专题 受力分析之弹簧问题
高考弹簧问题专题详解
高考弹簧问题专题详解高考动向弹簧问题可以较好的培养学生的分析解决问题的才能和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长〔或压缩〕跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
〔1〕定义:在弹性限度内,弹簧产生的弹力F〔也可认为大小等于弹簧受到的外力〕和弹簧的形变量〔伸长量或者压缩量〕x的比值,也就是胡克定律中的比例系数k。
〔2〕劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之那么越大。
如两根完全一样的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;假设两根完全一样的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个局部受到的力大小是一样的。
有关弹簧问题的分析与计算
跟踪练习: 1.如图所示,在一粗糙水平面上有两个质量分别为 m1 和 m2 的木块 1 和 2,中间用一原长为 L、劲度系数为 K 的轻弹 簧连结起来,木块与地面间的动摩擦因数为 μ。现用一水平力向右拉木块 2,当两木块一起匀速运动时,两木块之间的距离 是:( )
A.
B.
C.
D.
2.如图所示,质量分别为 mA 和 mB 的 A 和 B 两球用轻弹簧连接,A 球用细绳悬挂起来,两球均处于静止状态,如果 将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加速度各是多少?
C.aA=g, aB=-g D.aA=-g,aB=
图 3-2-5
10.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小球,电梯中有质量为 50kg 的乘客如图 3-2-3 所示,在电 梯运行时乘客发现轻质弹簧的伸长量是电梯静止时的一半,这一现象表明 ( ) A.电梯此时可能正以 1m/s2 的加速度大小加速上升,也可能是以 1m/s2 加速大小减速上升 B. 的加速度大小加速下降 C.电梯此时可能正以 5m/s2 的加速度大小加速上升,也可能是以 5m/s2 大小的加速度大小减速下降 D.不论电梯此时是上升还是下降,加速还是减速,乘客对电梯地板的压力大小一定是 250N
〖例 8〗如图所示,原长分别为 L1=0.1m 和 L2=0.2m、劲度系数分别为 k1=100N/m 和 k2=200N/m 的轻质弹簧竖直悬挂 在天花板上。两弹簧之间有一质量为 m1=0.2kg 的物体,最下端挂着质量为 m2=0.1kg 的另一物体,整个装置处于静止状态。 g=10N/kg。问:若用一个质量为 M 的平板把下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两弹簧的原长之 和,求这时平板施加给下面物体 m2 的支持力多大?
高中物理经典问题---弹簧类问题全面总结解读
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
弹簧弹力受力分析高中
弹簧弹力受力分析(高中)弹簧与其相连接的物体构成的系统的运动状态具有隐蔽性,弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律也较多,分析时该如何切入呢?一、从几个长度关系切入弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
在弹簧的长度发生变化的时候,要搞清弹簧的原长、弹簧的长度、弹簧的形变、弹簧的形变变化、物体的位移等几个量的关系。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
二、从弹簧的伸缩性质切入弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的起点。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即只有正确分析出弹簧处于伸长状态,因而判断出弹力的方向成了解决问题的起点。
三、从弹簧隐藏的隐含条件切入很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。
有关弹簧问题的专题复习
有关弹簧问题的专题复习纵观历年高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及到静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题,几乎贯穿于整个力学知识体系,为了帮助同学们掌握这类试题的分析方法,同时也想借助于弹簧问题,将整个力学知识有机地结合起来,让同学们对整个力学知识体系有完整的认识,特将有关弹簧问题分类研究如下.一、弹簧中的静力学问题在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防以偏概全.【例1】(2002年广东省高考题)如图所示,a、b、c为三个物块,M、N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状态【解析】研究a、N、c系统由于处于平衡状态,N可能处于拉伸状态,而M可能处于不伸不缩状态或压缩状态;研究a、M、b系统由于处于平衡状态,M可能处于压缩状态(或处于不伸不缩状态),而N可能处于不伸不缩状态或拉伸状态.综合分析,本题只有A、D正确.【例2】.如图所示,重力为G的质点M与三根相同的轻质弹簧相连,静止时,相邻两弹簧间的夹角均为120 ,已知弹簧A、B对质点的作用力均为2G,则弹簧C对质点的作用力大小可能为()A.2GB.GC.0D.3G【解析】弹簧A、B对M的作用力有两种情况:一是拉伸时对M的拉力,二是压缩时对M的弹力.若A、B两弹簧都被拉伸,两弹簧拉力与质点M重力的合力方向一定竖直向下,大小为3G,此时弹簧C必被拉伸,对M有竖直向上的大小为3G的拉力,才能使M 处于平衡状态.若A、B两弹簧都被压缩,同理可知弹簧C对M有竖直向下的大小为G的弹力.A、B两弹簧不可能一个被拉伸,一个被压缩,否则在题设条件下M不可能平衡.故本题选B、D.【例3】(1999年全国高考题)如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为()A.11k g mB.12k g mC.21k g mD.22k g m 【解析】原来系统处于平衡态则下面弹簧被压缩x 1则有:()g m m x k 2112+=;当上面的木块刚离开上面的弹簧时,上面的弹簧显然为原长,此时对下面的木块m 2则有:g m x k 222=,因此下面的木块移动的距离为2121k g m x x x =-=∆,故本题选C. 【注意】缓慢向上提,说明整个系统一直处于动态平衡过程.二弹簧中的动力学问题有关弹簧问题的动力学问题,同学们应注意以下几个问题:一是因弹簧的弹力是变力,物体在弹簧弹力(通常还要考虑物体的重力)作用下做变加速运动,掌握这类问题的动态情景分析是解答这类问题的关键.二是要注意弹簧是弹性体,形变的发生和恢复都需要一定的时间,即弹簧的弹力不能突变.三是要注意弹簧问题的多解性.1. 在弹簧弹力作用下瞬时加速度的求解【例4】一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,则( )A.烧断细绳瞬间,小球的加速度2sin θg a =B.烧断细绳瞬间,小球的加速度()212sin sin θθθ+=g a C.在C处弹簧与小球脱开瞬间,小球的加速度()211sin sin θθθ+=g a D.在C处弹簧与小球脱开瞬间,小球的加速度1sin θg a =【解析】在绳子烧断前,小球受力平衡,据拉密原理可知:()2121sin sin sin θθθθ+==mg F F A B ,故()211sin sin θθθ+=mg F B ,.()212sin sin θθθ+=mg F A 烧断细绳瞬间,A F 消失,而B F 尚未变化(弹簧形变需时间,认为这一瞬间不变),此时合力与A F 等大反向,加速度为()212sin sin θθθ+==g m F a A ;弹簧与球脱开时,B F 消失,A F 发生突变,此时重力与绳子拉力的合力为:1sin θmg F 合=.方向与AC 垂直,所以1sin θg a =.故本题选B 、D.【说明】解答这类题型的关键要注意细绳和轻弹簧两种模型的区别:细绳的张力可以发生突变,弹簧的弹力不能发生突变.;但当弹簧的一端不与有质量的物体连接时,轻弹簧的形变也不需要时间,弹力也可以发生突变(因轻弹簧的质量为零,其加速度为无穷大)【例5】如图所示,物块B 和C 分别连接在轻弹簧的两端,将其静置于吊篮A 的水平底板上,已知A 、B 、C 三者质量相等且为m.则将挂吊篮的轻绳烧断的瞬间,吊篮A 、物块B 和C 的瞬时加速度分别为( )A.g 、g 、gB.g 、g 、0C.1.5g 、1.5g 、0D.g 、2g 、0【解析】对物块C 在轻绳烧断的瞬间,其受力情况不变,故其瞬时加速度为零.而对于吊篮A 和物块B,由于它们是刚性接触,它们之间的相互作用力可发生突变,因此在轻绳烧断的瞬间A 和B 的加速度相等.研究A 、B 、C 系统,由牛顿定律可知:ma mg 23=g a a B A 5.1==∴ 因此本题的正确选项为C.【说明】注意两物体“刚性接触” 和“弹性接触” 的区别【例6】如图所示,竖直放置在水平面上的轻弹簧上叠放着两物块P 、Q,它们的质量均为2kg,均处于静止状态.若突然将一个大小为10N 、方向竖直向下的力施加在物块P 上,则此瞬间,P 对Q 压力的大小为(g 取10m/s 2)( )A.5NB.15NC.25ND.35N.【解析】在物块P 上突然施加一个竖直向下的力的瞬间P 和Q的加速度相等.研究P 、Q 系统,据ma F 2= 2/5.2s m a a Q P ==∴研究P 物块,据()N N ma N F mg 25=∴=-+.因此P 对Q 的压力大小为25N.故本题正确选项为C【练习】如图所示, 绳子OO 1 挂着匣子C,匣内又用绳子挂着A 球,A 的下方用轻弹簧挂着B 球,A 、B 、C 三个物体的质量都是m,原来都处于静止状态,当绳子OO 1 被烧断瞬间,试求三个物体的瞬时加速度.(a B =0;a A =a c =1.5g)2. 物体在弹簧弹力作用下的动态分析【例7】(2001年上海市高考试题)如图所示,一只升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中( )A ,升降机的速度不断减小B. 升降机的加速度不断变大C.先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功D.到最低点时,升降机加速度的值一定大于重力加速度的值.【解析】升降机从弹簧下端触地后直到最低点的运动过程可分为三个阶段:①mg>N (N 为弹簧的弹力),据m kx mg m N mg a -=-=可知,加速度a 随着形变量x 的增大而减小,故此阶段升降机做加速度减小的加速运动;②mg=N 时,速度达到v m ;③mg<N,据m mgkx m mgN a -=-=可知,加速度a 随着形变量x 的增大而增大,故此阶段升降机做加速度增大的减速运动,最低点时v=0,由以上分析知A 、B 错,由动能定理可知选项C正确.做出升降机全过程的速度图象如图所示,由图易知选项D 也正确.3. 物体在弹簧弹力作用下的运动分析【例8】如图所示,一劲度系数为k=800N/m 的轻弹簧两端各焊接着两个质量均为m=12kg的物体A 、B.物体A 、B 和轻弹簧竖立静止在水平面上,现要施加一竖直向上的力F 作用在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s,物体B 刚要离开地面,设整个过程弹簧均处于弹性限度内.求:⑴此过程中所加外力F 的最大值和最小值:⑵此过程中外力F 所做的功.【解析】⑴设物体A 刚要开始运动时弹簧的压缩量为x 1,尚未施加外力F 时,研究物体A,则有mg kx =1.当施加外力F(物体A 刚要做匀加速运动时,外力F 为最小,此时对物体A 有:ma mg kx F =-+11.(即ma F =1)设物体B 刚要离地时,弹簧的伸长量为x 2,此时所施加的外力F 2最大.此时研究物体B,则有mg kx =2(此时地面弹力恰为零).研究物体A,则有ma mg kx F =--22,22121at x x =+.代入数据可得:m x x 15.021== . N F 451=. N F 2852= .⑵.由于物体A 刚要开始运动时弹簧的压缩量x 1和物体B 刚要离地时弹簧的伸长量x 2相等,可知这两个状态弹簧的弹性势能相等,因此此过程中外力F 所做的功为:()()J at m x x mg W 5.4921221=++=. 【例9】一名宇航员抵达一个半径为r 的星球表面, 为了测定该星球的质量M,他做了如下实验: 取一根细线穿过光滑的细直管,细线的一端拴一个质量为m 的小球, 另一端连接在一固定的测力计上, 手握细直管转动小球, 使之在竖直平面内做完整的圆周运动,并观察测力计的读数发现:小球运动到圆周的最高点和最低点时测力计的示数差为ΔF.已知万有引力常量为G,试求出该星球的质量M【解析】 若设小球在圆周的最高点和最低点时, 绳的拉力大小分别为1F 和2F ,速度大小分别为1v 和2v .设圆运动半径为R则在最高点时有:Rv m mg F 211=+, ① 在最低点时有:Rv m mg F 222=-, ② 又:12F F F -=∆, ③小球从最低点到最高点的过程中机械能守恒, 由此可得:R mg mv mv 221212122•=- ④ 又据 2rMm G mg =,⑤ 由①②③④⑤可得:GmFr M 62∆=. 【例10】两个质量不计的弹簧将一金属块支在箱子的上顶板与下底板之间,箱子只能沿竖直方向运动,如图所示,两弹簧原长均为0.80m,劲度系数均为60N/m.当箱以a=2.0m/s 2的加速度匀减速上升时,上、下弹簧的长度分别为0.70m 和0.60m(g=10m/s 2).若上顶板压力是下底板压力的四分之一,试判断箱的运动情况.【解析】由题意可知上、下两弹簧均处于压缩状态.不仿令下、上弹簧的弹力分别为N 1 和N 2 则据胡克定律可得:N 1=60⨯(0.80-0.60)=12.0N,N 2=60)70.080.0(-⨯=6.0N.设向下为正方向,当金属块以2.0m/s 2 的加速度匀减速上升时,由牛顿第二定律得:ma N N mg =-+12.解之m=0.75kg.因弹簧总长度不变, 则).(30.160.070.021m l l l =+=+=上顶板压力为下底板压力的1/4时, 设上、下弹簧的压缩量分别为'2x 和'1x ,则'2'14x x =,由l x l =-'2052,.06.0'2m x =∴N kx N 6.3'2'2==.则'2'1'4N N ==14.4N.据''1'2ma N N mg =-+,得2'/4.4s m a -=. 因此箱子以大小为4.4m/s 2的加速度上升或减速下降.【例11】如图所示,质量为M 的木块放在水平面上,一轻弹簧下端固定在木块上,上端固定一个质量为m 的小球.小球上下振动时,木块始终没有跳起.问:⑴在木块对地面压力为零的瞬间,小球加速度多大?⑵在小球上下振动的全过程中,木块对地面的最大压力多大?【解析】⑴木块对地面压力为零的瞬间, 显然小球振动到最高点时, 此时小球的加速度向下.研究m 和M 系统,由牛顿第二定律可知()ma g m M =+ ()mg m M a +=∴① ⑵在小球上下振动的全过程中,当小球运动到最低点时,木块对地面的压力最大,此时对m 和M 系统有:()ma g m M N =+-.②据弹簧的对称性原理可知,小球在振动的最低点和最高点加速度大小相等.将①代入到②可得:()g m M N m +=2三、弹簧连接体问题【例12】如图所示,一轻弹簧连接两滑块A 和B,已知m A =0.99kg,m B =3kg,放在光滑水平面上,开始时弹簧处于原长.现滑块A 被水平飞来的质量为m C =10g 、速度为400m/s 的子弹击中,且没有穿出,试求:⑴子弹击中A 的瞬间A 和B 的速度;⑵以后运动过程中弹簧的最大弹性势能;⑶B 可获得的最大动能.【解析】⑴子弹击中滑块A 的瞬间,研究A 和C 系统,由动量守恒定律可得:()A A C o C v m m v m += s m v A /4=∴(此时由于弹簧尚未发生形变,故物块B 并未参与A 、C 间的相互作用).⑵子弹击中滑块A 后,在弹性力的作用下做加速度增大的变减速运动,与此同时,滑块B 做加速度增大的变加速运动,当它们的速度相等时,弹簧的弹性势能最大,根据动量守恒定律和能量守恒定律可得: ()()v m m m v m m B C A A C A ++=+ s m v /1=∴ ()()222121v m m m v m m E B C A A C A P ++-+= J E P 6=∴. ⑶当它们的速度相等后,在弹性力的作用下,滑块A 和子弹C 将做加速度减小的变减速运动(当它的速度减为零后, 可向相反方向做变加速运动), 而滑块B 将做加速度减小的变加速运动,当弹簧恢复原长时,设滑块B 的最大速度为v B ’,此时滑块A 和子弹的速度为v A ’.根据系统动量守恒定律和系统能量守恒定律(从子弹击中滑块A 到弹簧重新恢复原长的过程相当于一个完全弹性正碰过程)得:()()''B B A C A A C A v m v m m v m m ++=+()C A m m +212A v =()2'21A C A v m m ++2'21B B v m .代入数据可得'B v =2m/s 因此B 获得的最大动能为J v m E B B KB 6212'==. 从子弹击中滑块A 到弹簧重新恢复原长的全过程可用速度图象表示,其速度图象如图所示. 关于速度图象的几点说明:⑴由速度图象可知,当t=t 1时,弹簧压缩量最短,此时系统内各物体有相同的速度,并且系统的动能总和最小而弹簧的弹性势能最大.当t=t 2时,弹簧第一次恢复原长,此时滑块B 有最大速度,而此时滑块A(包括子弹C)有负向的最大速度;当t=t 3时,弹簧伸长量最大,当t=t 4时,弹簧再一次恢复原长.此后再周期性的循环往复的变化.⑵滑块A(包括C)和滑块B 的速度图象是关于直线v=v 共(即本题中v=1m/s)对称的正(余)弦曲线.⑶由滑块B 的速度图象可知,它的最大速度为2m/s.【例13】如图所 示,木块A 、B 的质量分别为m 1、m 2,由轻弹簧连接,置于光滑水平面上,用一轻绳把两木块拉至最近,使弹簧处于最大压缩状态后绑紧,两木块一起以恒定的速度v o 向右滑动,突然轻绳断开,当弹簧伸长至本身的自然长度时,滑块A 的速度恰为零,求:⑴此时木块B 的速度;⑵轻绳断开前弹簧的弹性势能;⑶如果在以后的运动过程中,木块B 有速度为零的时刻,则木块A 、B 的质量m 1、m 2 应满足的关系是什么?【解析】⑴由动量守恒定律可知:()22021v m v m m =+, 故 02212v m m m v += ⑵由系统能量守恒定律可知:21()222021210mv E v m m P =++, 故 ()20221120v m m m m E P +=⑶轻绳断开后,滑块A 和B 的速度图象如图所示:由速度图象可知,当21m m ≥时,木块B 有速度为零的时刻.【说明】在弹簧连接体模型中,若两物体的质量不相等,在速度图象中只是速度的最大值、最小值不同,不需定量计算时,可粗略画出速度的最大值,应特别注意:质量小的物体的速度最大值较大.【练习】如图所示,轻弹簧的两端与两物块(质量分别为m 1、m 2)连在一起时,m 1静止在A 点,m 2靠墙,现用水平力F 推m 1使弹簧压缩,m 1=1kg,m 2=2kg,将它们放在光滑的水平面上,弹簧自然压缩一段距离后静止,此过程中力F 的功为4.5J.当F 撤去后,求:⑴m 1在运动过程中的最大速度,(3m/s)⑵m 2 在运动过程中的最大速度,(2m/s)⑶m 1在越过A 点后速度最小时弹簧的弹性势能.(2.25J)【解析】⑴.m 1 在弹开过程中, 回到A 点时速度最大, 设为v 1, 则有:21121v m W F =.s m v /31=∴. (2).m 1越过A 点后,m 2开始向右加速,m 1开始减速,弹簧被拉长,当其伸长到最大长度时,二者具有共同速度v,此过程对系统有:();2111v m m v m += ① ()m P E v m m v m ++=2212112121②由①、②解得:v=1m/s.J E m P 3= 全过程的速度图象如图所示,由图可知m 1越过A 点后速度最小为零,不是-1./s m(3).1m越过A 点后由伸长到最长至第二次恢复原长过程的某一时刻速度第一次最小,且为零.据由'2211v m v m =+0, 得s m v /5.1'2= P E v m v m +=2'222112121.得J E P 25.2= 四、弹簧功能关系综合题例析【例14】如图所示,质量为M 的L 型长木板静止在光滑水平面上,在木板的右端有一质量为m 的小铜块,现给铜块一个水平向左的初速度v o ,铜块向左滑行并与固定在木板左端的长度为l 的轻弹簧相碰,碰后返回且恰好停在木板的右端,求:铜块与弹簧作用过程中弹簧获得的最大弹性势能.【解析】尤其要注意对本题隐含条件的挖掘,铜块与弹簧相碰,碰后返回恰好停在木板的右端,说明此时铜块与木板存在着相同的对地速度,因此,全过程铜块与木板的碰撞相当于完全非弹性正碰,因此木板的上表面必存在摩擦力.运动的全过程可分为以下两个阶段:第一阶段为从铜块开始运动到弹簧压缩最短,此时铜块与木板具有相同的速度v 1,由系统动量守恒定律和能量守恒定律可得:()1v m M mv o +=; ()21202121v m M mv E W P f +-=+ 第二阶段为从弹簧压缩最短到铜块运动到木板的最右端,此时它们具有相同的速度v 2,由系统动量守恒定律和能量守恒定律可得:()()21v m M v m M +=+; ()()212221v v m M W E f P -+=-. 可解之: 21v v = ()M m Mmv E P +=420 【例15】如图所示,光滑水平面上,质量为m 的小球B 连接着轻弹簧处于静止状态,质量为2m 的小球A 以大小为v o 的初速度向右运动,接着逐渐压缩弹簧并使B 运动,经过一段时间A 与弹簧分离.⑴当弹簧压缩最短时,弹簧的弹性势能E P 多大?⑵若开始时在B 球的右侧某位置固定一块挡板,在A 球与弹簧未分离前使B 球与挡板发生碰撞,并在碰后立即将挡板撤去.设B 球与挡板的碰撞时间极短,碰撞时机械能没有损失,欲使此后弹簧被压缩到最短时, 弹簧的弹性势能/P E 能达到第⑴问中P E 的2.5倍,必须使B 球在速度多大时与挡板发生碰撞?【解析】⑴当弹簧压缩到最短时,A 、B 的速度相同,设为1v根据系统动量守恒定律可得:1032mv mv = 解得 0132v v =. 对A 、B 以及弹簧所构成的系统机械能守恒,所以有:P E mv mv +=2120321221 解得 2031mv E P = ⑵弹簧被压缩到最短时,A 、B 的速度相同,设为2v .由于B 与挡板相碰后动能没有损失,故有:/2220321221P E mv mv +=.将20/655.2mv E E P P ==代入可得:0231v v =或0231v v -= 用B A 、v v 分别表示B 与挡板相碰前瞬间A 、B 的速度,根据系统动量守恒定律可得:B A mv mv mv +=220①;232mv mv mv B A =-②将0231v v =代入①、②可得:0021,43v v v v B A ==.由于B A v v >,说明此时弹簧仍处于压缩状态.又由于202222121221mv mv mv B A <+故该情况是可以实现的. 将0231v v -=代入①②可得:0023,41v v v v B A ==.由于此时有 202222121221mv mv mv B A >+ 故该情况是不可能实现的. 【例16】(2003年江苏省高考题)(1) 如图1, 在光滑水平长直轨道上, 放着一个静止的弹簧振子, 它由一轻弹簧两端各联结一个小球构成, 两小球质量相等, 现突然给左端小球一个向右的速度u 0, 求弹簧第一次恢复到自然长度时, 每个小球的速度.(2) 如图, 将N 个这样的振子放在该轨道上, 最左边的振子被压缩至弹簧为某一长度后锁定, 静止在适当位置上, 这时它的弹性势能为E 0 ,其余的振子间都有一定距离, 现解除对振子1的锁定, 任其自由运动, 当它第一次恢复到自然长度时, 刚好与振子2碰撞, 此后, 继续发生一些碰撞, 每一个振子被碰后都是在弹簧第一次恢复到自然长度时与下一振子相碰, 求所有的碰撞都发生后, 每个振子弹性势能的最大值, 已知两球相撞时,速度交换, 即一球碰后的速度等于另一球碰前的速度.【解析】⑴.振子从初态到弹簧恢复到自然长度的过程中, 弹簧一直处于压缩状态,当两球速度相同均为20u 时,( 即为0t 时刻)弹簧压缩最短,t 0 --t 弹簧逐渐恢复原长,当t 时刻弹簧恢复到原长时,左小球速度为零,右小球速度为u 0,即两小球互换速度.(2) 从振子1解除锁定到弹簧第一次恢复原长过程中, 右小球向右加速, 左小球向左加速且具有瞬时对称性, 两小球和弹簧组成的系统满足动量守恒和机械能守恒, 设向右为正向, 则有:0'11=+mv mv0'12122121E mv mv =+. 解得mE v m E v 0'101,-==.且在此时刻振子1的右小球与振子2的左小球相碰, 碰后它们互换速度, 此时振子1左小球的速度仍为v 1. 此后振子1向左运动, 左小球向左减速, 右小球向左加速, 当其速度相同时弹簧拉伸至最长, 弹性势能最大, 设两球的共速为v , 则有:mv mv 21=,P E mv mv +=22122121. 解得041E E P =. 振子2被撞后瞬间, 左小球速度为v 1, 右小球速度为零, 弹簧被压缩, 右小球向右加速, 左小球向右减速, 当弹簧压缩至最短时, 振子2弹性势能最大, 弹簧恢复原长时, 左小球速度为零, 右小球速度为v 1 . 此时振子2右小球与振子3左小球碰撞, 互换速度, 振子2的右小球速度变为零, 振子2静止, 弹性势能为零.依次类推, 后面各振子情况同振子2, 振子N 被碰后, 弹簧被压缩, 当它们向右的速度相同时, 弹簧被压缩至最短, 弹性势能最大为,40E 可见所有振子所具有的最大弹性势能均为40E ,中间振子所起的作用只不过是传递能量而已.全过程的速度图象如图所示:。
弹簧问题类型含答案
弹簧问题类型轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。
5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)
5、力与直线运动:弹簧问题一.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.2、求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.二、动态变化问题力与运动的关系:力→加速度→速度变化→(运动状态变化)(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化。
(2)速度增大或减小取决于加速度和速度方向间的关系,和加速度的大小没有关系。
(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系。
三、临界问题物体分离的临界条件时两物体间相互作用力为0例1、(2021·山东泰安模拟)如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( )A.0 B.2.5 NC.5 N D.3.75 N【解析】当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.【答案】 D针对训练1. (多选)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ【解析】:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mgcos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC 上的拉力F 也发生了突变,小球的加速度方向沿与BC 垂直的方向且斜向下,大小为a =mg sin θm=g sin θ,B 正确,A 错误;在BC 被突然剪断的瞬间,橡皮筋AC 的拉力不变,小球的合力大小与BC 被剪断前拉力的大小相等,方向沿BC 方向斜向下,故加速度a =Fm=gcos θ,C 正确,D 错误.【答案】 BC针对训练2、(多选)如图所示,在水平地面上的箱子内,用细线将质量均为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )A .系统处于静止状态时地面受到的压力大小为(M +2m )g -FB .系统处于静止状态时地面受到压力大小为(M +2m )gC .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +FD .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g【解析】 系统处于静止状态时,对整体进行受力分析,由平衡条件可得,地面对整体的支持力F N =(M +2m )g ,由牛顿第三定律可知地面受到的压力大小为(M +2m )g ,选项B 正确,A 错误;剪断连接球b 与箱底的细线瞬间,球b 向上加速运动,地面受到的压力大小为(M +2m )g +F ,选项C 正确,D 错误。
高考必会专题之弹簧问题
高考弹簧类问题复习弹簧类问题含有力的非突变模型---弹簧模型,这类问题能很好地考查同学们对物理过程的分析、物理知识的综合、以及数学知识的灵活应运,所以这类问题在近年的高考中频频出现。
为了帮助同学们复习好这部分内容,现浅谈如下几点,供同学们参考一、知识点聚焦1、弹簧的瞬时问题弹簧发生弹性形变时,弹力与其形变量成正比,因此,弹力不同,形变量不同,形变量不同,对应的弹力也不同。
解决这一类问题时一定要弄清“时刻”及“位置”的含义。
2、弹簧的平衡问题这类问题涉及的知识有胡克定律、力的平衡条件,一般可用f=kx或△f=k•△x和∑F=0等公式来求解。
3、弹簧的非平衡问题这类问题主要是指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功、能和合外力等其他物理量发生变化的情况。
这类问题的解决,不但要涉及胡克定律、牛顿第二定律、还要涉及动能定理、能的转化和守恒定律等方面的内容。
4、弹簧弹力做功与动量、能量的综合问题在弹簧弹力做功的过程中弹力是个变力,所以这类问题一般与动量、能量联系,以综合题的形式出现。
这类问题有机地将动量守恒、机械能守恒、功能关系和能量转化等结合在一起,考查同学们的综合应用能力。
解决这类问题时,要细致分析弹簧的动态过程,综合利用动能定理和功能关系等知识解题。
二、典型例题分析(一)、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F,另一端受力一定也为F。
若是弹簧秤,则弹簧秤示数为F。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m -=仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
高考二轮物理复习专题:弹簧问题(附答案)
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
专题:受力分析之弹簧问题
弹簧类问题的几种模子及其处理办法【1 】学生对弹簧类问题觉得头疼的重要原因有以下几个方面:起首,因为弹簧不竭产生形变,导致物体的受力随之不竭变更,加快度不竭变更,从而使物体的活动状况和活动进程较庞杂.其次,这些庞杂的活动进程中央所包含的隐含前提很难发掘.还有,学生们很难找到这些庞杂的物理进程所对应的物理模子以及处理办法.依据近几年高考的命题特色和常识的考核,就弹簧类问题分为以下几种类型进行剖析.一.弹簧类命题冲破要点1.弹簧的弹力是一种由形变而决议大小和偏向的力.当标题中消失弹簧时,起首要留意弹力的大小与偏向时刻要与当时的形变相对应,在标题中一般应从弹簧的形变剖析入手,先肯定弹簧原长地位.现长地位.均衡地位等,找出形变量x与物体空间地位变更的几何干系,剖析形变所对应的弹力大小.偏向,联合物体受其他力的情形来剖析物体活动状况.2.因软质弹簧的形变产生转变进程须要一段时光,在刹时内形变量可以以为不变,是以,在剖析瞬时变更时,可以以为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变更,可以先求平均力,再用功的界说进行盘算,也可据动能定理和功效关系:能量转化和守恒定律求解.同时要留意弹力做功的特色:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量请求,可作定性评论辩论,是以在求弹力的功或弹性势能的转变时,一般以能量的转化与守恒的角度来求解.二.弹簧类问题的几种模子1.均衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两头分别与质量为m1.m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),全部体系处于均衡状况.现施力将m1迟缓竖直上提,直到下面谁人弹簧的下端刚离开桌面.在此进程中,m2的重力势能增长了______,m1的重力势能增长了________.例2.如上图2所示,A物体重2N,B物体重4N,中央用弹簧衔接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T.F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N均衡类问题总结:这类问题一般把受力剖析.胡克定律.弹簧形变的特色分解起来,考核学生对弹簧模子根本常识的控制情形.只要学生静力学基本常识扎实,进修习惯较好,这类问题一般都邑水到渠成,此类问题相对较简略.2.突变类问题例3.如图3所示,一质量为m的小球系于长度分别为l1.l2的两根细线上,l1的一端吊挂在天花板上,与竖直偏向夹角为θ,l2程度拉直,小球处于均衡状况.现将l2线剪断,求剪断瞬时小球的加快度.若将图3中的细线l1改为长度雷同.质量不计的轻弹簧,如图4所示,其他前提不变,求剪断细线l2瞬时小球的加快度.突变类问题总结:不成伸长的细线的弹力变更时光可以疏忽不计,是以可以称为“突变弹力”,轻质弹簧的弹力变更须要一准时光,弹力逐渐减小,称为“渐变弹力”.所以,对于细线.弹簧类问题,当外界情形产生变更时(如撤力.变力.剪断),要从新对物体的受力和活动情形进行剖析,细线上的弹力可以突变,轻弹簧弹力不克不及突变,这是处理此类问题的症结.3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相比较较简略的一类,而其重要特色是与碰撞问题相似,但是,它与碰撞类问题的一个显著不同就是它的感化进程相对较长,而碰撞类问题的感化时光极短.例4.如图6所示,物体B静止在滑腻的程度面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B活动并与弹簧产生碰撞,A.B始终沿同一向线,则A,B构成的体系动能损掉最大的时刻是A.A开端活动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时4:机械能守恒型弹簧问题对于弹性势能,高中阶段其实不须要定量盘算,但是须要定性的懂得,即知道弹性势能的大小与弹簧的形变之间消失直接的关系,对于雷同的弹簧,形变量一样的时刻,弹性势能就是一样的,不管是紧缩状况照样拉伸状况.例5.一劲度系数k=800N/m的轻质弹簧两头分别衔接着质量均为m=12kg的物体A.B,它们竖直静止在程度面上,如图7所示.现将一竖直向上的变力F感化在A上,使A开端向上做匀加快活动,经0.40s物体B刚要分开地面.求:⑴此进程中所加外力F的最大值和最小值.⑵此进程中力F所做的功.(设全部进程弹簧都在弹性限度内,取g=10m/s2)例6.如图8所示,物体B和物体C用劲度系数为k的弹簧衔接并竖直地静置在程度面上.将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落伍与物体B碰撞,碰撞后A和B粘合在一路并连忙向下活动,在今后的活动中A.B不再分别.已知物体A.B.C的质量均为M,重力加快度为g,疏忽物体自身的高度及空气阻力.求:(1)A与B碰撞后刹时的速度大小.(2)A和B一路活动达到最大速度时,物体C对程度地面压力为多大?(3)开端时,物体A从距B多大的高度自由落下时,在今后的活动中才干使物体C正好分开地面?5.简谐活动型弹簧问题弹簧振子是简谐活动的经典模子,有一些弹簧问题,假如从简谐活动的角度思虑,应用简谐活动的周期性和对称性来处理,问题的难度将大大降低.例7.如图9所示,一根轻弹簧竖直竖立在程度面上,下端固定.在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧紧缩.当弹簧被紧缩了x0时,物块的速度减小到零.从物块和弹簧接触开端到物块速度减小到零进程中,物块的加快度大小a随降低位移大小x变更的图像,可能是下图中的例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧紧缩,在紧缩的全进程中(疏忽空气阻力且在弹性限度内),以下说法准确的是A.小球所受弹力的最大值必定大于2mgB.小球的加快度的最大值必定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加快度为零时重力势能与弹性势能之和最大6.分解类弹簧问题例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A.B都处于静止状况.一条不成伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开端时各段绳都处于伸直状况,A上方的一段绳沿竖直偏向.如今挂钩上升一质量为m3的物体C并从静止状况释放,已知它正好能使B分开地面但不持续上升.若将C换成另一个质量为的物体D,仍从上述初始地位由静止状况释放,则此次B刚离地时D的速度的大小是若干?已知重力加快度为g.分解类弹簧问题总结:分解类弹簧问题一般物理情景庞杂,涉及的物理量较多,思维进程较长,标题难度较大.处理这类问题最好的办法是前面所述的“肢解法”,即把一个庞杂的问题“肢解”成若干个熟习的简略的物理情景,一一攻破.这就要肄业生具有扎实的基本常识,日常平凡擅长积聚罕有的物理模子及其处理办法,并具有把一个物理问题还原成物理模子的才能.。
专题受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
弹簧类问题的几种模型及其处理方法
弹簧类问题的几种模型及其处理方法直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。
答案:m2上升的高度为,增加的重力势能为,m1上升的高度为,增加的重力势能为。
点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。
注意缓慢上提,说明整个系统处于动态平衡过程。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。
所以,此问题要分两种情况进行分析。
(1)若弹簧处于压缩状态,则通过对A、B受力分析可得:,(2)若弹簧处于拉伸状态,则通过对A、B受力分析可得:,答案:B、D。
点评:此题主要针对弹簧既可以压缩又可以拉伸的这一特点,考查学生对问题进行全面分析的能力。
有时,表面上两种情况都有可能,但必须经过判断,若某一种情况物体受力情况和物体所处状态不符,必须排除。
所以,对这类问题必须经过受力分析结合物体运动状态之后作出判断。
平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况。
只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
2.突变类问题例3.(2001年上海)如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态。
专题4.1 弹簧模型(解析版)
第四部分 重点模型与核心问题深究专题4.1 弹簧模型目录模型一 静力学中的弹簧模型 (1)模型二 动力学中的弹簧模型 (3)模型三 与动量、能量有关的弹簧模型 (5)专题跟踪检测 (9)模型一 静力学中的弹簧模型静力学中的弹簧模型一般指与弹簧相连的物体在弹簧弹力和其他力的共同作用下处于平衡状态的问题,涉及的知识主要有胡克定律、物体的平衡条件等,难度中等偏下。
【例1】如图所示,一质量为m 的木块与劲度系数为k 的轻质弹簧相连,弹簧的另一端固定在斜面顶端。
木块放在斜面上能处于静止状态。
已知斜面倾角θ=37°,木块与斜面间的动摩擦因数μ=0.5。
弹簧在弹性限度内,最大静摩擦力等于滑动摩擦力,重力加速度为g ,sin37°=0.6,cos 37°=0.8。
则( )A .弹簧可能处于压缩状态B .弹簧的最大形变量为3mg 5kC .木块受到的摩擦力可能为零D .木块受到的摩擦力方向一定沿斜面向上【答案】C【解析】木块与斜面间的最大静摩擦力f max =μmg cos θ=0.4mg ,木块重力沿斜面方向的分力为G 1=mg sin θ=0.6mg ,由G 1>f max 可知,弹簧弹力的方向不可能向下,即弹簧不可能处于压缩状态,故A 错误;弹簧有最大形变量时满足G 1+f max =k Δx m ,解得Δx m =mg k,故B 错误;当G 1=F 弹时,木块受到的摩擦力为零,故C 正确;当G 1>F 弹时,木块受到的摩擦力沿斜面向上,当G 1<F 弹时,木块受到的摩擦力沿斜面向下,故D 错误。
【规律方法】(1)弹簧的最大形变量对应弹簧弹力的最大值。
(2)当木块刚好不上滑时所受静摩擦力达到最大值,此时弹簧弹力最大。
【分类训练】类型1 形变情况已知的弹簧模型1.木块A、B分别重50 N和70 N,它们与水平地面之间的动摩擦因数均为0.2,与A、B相连接的轻弹簧被压缩了5 cm,系统置于水平地面上静止不动,已知弹簧的劲度系数为100 N/m。
初中常见问题分析:弹簧问题分析
三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。
分析这类题型对训练学生的分析综合能力很有好处。
例题分析:例1:劲度系数为K 的弹簧悬挂在天花板的O 点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a 由静止开始匀加速下降,求物体匀加速下降的时间。
分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G –KX=ma X=1/2at 2解以上两式得:t=kaa g m )(2例2:一质量为 M 的塑料球形容器,在A 处与水平面接触。
它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。
在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。
分析:由题意知弹簧正好在原长时小球恰好速度最大,所以: 对小球 qE=mg (1) 小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时:对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得: 小球的加速度为:a=mMg 由振动的对称性可知: 小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N =Mg+Kx=2Mg例3:已知弹簧劲度系数为K ,物块重G ,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。
现给物块一向下的压力F ,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘, 求:(1)给物块的向下的压力F 。
(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1) 由对称性,在最低点时:kx-mg=ma (2)物块被压到最低点时有:F+mg=Kx (3)由以上三式得:F=mgA(2)在最低点时盘对物块的支持力最大,此时有: F N -mg=ma 所以:F N =2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x 和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。
专题三弹簧与受力分析
专题三 弹簧与受力分析【初出茅庐】如图所示,甲、乙两根相同的轻,分别与物块的上下表面相连接,乙的下端与地面连接.起初甲处于自由长度,乙的压缩长度为△处于自由长度,乙的压缩长度为△L L .现用手将甲缓慢上提,使乙承受物重的2/32/3,乙仍处于压缩,乙仍处于压缩状态,那么,甲的A 端应向上提起的距离为端应向上提起的距离为________________________。
【知识拓展】将两根劲度系数分别为K 1和K 2的弹簧串联(并联),一端固定,合成后的弹簧的劲度系数为多少?的弹簧串联(并联),一端固定,合成后的弹簧的劲度系数为多少? 串联 并联 思考:把一根弹簧在其一半处折叠成一根双股弹簧,则其弹簧的劲度系数为多少?思考:把一根弹簧在其一半处折叠成一根双股弹簧,则其弹簧的劲度系数为多少?【基础题】用5N 的力可以使一轻弹簧伸长8mm 8mm,现在把两个这样的弹簧串联起来,在两端各用,现在把两个这样的弹簧串联起来,在两端各用10N 的力来拉它们,这时弹簧的总伸长应是(簧的总伸长应是() A .4mmB .8mmC .16mmD .32mm2211F kx k x k x ===12x x x =+1212k k k k k ·=+F kx =12F F F =+11F k x =22F k x=12k k k =+如图所示,劲度系数均为k 的甲、乙两轻质弹簧,甲弹簧一端固定在天花板上,乙弹簧一端固定在水平地面上.当在甲的另一端挂一重物G ,乙的另一端压一重物G 时,两弹簧的长度均为L ,现将两弹簧并联,并在其下方系一重物G ,此时弹簧的长度应为(时弹簧的长度应为( )A.L+(G/2k)B.(L+G)/kC.(L-G)/2kD. (L-G)/k如图所示,两木块的质量分别为m1和m2,两轻质的分别为k1和k2,上面木块压在上面的上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,,整个系统处于平衡状态.现缓慢向上提上面的木块,直到直到它刚离开上面.在这过程中下面木块移动的距离为(它刚离开上面.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 1C.m 1g/k 2D.m 2g/k 2【提高题】已知在弹性限内,的伸长量△已知在弹性限内,的伸长量△L L 与受到的拉力F 成正比,用公式F=k F=k•△•△•△L L 表示,其中k 为的(为的(k k 为一常数).现有两个轻L 1和L 2,它们的分别为k 1和k 2,且k 1=3k 2,现按如图所示方式用它们吊起滑轮和重物,如滑轮和重物的重力均为G ,则两的伸长量之比△,则两的伸长量之比△L L 1:△:△L L 2为(为( )A .1:1B .3:2C .2:3D .3:4如图,L 1、L 2是劲度系数均为 k 的轻质弹簧,A 、B 两只钩码均重G ,则静止时两弹簧伸长量之和为( )A .3G/kB .2G/kC .G/kD .G/2k。
高中物理弹簧弹力问题(含答案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F xT ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为233g ,方向竖直向下C.大小为233g ,方向垂直于木板向下 D. 大小为233g , 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F(三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为图 3-7-4图图3-7-2图 3-7-1图3-7-323cos 3N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 . 【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()s i n A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m的物图 图3-7-6体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】 由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mg F =.]【答案】022gx 32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
2020高考物理 专题练习:弹簧受力分析(含答案)
2020高考物理 专题练习:弹簧受力分析1.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面的木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢地向上提上面的木块,直到它刚离开上面的弹簧.⑴在这个过程中下面木块移动的距离为()A.m1g/k1B.m2g/k1C.m1g/k2D.m2g/k2⑵在这个过程中上面木块移动的距离为()A.m1g(1/k1+1/k2) B.m1g/k1+m2g/k2C.(m1+m2)g/k1D.(m1+m2)g/k22.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两木块和两根弹簧都连接在一起,整个系统处于平衡状态.现缓慢地向上提上面的木块,直到下面的弹簧刚离开地面.⑴在这个过程中下面木块移动的距离为()A.(m1+m2)g/k1B.(m1+m2)g/k2C.m1g(1/k1+1/k2) D.2(m1+m2)g/k2⑵在这个过程中上面木块移动的距离为()A.(m1+m2)g/k1+m2g/k2B.m1g/k1+m2g/k2C.m1g/k1+(m1+m2)g/k2D.(m1+m2)g(1/k1+1/k2)3.如图所示,一质量为m的物体一端系于长度为L1、质量不计的轻弹簧上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,另一端系于长度为L2的细线上,L2水平拉直,物体处于平衡状态.现将L2线剪断,则剪断瞬间物体的加速度大小为( )A.g sinθ B.g cosθ C.g tanθ D.g cotθ4.如图所示,A、B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是( )A.悬绳剪断瞬间A物块的加速度大小为零B.悬绳剪断瞬间A物块的加速度大小为gC.悬绳剪断后A物块向下运动距离x时速度最大D.悬绳剪断后A物块向下运动距离2x时速度最大5.如右图甲所示,在粗糙的水平面上,质量分别为m和M(m:M=1:2)的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数相同.当用水平力F作用于B上且两物块共同向右加速运动时,弹簧的伸长量为x1;当用同样大小的力F竖直加速提升两物块时(如图乙所示),弹簧的伸长量为x2,则x1:x2为( )A.1:1 B.1:2 C.2:1 D.2:36.如图⑴所示,水平面上质量相等的两木块A、B,用一轻弹簧相连接,这个系统处于平衡状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动,如图⑵所示,研究从力F刚作用在木块A瞬间到木块B刚离开地面瞬间的这一过程,并选定该过程中木块A的起点位置为坐标原点.则下列图中能正确表示力F和木块A的位移x之间关系的图是( )7.水平地面上有一直立的轻质弹簧,下端固定,上端与物体A相连接,整个系统处于静止状态,如图(甲)所示.现用一竖直向下的力F作用在物体A上,使A向下做一小段匀加速直线运动(弹簧一直处在弹性限度内)如图(乙)所示.在此过程中力F的大小与物体向下运动的距离x间的关系图象正确的是( )8.如图所示,一条轻质弹簧左端固定,右端系一小物块,物块与水平面各处动摩擦因数相同,弹簧无形变时,物块位于O点.今先后分别把物块拉到P1和P2点由静止释放,物块都能运动到O点左方,设两次运动过程中物块速度最大的位置分别为Q1和Q2点,则Q1和Q2点( )A.都在O点右方,且Q1离O点近B.都在O点C.都在O点右方,且Q2离O点近D.都在O点右方,且Q1、Q2在同一位置9.如图所示,一根自然长度为l0的轻弹簧和一根长度为a的轻绳连接,弹簧的上端固定在天花板的O点上,P是位于O点正下方的光滑轻小定滑轮,已知OP=l0+a.现将绳的另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连,滑块对地面有压力作用.再用一水平力F作用于A使之向右做直线运动(弹簧的下端始终在P之上),则滑块A受地面的滑动摩擦力( )A.逐渐变小 B.逐渐变大 C.先变小后变大 D.大小不变10.如图所示,放在水平桌面上的木块A处于静止状态,所挂的砝码和托盘的总质量为0.6kg,弹簧测力计读数为2N,滑轮摩擦不计,若轻轻取走盘中的部分砝码,使总质量减少到0.3 kg时,将会出现的情况是(g=10m/s2)( )A.A所受的合力将要变大 B.A仍静止不动C.A对桌面的摩擦力不变 D.弹簧测力计的读数将变小11.如图所示,物体P左边用一根轻弹簧和竖直墙相连,放在粗糙水平面上,静止时弹簧的长度大于原长,若再用一个从零开始逐渐增大的水平力F向右拉P,直到拉动,那么在P被拉动之前的过程中,弹簧对P的弹力T的大小和地面对P的摩擦力f的大小变化情况是( )A.T始终增大,f始终减小B.T先不变后增大,f先减小后增大C.T保持不变,f始终减小D.T保持不变,f先减小后增大12.竖直放置的轻弹簧,上端与质量为3kg的物块B相连接.另一个质量为1kg的物块A放在B上.先向下压A,然后释放,A、B共同向上运动一段后将分离,分离后A又上升了0.2m到达最高点,此时B的速度方向向下,且弹簧恰好为原长.则从A、B分离到A上升到最高点的过程中,弹簧弹力对B做的功及弹簧回到原长时B的速度大小分别是(g=10m/s2)()A.12J,2m/s B.0,2m/s C.0,0 D.4J,2m/s13.如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m =12kg ,弹簧的劲度系数k =300N/m .现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t =0.2s 内F 是变力,在0.2s 以后F 是恒力,求F 的最大值和最小值各是多少?(g =10m/s 2)14.一个弹簧秤放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止,如右图所示,现给P 施加一个方向向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 时间内F 为变力,0.2s 以后F 为恒力,求力F 的最大值与最小值(取g =10m/s 2) 15.如图所示,一个劲度系数为k =800N/m 的轻弹簧,两端分别连接着质量均为m =12kg 物体A 和B ,将它们竖直静止地放在水平地面上.现施加一竖直向上的变力F 在物体A 上,使物体A 从静止开始向上做匀加速运动,当 t =0.2s 时物体B 刚好离开地面,设整个匀加速过程弹簧都处于弹性限度内,取g =10m/s 2.求:⑴此过程中所加外力F 的最大值和最小值;⑵此过程外力F所做的功.16. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功.17.如图所示,质量 kg 的物块A 与质量kg 的物块B 放在倾角θ=30°的光滑斜面上处于10=A m 2=B m 静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数=400N /m .现给k 物块A 施加一个平行于斜面向上的力F ,使物块A 沿斜面向上做匀加速运动,已知力F在前t =0.2s 内为变力,0.2后为恒力,求(g 取10m /s 2)(1)力F 的最大值与最小值;(2)力F 由最小值达到最大值的过程中,物块A所增加的重力势能.18.如图所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过两个轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段沿竖直方向.若在挂钩上挂一质量为m3的物体C,则B 将刚好离地.若将C换成另一个质量为m1+m3的物体D,仍从上述初始位置由静止状态释放,则这次B 刚离地时D的速度大小是多少?(已知重力加速度为g)19.如图所示,一轻质弹簧下端固定在水平地面上,上端与物体A连接,物体A又与一跨过定滑轮的不可伸长的轻绳一端相连,绳另一端悬挂着物体B,B的下面又挂着物体C,A、B、C均处于静止状态.现剪断B和C之间的绳子,在A、B运动过程中,弹簧始终在弹性限度范围内.(已知弹簧的劲度系数为k,物体A质量为3m,B和C质量均为2m)试求:⑴物体A的最大速度;⑵轻绳对物体B的最大拉力和最小拉力.20.如图甲所示,在地面上竖直固定着一劲度系数k=50N/m 的轻质弹,正上方O点处由静止释放一个质量m=1. Okg 的小球,取O 点为原点,建立竖直向下的坐标轴Oy,小球的加速度a随其位置坐标y 的变化关系如图乙所示,其中y0=0 .8m,y m对应弹簧压缩到最短时小球的位置,取g=10m/s2,不计空气阻力。
高考热点专题——有关弹簧问题的分析与计算
弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。
解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。
在有关弹簧类问题中,要特别注意使用如下特点和规律:1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。
在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。
如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。
若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。
若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。
受力分析 木块弹簧问题
例7、如图3-8,质量分别为m和2m的两个小球A和B,中间用轻质杆相连,在杆的中点O处有一固定转动轴,把杆置于水平位置后释放,在B球顺时针摆动到最低位置的过程中[ ]A.B球的重力势能减少,动能增加,B球和地球组成的系统机械能守恒B.A球的重力势能增加,动能也增加,A球和地球组成的系统机械能不守恒。
C.A球、B球和地球组成的系统机械能守恒D.A球、B球和地球组成的系统机械不守恒【错解分析】错解:B球下摆过程中受重力、杆的拉力作用。
拉力不做功,只有重力做功,所以B球重力势能减少,动能增加,机械能守恒,A正确。
同样道理A球机械能守恒,B错误,因为A,B系统外力只有重力做功,系统机械能守恒。
故C选项正确。
B球摆到最低位置过程中,重力势能减少动能确实增加,但不能由此确定机械能守恒。
错解中认为杆施的力沿杆方向,这是造成错解的直接原因。
杆施力的方向并不总指向沿杆的方向,本题中就是如此。
杆对A,B球既有沿杆的法向力,也有与杆垂直的切向力。
所以杆对A,B球施的力都做功,A球、B球的机械能都不守恒。
但A+B整体机械能守恒。
【正确解答】B球从水平位置下摆到最低点过程中,受重力和杆的作用力,杆的作用力方向待定。
下摆过程中重力势能减少动能增加,但机械能是否守恒不确定。
A球在B下摆过程中,重力势能增加,动能增加,机械能增加。
由于A+B系统只有重力做功,系统机械能守恒,A球机械能增加,B球机械能定减少。
所以B,C选项正确。
【小结】有些问题中杆施力是沿杆方向的,但不能由此定结论,只要杆施力就沿杆方向。
本题中A、B球绕O点转动,杆施力有切向力,也有法向力。
其中法向力不做功。
如图3-9所示,杆对B球施的力对B球的做负功。
杆对A球做功为正值。
A球机械能增加,B 球机械能减少。
例8、如图3-10,质量为M的木块放在光滑水平面上,现有一质量为m的子弹以速度v0射入木块中。
设子弹在木块中所受阻力不变,大小为f,且子弹未射穿木块。
若子弹射入木块的深度为D,则木块向前移动距离是多少?系统损失的机械能是多少?【错解分析】错解:(1)以木块和子弹组成的系统为研究对象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧类问题的几种模型及其处理方法
学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点
1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做
功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,
因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型
1.平衡类问题
例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为
m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴
接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现
施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌
面。
在此过程中,m2的重力势能增加了______,m1的重力势能
增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是
A.7N,0 B.4N,2N C.1N,6N D.0,6N
平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况。
只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
2.突变类问题
例3.如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态。
现将l2线剪断,求剪断瞬时小球的加速度。
若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度。
突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。
所以,对于细线、弹簧类问题,当外界情况发生变化时(如撤力、变力、剪断),要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键。
3.碰撞型弹簧问题
此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,
它与碰撞类问题的一个明显差别就是它的作用过程相对较长,而碰撞类问题的作用时间极短。
例4.如图6所示,物体B静止在光滑的水平面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B运动并与弹簧发生碰撞,A、B始终沿统一直线,则A,B组成的系统动能损失最大的时刻是
A.A开始运动时 B.A的速度等于v时
C.B的速度等于零时 D.A和B的速度相等时
4:机械能守恒型弹簧问题
对于弹性势能,高中阶段并不需要定量计算,但是需要定性的了解,即知道弹性势能的大小与弹簧的形变之间存在直接的关系,对于相同的弹簧,形变量一样的时候,弹性势能就是一样的,不管是压缩状态还是拉伸状态。
例5.一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为m=12kg的物体A、B,它们竖直静止在水平面上,如图7所示。
现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经0.40s物体B刚要离开地面。
求:
⑴此过程中所加外力F的最大值和最小值。
⑵此过程中力F所做的功。
(设整个过程弹簧都在弹性限度内,取g=10m/s2)
例6.如图8所示,物体B和物体C用劲度系数为k的弹簧连接并竖直地静置在水平面上。
将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落后与物体B
碰撞,碰撞后A和B粘合在一起并立刻向下运动,在以后的运动中A、B不再
分离。
已知物体A、B、C的质量均为M,重力加速度为g,忽略物体自身的高
度及空气阻力。
求:
(1)A与B碰撞后瞬间的速度大小。
(2)A和B一起运动达到最大速度时,物体C对水平地面压力为多大
(3)开始时,物体A从距B多大的高度自由落下时,在以后的运动中才能使
物体C恰好离开地面
5.简谐运动型弹簧问题
弹簧振子是简谐运动的经典模型,有一些弹簧问题,如果从简谐运动的角度
思考,利用简谐运动的周期性和对称性来处理,问题的难度将大大下降。
例7.如图9所示,一根轻弹簧竖直直立在水平面上,下端固定。
在弹簧正上
方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩。
当弹簧被压缩了
x0时,物块的速度减小到零。
从物块和弹簧接触开始到物块速度减小到零过程
中,物块的加速度大小a随下降位移大小x变化的图像,可能是下图中的
例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触
弹簧后将弹簧压缩,在压缩的全过程中(忽略空气阻力且在弹性限度内),以
下说法正确的是
A.小球所受弹力的最大值一定大于2mg
B.小球的加速度的最大值一定大于2g
C.小球刚接触弹簧上端时动能最大
D.小球的加速度为零时重力势能与弹性势能之和最大
6.综合类弹簧问题
例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物
体B相连,弹簧的劲度系数为k,A、B都处于静止状态。
一条不可伸长的轻绳绕过
轻滑轮,一端连物体A,另一端连一轻挂钩。
开始时各段绳都处于伸直状态,A上方
的一段绳沿竖直方向。
现在挂钩上升一质量为m3的物体C并从静止状态释放,已知
它恰好能使B离开地面但不继续上升。
若将C换成另一个质量为的物体D,仍从上述
初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少已知重力加速度为g。
综合类弹簧问题总结:综合类弹簧问题一般物理情景复杂,涉及的物理量较多,思维过程较长,题目难度较大。
处理这类问题最好的办法是前面所述的“肢解法”,即把一个复杂的问题“肢解”成若干个熟悉的简单的物理情景,逐一攻破。
这就要求学生具有扎实的基础知识,平时善于积累常见的物理模型及其处理办法,并具有把一个物理问题还原成物理模型的能力。