小学四年级数学培优.全年简洁版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级数学培优 Part 1“数与运算”之整数计算综合
熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算等方法处理各种数列的计算问题;学会处理“定义新运算”的问题,初步体会用字母表示数.
1、计算:
(1)72×27×88÷(9×11×12) (2)31×121-88×125÷(1000÷121)
(3)37×47+36×53 (4)123×76-124×75 (5)1+2-3+4+5-6+7+8-9+...+97+98-99
2、已知平方差公式:a 2-b 2=(a +b )×(a -b ).
计算(1)202-192+182-172+162-152+...+22-12 (2)951×949-52×48
3、规定运算“★”为:a ★b =a ×b -(a +b ).请计算:
(1)5★8; (2)8★5; (3)(6★5)★4; (4)6★(5★4).
Part 1“数与运算”之数列与数表
通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题.注意数表形式的多样性,计算时常常考虑周期性,或进行合理估算.
1、一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(1)第100项是多少?(2)前100项的和是多少?
2、如图,从1开始的连续奇数按某种方式排列起来. 请问:(1)99在第几行起第几个数? (2)第10行左起第3个数是多少? Part 1“数与运算”之多位数与小数
求解含有小数的四则运算问题,除了运用已学的各种整数计算方法外,还可以移动小数点来简化计算.求解带有省略号的多位数的四则运算问题,一般采用从简单情况 出发找规律、通过算式的变形进行凑整、直接列竖式等方法.
1、计算:
(1)5795.5795÷5.795×579.5 (2)24×(0.123+0.127)×0.125×(2.52+1.48)
(3)(3.74+3.76+3.78+3.8+3.82)×0.04÷24×60
(4)1.25×3.14+125×0.0257+1250×0.00229
(5)121212×4-242424×2 (7)99...9×12345 (8)333...33×333 (34)
2、求和式计算结果的万位数字.
Part2“应用题”之行程问题
掌握速度、路程、时间的概念,以及它们之间的数量关系.掌握基本相遇问题和基本追及问题的解法;学会用比较的方法分析同一段路程上不同的运动过程.重点掌握画线段图的分析方法.
1、小东跑100米用20秒,旗鱼每小时能游90千米.请问:谁的速度更快?
2、A 、B 两城相距240千米,一辆汽车原计划用6小时从A 城到B 城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时,如果要按照原定的时间到达B 城,汽车在后一半路程上每小时应该行驶多少千米?
1
3 5 7
9 11 13 15 17
19 21 23 25 27 29 31 ... ... ...
10个9 10个3 9个3 10个3
参与运动的某些对象自身具有长度的行程问题.涉及多个对象的行程问题,一般需要从其中两个对象入手进行分析,并把所得的结论与其他对象联系起来.
1、(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?
(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?
2、甲火车长370米,每秒行15米;乙火车长350米,每秒行21米.两车同向行驶,乙车从追上甲车到完全超过甲车需要经过多长时间?
Part2“应用题”之和差倍问题三
数量关系复杂,需要深入分析的和差倍问题;由于数量大小改变,而产生倍数关系变化的问题;需要利用比较或分组的方法进行分析的问题.
1、有长短两根竹竿,长竹竿的长度是短竹竿长度的3倍,将它们插入水塘中,插入水中的长度都是40厘米,而露出水面部分的总长为160厘米.请问:短竹竿露在外面的长度是多少厘米?
2、小文一天折了一些纸鹤,她把它们分成了甲、乙两堆.如果从甲堆中拿出15个放到乙堆中,则两堆纸鹤的个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆纸鹤的个数是乙堆的3倍.问:(1)甲堆原来有零件多少个?(2)小文这一天共折了多少个纸鹤?
Part2“应用题”之还原问题与年龄问题
学会用逆推法求解还原问题,处理多个对象时可采用列表的形式.在年龄问题中,通常采用和差倍问题的分析方法,有时需注意任意两人的年龄差保持不变.
1、某数加上6,再乘以6,再减去6,再除以6,其结果等于6.则这个数是多少?
2、果园里有一棵桃树,有一天,3只猴子来摘桃子吃,第一只猴子吃了一个桃子并摘下了剩下桃子的一半,然后第二只猴子吃了2个桃子并摘下了剩下桃子的一半,最后第三只猴子吃了3个桃子并摘下了剩下桃子的一半,这时树上刚好还有4个桃子,问原来树上一共有多少个桃子?
Part2“应用题”之平均数问题
掌握平均数的基本概念.学会利用基准数法计算平均数,通过总量的变化计算平均数的变化,分析多组数的平均数与总平均数之间的关系.
1、甲、乙、丙、丁四个小队拾松果,甲、乙、丙三队平均每队拾了24千克,乙、丙、丁三队平均每队拾了26千克.已知丁队拾了28千克,那么甲队拾了多少千克?
2、某人问园丁,花园里有多少株开花的植物,园丁说:“春、夏、秋三个季节,平均每个季节有56株;春、夏、冬三个季节,平均每个季节有54株;春、秋、冬三个季节,平均每个季节有43株;夏、秋、冬三个季节,每个季节有24株.”如果每株花只在其中一个季节开放,那么花园里共有多少株开花的植物?
Part2“应用题”之行程问题三
运动过程较为复杂的行程问题,一般通过分段、比较等方法进行考虑.在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律.
1、小刚和哥哥一起从家去学校,哥哥步行,小刚骑车.小刚到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果他和哥哥一起到校.如果哥哥每分钟走53米,那么小刚骑车每分钟行进多少米?
2、甲、乙两车分别从相距300千米的A 、B 两地同时出发,在A 、B 两地之间不断往返行驶.已知甲车的速度是每小时30千米,乙车的速度是每小时20千米.请问:
(1)出发后经过多长时间甲、乙两车第一次迎面相遇?
(2)第一次迎面相遇后又经过多长时间甲、乙两车第二次迎面相遇?
(3)第二次迎面相遇后又经过多长时间甲、乙两车第三次迎面相遇?
Part3“几何问题”之几何图形剪拼
与图形的剪切、拼接有关的问题.学会利用对称性和面积计算对剪拼问题进行分析;了解某些特殊的剪拼方法.
1、如图1,在一块正方形纸片中有一个小正方形的空洞.现在要求用一条经过大正方形中心点的线段,把纸片分成面积相等的两部分,应该怎么分?
2、请把图2、3中的两个图形分别沿格线剪成4个大小、形状都相同的图形.
Part3“几何问题”之直线形计算一
掌握正方形、长方形、平行四边形、三角形以及梯形的面积计算公式,并能够熟练应用;计算平行四边形和三角形的面积时,学会选择适当的底和高.
1、如图1,小、中、大三个正方形从左到右依次紧挨着摆放,边长分别是3、7、9.那么图中两个阴影平行四边形的面积分别是多少?
2、如图2,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:图中阴影部分的面积是多少平方厘米?
3、如图3,从梯形ABCD 中分出两个平行四边形ABEF 和CDFG ,其中ABEF 的面积是60平方米,且AF 的长度为10米,FD 的长度为4米.那么平行四边形CDFG 的面积等于多少平方米?
Part3“几何问题”之格点与割补
明确格点多边形的概念,学会通过分割和添补的方法计算其面积;学会利用割补法计算不规则图形的面积;掌握格点多边形的面积计算公式.
1、图中的每个小正方形的面积均为2平方厘米,阴影多边形的面积是多少平方厘米?
2、上图2中是一个三角形点阵,其中能连出的最小的等边三角形的面积为1平方厘米,三个多边形的面积分别是多少平方厘米?
Part4“组合问题”之抽屉原理一
理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明.在考虑某些问题时,需要利用最不利原则进行分析.
1、(1)一次聚会上,大家发现,有40人都是同一年的10月出生的.试说明:他们中一定有2个人是在同一天出生的,但不一定有3个人在同一天出生.
(2)任意1830人中,至少有多少人的生日在同一天?
2、有红黄蓝绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有2颗珠子颜色相同?
Part4“组合问题”之统筹与对策
生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法.各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析时一般从简单情形出发进行逆推.
1、一个水房有两个水龙头,一天早晨6:00,有五个人同时需要用水龙头:甲刷牙,用5分钟;乙洗脸,用2分钟;丙洗头,用10分钟;丁浇花,用1分钟;戊洗衣服,用15分钟.请问:如何合理安排,最快在早晨几点几分,这五个人都能用完水?
2、西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元.要给47位同学每人发1个面包最少要花多少钱?
Part4“组合问题”之最值问题一
求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.
1、一个自然数是由数字8、9组成的,它的任意相邻两位都可以看成一个两位数,并且这些相邻数字组成的两位数都不相等.请问:满足条件的自然数最大是多少?
2、如果3个互不相同的自然数之和为20,那么其中最小的数最大可能是多少?最大的数最小可能是多少?
Part4“组合问题”之逻辑推理一
简单的逻辑推理问题,学会假设法和列表法
1、有3只盒子,第1只盒子里装有2个黑球,第2只盒子里装有2个白球,第3只盒子里装有黑球和白球各1个.现在3只盒子上的标签全贴错了,你能否仅从其中1只盒子里拿出1个球来,就能确定这3只盒子里各装的是什么球?
2、甲、乙、丙、丁四人对A先生的藏书数目作了一个估计.甲说:“A先生有500本书.”乙说:“A先生至少有1000本书.”丙说:“A先生的书不到2000本.”丁说:“A 先生最少有1本书.”实际上这4个人的估计中只有一句是对的.问:A先生究竟有多少本书?
Part6“计数问题”之加法原理与乘法原理
理解加法原理和乘法原理,体会分类计数与分步计数的区别;能够根据题目条件,对问题进行合理的分类与分步;学习用标数法解决各类路径问题.
1、地球上有7颗不同的龙珠,如果找齐传说中7颗龙珠,并且按照特定的顺序排成一行,就会有神龙出现.勇敢的小强找到了这7颗龙珠,但是她不知道排列的特定顺序.请问:运气不好的小强最多要试几次才能遇见神龙?
2、电影院里有10个空座位,小米和哥哥去看电影,每个人坐一个座位,共有多少种不同的坐法?
Part6“计数问题”之排列组合
了解排列、组合公式的由来及含义,掌握具体的计算方法;辨析排列、组合之间的区别与联系,并能够合理应用.
1、小又、小文、小义和小刀4个人一起乘公交车去公园,上车后发现有8个空座位,他们一共有多少种不同的坐法?
2、9支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场,每场比赛后,胜方得3分,平局双方各得1分,负方不得分.请问:(1)一共要举行多少场比赛?(2)9支队伍的得分总和最多为多少?
Part6“计数问题”之计数综合一
巩固以前学过的各种方法,综合运用分类与分步思想,排列与组合公式及枚举法来解决较复杂的计数问题;学会使用排除法、捆绑法、插空法解决排队问题.
1、一本书从第1页开始编排页码,到最后一页结束时共用了1983个数码.这本书一共有多少页?
2、有13个球队参加篮球赛,比赛分两个组,第一组7个队,第二组6个队,各组先进行单循环赛(即每队都要与本组中其他各队比赛一场),然后由两组的第1名再比赛一场决定冠亚军.请问:一共需要比赛多少场?
Part7“数字谜问题”之数阵图初步
各种较为基本的数阵图问题.了解重数的概念,并以此进行分析;学会分析特殊位
置上的数值;某些情况下还需要考虑对称性
1、把1至7
如果中心圆圈内填的数相等,那么就视为同
一种填法,写出所有可能的填法.
3、将1至9这九个数分别填入上图2中的
圆圈内,使得图中所有三角形的三个顶点上的数之和都等于15.现在已经填好了其中三
个,请你在图中填出剩下的数.
Part7“数字谜问题”之竖式问题
以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;
能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题.
1、有一个四位数,它乘以9后所得的乘积恰好是将原来的四位数各位数字顺序颠倒而得的新四位数,求原来的四位数.
2、小莉写了一个四位数,哥哥把这个四位数的个位抹掉,变成了一个三位数.弟弟又把这个三位数的个位抹掉,变成了一个两位数.最后把这三个数加起来,结果刚好是7826.
那么小莉原来写的四位数是多少?
Part7“数字谜问题”之复杂竖式
需要较强推理能力的竖式问题.学会运用奇偶分析、整体分析、分类讨论等技巧性较高的方法.
1、请把下图1中的除法竖式补充完整,这个算式的被除数、除数以及商的总和是多少?
2、在下图2中的字母竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字.已知个位向十位的进位为2,且E 是奇数,则A 、B 、C 、D 分别代表什么数字?
3、在下图3中所示的乘法竖式中,每个方框和字母都代表一个数字,相同的字母代表相同的数字,不同的字母代表不同的数字.请问:A 、B 、C 、D 分别代表什么数字?
4、在下图4中,相同的字母代表相同的数字,不同的字母代表不同的数字,请给出
两种使竖式成立的填法.
Part7“数字谜问题”之横式问题
横式中的填空格和字母破译问题.熟练应用尾数分析、首位估算、分情况试算等方法;对于较复杂的题目,一般从约束条件较多、可能性较少的算式入手;某些横式可以转化为竖式问题求解.
1、在请在下面两个算式的方框中填入适当的数字,使得等式成立,并且算式中的数字关于等号左右对称.(1)12×
32×
21
;8
×891=198
×2、在算式3的5个方框中,分别填入0到4这5个数字,使等式成立.请问:得到的乘积是多少?
Part7“数字谜问题”之幻方与数阵图扩展
掌握幻方的概念,了解三、四阶幻方的构造方法;解决具有与幻方类似性质的数阵图问题;进一步学习重数分析的方法;通过计算重数来处理数阵图中的最大最小问题.
1、把1至9这九个数分别填入下图1中的9个圆圈内,使得三个圆周及
2、(1)如上图2,在3×3的方格表中的每个空格中填入恰当的数, 使得每行、每列、每条对角线上的各数之和都相等.
(2)如上图3,在4×4的方格表中的每个空格中填入恰当的数, 使得每行、每列、每条对角线上的各数之和都相等. 3、如右图,在空格中填入适当的数,组成一个三阶幻方. 16 11 15 12 7 12 4 9 5 16 3 8 11 12
15 16 11 A D B A D C A + E B A C E C E F O R T Y F I F T E E N + F I F T E E N S E V E N T Y A B
× C D 1 D 8。

相关文档
最新文档