为了唤起学生学习的兴趣,把学生的注意力集中起来,调动学生的思维积极性,我通过提出问题,创设情景,引导学生观察、猜想,发现新的知识,培养学生的探索能力)二、新课讲授:由以上的分析,我们可以抽象出如下的一个图。
三垂线定理和逆定理
F H
C
而CH是PC在面ABC旳射影
E B
故PC⊥AB
请你处理一种实际问题:
三垂线定理
道旁有一条河,彼岸有电塔AB,高15m,只有水平测角器 和皮尺作测量工具,能否求出电塔顶与道路旳距离?(假 设塔基B、道路处于同一水平面)
A B
90°
C
45°
D
小结
三垂线定理
三垂线定理:在平面内旳一条直线,假如和这个平面旳一 条斜线旳射影垂直,那么它也和这条斜线垂直。
PA⊥α aα
①
PA⊥a
AO⊥a
②
a⊥平面PAO
PO 平面PAO
③
a⊥PO
对三垂线定理旳阐明:
三垂线定理
1、三垂线定理描述旳是PO(斜线)、AO(射 影)、a(直线)之间旳垂直关系。
2、a与PO能够相交,也能够异面。
3、三垂线定理旳实质是平
P
a
面旳一条斜线和平面内
α Ao
旳一条直线垂直旳鉴定定理。
P
oa
α
A
三垂线定理
例4 四面体P-ABC中,PA⊥BC,PB⊥AC,求证PC⊥AB
解:过P作PH⊥面ABC,
连AH延长交BC于E,连BH延长交AC于F PH⊥平面PBC, PA⊥BC,
而PA在面ABC内旳射影为AH,
由三垂线定理旳逆定理知BC⊥AH
P
同理可证BF⊥AC
A
则H为△ABC旳垂心 连CH延长交AB于G,于是CG⊥AB G
三垂线定理旳逆定理:在平面内旳一条直线,假如和这个 平面旳一条斜线垂直,那么这条直线也和斜线旳射影垂直.
1°定理中四条线均针对同一平面而言 2°应用定理关键是找“基准面” 3°操作程序分三个环节——“一垂二射三证”
三垂线定理的逆定理
例2.已知:四面体S-ABC中,SA⊥平面ABC, △ABC是锐角三角形,H是点A在面SBC上的 射影。 求证:H不可能是△SBC的垂心.
S
H A C
B
例3.已知:如图,在正方体ABCD-A1B1C1D1 中,E是CC1的中点,F是AC、BD的交点。 求证:A1F⊥平面BED.
D1 A1 B1 E C1
D1 A1 C1
B1
D
A B
C
二:例题分析
例1.点A为△BCD所在平面外的一点,点O为点A 在平面BCD内的射影,若AC⊥BD,AD⊥BC, 求证:AB⊥CD. A
B O C
D
【练习】: △BCD所在平面外的一点A在平面BCD内的 射影O为△BCD的垂心 求证:点B在△ACD内的射影P是△ACD的垂心。
A
C
3、如图,过直角三角形BPC的 直角顶点 P作线段 PA⊥平面 BPC , 求证:P在平面PBC内的射影H 是△ABC的垂心。
H P B C
; https:// 菲律宾电竞游戏平台 ;
行者.但是,他仔细感应,又不能判断出此入の具体境界.呐让他有些凝叠.“黄兄,此入真实年纪不大,可能连壹万岁都没有.”三石王君低声说道.他在生命法则前造诣也极高,所以判断鞠言の年纪比较精确.“壹万岁都不到?”胡洋和黄志眉头都微微壹动.他们也能大约看出鞠言の年纪并 不很大,但却无法像三石王君那样精确.几拾万岁、几百万岁,那都是年纪不大!“嗯,俺应该不断判断错误,他の生命气息很年轻.如此年纪,实历应该不会很强.在俺们万道世界之内,不到壹万岁の年纪,能成主申都是极其罕见の武道天才咯.”三石王君冷笑咯笑.“可若如此,那肖子怡为 何让此入出战?呐不合常理!”黄志王君摇摇头.“不管呐小子哪个来路,难道能比黄志王君你の实历还强?壹会对战开始,黄兄你直接击败
三垂线定理
即一垂二射三证
P a α A o
一、证明线线垂直 P是侧棱 1上的一点,CP=m. 则 在线段 1C1上是否存 是侧棱CC 上的一点, 在线段A 是侧棱 在一个定点Q,使得对任意的m, 在平面APD1上的 在一个定点 ,使得对任意的 ,D1Q在平面 在平面 z 射影垂直于AP.并证明你的结论. 射影垂直于 .并证明你的结论. 推测: 应当是A 中点O 推测:点Q应当是 1C1的中点 1 , 应当是 ∵ D1O1⊥A1C1, A1 D1O1⊥A1A 平面ACC1A1 ∴D1O1⊥平面 平面ACC1A1 又AP 平面 ∴ D1O1⊥AP 根据三垂线定理知, 三垂线定理知 根据三垂线定理知,D1O1在 A 平面APD1的射影与 垂直 . x 的射影与AP垂直 平面
C
B
α A
E
由CA=30,CB=40,所以 =50. , = ,所以AB= . 由面积公式得 AB•CE=AC•CB, = , 易求得CE=24,再由勾股定理可得 易求得 ,再由勾股定理可得DE=26. .
三、证明线面垂直
例4 如图,已知正方体ABCD-A1B1C1D1中,连结BD1, ABCD连结BD 如图,已知正方体ABCD AC, AC,CB1,B1A,求证:BD1⊥平面AB1C 求证: 平面AB
D1 O1 B1 C1
的正方体AC 例2 (06湖北 )如图,在棱长为 的正方体 1中, 湖北 如图,在棱长为1的正方体
P
D B C
y
பைடு நூலகம்法二
若存在这样的点 Q , 设此点的横坐标为 x, 则 Q ( x , 1 − x , 1 ), DQ = ( x,1− x,0) , 1 对任意的m要使在平面上的射影垂直于 对任意的 要使在平面上的射影垂直于 AP ,
三垂线定理及其逆定理
三垂线定理及其逆定理 【2 】常识点: 1.三垂线定理;; 2.三垂线定理的逆定理; 3.分解运用; 教授教养进程:1.三垂线定理:平面内一条直线,假如和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直;已知:,PA PO 分离是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α⊂a AO ⊥. 求证:a PO ⊥; 证实: 解释:(1)线射垂直(平面问题)⇒线斜垂直(空间问题)(2)证实线线垂直的办法:界说法;线线垂直剖断定理;三垂线定理;(3)三垂线定理描写的是PO(斜线).AO(射影).a(直线)之间的垂直关系. (4)直线a 与PO 可以订交,也可以异面.(5)三垂线定理的本质是平面的一条斜线和平面内的一条直线垂直的剖断定理. 例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥. P2.写出三垂线定理的逆命题,并证实它的准确性; 命题: 已知:求证:证实: 解释:例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥. 求证:(1)AD BC ⊥;(2)点A 在底面BCD 上的射影是BCD ∆的垂心;例3.求证:假如一个角地点平面外一点到角的双方的距离相等,那么这点在平面内的射影在这个角的等分线上 已知: 求证:解释:可以作为定理来用.例5.已知:Rt ABC ∆中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3PAB PAc π∠=∠=.(1)求PA 与面ABC 所成的角的大小;(2)当PA 的长度等于若干的时刻,点P 在平面ABC 内的射影正好落在边BC 上; PDABC第3页,-共3页2.已知:PA ⊥平面PBC ,,PB PC M =是BC 的中点. 求证:BC AM ⊥;3.填空并证实:(1)在四面体ABCD 中,对棱互相垂直,则A 在底面BCD 上的射影是底面BCD 的心. (2)在四面体ABCD 中,AB.AC.AD互相垂直,则A 在底面BCD 上的射影是底面BCD 的心 (3)在四面体ABCD 中,AB=AC=AD ,则A 在底面BCD 上的射影是底面BCD 的心.(4)在四面体ABCD 中,极点A 到BC.CD.DB 的距离相等,则A 在底面BCD 上的射影是底面BCD 的心.4.正方体1111D C B A ABCD -中棱长a ,点P 在AC 上,Q 在BC 1上,AP =BQ =a, (1)求直线PQ 与平面ABCD 所成角的正切值; (2)求证:PQ⊥AD .5.在正方体1111D C B A ABCD -中,设E 是棱1AA 上的点,且1:1:2A E EA =,F 是棱AB 上的点,12C EF π∠=.求AF :FB.6.点P 是ABC ∆地点平面外一点,且PA ⊥平面ABC.若O 和Q 分离是ΔABC 和ΔPBC 的垂心,试证:OQ ⊥平面PBC.7.已知EAF ∠在平面α内,,,AT P PAE PAF αα⊂∉∠=∠,,,EAT FAT PD D αα∠=∠⊥∈.求证:D AT ∈;。
三垂线定理与其逆定理的关系三垂线定理怎么用三垂线定理证明
正射影的概念:
自一点向平面引垂线,垂足叫做这一点在平面内的正射影(简称为射影);
平面的斜线的概念:
如果一条直线和一个平面相交但不垂直,那么这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足。
2、三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
3、三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
4、三垂线定定理的主要应用:证明线线、线面垂直,求点到线的距离、二面角大小。
三垂线定理:
在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理与其逆定理的关系:
即:
三垂线定定理的主要应用:
证明线线、线面垂直,求点到线的距离、二面角大小。
应用两个定理解题的一般思路:。
立体几何:三垂线定理及其逆定理
说明:
例 2.在空间四边形 ABCD 中,设 AB ⊥ CD, AC ⊥ BD 。 求证:(1) AD ⊥ BC ; (2)点 A 在底面 BCD 上的射影是 ΔBCD 的垂心;
A
B
D
C
例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 已知: 求证:
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例 1.已知 P 是平面 ABC 外一点, PA ⊥ ABC, AC ⊥ BC 。
求证: PC ⊥ BC 。
P
线定理; 的垂直关系。
A B
例 2.已知 PA ⊥ 正方形 ABCD 所在平面, O 为对角线 BD 的中点。 求证: PO ⊥ BD, PC ⊥ BD 。
影, a ⊂ α , a ⊥ AO 。
求证: a ⊥ PO ;
证明:
P
纪福双
a
说明:
(1)线射垂直(平面问题) ⇒ 线斜垂直(空间问题);
(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂 (3)三垂线定理描述的是 PO(斜线)、AO(射影)、a(直线)之间
A
O
α
(4)直线 a 与 PO 可以相交,也可以异面。
例 4.在正方体 AC1 中,求证: A1C ⊥ B1D1, A1C ⊥ BC1 ;
C P
B
D1
A1 D
A
D
O C
C1
B1 C
A B
P
a
2.写出三垂线定理的逆命题,并证明它的正确性;
A
O
α
大行不倦 呕心沥血 传道授业解惑!大思行广 打通大脑思维的任督二脉,大行无疆 捍卫中国文化最后良心!第 1 页
三垂线定理及其逆定理
三垂线定理的逆定理
在平面内的一条直线,如果和 这个平面的一条斜线垂直,那 么,它也和这条斜线的射影垂 直。
线斜垂直
练习: 判断下列命题的真假: ⑴ 若a是平面α的斜线,直线b垂直于 D1 a在平面α内的射影,则 a⊥b ( × ) ⑵ 若 a是平面α的斜线,平面β内 A1 的直线b垂直于a在平面α内的射 影,则 a⊥b (× ) ⑶ 若a是平面α的斜线,直线b α 且b垂直于a在另一平面β内的射 b a β D 影则a⊥b (× ) ⑷ 若a是平面α的斜线,b∥α,直线 A b垂直于a在平面α内的射影, 则 a⊥b (√ )
P a
证明:
A
α O PO⊥a AO⊥a PO∩AO=O
PO⊥α aα
a⊥平面PAO
PA平面PAO
a⊥PA
小结: 小结:
P a
定理中需要“一面、四线、三垂直”
A
α O
三垂线定理的实质是空间两直线垂直的判 定定理(思想的转化) 垂线最重要
线射垂直
线斜垂直
问题:三垂线定理中包含那些垂直关系? 问题:三垂线定理中包含那些垂直关系?
在平面内的一条直线,如果和这个平面的一 条斜线垂直,那么,它也和这条斜线的射影垂直。 P 已知:PA,PO分 别是平面α 的垂线和斜 线,AO是PO在平面α A O
a
的射影,a α ,a ⊥PO 求证:a ⊥AO
α
线射垂直
三垂线定理:
定
理
逆定理
线斜垂直 线射垂直
定 理 逆 定 理
在平面 内的一条直线,如果和这个平 面的一条斜线的射影垂直,那 么,它就和这条斜线垂直。
直 ?如果有,有多少条?平面内的直线应该满足 怎样的条件?
A
三垂线定理及其逆定理
三垂线定理及其逆定理知识点:1.三垂线定理;;2.三垂线定理的逆定理;3.综合应用; 教学过程:1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直;已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α⊂a AO ⊥。
求证:a PO ⊥; 证明: 说明:(1)线射垂直(平面问题)⇒线斜垂直(空间问题);(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理;(3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。
(4)直线a 与PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。
求证:PC BC ⊥。
例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。
求证:,PO BD PC BD ⊥⊥。
PBB例4.在正方体1AC 中,求证:11111,AC B D AC BC ⊥⊥;2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明: 说明:例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。
求证:(1)AD BC ⊥;(2)点A 在底面BCD 上的射影是BCD ∆的垂心;PDAB C1A C例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 已知: 求证:说明:可以作为定理来用。
例5.已知:Rt ABC ∆中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3PAB PAc π∠=∠=。
(1)求PA 与面ABC 所成的角的大小;(2)当PA 的长度等于多少的时候,点P 在平面ABC 内的射影恰好落在边BC 上;B作业:1.正方体1111D C B A ABCD -,,E F 分别是1,A A AB 上的点,1EC EF ⊥. 求证: 1EF EB ⊥。
三垂线定理及逆定理
?
?
?
A C 结 论 成 立
例3 在四面体ABCD中,已知AB⊥CD,AC⊥BD 求证:AD⊥BC 证明:作AO⊥平面BCD于点O, 连接BO,CO,DO,则BO, CO,DO分别为AB,AC, AD在平面BCD上的射影。
O M
B
C
我们要学会从纷繁的已知条件中找出 或者创造出符合三垂线定理的条件 ,怎么找? P A O
解 题 回 顾
α
A
O
a
α
P
a
P
A1
B1
C1 C C B A M B
三垂线定理解题的关键:找三垂!
解 题 回 顾
怎么找?
一找直线和平面垂直 二找平面的斜线在平面 内的射影和平面内的 一条直线垂直 P
α
第一章
直线和平面
三垂线定理
新野一高 周立平
这是偶然的巧合,还是必然?
cos1· 2 =cos 3 cos
A
1 =∠AOB 2 =∠DOB 3 =∠AOD
O E
P
B M D
O
a
APO⊥ aAE NhomakorabeaOD?
?
三垂线定理
在平面内的一条直线,如果和这个平面的一条 斜线的射影垂直,那么,它就和这条斜线垂直。
A
O
a
注意:由一垂、二垂直接得出第三垂 并不是三垂都作为已知条件
使用三垂线定理还应注意些什么?
解 题 回 顾
三垂线定理是平面
的一条斜线与平面内的 直线垂直的判定定理, 这两条直线可以是: ①相交直线 ②异面直线 P
高中数学-三垂线定理及其逆定理-人教版[原创]
p Q O
自一点向平面引垂
线,垂足叫做这点在这 个平面上的射影;
这个点与垂足间的线段叫做这点到这个平 面的垂线段。
A
B
C
一条直线和一个平面 相交,但不和这个平面垂 直,这条直线叫做这个平 面的斜线,斜线和平面的 交点叫做斜足。
斜斜线线上上一任点意与一斜点足间 的在线平段面叫上做的这射点影到,这一个平 面定的在斜斜线线段的。射影上。
三垂线定理: 在平面
内的一条直线,如果和这个平 面的一条斜线的射影垂直,那 么,它就和这条斜线垂直。
三垂线定理的逆定理
在平面内的一条直线,如果和 这个平面的一条斜线垂直,那 么,它也和这条斜线的射影垂 直。
线射垂直
定 理
逆 定 理
线斜垂直
例3 在四面体ABCD中,已知AB⊥CD,AC⊥BD 求证:AD⊥BC
A
B
90°
C
45°
D
练习:
1.已知 PA、PB、PC两两垂直, 求证:P在平面ABC内的射影是 △ABC的垂心。
B 2.经过一个角的顶点引这个角 所在平面的斜线,如果斜线和 这个角两边的夹角相等,那么 斜线在平面上的射影是这个角 的平分线所在的直学会从纷繁的已知条件中找出 或者创造出符合三垂线定理的条件 ,怎么找?
P
解
A Oa
题α
回
顾 A1
C1 B1
C B
AO a α
P P
C A
M B
三垂线定理解题的关键:找三垂!
怎么找?
解 题
一找直线和平面垂直
P
回 顾
二找平面的斜线在平面 内的射影和平面内的 一条直线垂直
α
A
Oa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大行不倦 呕心沥血 传道授业解惑!大思行广 打通大脑思维的任督二脉,大行无疆 捍卫中国文化最后良心!第 2 页
A
3.填空并证明:
(1)在四面体 ABCD 中,对棱互相垂直,则 A 在底面 BCD 上的射影是底面 BCD 的
心。
(2)在四面体 ABCD 中,AB、AC、AD互相垂直,则 A 在底面 BCD 上的射影是底面 BCD 的
C M B
心
(3)在四面体 ABCD 中,AB=AC=AD,则 A 在底面 BCD 上的射影是底面 BCD 的
例 4.在正方体 AC1 中,求证: A1C ⊥ B1D1, A1C ⊥ BC1 ;
C P
B
D1
A1 D
A
Da
2.写出三垂线定理的逆命题,并证明它的正确性;
A
O
α
大行不倦 呕心沥血 传道授业解惑!大思行广 打通大脑思维的任督二脉,大行无疆 捍卫中国文化最后良心!第 1 页
命题: 已知: 求证: 证明:
P
说明:可以作为定理来用。
αA
B E
OC F
P
专项专练作业:
1.正方体 ABCD − A1B1C1D1 , E, F 分别是 A1A, AB 上的点, EC1 ⊥ EF .求证: EF ⊥ EB1 。
2.已知: PA ⊥ 平面 PBC , PB = PC, M 是 BC 的中点。求证: BC ⊥ AM ;
立体几何:三垂线定理及其逆定理
知识点:
1.三垂线定理;;
2.三垂线定理的逆定理;
3.综合应用;
1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,
那么这条直线就和这条斜线垂直;
已 知 : PA, PO 分 别 是 平 面 α 的 垂 线 和 斜 线 , AO 是 PO 在 平 面 α 的 射
(2)求证:PQ⊥AD.
5.在正方体
ABCD
−
A1 B1C1 D1
中,设
E
是棱
AA1
上的点,且
A1E
:
EA
=1:
2
,F
是棱
AB
上的点,
∠C1EF
=
π 2
。求
AF:FB。
6.点 P 是 ΔABC 所在平面外一点,且 PA⊥平面 ABC。若 O 和 Q 分别是ΔABC 和ΔPBC 的垂心,试证:OQ⊥平面 PBC。
影, a ⊂ α , a ⊥ AO 。
求证: a ⊥ PO ;
证明:
P
纪福双
a
说明:
(1)线射垂直(平面问题) ⇒ 线斜垂直(空间问题);
(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂 (3)三垂线定理描述的是 PO(斜线)、AO(射影)、a(直线)之间
A
O
α
(4)直线 a 与 PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例 1.已知 P 是平面 ABC 外一点, PA ⊥ ABC, AC ⊥ BC 。
求证: PC ⊥ BC 。
P
线定理; 的垂直关系。
A B
例 2.已知 PA ⊥ 正方形 ABCD 所在平面, O 为对角线 BD 的中点。 求证: PO ⊥ BD, PC ⊥ BD 。
心。
(4)在四面体 ABCD 中,顶点 A 到 BC、CD、DB 的距离相等,则 A 在底面 BCD 上的射影是底面 BCD 的 心。
4.正方体 ABCD − A1B1C1D1 中棱长 a ,点 P 在 AC 上,Q 在 BC1 上,AP=BQ=a,
(1)求直线 PQ 与平面 ABCD 所成角的正切值;
说明:
例 2.在空间四边形 ABCD 中,设 AB ⊥ CD, AC ⊥ BD 。 求证:(1) AD ⊥ BC ; (2)点 A 在底面 BCD 上的射影是 ΔBCD 的垂心;
A
B
D
C
例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 已知: 求证: