(完整word版)初二数学含有字母系数的一元一次方程练习.doc
(精品word)人教版初二数学(上)知识点归纳
初二数学(上)应知应会的知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化2. 因式分解的方法:常用“提取公因式法” “公式法” “分组分解法”“十字相乘法”. 3•公因式的确定:系数的最大公约数•相同因式的最低次幕注意公式:a+b=b+a a-b=-(b-a)(a-b)2=(b-a)2 (a-b)3=-(b-a)3.4 •因式分解的公式:(1) 平方差公式:a2-b2= (a+ b ) (a- b);(2) 完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5•因式分解的注意事项:(1) 选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字; (2) 使用因式分解公式时要特别注意公式中的字母都具有整体性; (3) 因式分解的最后结果要求分解到每一个因式都不能分解为止; (4) 因式分解的最后结果要求每一个因式的首项符号为正; (5) 因式分解的最后结果要求加以整理;(6) 因式分解的最后结果要求相同因式写成乘方的形式6. 因式分解的解题技巧:(1)换位整理,加括号或去括号整理;⑵提负号;(3)全 变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取 分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7. 完全平方式:能化为(m+n) 2的多项式叫完全平方式;对于二次三项式x2+px+qf-Pj=q有“ x2+px+q 是完全平方式二 2 ”.分式A1. 分式:一般地,用A 、B 表示两个整式,A *B 就可以表示为B 的形式,如果BA中含有字母,式子B 叫做分式.3. 对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零, 而分母也为零,则分式无意义4. 分式的基本性质与应用:(1) 若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;有理式2.有理式:整式与分式统称有理式;即整式分式(2) 注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值 不变;一分子_ 一分子—分子—分子即 一分母 分母 一分母 分母(3) 繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单5. 分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分 式约分前经常需要先因式分解.6. 最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分 式计算的最后结果要求化为最简分式a c ac a . c a d ad7. 分式的乘除法法则:b d_bd , b d_b c_bc ./>n na丨=冷•(n 为正整数)8.分式的乘方:I b 丿b.9. 负整指数计算法则:1n(1) 公式:aO=1(护 0), a-n=a (a ^O);(2) 正整指数的运算法则都可用于负整指数计算;_na(3)公式:b a , (4)公式:(-1) -2=1, (-1) -3=-1.10•分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式 相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母 11.最简公分母的确定:系数的最小公倍数•相同因式的最高次幕13•含有字母系数的一元一次方程:在方程ax+b=O(胡0)中,x 是未知数,a 和b 是用字 母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项, 我们称它为含有字母系数的一元一次方程注意:在字母方程中,一般用a 、b 、c 等表示 已知数,用x 、y 、z 等表示未知数14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公 式变形的本质就是解含有字母系数的方程特别要注意:字母方程两边同时乘以含字母 的代数式时,一般需要先确认这个代数式的值不为0.15•分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里 不含未知数a b _ a _ b12•同分母与异分母的分式加减法法则:c 「c ca c—zt —=ad bcb d bd bdad _ be bd的方程是整式方程16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根17•分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根18•分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序数的开方1. 平方根的定义:若x2=a那么x叫a的平方根,(即a的平方根是x);注意:(1) a 叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算2. 平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3. 平方根的表示方法:a的平方根表示为' a和「a.注意:,a可以看作是一个数,也可以认为是一个数开二次方的运算4. 算术平方根:正数a的正的平方根叫a的算术平方根,表示为心•注意:0的算术平方根还是0.5. 三个重要非负数:a2>0,|a若0,a>0 .注意:非负数之和为0,说明它们都是0.6. 两个重要公式:(1) a^;(a> 0)a (a^O) a =-a (acO)7. 立方根的定义:若x3=a那么x叫a的立方根,(即a的立方根是x).注意:(1) a 叫x的立方数;(2) a的立方根表示为3a;即把a开三次方.8. 立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数 9.立方根的特性:爼-a =-v a 10. 无理数:无限不循环小数叫做无理数注意:二和开方开不尽的数是无理数11•实数:有理数和无理数统称实数正实数实数0负实数13. ----------------------------------------------- 数轴的性质:数轴上的点与实数 对应14. 无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应 该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示注意:(1) 近似计算时,中间过程要多保留一位;⑵ 要求记忆:2 =1-414 ^1-732.5 =2.236二角形几何级概念:(要求深刻理解、熟练运用、主要用于几何证明)12 .实数的分类: (1)实数彳'正有理数、有理数<0 负有理数, '正无理数、.负无理数/ 有限小数与无限循环小 数无理数丿 无限不循环小数(2)17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图) BMEO A—=*GN几何表达式举例:⑴••• A ABC、A EGF关于MN轴对称••• A ABC 也A EGF(2) v A ABC、A EGF关于MN轴对称•••OA=OE MN 丄AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b 的平方和等于斜边c的平方,即a2+b2=c2 (如图)(2)如果三角形的三边长有下面关系:a2+b2=c2那么这个三角形是直角三角形.(如图) A卜C -------------- B几何表达式举例:(1) v A ABC是直角三角形•••a2+b2=c2⑵v a2+b2=c2• A ABC是直角三角形19. Rt△斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线是斜边的一半;(如图)(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图) A区C B几何表达式举例:v A ABC是直角三角形V D是AB的中点1•CD = 2AB(2) v CD=AD=BD•A ABC是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数二常识:1 •三角形中,第三边长的判断:另两边之差v第三边v另两边之和2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形欢注意: 角形的角平分线、中线、高线都是线段3 •如图,三角形中,有一个重要的面积等式,即:若CD丄AB,BE丄CA,则CD • AB=BE • CA.4•三角形能否成立的条件是:最长边v另两边之和5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和B6 •分别含30° 45° 60°的直角三角形是特殊的直角三角形 7. 如图,双垂图形中,有两个重要的性质,即:(1) AC • CB=CD ・AB ; (2)Z 1=Z B , Z 2=Z A .8. 三角形中,最多有一个内角是钝角,但最少有两个外角是钝角9. 全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的 边是对应边.10•等边三角形是特殊的等腰三角形11. 几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明 12. 符合“AAA ” “SSA ”条件的三角形不能判定全等13•几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代 入分析法;(4)图形观察法.14. 几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已 知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知 点作已知直线的平行线15. 会用尺规完成“SAS'、“ASA ”、“AAS ”、“SSS 、“HL ”、“等腰三角形”、“等边 三角形”、“等腰直角三角形”的作图16•作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什 么;注意:每步作图都应该是几何基本作图17•几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.探18 .几何重要图形和辅助线: (1)选取和作辅助线的原则: ① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图(2)已知角平分线(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)①过D 点作DE /AC 交AB②延长AD 到E,使DE=AD③T AD 是中线①在BA 上截取BE=BC 构造全等,转 移线段和角;②过D 点作DE //BC 交AB 于E ,构造等 腰三角形•B-9 - A于E,构造中位线;Az7\B DC 连结CE构造全等,转移线段和角;/•S A ABD= S A ADC(等底等高的三角形等面积)A⑷已知等腰三角形ABC中,AB=AC②作等腰三角形ABC 一边的平行线DE,构造新的等腰三角形.(5)其它作等边三角形ABC②作CE/AB,转移角;③延长BD与AC交于E,一边的平行线DE,构不规则图形转化为规则图造新的等边三角形;AE形;AA/\ /A△B D C/ \B C DB C⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;⑥若a//b,AC,BC是角平分线则/C=90° .①作等腰三角形ABC底边的中线AD(顶角的平分线或底边的高)构造全④多边形转化为三角形;-11 -。
(完整word版)一元一次方程——和差倍分问题
一元一次方程应用题-—和、差、倍、分问题一、学习重点:这类问题主要应搞清各量之间的关系,注意关键词语.仔细读题,找出表示和、差、倍、分关系的关键字,例如:“大,小,多,少,增加,减少……”,并据题意设出未知数,利用这些关键字表示出含有未知数的量,最后利用题目中的量与量之间的关系列出方程。
1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几……”来体现。
2、多少关系:通过关键词语“多、少、和、差……”来体现。
增长量=原有量×增长率现在量=原有量+增长量一般设未知数要找跟所有关系联系最紧密的那个量。
二、基础练习题:1、a比b多5,则a=______;a比b少3,则a=______;a是b的2倍,则a=____;a增加3倍,则a=_____;a增加到3倍,则a=_____;将a增加b,则a=_____;将a增加到b,则a=_____。
2、已知甲数比乙数小12,甲乙两数的和为50,甲数为_____;乙数为_____.3、已知甲数比乙数的3倍多12,甲乙两数的和是60,甲数为_____;乙数为_____。
4、已知甲数是10,增加40%后甲数为______;在此基础上减少50%后甲数为_______.5、已知甲数的3倍是乙数与—2的和的2倍,甲数与乙数的差为5,甲数为_____;乙数为_____。
6、三个连续偶数的和是360,中间的偶数为_____。
7、三个连续奇数的和为361,中间的奇数为_____。
8、甲班有a人,乙班的人数是甲班人数的2倍少b人,则乙班的人数为_________.9、某校共有学生1049人,女生占男生的40%,则男生的人数为__________。
例题1:禽养场养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场的鸡鸭各多少只?练习:足球的表面是由一些呈多边形的黑白皮块缝合而成的,共计有32块,已知黑色皮块数比白色皮块数的一半多2,问两种皮块各有多少?做题:10、11例题2:一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段长是第一段的2倍。
《一元一次方程》竞赛试题(可编辑修改word版)
1 / 81 1 ⎡ 1 1 ⎤ 《一元一次方程》竞赛试题1.已知 x =一 1 是关于 x 的方程 7x 3 一 3x 2+kx+5=0 的解,则 k 3+2k 2-11k-85=.(“信利杯”竞赛题)2. 方 程 1 (20x + 50) + 2 (5 + 2x ) - 1(4x + 10) = 0 的 解 为; 解 方 程6 3 2⎧ ⎫ ⎨ ⎢ ( x - 3) - 3⎥ - 3⎬ - 3 = 0 ,得 x= . A .正数 B .非正数 C .负数 D .非负数8.解关于 x 的方程:(1)ax-1=bx (2)4x+b=ax-8 (3)k(kx-1)=3(kx-1)9.A 为何值时,方程 x + a = x - 1(x - 12) 有无数个解?无解?2 ⎩ 2 ⎣ 2 2 ⎦ ⎭32 63. 已知关于 x 的方程 2a(x 一 1)=(5 一 a)x+3b 有无数多个解,那么 a =.(“希望杯”邀请赛试题)4. 和方程 x 一 3=3x+4 不同解的方程是().10. 已知方程 2(x+1)=3(x-1)的解 为 a+2, 那么方程 2[2(x+3)-3(x-a)]=3a 的解为.11.已知关于 x 的方程 9x-3=kx+14 有整数解,那么满足条件的所有整数 k =.112.已知 1 + 4( 1 + 1 ) = 1 3,那么代数式1872 + 48 ⋅ ( 1999x ) 的值为.A .79—4=59—11B . + 2 = 0x + 34 1999 x 4 1999 + xC .(a 2+1)(x 一 3)=(3x+4)(a 2+1)D .(7x 一 4)(x —1)=(5x 一 11)(x 一 1) 5.已知 a 是任意有理数,在下面各题中(1)方程 ax=0 的解是 x=113. 若(3a+2b)x 2+ax+b=0 是关于 x 的一元一次方程,且有唯一解,则 x = .14. 有 4 个关于 x 方程(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1)(3)x=0 (4) x - 2 + 1 = -1 + 1(2) 方程 ax =a 的解是 x =1 其中同解的两个方程是()x - 1 x - 1(3) 方程 ax=1 的解是 x = 1 A .(1)与(2) B .(1)与(3) C .(1)与(4) D .(2)与(4)ax x x(4) 方程 a x = a 的解是 x =±1结论正确的个数是( ).A.0B .1C . 2D .3 (江苏省竞赛题)15.方程1⨯ 2 + 2 ⨯ 3 + + 1995 ⨯1996 = 1995 的解是( )A .1995B .(1996C .1997D . 199816.已知a + 2 = b - 2 = c= 2001 ,且a + b + c = 2001k ,那么k 的值为( ).21 ⎡ 3 ⎤ 1A . 1B .4C . - 1D .-46.方程 x - 6 ⎢36 - 12(5 x + 1)⎥ = 3 x - 2 的解是()4 4A .1514⎣ B . - 1514⎦ C .45 14D . - 451417.若 k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的 k 值有A .4 个B .8 个C .12 个D .16 个7.已知关于x 的一次方程(3a+8b)x+7=0 无解,则ab=( ) .(“希望杯”邀请赛试题)2 / 818.若干本书分给小朋友,每人m 本,则余 14 本,每人 9 本,则最后一人只得 6 本,问小朋友共几个?有多少本书?19.下边横排有 12 个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x 的值.20.如果 a、b 为定值,关于 x 的方程= 2 +,无论 k 为何值,它的根总是 1,3 6求 a、b 的值.数与最大数.(河北省竞赛题)22.(第 12 届“希望杯”竞赛试题)若 k 为整数,则使得方程(k—1999)x=2001—2000x 的解也是整数的 k 值为( D )A.4 个B.8 个C.12 个D.16 个模拟试题一、选择题:1.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是()A、28B、33C、45D、571(m -y) = 2 y2.已知y=1 是方程 2-3 的解,则关于x的方程m(x+4)=m(2x+4)的解(ft东省竞赛题)21.将连续的自然数 1~1001 按如图的方式排列成一个长方形阵列,用一个正方形框出16 个数,要使这个正方形框出的 16 个数之和分别等于:(1)1988;(2)1991;(3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框 16 个数中的最小是()A、x=1 B、x=-1 C、x=0 D、方程无解3 某种商品的进价为1200 元,标价为1750 元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5 ﹪,则至多可打()A、6 折B、7 折C、8 折D、9 折4.下列说法中,正确的是()A、代数式是方程B、方程是代数式C、等式是方程D、方程是等式15.一个数的3 与 2 的差等于这个数的一半.这个数是()A、12B、–12C、18D、–183 / 86.母亲 26 岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的 3 倍. 此时母亲的年龄为()A、39 岁B、42 岁C、45 岁D、48 岁7.A、B 两地相距240 千米,火车按原来的速度行驶需要4小时到达目的地,火车提速后,速度比原来加快 30%,那么提速后只需要()即可到达目的地。
(完整word)4一元一次方程培优训练(有答案)
一元一次方程培优训练基础篇一、选择题1。
把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A 。
132177=--x x B.13217710=--x x C 。
1032017710=--x x D.132017710=--x x2。
与方程x+2=3—2x 同解的方程是( )A.2x+3=11B.-3x+2=1C.132=-x D 。
231132-=+x x 3。
甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6。
5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是( )A 。
7x=6。
5x+5 B.7x+5=6.5x C 。
(7-6.5)x=5 D 。
6。
5x=7x-5 4。
适合81272=-++a a 的整数a 的值的个数是( )A 。
5B 。
4C 。
3D 。
25。
电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A 。
0。
81a 元 B 。
1.21a 元 C 。
21.1a 元 D 。
81.0a 元6。
一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题。
A.17 B 。
18 C.19 D.207.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间约是( ) A。
1.6秒B.4.32秒C.5.76秒D。
345.6秒8.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合作这项工程需天数为( ) A.y x +1 B 。
y x 11+ C 。
xy1 D. yx 111+9、若2x =-是关于x 的方程233x x a +=-的解,则代数式21a a-的值是( ) A 、0 B 、283- C 、29- D 、2910、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为( )A 、142857B 、157428C 、124875D 、175248 二、填空题11.当=a 时,关于x 的方程01214=+-a x 是一元一次方程。
(完整word版)一元一次方程的定义常考题详细的答案解析
6.3一元一次方程的定义一、选择题(共5小题)1、下列方程中,是一元一次方程的是()A、x2﹣4x=3B、x=0C、x+2y=1D、x﹣1=2、下列方程中是一元一次方程的是()A、B、+4=3xC、y2+3y=0D、9x﹣y=23、下列各方程中,是一元一次方程的是()A、3x+2y=5B、y2﹣6y+5=0C、x﹣3=D、3x﹣2=4x﹣74、下列方程中,属于一元一次方程的是()A、x﹣3B、x2﹣1=0C、2x﹣3=0D、x﹣y=35、下列方程中,是一元一次方程的是()A、﹣1=2B、x2﹣1=0C、2x﹣y=3D、x﹣3=二、填空题(共9小题)6、在下列方程中:①x+2y=3,②,③,④,是一元一次方程的有_________(只填序号).7、若方程3x2m﹣1+1=6是关于x的一元一次方程,则m的值是_________.8、已知等式5x m+2+3=0是关于x的一元一次方程,则m=_________.9、已知方程(m﹣2)x|m|﹣1+3=m﹣5是关于x的一元一次方程,则m=_________.10、关于x的方程(a+2)x|a|﹣1﹣2=1是一元一次方程,则a=_________.11、若方程3x4n﹣3+5=0是一元一次方程,则n=_________.12、已知2x m﹣1+4=0是一元一次方程,则m=_________.13、若4x m﹣1﹣2=0是一元一次方程,则m=_________.14、若2x3﹣2k+2k=41是关于x的一元一次方程,则x=_________.答案与评分标准一、选择题(共5小题)1、下列方程中,是一元一次方程的是()A、x2﹣4x=3B、x=0C、x+2y=1D、x﹣1=考点:一元一次方程的定义。
分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解答:解:A、未知数的最高次数是2次,不是一元一次方程;B、符合一元一次方程的定义;C、是二元一次方程;D、分母中含有未知数,是分式方程.故选B.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的最高次数是1,一次项系数不是0,这是这类题目考查的重点.2、下列方程中是一元一次方程的是()A、B、+4=3xC、y2+3y=0D、9x﹣y=2考点:一元一次方程的定义。
(完整word版)一元一次方程应用题专题
一元一次方程应用题专题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2。
和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3。
等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题×100%利息=本金×利率×期数利率=每个期数内的利息本金经典例题基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数.②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?(3)某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?2.(1)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?(2)、一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天?3.(1)兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?(2)、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的1/3 ,求小强叔叔今年的年龄。
一元一次方程单元复习练习(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。
一元一次方程(知识点完整版)
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。
即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。
即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
初中数学一元一次方程练习题60道Word版含解析
(2)若关于x的一元一次方程6+x=3(m﹣3)是“商解方程”,求m的值.
4.已知关于 的一元一次方程 的解为 ,那么关于 的一元一次方程 的解 =______.
5.(1)
(2)
6.如果方程 的解与方程 的解相同,求式子 的值.
7.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.
(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;
(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;
(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.
35.如图,数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.
16.一项工程,甲单独做需20天完成,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?
17.一艘轮船从甲码头到乙码头顺流而行,用了 ,从乙码头返回甲码头逆流而行,用了 .已知水流的速度是 ,求船在静水中的平均速度.
18.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.
10.新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.
一元一次方程单元测试与练习(word解析版)
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
初二数学一元一次方程练习题(含答案)
书山有路勤为径;学海无涯苦作舟
初二数学一元一次方程练习题(含答案)
学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,精品小编精心为大家整理了这篇初二数学一元一次方程练习题(含答案),供大家参考。
一、选择题(每小题3 分,共30 分)
1.下列方程中,属于一元一次方程的是()
A. B. C D.
2.已知ax=ay,下列等式中成立的是()
A.x=y
B.ax+1=ay-1
C.ax=-ay
D.3-ax=3-ay
3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()
A.40%
B.20%C25%D.15%
4.一列长a 米的队伍以每分钟60 米的速度向前行进,队尾一名同学用1 分钟从队尾走到队头,这位同学走的路程是()
A.a 米
B.(a+60)米
C.60a 米
D.(60+2a)米
5.解方程时,把分母化为整数,得()。
A、B、C、D、
6.把一捆书分给一个课外小组的每位同学,如果每人5 本,那幺剩4 本书,如果每人6 本,那幺刚好最后一人无书可领,这捆书的本数是()
A.10
B.52
C.54
D.56
7.一条山路,某人从山下往山顶走3 小时还有1 千米才到山顶,若从山顶走到山下只用150 分钟,已知下山速度是上山速度的1.5 倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为()
A.x-1=5(1.5x)
B.3x+1=50(1.5x)
C.3x-1=(1.5x)
D.180x+1=150(1.5x)
今天的努力是为了明天的幸福。
(完整word版)一元一次方程应用题专项训练
(完整word版)⼀元⼀次⽅程应⽤题专项训练⼀元⼀次⽅程应⽤题专项训练4.2018元旦,王东和吴童相约⼀起去登⾹⼭.王东⽐吴童早18分钟到⾹⼭⼭脚,并以每分钟登⾼8⽶的速度直接开始登⼭;吴童到达⾹⼭⼭脚后没有休息,也直接以每分钟登⾼12⽶的速度开始登⼭,最后两⼈同时到达⼭顶.你能据此计算出⾹⼭⼭⾼多少⽶吗?5.列⼀元⼀次⽅程解应⽤题:社会是⼀个重要的学校和课堂,⽣活是⼀种重要的课程和教材,实践是⼀种重要的学习⽅式和途径.参加社会⽣活和社会实践,不仅可以学到很多在课堂上学不到的东西,也可以把课堂上学到的理论知识同社会实践联系起来,加深对课堂学习内容的理解,我区某校七年级学⽣在农场进⾏社会实践活动时,采摘了黄⽠和茄⼦共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄⽠和茄⼦各多少千克?(2)这些采摘的黄⽠和茄⼦可赚多少元?6.列⽅程解应⽤题:多少张?7.某市⾃来⽔公司为限制单位⽤⽔,每⽉只给某单位计划内⽤⽔300吨,计划内⽤⽔每吨收费3.4元,超过计划的部分每吨按4.6元收费.(1)当该单位每⽉⽤⽔250吨时,需付款元;当该单位每⽉⽤⽔350吨时,需付款元;(2)若某单位4⽉份缴纳⽔费1480元,则该单位⽤⽔多少吨?(3)若某单位5、6⽉份共⽤⽔700吨(6⽉份⽤⽔量超过5⽉份),共交⽔费2560元,则该单位5⽉份⽤⽔吨.8.随着经济的发展,能源与环境已成为⼈们⽇益关注的问题.据统计,全球每年⼤约会产⽣近3亿吨的塑料垃圾(例如平时⽤的矿泉⽔瓶⼦等)和约5亿吨的废钢铁(例如平时扔掉的易拉罐等),某中学为了培养学⽣的环保意识,开展了“环境保护,从我做起”的主题活动,七(2)班同学在活动中积极响应,在甲⼩区设⽴了回收塑料瓶和易拉罐的两个垃圾桶,班长⼩明对2个周的收集情况进⾏了统计,根据下列个周共收集了⽄塑料瓶,收集了⽄易拉罐.(2)班委会决定给贫困⼭区的孩⼦们捐赠⼀套价值43.8元的励志丛书,你认为按照这样的收集速度,需要收集⼏个周才能实现这个愿望?写出计算过程来⽀持你的答案.(3)七(1)班在⼄⼩区也设⽴了塑料瓶和易拉罐的回收点,两周收集塑料瓶和易拉罐共计440个,按相同价格出售后,所得⾦额⽐七(2)班两个周的废品回收⾦额多1.8元,求七(1)班同学两周收集的塑料瓶和易拉罐各多少个?9.商场将⼀批学⽣书包按成本价提⾼50%后标价,⼜按标价的80%优惠卖出,每个的售价是72元.每个这种书包的成本价是多少元?利润是多少元?利润率是多少?10.某学校组织安全知识竞赛,共设20道分值相同的选择题,每题必答,下表中记录了5位参赛选⼿的题,得分.(3)⽤⽅程知识解答:若某位选⼿F得64分,则他答对了⼏道题?(4)参赛选⼿G说他得78分,你认为可能吗?为什么?11.政府准备修建⼀条公路,若由甲⼯程队单独修需3个⽉完成,每⽉耗资12万元;若由⼄⼯程队单独修建需6个⽉完成,每⽉耗资5万元.若由甲⼯程队先做⼀段时间,剩下的由⼄⼯程队单独完成,⼀共⽤了4个⽉完成修建任务,这样安排共耗资多少万元?(时间按整⽉计算)12.根据图中情景,解答下列问题:(1)购买8根跳绳需元;购买11根跳绳需元;(2)⼩红⽐⼩明多买2根,付款时⼩红反⽽⽐⼩明少7元,你认为有这种可能吗?请结合⽅程知识说明理由.13.甲组的4名⼯⼈3⽉份完成的总⼯作量⽐此⽉⼈均定额的4倍多20件,⼄组的5名⼯⼈3⽉份完成的总⼯作量⽐此⽉⼈均定额的6倍少20件.(1)如果两组⼯⼈实际完成的此⽉⼈均⼯作量相等,那么此⽉⼈均定额是多少件?(2)如果甲组⼯⼈实际完成的此⽉⼈均⼯作量⽐⼄组此⽉⼈均⼯作量多2件,那么此⽉⼈均定额是多少件?14.根据国家发改委实施“阶梯电价”的有关⽂件要求,三明市结合地⽅实际,决定对居民⽣活⽤电试⾏(1)表中,a= ,b= ;(2)试⾏“阶梯电价”收费以后,该市⼀户居民2017年8⽉份平均电价每度为0.9元,求该⽤户8⽉⽤电多少度?15.新年快到了,贫困⼭区的孩⼦李明想给在“希望⼯程”中帮扶过他的王亮写封信,折叠长⽅形信纸装⼊标准信封时发现;若将信纸如图①五等分折叠后,沿着信封⼝边线装⼊时,宽绰有5.24cm,若将信封如图②三等分折叠后,同样⽅法装⼊时,宽绰有 1.4cm,试求信封的⼝宽20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果⼩东家2017年7⽉份的⽤⽔量为20吨,则需交⽔费多少元?(2)如果⼩明家2017年7⽉份的⽤⽔量为m吨,⽔价要按两级计算,则⼩明家该⽉应交⽔费多少元?《⽤含m的代数式表⽰,并化简)(3)若林安家2017年7⽉份应缴⽔费87.5元,则该户⼈家7⽉份⽤⽔多少吨?17.A、B两地相距70千⽶,甲从A地出发,每⼩时⾏15千⽶,⼄从B地出发,每⼩时⾏20千⽶.(1)若两⼈同时出发,相向⽽⾏,则经过⼏⼩时两⼈相遇?(2)若甲在前,⼄在后,两⼈同时同向⽽⾏,则⼏⼩时后⼄超过甲10千⽶?(3)若两⼈同时出发,相向⽽⾏,则⼏⼩时后两⼈相距10千⽶?18.为满⾜同学们课外阅读的需求,某中学图书馆向出版社邮购科普系列图书,每本书单价为16元,书的价钱和邮费是通过邮局汇款,相关的书价折扣、邮费和汇款的汇费如下表所⽰(总费⽤=总书价+总邮费本,共需总费⽤为元.(2)已知学校图书馆需购图书的总数是10的整倍数,且超过10本.①若分次邮购,分别汇款,每次邮购10本,总费⽤为1064元时,共邮购了多本图书?②若你是学校图书馆负责⼈,从节约的⾓度出发,在“每次邮购10本“与“⼀次性邮购”这两种⽅式中选择⼀种,你会选择哪⼀种?计算并说明理由.19.列⽅程解应⽤题:如图,现有两条乡村公路AB、BC,AB长为1200⽶,BC长为1600⽶,⼀个⼈骑摩托车从A处以200⽶/分的速度匀速沿公路AB、BC向C处⾏驶;另⼀⼈骑⾃⾏车从B处以100⽶/分的速度从B向C⾏驶,并且两⼈同时出发.(1)求经过多少分钟摩托车追上⾃⾏车?(2)求两⼈均在⾏驶途中时,经过多少分钟两⼈在⾏进路线上相距150⽶?20.某⼯程交由甲、⼄两个⼯程队来完成,已知甲⼯程队单独完成需要60天,⼄⼯程队单独完成需要40天(1)若甲⼯程队先做30天后,剩余由⼄⼯程队来完成,还需要⽤时天(2)若甲⼯程队先做20天,⼄⼯程队再参加,两个⼯程队⼀起来完成剩余的⼯程,求共需多少天完成该⼯程任务?21.某校组织学⽣⾛上街头宜传雾霾的危害,他们要复印⼀部分宣传资料(不少于20页),校门⼝有两家复印店。
一元一次方程的应用(word版)
一元一次方程的应用知识要点:列方程解应用题是一元一次方程的主要应用,应用题是初中数学学习过程中的热门题型,其联系实际,反映现实中的数量关系,涉及的知识点较多,综合性较强,且具有一定的灵活性.列方程解应用题要求学生不仅能熟练地解方程,而且要善于从实际问题中抽象出数学关系,并用代数式和方程将其表达出来,列方程解应用题对学生的理解能力、分析能力以及计算能力都有较高的要求.用一元一次方程分析和解决实际问题的基本过程可概括为:(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系;(2)找:找出能够表示应用题全部含义的一个相等关系;(3)设:设未知数(一般求什么就设什么x);(4)列:根据这个相等关系列出需要的等式,从而列出方程;(5)解:解所列出的方程,求出未知数的值;(6)答:检验所求解是否符合题意,写出答案(包括单位名称).一、基础能力测试〖一〗填空1.仓库存放的大米运出15%后,还剩42500千克,这个仓库原来存放大米x千克,列方程为____________________2.若个位上的数是十位上的数的2倍,且把十位与个位上的数对调后,所得新两位数比原两位数大36,要求原两位数.设_____________________,列方程为___________________.3.甲、乙两车分别以每小时48km和每小时72km的速度从相距360km的A、B两地出发.1)若同时出发,相向而行,行了x小时两车相遇.列方程为______________________.2)若乙车先出发25分钟,相向而行甲车行了x小时两车相遇.列方程为__________________.3)若同时出发,相向而行,行了x小时后,两车相距60km,列方程为____________________.4)若同时出发,同向而行x小时,乙追上甲,列方程为_______________.4.一列火车匀速行驶,经过一条长300米的隧道要20秒时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.若设车长为x米,则列方程为________________.5.一些相同的房间需要粉刷墙面. 一天3名一级技工去粉刷8个房间,结果其中有50 m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40 m2墙面.每名一级技工比二级技工一天多粉刷10 m2墙面.设每个房间需要粉刷的墙面面积为xm2,则可方程为_______________.6.在5点到6点之间,若5点x分时,时针与分针重合,可列方程___________________,设5点x分时,时针与分针成直角,可列方程_______________.7.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是多少千克?设称得盐水的重量是x千克,可列方程__________________.8.某车间有工人68人,平均每人每天加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,要使每天生产的大小齿轮刚好配套,设生产大齿轮的工人有x人,则生产小齿轮的工人有_____人,根据题意可列方程___________________.9.某商品标价330元,以9折出售后获利10%,设该商品进价为x元,可列方程____________.若商品进价为900元,出售时打6折还盈利10%,设商品标价为x元,可列方程______________.进价900元商品按25%利润定价,实际售出时打多少折仍可盈利135元.设实际售出时打x折,可列方程_________.10.图书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折计算,超过200元的部分按八折优惠,某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省34元,求该学生第二次购书实际付款多少元.设该学生第二次购书的定价为x 元,可列方程_______________.11.如果足球由小黑白块的皮缝合而成,若黑块(正五边形)有12块,则白块 (正六边形)有_____块.12.“巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.” 该古寺中有多少个僧人,设该古寺中有x 个僧人,可列方程_____________.二、综合、提高、创新【例1】小明家准备装修一套新房,若甲、乙两个装饰公司,合作需6周完成,若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成;已知甲公司每周需工钱0.5万元,乙公司每周需工钱154万元,若只选一个公司单独完成,从节约的角度考虑,小明家是选甲公司,还是乙公司?请你说说理由【例2】某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A ,C 两地相距10千米,则A ,B 两地的距离为多少千米?【例3】某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元.甲商店说:“羽毛球及球拍都打9折”;乙商店说:“买一副球拍赠送2只羽毛球. 学校准备买2副羽毛球拍若干只羽毛球,问买多少只羽毛球时到两商店购买一样合算?【例4】甲、乙两班学生到集市上购买苹果,苹果的价格如表:甲班分两次共购买苹果70千克(第二次多于第一次),共付费189元;乙班一次购买苹果70千克.(1)乙班比甲班少付多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30千克30千克以上但不超过50千克50千克以上每千克价格3元 2.5元2元【例5】(1)依法纳税是每个公民应尽的义务,根据全国人大常委会2011年6月30日决议,将个税起征点提高到3500元,将超额累进税率中第1级由5%降低到3%,修改后的个税法将于2011年9月1日起施行.下面是修改后的最新的个人所得税税率表:个人所得税税率表一级数全月应纳税所得额税率(%)1 不超过1500元的部分 32 超过1500元至4500元的部分103 超过4500元至9000元的部分204 超过9000元至35000元的部分255 超过35000元至55000元的部分306 超过55000元至80000元的部分357 超过80000元的部分45(注:本表称全月应纳税所得额是指在依照《中华人民共和国个人所得税法》第六条的规定,以每月收入额减去三千五百元以后的余额.)①某场一名工人某年3月的收入额为4400元,问他应交税款多少元?②某公司一名职员某年4月应交税款1165元,问该月他的收入是多少元?③某公司一名职员某年10月应交税款5855元,问该月他税前的收入是多少元?(2)为了加强工人的节水意识,合理利用水资源,某市采用价格调控菁优网手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费________元;(2)若该户居民5月份交水费52元,则该户居民5月份共用水多少立方米?(3)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【例6】某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5 m3污水排出,为了净化环境,工厂设计两种方案对污水进行处理,并准备实施.方案一:工厂水先净化处理后再排出.每处理1 m3污水所用原料费为2元,并且每月排污设备损耗费为30000元.方案二:工厂污水排到污水厂统一处理,每处理1 m3污水需付14元的排污费.某月产品的总量为n件,请问:若你作为厂长在不污染环境又节约资金的前提下应选择哪种处理污水的方案?请通过计算加以说明.【例7】有甲、乙、丙三种商品,如果购甲3件、乙7件、丙1件共需315元钱,购甲4件、乙10件、丙1件共需420元.那么购甲、乙、丙三种商品各一件共需多少元?【例8】某中学租用两辆小汽车(设速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛,每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时(上、下车时间忽略不计).①小汽车送4人到达考场后,然后再回到出故障处接其他人.请你通过计算说明他们能否在截止进考场的时刻前到达考场?②如果你是带队老师,请你设计一个运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.三、反馈练习 (一)〖填空〗1.一个三位数它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.这个三位数的百位上的数字和个位上的数字对调,得到的三位数比原来的三位数大99,设原来的十位为x ,则可列方程为_________________________________. 2.一个六位数abcde 的4倍是abcde 9,求这个六位数.设abcde 为x ,则可列方程为____________. 3.一工程队修路,第一天修了全程的41,第二天比第一天多修了4%,两天共修了510米,这段路有x 米,则可列方程为___________________.4.上午九点钟的时候,时针与分针成直角,设下一次时针与分针成直角是9点x 分,则可列方程为______________________.5.某商店将某种DVD 按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,设每台DVD 的进价是x 元,则可列方程为________________________.6.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,设4月份这用户煤气用量为x 立方米,则可列方程为__________________.7.某织布厂现有职工100名,为获得更高的利润,与港商签订制衣合同,已知每人每天能织布20米,或利用所织的布制衣5件,制衣一件需布2米,将布直接销售,每米可获利2元,将布制成衣服后销售,每件衣服可获利20元,若每名工人一天只能做一项工作,且不计其它因素,设安排a 名工人制衣,回答下列问题:(1)一天中制衣所获得的利润A =________________元(用含a 的代数式表示); (2)一天中剩余布所获得的利润B =______________元(用含a 的代数式表示); (3)要使一天所获得总利润为6640元,则可列方程为_______________________.8.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的23倍,问经过多少时间后两人首次相遇.设经过x 分钟,两人首次相遇,可列方程___________________________.(二)〖解答〗 1.解方程:(1)312-x -6110+x =412+x ; (2)5.05.14-x -2.08.05-x =1.02.1x-.2.有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?3.世贸广场某品牌西装每套定价400元,领带每条定价80元.“十一”黄金周期间,商场促销提供两种优惠方案:(1)买一套西装送一条领带;(2)西装和领带均按九折付款.某高校一次性购买西装20套,领带多少条时,两种优惠方案所付钱相等.4.某校七年级(1)(2)两班共102人,组织参加科普展览,已知(1)班人数比(2)班人数多,每班单独购票比合在一起购票要多花150元,科普展览票价如表,求两班人数各是多少?人数(n ) n <50 50≤n <100n ≥100 票价10985.武汉市居民用电电费目前实行梯度价格表(为计算方便,数据进行了处理)月用电(单位:千瓦时,统计为整数)单价(单位:元)180及以内0.5超过180但不超过400的部分0.6400以上的部分0.8(1)若用电150千瓦时,应交电费_________元,若用电250千瓦时,应交电费_________元,(2)若居民王成家12月应交电费150元,请计算他们家12月的用电量.(3)若居民王成家12月份交纳的电费,经过计算,平均每千瓦时0.55元,请计算他们家12月的用电量.6.青春商场经销甲、乙两种商品,甲种商品每件进价20元,售价26元;乙种商品每件售价45元,利润率为50%.(1)若该商场同时购进甲、乙两种商品共100件,总进价恰好用去2600元,求能购进甲种商品各多少件?(2)若该商场准备用4220元钱购进甲、乙两种商品,为使销售后的利润最大,请你给出进货方案;(3)在“元旦”期间,该商场对甲、乙两种商品进行如下的优惠促销活动.打折前一次性购物总金额优惠措施不超过300元不优惠超过300元,但不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小矾第一天只购买甲种商品,付款260元,第二天只购买乙种商品实际付款324元,求小矾这两天在商场购买甲、乙两种商品一共多少件?7.某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?8.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,问切下的一块重量是多少千克?竞赛选练1.若四个不同的整数a 、b 、c 、d 满足()()()()255555=----d c b a,则a+b+c+d=( ) A 、15 B 、20 C 、25 D 、28 2.a 与b 互为相反数,且54=-b a ,那么=+++-12ab a bab a ____________.3.若n 为正整数且()099912=-+++-d c b a ,则()()()nn b a d c b a d 2122-----的值为( )A 、-1000B 、1000C 、-999D 、9994.计算:9019727185617424163015201941213652211+-+-+-+-。
(完整word版)一元一次方程习题精选附答案
6.2.4解一元一次方程(三)一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣115.(A 类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=32.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式3x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x ﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.。
初二数学一元一次方程试题答案及解析
初二数学一元一次方程试题答案及解析1.我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米.【答案】12.【解析】某居民缴了17元水费,可知他用水超过了7立方米,要按两种收费方法进行计算.就要先设出未知数,然后根据题中的等量关系列方程求解.即两种收费和=17.试题解析:设这户居民5月的用水量为x立方米.列方程为:7×1+(x-7)×2=17解得x=12.【考点】一元一次方程的应用.2.小强欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1000牛顿和0.5米,则当动力臂为1米时,撬动石头至少需要的力为牛顿.【答案】500【解析】根据杠杆平衡条件F1L1=F2L2、代入有关数据即可.解:由杠杆平衡条件可知:F1L1=F2L2,即:F1×1m=100N×0.5m,F1=500N答案为:500.点评:本题考查学生对杠杆平衡条件的理解和灵活运用,属于基础题目.3.如图,规定程序运行到“结果是否大于33”为一次运算,且运算进行3次才停止,则可输入的实数x的取值范围为.【答案】【解析】根据图示列出每一次运算的算式:第一次:2x-1,第二次:2(2x-1)-1=4x-3,第三次:2(4x-3)-1=8x-7,再题意可得:第一次和第二次的算式都小于等于33,只有第三次的算式>33,列出不等式组,求出解集即可.根据题意得:第一次:2x-1,第二次:2(2x-1)-1=4x-3,第三次:2(4x-3)-1=8x-7,解得.【考点】解一元一次不等式组点评:理解图表所表示的运算法则,读懂程序列表达式,将程序转化为算式是解题的关键.4.方程x+2=3的解也是方程ax-3=5的解时,a=【答案】8【解析】由题意可知,x+2=3的解是x=1,所以代入方程ax-3=5可得,a=8【考点】方程的解点评:本题属于对方程解得基本知识的理解和运用以及解方程的基本运算5.已知点A(2a+5,-4)在二、四象限的角平分线上,则a= .【答案】【解析】根据二、四象限的角平分线上点的坐标的特征即可得到关于a的方程,再解出即可.由题意得,解得【考点】点的坐标,解一元一次方程点评:解题的关键是熟记一、三象限的角平分线上点的横坐标、纵坐标相同;二、四象限的角平分线上点的横坐标、纵坐标互为相反数.6.若3x-4y = 0,则,= .【答案】,【解析】由已知得:,即,7.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是(▲)A.B.C.D.【答案】A【解析】每小时15km,可早到10分钟,则“标准时间”为,每小时骑12km就会迟到5分钟,则“标准时间”为,标准时间相等,可列方程。
(完整word版)一元一次不等式习题课
(完整word版)一元一次不等式习题课一元一次不等式习题课【学习目标】1.会整理易错点,并能找到错误原因2.能灵活应用不等式的性质解决相关问题,会熟练准确地解一元一次不等式【错误展示】1.去括号时,错用乘法分配律解不等式3x+2(2-4x)<19.错解:去括号,得3x+4-4x<19,解得x>-15.诊断: 诊断: 错解在去括号时,括号前面的数 2 没有乘以括号内的每一项.正解: 正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3. 2.去括号时,2.去括号时,忽视括号前的负号解不等式5x-3(2x-1)>-6.错解:去括号,得5x-6x-3>-6,解得x<3.诊断:诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.3.移项时,不改变符号解不等式4x-5<2x-9.错解:移项,得4x+2x<-9-5,即6x<-14,所以x<-7/3诊断: 诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.4.去分母时,忽视分数线的括号作用解不等式3x-(2x-5)/2>7错解:去分母,得6x-2x-5>15 ,解得:x>19/4诊断:去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,x>9/45.不等式两边同除以负数,不改变方向解不等式3x-6<1+7x. 错解:移项,得3x-7x<1+6,即-4x <7,所以x<-7/4诊断:将不等式-4x<7 的系数化为1 时,不等式两边同除以-4 后,根据不等式的诊断基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以所以x>-7/46.去分母时,漏乘不含分母的项解不等式x-(x-1)/3>x/2+1 错解:去分母,得x-2(x-1)>3x+1,去括号,解得x<1/4诊断:去分母时,要用最简公分母去乘不等式两边的每一项.而错解只乘了含有分母的项,漏乘了不含有分母的项.正解: 去分母,得6x-2(x-1)>3x+6,去括号,得6x-2x+2>3x+6,解得x>4.7.忽视对有关概念的理解求不等式(3x+4)/2-3≤7的非负整数解错解:整理,得3x≤16,的非负整数解. 所以x≤16/3 故其非负整数的解是1,2,3,4正解:非负整数的解是0,1,2,3,4,58.在数轴上表示解集时出现错误解不等式:3(1-x)≥2(x+9),并把它的解集在数轴上表示出来.错解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图1 所示.诊断:本题求得的解集并没错,问题出在将解集在数轴上表示出来时出现了错误,即有两处错误:一是方向表示错误,不应该向右,而应该向左;二是不应用空心圆圈表示,而应用实心圆圈表示.正解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图2 所示.上述三例告诉我们解一元一次不等式时一定要认真分析题目的结构特征,灵活运用注:解一元一次不等式的步骤,正确理解有关概念,才能及时避开陷阱,准确、快速的求解. 【典型例题】例1.不等式基本性质的应用(比较大小)已知:a<b< p="">(1)a+1<b-c;<="" p="">(3)2a<2b: (4)-a/2 >-a/b;(5)3a-2<3b-2; (6)-a+c>-b+c例题2.求不等式2x-3≤5的正整数解例3.已知方程3x+y=2,当y取何值时,x<5?例4.解不等式:(x-2)/2 –(x-1)/3<1【巩固练习】一、不等式的解集1.不等式-3≤x<2的整数解是二、不等式的性质1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3,(2)2a ----- 2b,( 3 )- a /3 ----- -b /3 (4)4a-3---- 4b-3 (5)a-b --- 02、不等式ax>a 的解集为x>1,则a 的取值范围是()A. a>0B.a≥0C.a<0D.a≤03、不等式( a -3) x > 1 的解集是x < 3/a-1,则a的取值范围是4、若a > b ,则ac2 ____ bc2.(本组题独立完成后小组内正)三、解不等式,并把解集在数轴上表示出来(1)-3x/4<-2 (2)3x-1<5x+5(3)(2x-1)/3≤(1+x)/2 (4)(x-3)/4<6-(3-4x)/2(5) 2(x-1)/3≤(x+1/3)/5(由5 名同学板演,然后集体订正)四、列不等式并求出x的范围1、x 的1 与5 的差不小于32、代数式3x-5 的值大于5x+33、代数式(x+3)/2 –(x-1)/5<1的解是非负数(独立完成后,小组派代表讲解订正)五、不等式的综合应用1、求不等式x+1 < 3 的正整数解2、若不等式2x3、关于x 的方程3 x +k= 2 的解是非负数,求k 的取值范围4.3x+y= m+1,2x+y=m-1当m 为何值时,x>y?5.已知关于x,y的方程组x+2y=1,x-2y=m(1)求这个方程组的解;(2)当m取何值时,这个方程组的解x大于1,y不小于-1</b<>。
(完整word版)一元一次方程增长率、利润率、储蓄问题
教师姓名:学生姓名:年级:上课时间:2012— - : - :学科:数学【增长率问题】(1)某学校去年招收新生a名,今年招生人数比去年增长了20%今年招生名。
(2)某种品牌的电脑去年售价为b元,今年售价比去年下降10%,今年售价元。
(3)某钢厂设计今年的锅产量比去年增加15%,达到230万吨,去年的锅产量是多少?若设去年的锅产为x万吨,则可列方程为。
知识点:增长量增长率= 基础数量增长量=基础数量⨯增长率现有数量=基础数量+增长量=基础数量+基础数量⨯增长率=基础数量⨯(1+增长率)例1、一种药品现在的售价是56。
1元,比原来降低了15%,问原来售价是多少元?例2、某商场甲、乙两个柜组十月份的营业额共64万元,十一月的营业额比十月份甲组增长了20%,乙组增长了15%,十一月份甲、乙两柜组的营业额共75万元,求甲、乙两组的营业额比十月份的营业额各增长了多少?解:设12月甲是x万元,乙64-x万元(1+20%)x+(1+15%)(64—x)=75 x=2864—x=3620%x=5。
6 15%*36=5.4 所以甲增长5.6万元,乙增长5。
4万元【利润率问题】(1)某种商品原价每件b元,第一次降价是打“八折”,第一次降价后每件元。
第二次降价每件又减10元,第二次降价后每件元。
(2)某种品牌的彩电降价3%以后,每台降价为a元,则该品牌彩电每台原价应为元。
(3)某商品按定价的八折出售,售价是14.8元,则原定价是 .(4)某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为。
知识点:商品的利润=商品售价-商品进价(成本)商品的利润率=商品利润 成本×100%商品售价=商品的标价×打折率例3、商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,此商品进价为1600元,商品的原价是多少?分析:设商品的原价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.解答:解:设商品的原价是x元,则售价为0。
(word完整版)第五章一元一次方程题型总结[1],推荐文档
第五章 一元一次方程考点课标要求知识与技能目标了解 理解 掌握 灵活应用 一元一次方程 了解方程、一元一次方程以及方程有解的概念 ∨ 会解一元一次方程,并能灵活应用∨ ∨ ∨ 会列一元一次方程解应用题,并能根据问题的实际意义检验所得结果是否合理。
∨∨∨第一节 你今年几岁了一、 知识总结知识点一:1、含有______________的等式是方程,使方程的等式两边的相等的值教方程的解,方程中含有____个未知数,未知数的_________________的方程称为一元一次方程(注意:方程一定是等式,等式不一定是方程)知识点二:等式的性质 1 等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2 等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.二、 题型归纳题型一:判定是不是方程1下列各式中:① 3+3=6 ② 123>+x ③ 39-x =7 ④ 122=-z z ⑤ 0=m (6) 239=-π (7)236=-πx有______条是方程,其中__________(填写编号)是一元一次方程。
2、下列式子谁有资格进入住方程乐园?2973=+x ,62-=x x ,y x 21-,071<-x ,422=-y x ,224-=+-3、判断是不是一元一次方程?2(x +100)=600 , (x +200)+ x +(x -448)=30064 4x +(x +4)=8, x +5=8 , x -2y =6 , 32x -2y =120题型二:判定是不是一元一次方程1、如果单项式121-2n a b +与213n m a b -是同类项,则n=___,m=____ 2 如果代数式3x-5与1-2x 的值互为相反数,那么x=____ 3 若方程3x-5=4x+1与3m-5=4(m+x)-2m 的解相同,求()200820m +的值4.关于x 的方程230m mx m ++-=是一个一元一次方程,则m =_______.5.关于x 的方程()112436x x m +=-+的解是116-,则()20021m -=_______. 6.关于x 的方程39x =与4x k +=解相同,则代数式212kk -的值为_______. 7.若关于x 的方程()23202k x kx -+-=k 是一元一次方程,则k =_______,方程的解为_______.8.当x =_______时,代数式12x -与113x +-的值相等. 9 若关于x 的一元一次方程231,32x k x k---=的解是x= -1,则k 的值是( )A 27B 1C 1311- D 011.已知方程112332x x x ---=+-与方程2224334kx xk +--=-的解相同,则k 的值为( ) A.0B.2C.1D.1-11.已知方程233mx x -=+的解满足10x -=,则m 的值是( ) A.6-B.12-C.6-或12-D.任何数12.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A.12B.6C.6-D.12-13.(8分)解关于x 的方程()0b x x aa b a b+-=≠≠. 14.(10分)已知2ym my m +=-. (1)当4m =时,求y 的值; (2)当4y =时,求m 的值.15 已知x=- 2是方程22328x mx m -+=的解,求m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学含有字母系数的一元一次方程练习
【同步达纲练习】
一、判断题 (4 分× 5=20 分)
1.关于 x 的方程 mx+n=nx+m 的解为任意数()
2.关于 x 的方程 ax=a 的解为 x=1()
3.关于 x 的方程 a2x=b 2-x 的解为 x=
b 2
) 2
(
a 1
4.关于 x 的方程ax
b
ax
无解 ( ) 2 2
5.关于 x 的方程 ax=0(a ≠ 0)的解为 x=0.( )
二、填空题 (5 分× 3=15 分)
6.已知 v=v 0+at(v,v 0 ,a 均不为零 ),则 t= .
7.已知 ad=bc(a,b,c,d 均不为零 ),则 b= .
8.关于 x 的方程 4(x-a)=x+b 的解为.
三、解关于x 的方程 (7 分× 5=35 分 )
9.(m+1)(x-1)=(m-1)(x+1)
1 m
10.x+m(m+x)=+mx
2
x b x a
11. 2
3 2
12.(n-1)x=n(n+x)
13.(a+x)b-a=(b+1)x+ab
14.5(x-a)=3(x+b)
四、解答题 (10 分× 2=20 分 )
15.求出公式v2=2aS(a≠ 1)中的 S.
16.求出公式a n=a1+(n-1)d(d ≠ 0)中的 n.
【素质优化训练】
17.已知关于x 的方程x =ax+1有一个负根而没有正根,求 a 的取值范围 .(10 分 )
【生活实际运用】
1.某人在马路上行车,环行公共汽车每隔 a 分钟就有一辆与此人迎面相遇,每隔 b 分钟就有一辆从背后越过此人.问汽车站每隔几分钟发车一趟(人与汽车均做匀速运动)?
2.有一辆车,其前轮周长为5 5
米,后轮周长为 6
1
米,则前进多少米才能使前轮回转
12 3
次数比后轮次数多99 次?
参考答案:
【同步达纲练习】
一、 1.× 2.× 3.√ 4.× 5.√
二、6.vv
0 7. ad 8. 4a b
a c 3
三9.x=m 10.x=- 2m2 m 1 3a 2b 12
2 13.x=-a
2
11.x= 12.x=-n
5
5a 3b
14.x=
2
v2 a n a1 d
四、 15.S= 16.n=
2a d
【素质优化训练】
17.a> 1
【生活实际运用】
1. 2ab
[ 设汽车站每隔t 分钟发车一趟,依题意有
a
(b-t)=t-a ,解得t=
2ab
] 2.3705 a b b a b
米。