华东师大版七年级数学上册
1.9.1 有理数的乘法法则 课件(17张PPT) 华东师大版(2024)数学七年级上册
![1.9.1 有理数的乘法法则 课件(17张PPT) 华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/5b25a55ca7c30c22590102020740be1e650eccc4.png)
合作探究
相反数
试一试1:3×(-2) = ?-6 与 3×2 = 6 对比. 相反数
= (-2) + (-2) + (-2)
相反数
试一试2:(-3)×(-2) = ?6 与 (-3)×2 = -6 对比.
相反数
相反数
与 3 × (-2) = -6 对比呢?
知识总结
思考1:类比有理数加法的运算步骤,应用有理数乘 法法则进行计算时,应按照怎样的顺序进行计算?
位置
方向 向东为正方向,向西为负
距离 这时小虫位于原来位置的西边 6 m 处. 写成算式是:(-3)×2 = -6.
比较问题 l、问题 2 中的两个算式:左边的乘数有什么 不同,所得的积又有什么改变?你有什么发现?
相反数
3×2 = 6
(-3)×2 = -6
相反数
总结 两数相乘,若把一个乘数换成它的相反数,则
35
-35
90
90
180
180
100 -100
2. 计算: 解:
3. 气象观测统计资料表明,在一般情况下,高度每上升 1 km,气温下降 6 ℃. 已知甲地现在地面气温为 21 ℃, 问甲地上空 9 km 处的气温大约是多少?
解:(-6)×9 = -54, 21 + (-54) = -33.
答:甲地上空 9 km 处的气温大约为 -33 ℃.
2 有理数的乘法的应用
典例精析
例3 用正负数表示气温的变化量,上升为正,下降为 负. 登山队攀登一座山峰,每登高 1 km,气温的变化量 为 -6 ℃,登高 3 km 后,气温有什么变化?
解:(-6)×3 = -18. 答:登高 3 km 后,气温下降 18 ℃.
1.13 近似数 课件(共18张PPT)华东师大版(2024)数学七年级上册
![1.13 近似数 课件(共18张PPT)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/f933254b54270722192e453610661ed9ad5155c3.png)
知2-练
感悟新知
解题秘方:判断近似数精确到哪一位,应当看末位数字在哪一位上 .
解:(1) 精确到个位 .(2) 精确到十分位 .(3)精确到万分位 .(4) 精确到千分位 .(5)9.03 万 =90 300,精确到百位 .(6) 3.21× 10 4=32 100,精确到百位 .
知2-练
例1
知1-练
感悟新知
解:近似数:(1)(3)(6)中的数据;准确数:(2)(4)(5)中的数据 .
解题秘方:紧扣准确数和近似数的定义进行识别 .
知1-练
感悟新知
1-1.下列各数,不是近似数的是( )A. 王敏的身高是 1.72 米B. 张强家共有 3 口人C. 某市人口约有 1300万D. 书桌的长度是 0.85米
例3
知2-练
感悟新知
解题秘方:精确到哪一位,就要对那一位后面的数四舍五入.
解: (1) 0.259 5 ≈ 0.260.(2) 3.592 ≈ 3.59.(3) 20 049 ≈ 2.00× 10 4.(4) 2 310 万 =23 100 000 ≈ 2.3× 10 7.
知2-练
感悟新知
3-1.用四舍五入法按要求取近似值:(1) 36.2994(精确到十分位)≈ __________;(2) 20.175 万(精确到百位)≈ __________;(3) 12 340 000 (精确到十万位)≈__________ ;(4) 28.496(精确到0.01)≈ ________.
感悟新知
2. 近似数与实际非常接近,但存在一定偏差的数叫近似数 . 在实际问题中,有的量不容易得到或没有必要用准确数表示,就用有理数近似地表示出来,这个数就是这个量的近似数 . 如小明的身高约为 1.55 米,数 1.55 是近似数 .
1.2 数轴(教案)华东师大版(2024)数学七年级上册
![1.2 数轴(教案)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/c783b9b7162ded630b1c59eef8c75fbfc77d94f1.png)
1.2数轴第1课时数轴1.掌握数轴的三要素,能正确画出数轴;能将已知数在数轴上表示出来;能说出数轴上已知点所表示的数;2.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;对学生渗透数形结合的思想方法;3.使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.重点正确掌握数轴画法和用数轴上的点表示有理数.难点有理数和数轴上的点的对应关系.一、导入新课1.请大家看,这是一支温度计(展示温度计图片),它的用途大家是知道的,但是你会读温度计吗?请同学们读出此时温度计所显示的温度.这样看来,液面所在的刻度就表示此时的温度,这说明温度计上的刻度与一些有理数建立了对应的关系,也就是说温度计上的每一个刻度都表示一个有理数.2.在一条东西方向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.二、探究新知1.观察温度计的刻度规律,你能发现什么?学生观察温度计,从温度计上发现:刻度有正有负也有0.结合有理数包含正数、零和负数的特点,类比一条直线在什么样的条件下才能成为数轴,于是:因为有零,就必须在直线上取一点,用这个点表示零.(如图1)我们把这个点叫做原点,用大写字母O表示,由温度计的刻度规律可知:原点的一侧表示正数,另一侧表示负数.因而我们就规定原点的其中一侧为正方向,那么另一侧就为负方向.习惯上,当直线水平放置时,原点右方为正方向,原点的左方为负方向,正方向的一侧我们用箭头表示.(如图2)现在同学们来猜想一下,正有理数应该在图2的哪一个区域?负有理数呢?知道正数在原点的右边,那么我们用多长来表示+1呢?怎么办?我们需要规定一个单位长度.(如图3)一旦表示1的点确定了,表示其他的有理数就好确定了.我想请同学们举例说明其他有理数点的确定.(利用成倍的关系)2.这样能用来表示全体有理数的图形我们就找到了,我们把这种图形叫做数轴.现在我请同学们归纳一下数轴有哪几个特点?(原点、正方向和单位长度)于是:规定了原点、正方向和单位长度的直线叫做数轴.归纳数轴的规范画法:(1)三要素:原点、正方向和单位长度;(2)刻度要在直线上,且是细短线;数字在下,字母在上.3.动手操作、感受数轴的画法、巩固对数轴的认识.教师活动设计:现在每一位同学都画一个数轴,根据你所画的数轴提出你的问题.学生活动设计:学生动手画数轴,在画的过程中可能有诸多问题,比如:数轴一定是水平放置的吗?原点一定在最中间吗?单位长度究竟是什么样的一个长度?数轴可以画为射线吗?然后学生进行交流,得到数轴规范的画法.三、课堂练习1.判断下列图形哪些是数轴?2.画出一个单位长度是1厘米的数轴,并用刻度尺画出表示下列各数的点:1.5, 0, 2, -2, 2.5.3.如图:写出数轴上的点A,B,C,D,E,F表示的有理数.四、课堂小结1.数轴的三要素是什么?2.在数轴上,正数和负数分别是怎样排列的?五、课后作业教材第16页习题第2,3,4题.本节课从生活中的实际入手,由温度计的具体形象,引出数轴的概念,总结归纳出数轴的三要素和数轴上数字的排列规律.要求学生学会画出数轴,学会在数轴上表示出有理数,初步渗透数形结合的思想.第2课时在数轴上比较数的大小1.通过观察数轴上点的位置关系,初步学会利用数轴比较有理数的大小;2.初步认识图形和数量的对应关系.重点负数和零的大小比较.难点如何启发学生自己得到有理数的大小比较的方法,并认识其合理性.一、导入新课在小学,我们已知学会比较两个正数的大小,那么,引进负数后,怎样比较两个有理数的大小呢?例如:1与-2哪个大?-1与0哪个大?-3与-4哪个大?二、探究新知1.探寻规律(教材P17探索)(1)请任意写出两个正数,在下面的数轴上画出表示它们的点.你所写的两个数是________>________,观察在数轴上表示它们的点,我们可以发现,较大的数的对应点在较小的数的对应点的________边.(2)生活中,同学们能判断两个气温的高低吗?①某日哈尔滨的气温为-9 ℃,泉州的气温为12 ℃,该日________的气温较高;②把温度计如下图横放,我们可以发现,________的气温会显示在右边.2.总结规律(教材P17概括)规律1:把温度计横过来放,就像一条数轴,类似于气温的高低,我们可以知道,在数轴上表示的两个数,右边的数总________左边的数.规律2:从数轴上可以发现,表示正数的点都在原点的________,表示负数的点都在原点的________,所以,我们说:正数都________零,负数都________零,正数都比负数________.3.用“>”、“<”或“=”填空:1________-2;-1________0;-3________-4.三、课堂练习1.判断下列各数是否存在?如果存在,把它们写出来.(1)最小的正整数:________,_________________;(2)最小的负整数:________,________________;(3)最大的正整数:________,_____________________;(4)最小的整数:________,______________________________.2.如图所示的是数a,b在数轴上的位置,下列判断正确的一项是()A.a<0B.a>1C.b>-1 D.b<-1四、课堂小结1.在数轴上表示的数大小是怎样排列的?2.怎样利用数轴比较两个负数的大小?五、课后作业教材第19页习题2.2第5,6题.教师引导学生通过结合有理数在数轴上的位置,发现正数、零和负数在数轴上的位置关系,确定了正数、零和负数的大小比较法则,并能通过数轴来比较任意两个非确定数的大小,尤其是要注意掌握比较两个负数的大小.。
2023七年级数学上册第4章图形的初步认识4.5最基本的图形——点和线1点和线教案(新版)华东师大版
![2023七年级数学上册第4章图形的初步认识4.5最基本的图形——点和线1点和线教案(新版)华东师大版](https://img.taocdn.com/s3/m/17f94604814d2b160b4e767f5acfa1c7ab00827c.png)
3. 随堂测试:
- 学生在随堂测试中能够准确回答问题和完成题目,表明他们对点和线的基本概念和性质有扎实的掌握。
- 学生能够运用所学的点和线的基本概念和性质解决实际问题,显示出良好的应用能力和解决问题的能力。
- 学生在测试中表现出良好的时间管理和答题策略,能够有效地完成题目。
4. 作业完成情况:
- 学生能够按时完成作业,作业质量符合要求,表明他们对课堂所学的内容有深入的理解和掌握。
- 学生在作业中能够正确运用点和线的基本概念和性质,解决实际问题,显示出良好的应用能力和解决问题的能力。
2. 对于难点内容,可以采取以下策略:
- 通过引导学生观察和分析实际问题,让学生亲身体验和感知点和线的性质,从而更好地理解和运用。
- 提供一些典型的例题和练习题,让学生通过动手操作和思考,逐步掌握解决实际问题的方法和技巧。
- 鼓励学生积极参与讨论和交流,引导学生运用逻辑推理和数学思维来解决问题,提高其解决问题的能力。
本节课的内容与学生的日常生活紧密相关,便于学生理解和接受。教学过程中,教师需要结合课本中的例题和练习题,让学生通过观察、思考、动手操作等方式,掌握点、线的基本概念和性质。同时,教师还需注意引导学生运用所学的知识解决实际问题,提高学生的数学应用能力。
在教学过程中,教师应注重培养学生的观察能力、思考能力和动手操作能力。通过本节课的学习,学生应能掌握点、线的基本概念和性质,并能在实际问题中运用这些知识。
设计课堂互动环节,提高学生学习点和线的积极性和主动性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入点和线的学习状态。
2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册
![2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/f0959f6e30126edb6f1aff00bed5b9f3f90f72ab.png)
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
华东师大版七年级上册数学课件——2.1 有理数(共22张PPT)
![华东师大版七年级上册数学课件——2.1 有理数(共22张PPT)](https://img.taocdn.com/s3/m/2453a5586529647d2628522f.png)
3.某化肥厂计划每月生产化肥500t,一月份实际生产化肥 450 t,二月份实际生产化肥510 t,三月份实际生产化肥 600 t,请写出每月超额完成计划的吨数.
4.如果海平面的高度为0m,一潜水艇在海平面下40m处航 行,一条鲨鱼在潜水艇上方10m处游动,试用正数和负数 分别表示潜水艇和鲨鱼的高度.
正整数:{
…}
负整数:{
…}
正分数:{
…}
分数:{
…}
自然数:{
…}
探究点二 用正数和负数表示具有相反意义的量
例2 (1)一个月内,小明体重增加2 kg,小华体重减少 1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况 是: 美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7.5%.
支出、后退、低于等规定为负的.正的量就用小学里学过的数表
示,有时也在它前面放上一个“+”(读作正)号,如前面的5、
7、50;负的量用小学学过的数前面放上“—”(读作负)号来
表示,如上面的-3、-8、-47.
合作探究 达成目标
活动二:阅读教材,思考:什么样的数是正数?负数呢?0是正
数吗?0是负数吗?什么样的数是有理数?如何对有理数进行分
第二章 有理数
2.1 有理数 第1课时 正数和负数
创设情景
为了表示温度的零上与零下、产量的增长与下降、 商品的涨价与降价,又需要产生什么数?
学习目标:
1.感受引入正数与负数的必要性. 2.会判断一个数是正数还是负数. 3.会用正数和负数表示具有相反意义的量.
新版华东师大版七年级上册数学教案附教学计划
![新版华东师大版七年级上册数学教案附教学计划](https://img.taocdn.com/s3/m/67d4bc8c7e192279168884868762caaedc33ba74.png)
新版华东师大版七年级上册数学教案附教学计划一、内容概览数与代数:涵盖有理数的概念与运算、整式的运算、一元一次方程与不等式等基础知识,旨在帮助学生掌握基本的数学运算和代数技巧。
几何与空间:包括图形的认识与分类、图形的性质与证明、空间与角度等知识点,通过直观操作和推理证明,帮助学生建立空间观念和几何直觉。
函数与概率:引入函数的基本概念,初步探讨概率的计算与应用,培养学生的数据分析和预测能力。
实际应用问题:结合生活中的实际问题,如日常生活中的计数、购物计算、行程规划等,培养学生的数学应用意识和解决实际问题的能力。
本书教案附带了详细的教学计划,包括教学目标、教学重点、教学难点、教学方法、教学过程、作业布置等环节,旨在帮助教师有序地进行课堂教学,确保教学质量和效果。
通过本书的学习,学生将掌握数学基础知识,培养逻辑思维能力和解决问题的能力,为未来的学习和生活打下坚实的基础。
1. 简述新版华东师大版七年级上册数学教材的特点。
新版华东师大版七年级上册数学教材在设计和内容上体现了多方面的特点,彰显了其先进性和实用性。
该教材注重数学知识的系统性和连贯性,确保学生在学习的过程中能够逐步建立起坚实的数学基础。
教材内容的呈现方式富有创新性和时代感,通过图文并茂的方式,结合生动的实例和情境,激发学生的学习兴趣和探究欲望。
新版教材还注重培养学生的实践能力和问题解决能力,通过丰富的实践活动和探究式学习,让学生在实践中掌握数学知识,提高数学素养。
系统性强:教材遵循学生的认知规律,逐步展开数学知识体系,确保学生能够在学习过程中逐步掌握数学的精髓。
内容新颖:结合现代生活和社会热点,引入大量鲜活的实例和情境,使抽象的数学知识更加生动和具象化。
图文并茂:通过丰富的图表和插图,帮助学生更好地理解数学知识的内涵和外延。
注重实践:强调数学知识的实际应用,通过大量的实践活动和探究式学习,培养学生的实践能力和问题解决能力。
引导自主学习:注重培养学生的自主学习意识,鼓励学生主动探索、发现问题和解决问题。
1.1 有理数的引入 课件(共40张PPT)华东师大版(2024)数学七年级上册
![1.1 有理数的引入 课件(共40张PPT)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/789b7117ce84b9d528ea81c758f5f61fb73628b1.png)
2. 用正数、负数表示具有相反意义的量为了更好地区分这些具有相反意义的量,若我们把其中一种意义的量用正数表示,则与它具有相反意义的量就可以用负数表示 .
知1-讲
感悟新知
知1-讲
特别提醒用正数、负数表示具有相反意义的量时,一般地,向指定趋势变化用正数表示,向指定趋势的相反趋势变化用负数表示.
B
感悟新知
知4-讲
知识点
有理数的分类
4
1. 有理数的分类(1) 按定义分类 有理数
感悟新知
知4-讲
(2)按性质分类有理数
知4-讲
感悟新知
特别警示1. 不管按什么标准分类,最终都将有理数分为五类:正整数、 0、负整数、正分数、负分数.2. 正有理数都是正数,但正数不一定都是正有理数.
感悟新知
3. 有理数 整数和分数统称为有理数 .4. 部分常用的数的名称(1) 正整数: 大于 0 的整数; 负整数: 小于 0 的整数 .(2) 正分数: 形如 的数; 负分数: 形如 - 的数 . (m, n 都是正整数, n 不能被 m 整除)(3) 非负数: 正数和 0; 非正数: 负数和 0.
-5,6,45,0
感悟新知知5-讲源自知识点数集51. 定义 把一些数放在一起,就组成一个数的集合,简称数集 .2. 数集的两种常见形式
感悟新知
知5-讲
3. 拓展 两个数集的交叉部分即为两个数集的公共部分,如正数集和分数集的交叉部分为正分数集 .
知5-讲
感悟新知
特别解读若一个数的集合有无数个数,则表示这个数的集合时,除写题中给定的有限个数之外,必须加上省略号.
0 m
知1-练
感悟新知
(3)某地区的平均高度高于海平面 310 m,记作海拔高度+310 m,则海拔高度 -270 m 表示 __________________.
3.61 角 华东师大版(2024)数学七年级上册课件
![3.61 角 华东师大版(2024)数学七年级上册课件](https://img.taocdn.com/s3/m/e76a8f615627a5e9856a561252d380eb629423d4.png)
角的两边有公共端点,即顶点.
(2)角的大小与边的长短无关,只与构成角的两边张开的
幅度有关.
新知探究
知识点2 角的表示
角的表示:
B
1
α
C
A
∠BAC
A 或∠A
∠α
∠1
注意:必须把顶
注意:用数字或希腊字母表示角
点字母放在中间
时,一定要在图形中用角弧标出.
新知探究
知识点2 角的表示
例1 (1)用适当的方式分别表示图中的每个角.
知识点1 角的概念
角由两条具有公共端点的射线组成,两条射线的
公共端点是这个角的顶点.
两条射线 ——角的边
公共端点 ——角的顶点
新知探究
知识点1 角的概念
角也可以看成是由一条射线绕着它的端点旋转而成的.
终边
O
B
始边
A
如果射线OB继续旋转,还会形成什么角呢?
新知探究
知识点1 角的概念
一条射线绕它的端点旋转,当终边和始边成一条直线时,
4×30- ×30=115°
随堂练习
1.下列说法正确的是( D )
A.两条射线组成的图形叫作角
B.一条射线表示一个周角
C.直线是一个平角
D.角的大小与角的两边画出部分的长短无关
随堂练习
2.如图,从∠AOB的顶点引出两条射线OC,OD,图中
的角共有( C )
A.3个
B.4个
C.6个
D.7个
北
哈尔滨
借助量角器来量一下吧!
北京
上海
西安
福州
新知探究
知识点4 方向角
思考: 如图,是中国地图的简图.
第3章 图形的初步认识(教案)华东师大版(2024)数学七年级上册
![第3章 图形的初步认识(教案)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/e3fcbf805122aaea998fcc22bcd126fff7055df9.png)
第3章图形的初步认识3.1生活中的立体图形1.能从现实背景中抽象出立体图形;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球;3.认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.重点1.感受图形世界的丰富多彩;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球.难点认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.一、导入新课一幅幅精美的图片带领同学们一起神游大地,去领略祖国的美景.出示图片:北京天坛、故宫、鸟巢、水立方.千姿百态的建筑物美化了我们的生活,展示了建筑师的聪明才智,在这些实物中有没有大家熟悉的立体图形?二、探究新知1.我们生活中的很多物体都是立体的,而这些物体中有一部分是较有规则的,如:生活物体苹果、球天坛顶端塔顶粉笔盒笔筒类似图形球体圆锥棱锥棱柱圆柱2.常见的立体图形如下图:在上面的图形中:(1)图1所表示的立体图形是柱体(圆柱体);(2)图2所表示的立体图形是柱体(棱柱体);(3)图3所表示的立体图形是锥体(圆锥体);(4)图4所表示的立体图形是球体;(5)图5所表示的立体图形是锥体(棱锥体).3.多面体的概念:观察上图2,5与图1,3,4,它们有什么区别?小结:如上图2,5,围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.4.归纳总结:你能将这些立体图形进行分类吗?简单立体图形分类:立体图形{柱体{圆柱棱柱球体锥体{圆锥棱锥5.另外,棱柱有三棱柱、四棱柱、五棱柱、六棱柱……棱锥有三棱锥、四棱锥、五棱锥、六棱锥……三、课堂练习1.在下面四个物体中,最接近圆柱的是()2.下列图形中上面是一些具体的物体,下面是一些立体图形,试找出与上面立体图形对应的实物.四、课堂小结1.简单立体图形分类:立体图形{柱体{圆柱棱柱球体锥体{圆锥棱锥2.多面体的概念:围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.五、课后作业教材习题4.1第1~3题.本节课的教学应从具体的图像入手,引导学生从中抽象出立体图形,使学生经历从具体到抽象的思维过程.初步培养学生的抽象思维能力,通过对简单立体图形的分类,渗透分类思想,提高学生的识图能力,通过比较掌握图形的特征.3.2立体图形的视图3.2.1 由立体图形到视图1. 经历“从不同方向观察物体”的活动过程,发展空间观念与空间想象能力;2. 在观察的过程中,初步体会从不同方向观察同一个物体可能看到不一样的结果.重点1. 仔细观察物体,确定好物体的主视,左视,俯视方向;2. 如何确定物体的三视图.难点1. 根据立体图形和视图方向,画出立体图形的视图;2. 根据具体的立体图形分析图形的组成等.一、导入新课课件展示《题西林壁》:横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中. 苏东坡给我们描绘了一段庐山瑰丽的风景图.问题:1.从诗中可以看出,苏东坡从不同角度对庐山进行了观察,那他都从哪些角度对庐山进行了观察呢?2.诗中蕴含着什么道理,对我们有什么启发?【设计意图】通过诗词描述的形式展示一段风景,通过跨学科的方式,以苏东坡的一首《题西林壁》把同学们带入到一段如诗如画的境界中来,再从诗句中提炼出数学知识.这样,不但增强了学生的人文意识,还让学生感受到了数学中的“美”.二、探究新知(一)从不同方向观察立体图形有一个长方体如图:长方体有6个面,如果我们从上,下,左,右,前,后六个方向去观察,肯定可以确定它的形状和大小,而实际上从正面看与从后面看得到的是同一种图形.请同学们说说,你看到到的是什么图形,边长各是多少?(二)判断由立体图形得到的视图13. ( 2024·江汉区模拟)已知一个几何体如图所示,那么它的左视图是()A B C D9. ( 2024·二道区校级四模)下列几何体中,其主视图和俯视图完全相同的是()A B C D三、课堂练习1.2024年2月17日,全球首架大型客机从上海起飞参加第九届新加坡国际航空航天与防务展.商飞是中国首款按照国际通行适航标准自行研制、具备自主知识产权的喷气式中程干线客机.如图是大型客机的实物图,其俯视图是( A )A BC D2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是( B )A B C D3.( 2019秋·镇平县期末)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A B C D四、课堂小结从不同方向观察同一个物体,所看到的结果是不同的,从正面看到的图形成为主视图,从左面看到的图形成为左视图,从上面看到的图形成为俯视图五、课后作业教材第129页习题4.2本节课对学生的抽象思维能力发展比较重要,是学生由形象思维到抽象思维的过度.通过由立体图形到试图的学习过程,是学生明确从不同方向看物体,可能会得到不同的图形,通过观察与归纳能画出不同方向看到的图形,发展观察思维能力3.2.2 由视图到立体图形1. 能画出简单立体图形的三视图;2. 使学生能利用三视图来描述出实际的立体图形.重点1. 仔细观察物体的主视,左视,俯视图,根据三视图描述出立体图形;2. 如何确定物体的三视图.难点1. 如何根据三视图,画出正确的立体图形;2. 根据三视图对立体图形做相关计算(面积,体积,个数等).一、导入新课健康饮水从“凉白开”开始,同学们用来烧开水的水壶是啥样子的呢,请同学们描述一下.下面看看老是找到几种常见的电热水壶的样子,看看跟同学们加的是否一样呢?二、探求新知(一)通过从不同方向观察物体,抽象出具体的物体形象.是不是各种形状的都有呀,请同学们观察下面的电水壶的三种视图,试着想象一下这个电水壶是什么样子的?请同学们分别描述一下你看到的样子:________.(二)通过观察三视图,确定物体具体形象.三、课堂练习1. 如图是一个立体图形的三视图,那么这个立体图形是()A B C D2.如图为某几何体的三种视图,这个几何体可以是()A B C D3.下面两幅图是由5个小正方体搭成的几何体的主视图与俯视图,则搭成这个几何体的左视图为()A B C D4.用若干个相同的小正方体组成的几何体的俯视圈和左视图如困所示,则组成该几何体所用的正方体最少是()A.5个B.6个C.7个D.8个四、课堂小结通过观察物体的三视图(包括三视图所标注的数据等),抽象出具体的立体图形并描述出来..能通过分析三视图,对立体图形进行相关计算.五、课后作业教材第129页习题4.2本节课让然关注学生的抽象思维能力发展,是学生由形象思维到抽象思维的过度.通过由观察三个方向的视图,来确定立体图形是本节课的重点,开始可以由简单的,学生熟悉的图形入手,让学生通过观察和想象,描述具体的立体图形,亦可以让学生通过实物演示得出结论,然后总结规律和方法,逐步过渡到能直接抽象出立体图形.3.3立体图形的表面展开图1.让学生通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一步认识立体图形与平面图形的关系;2.会判断所给定的平面图形能否折成立体图形;3.给出一些立体图形的展开图,能说出相应立体图形的名称;4.会判断给定的平面图形是否为某立体图形的展开图,并会把一个简单的立体图形展开成平面图形.重点根据立体图形研究其展开图和根据展开图判别立体图形.难点研究一个简单立体图形展开图.一、导入新课1.观察生活的周围,就会发现物体的形状千姿百态……,这其中蕴含着许多图形的知识.2.当我们进行包装时,它们的展开图是怎样的呢?下面让我们一起来探究.二、探究新知1.圆柱体是我们所熟悉的图形,那么圆柱体的侧面展开图是什么图形呢?请你画出来.2.“折一折”:如下图是多面体的展开图,你能说出这些多面体的名称吗?3.正方体有哪几种展开图,你能画出来吗?学生以小组为单位展开探究,将结果画在黑板上,教师及时予以总结.正方体展开图如下图:根据图形做出归纳小结:第一行是1-4-1组合;第二行第1~3个是2-3-1组合;第二行最后两个分别是2-2-2和3-3组合.三、课堂练习1.如图,()不是正方体的展开图.2.如图,下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.3.在图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有()A.7种B.4种C.3种D.2种四、课堂小结通过本节课的学习,你有哪些收获?还有哪些疑惑?五、课后作业教材第131~132页练习第1,2,3题.本节课主要内容是立体图形的平面展开图,学习本节课内容需要学生有一定的空间想象能力,所以在实际教学中,应多从具体的实物入手,让学生通过动手操作来发现规律并及时进行总结,然后再通过抽象的想象来解决问题,给学生一个适应的过程.3.4平面图形1.知识目标:让学生经历观察——画图——认知——设计的过程,了解生活中的圆和多边形;通过画图——分析——归纳,了解多边形与三角形之间的关系,将一个多边形分割成三角形.2.能力目标:从具体图形中,通过抽象、概括,画出它的表面形状,把一个多边形进行分割转化成三角形,从中渗透数学转化思想,并锻炼学生的动手操作能力.重点让学生发现生活中的圆、多边形及其给生活带来的美和享受,进而认识多边形,会将一个多边形分割成三角形.难点多边形分割成三角形的方法.一、导入新课1.观察下面所示的各物体,你能画出它们表面轮廓线的形状吗?2.虽然我们所处的世界是一个立体的世界,是一个三维的世界,但通过前面的学习,我们也知道,立体图形是由平面图形所组成的,我们也知道,其实有时我们观察物体,都是从其表面开始的:生活物体硬币镜框塔的横截面三角旗扇子表面图形圆长方形六边形三角形扇形二、探究新知1.其实,生活中的物体,它们的表面都是有一定形状的平面图形,如:2.观察这些图形,你能发现它们是怎样构成的吗?概括:(1)圆是由曲线围成的封闭图形;(2)多边形是由线段围成的封闭图形.按照组成多边形的边数,多边形可分为三角形、四边形、五边形、六边形……另外,多边形也可分为凹多边形与凸多边形.3.我们都知道,每个多边形都可以看成是由三角形组成的,即三角形是最基本的图形,每一个多边形都可以分割成若干个三角形.如:从上图中,可以发现三角形的个数刚好与边数有一定的规律:三角形的个数=边数-2三、课堂练习1.下列图形中,是四边形的是()A.①③B.②③④C.③④D.①②④⑤2.如图,每一个多边形都可以按如图的方法分割成若干个三角形.按如图所示的方法,十五边形可以分成________个三角形.四、课堂小结1.(1)圆是由曲线围成的封闭图形;(2)多边形是由线段围成的封闭图形.2.在多边形中,三角形是最基本的图形,每一个多边形都可以分割成若干个三角形.五、课后作业教材第136页练习第1,2题.1.在本节课的教学中,从数学的具体图形入手,让学生通过观察与思考,得出结论.将多边形分割成若干个三角形是本节课教学的难点,教师要引导学生动手操作,总结出规律,应该鼓励学生采用不同的分割方法.2.本节课能抓住学生的爱好和心理需求,在轻松、愉快的气氛中让学生学到数学知识,并能把数学知识同生活实际联系起来.3.本节课是在学生认识多边形和圆,并认识到它们可以组成各种优美的图案的基础上发散学生的思维能力,培养学生大胆想象的能力、创新能力和动手能力.让学生真正参与了教学,同时学生也得到了展示自己的机会和舞台.3.5最基本的图形——点和线3.5.1点和线1.使学生理解任何图形都是由点和线组成的,体会线段、射线、直线的形象,正确区分这三个图形,掌握它们的表示方法.2.感受、体会、理解“两点之间,线段最短”以及“两点确定一条直线”,掌握两点间距离的概念.重点线段、射线、直线的定义以及表示方法,熟悉简单的几何语言.难点线段、射线、直线的区别与联系.一、导入新课1.如果你站在一座足够高的楼上,望着楼底下的某一个人,那么你将能见到什么?2.黑夜中用聚光灯照射远处的墙壁,我们会看到什么?3.如果你把一条两头都打结的绳子拉直了,你将能发现什么?二、探究新知1.从情景中,我们可以知道,你能看到的将是一个点,而这个点就表示着这个人或聚光灯照射处的位置,因此,可以概括:点通常表示一个物体的位置.点图形:·A表示:点A(A点).2.日常生活中,一根拉紧的绳子、一根竹竿、人行横道线都给我们以线段的形象.线段图形:表示:线段AB线段d3.利用线段的形象,我们顺利地引出了射线与直线.概括:把线段向一方无限延伸所形成的图形叫做射线;把线段向两方无限延伸所形成的图形叫做直线.射线图形:表示:射线AB射线d直线图形:表示:直线AB直线d4.小结:对于线段、射线、直线,应该进行综合的比较:线段射线直线图形表示线段AB 射线AB 直线AB几个端点2个1个0个能否延伸不能向一边无限延伸向两边无限延伸能否度量能不能不能5.试一试.(1)线段公理观察下图,从A地到B地有三条路径,你会选择哪一条?从上边的图中,我们很容易发现:如果从A地到B地,走直路的路程是最短的,即在这些把A,B连结起来的线中,线段AB是最短的.概括:两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.(2)直线的公理我们要把一根木条钉紧,只用一个钉子,行吗?那么至少需要钉几个钉子才能将木条钉紧?由生活中的经验,我们都知道,一个是不够的,至少需要两个钉子才能将木条钉紧.概括:经过两点有一条直线,并且只有一条直线,即两点确定一条直线.三、课堂练习1.四条直线两两相交,其交点个数最多有()A.3个B.4个C.5个D.6个2.如图所示,共有线段________条;共有射线________条;共有直线________条.3.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明______________________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明________________________.四、课堂小结1.线段、射线、直线之间的区别.2.两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.3.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.五、课后作业教材习题4.5第1,2题.本节课是学生学习几何的入门课,培养学生的几何意识对于本节课来讲就很重要,教师可以从具体形象的实际例子入手,使学生经历从具体到抽象的思维过程,从而培养学生的几何意识.抽象是数学的一种基本思想和基本方法,让学生从实际生活的物体、图形中抽象得到点、线、面、体等数学概念.概括事物的数学属性,引导学生从数学的角度去看待实际物体,提高学生的抽象思维能力,引导学生的思维习惯.3.5.2线段的长短比较1.使学生分别掌握测量与重叠来比较线段大小的方法;2.使学生充分理解两条线段大小比较所隐含的意义,能从“量”与“形”上进行转化;3.线段中点的性质及其简单运算.重点线段大小比较的方法及其原理.难点如何引导学生从“数量”的角度引入到从“形”的角度来分析两条线段的大小比较.一、导入新课1.如果有两个同学在比较高矮,你们一般是怎么做的?解决方法:让两个人站在一起来比较;分别量出这两个同学的身高.2.如何比较数学书长和宽的长度大小?你能够想到什么方法? 解决办法:可以拿两本相同的数学书,将长和宽重叠进行比较;分别测量长和宽的长度;用圆规截取书本的宽度,再和长相比较.二、探究新知1.从上面的探究总结,怎样比较下图中两条线段的长短?小结:从上面的引例,我们很容易知道,比较两条线段的长短有两种方法: (1)用刻度尺度量;(2)利用圆规进行移动.如图有线段AB 与线段CD ,且进行了以上的有关比较方法.如果通过比较可知:线段AB 比线段CD 短,则表示为: AB<CD(或CD>AB)2.如图,MN 是已知线段,你能用直尺和圆规准确地画一条与MN 相等的线段吗? 小结:我们可以先画射线AB ,然后用圆规量出线段MN 的长,再在射线AB 上截取AC =MN ,那么,AC 就是所要画的线段.3.在一张半透明纸上画一条线段AB ,将线段AB 折叠,使点A 和点B 重合,折痕与线段AB 的交点为C ,测量AC 、BC 和AB 的长度,你有什么发现?小结:AC =CB =12AB ,AC +CB =AB归纳:把一条线段分成两条相等线段的点,叫做这条线段的中点. 如上图,点C 是线段AB 的中点. 三、课堂练习1.如图①,AD =AB -________=AC +________.2.如图②,下列说法不能判断点C 是线段的中点的是( )A .AC =CB B .AB =2AC C .AC +CB =ABD .CB =12AB3.在直线m 上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长.四、课堂小结1.比较两条线段的长短有两种方法: (1)用刻度尺度量;(2)利用圆规进行移动.2.把一条线段分成两条相等线段的点,叫做这条线段的中点. 如下图,点C 是线段AB 的中点.则AC =CB =12AB ,AC +CB =AB.五、课后作业教材习题4.5第4,5题.在本节课的安排上应逐渐在几何中渗透几何语言的描述,并应注意到其语言的规范性.在知识上应对本节课内容上有所拓展,而不能局限于教材,要引导学生来发现问题,并学会找到解决问题的方法.3.6角3.6.1角1.使学生通过实际生活中对角的认识,建立起几何中角的概念,并能掌握角的两个定义;2.使学生掌握角的各种表示方法;3.使学生掌握平角、周角和直角的概念;4.掌握角的单位换算,会进行计算;5.会用角准确地表示方向.重点角的概念及两个定义和角的表示方法.难点角的单位换算和用角准确地表示方向.一、导入新课观察下面的图形,你发现有什么共同的特点吗?这些图形都给了我们角的形象.二、探究新知1.根据你对上面角的观察,你能说说什么样的图形叫做角?小结:角的定义:(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是有一条射线绕着它的端点旋转而成的图形.2.如何表示一个角呢?小结:角的表示方法:有以下几种表示方法(如图所示):3.平角和周角在上面的旋转过程中,有两种特殊的情况:第一种是绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角;第二种是绕着端点旋转到终边和始边重合,这时所成的角叫做周角.4.角的度量如何使用量角器测量角的大小?从量角器中我们已经知道如果把周角分成360等份,每一份就是一度,记作1°,但是一个角并不正好是整数度数,与长度单位一样,考虑用更小一些的单位.把一度分成60等份,每一份就是1分,记作1′;而把一分再分成60等份,每一份就是1秒,记作1″.这样,角的度量单位度、分、秒有如下关系:1周角=360°1平角=180°1°=60′1′=60″5.方位角还记得下图的八个方向吗?但在日常生活中,八个方向是不够用的,这只是一种大致的方向.如果要准确地表示方向,那就要借用角度的表示方式.三、课堂练习1.计算:(1)180°-(35°18′5″+62°56′15″);(2)180°-79°36′20″;(3)73°45′55″+61°41′37″.2.写出图中所有小于平角的角.四、课堂小结1.角的定义(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是由一条射线绕着它的端点旋转而成的图形.2.一条射线绕着端点旋转到角的终边和始边成一条直线,这时所成的角叫做平角;绕着端点旋转到终边和始边重合,这时所成的角叫做周角.3.角的单位换算1周角=360°1平角=180°1°=60′1′=60″4.我们可以借用角来表示方向.五、课后作业教材第148页练习第1,2题.本节课的教学应该从学生所熟悉的图形入手,结合学生小学已经掌握的关于角的知识来逐步引入本节课内容,然后从静态和动态两个角度给角下定义.在讲解时,可利用相关的教具进行直观的演示,以利于学生理解.角的表示方法是本节课的重点,教师一定要讲清楚每种方法怎样表示以及应该注意的问题,使学生能够熟练掌握.角的度量单位的换算是本节课的难点,教师可提醒学生仿照时间的换算来进行记忆.在进行换算时,教师要先进行示范讲解,将每一步的过程演示清楚,然后可适当补充练习,使学生掌握.3.6.2角的比较和运算1.了解角的大小比较的方法;2.掌握角的度数的运算和角的运算;3.掌握角的平分线及其应用;4.会用圆规和直尺画一个角等于已知角.重点1.角的度数的运算和角的运算;2.角的平分线及其应用.难点1.角的度数的运算;2.角的平分线的应用.一、导入新课1.比较两条线段的长短有哪些方法?小结:测量法;叠合法.2.我们如何比较两个角的大小呢?二、探究新知1.角的大小比较(1)出示教具,探索讨论:观察以下三个角,你能说出它们的大小吗?(2)学生提出方法,教师小结: ①叠合法(课件)把一个角放到另一个角上,使它们的顶点重合,其中一边也重合,并使两个角的另一边都在这一条边的同侧.②度量法用量角器分别量出角的度数,再加以比较. 2.角的和差关系(1)观察下图中有哪几个角,把它写下来:________________________________________.(2)根据上图中角之间的关系填空: ∠AOB =________=________; ∠BOC =________=________; ∠AOC ==________=________. 3.作一个角等于已知角在前面的学习中,我们已经知道如何作一条线段等于已知线段,同样,我们也可以利用圆规来作一个角等于已知角.4.角平分线(1)请同学们把一个角的两边对折,让两边互相重合.这时,我们将看到这个角的中间有一条射线,请你测量所分成的两个角的大小,你有什么发现?(2)小结:这条射线将这个角分成两个相等的角,这时,我们把这条射线称为这个角的角平分线.归纳:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图,已知OC 平分∠AOB ,则有:∠AOC =∠BOC =12 ∠AOB ,∠AOB =2∠AOC=2∠BOC.三、课堂练习。
华东师大版七年级数学上册课后习题答案
![华东师大版七年级数学上册课后习题答案](https://img.taocdn.com/s3/m/011aaed20029bd64793e2c3d.png)
第 2 章 有理数 2.1 有理数华东师大版数学七年级上册课后习题答案1、正数和负数练习 1. 略2. 8844 表示海平面以上 8844 米,-155 表示海平面以下 155 米。
海平面的高度用 0(米)表示。
3. 正数:+6,54, 22 ,0.0017负数:-21,-3.14,-9994. 不对,因为一个数不是正数,还可能是 0,而 0 不是负数。
2、有理数练习1. 举例略,这些数都是有理数。
2. 只有一个,是 0。
习题 2.11. 整数:1,-789,325,0,-20;分数:- 0.10 510.10,100.1,- 5% ; ,, 8正数:1 5 ; ,,325,10.10,100.1 8负数:-0.10,-789,-20,-5%。
, 2. 本题是开放性问题,答案不唯一,例如:重叠部分填:1, 2,3…(注意要添上省略号);左圈内填:0.1,0.2,0.3;右圈内填 0,-1,-2。
两个圈的重叠部分表示正整数的集合。
3. 按照第 2 题的不同填法本题有不同的答案。
4. (1)1,-1,1;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-1,-1,-1,1。
(2)9,-10,11;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-10,-100,-200,201。
(3) 1,- 1 1 ;第 10 个数,第 100 个数,第 200 个数,8 9 10 11 1 1第 201 个数分别为 , , ,- 。
10 100 200 2012.2 数轴 1. 数轴练习1(1)正确,符合数轴的定义;(2) 不正确,单位长度不一致; (3) 不正确,负数标注错误。
2. -3 位于原点左边,距离原点 3 个单位长度; 4.2 位于原点右边,距离原点 4.2 个单位长度; -1 位于原点左边,距离原点 1 个单位长度;1位于原点右边,距离原点 12 2个单位长度。
华东师大版七年级上册数学各章知识点总结
![华东师大版七年级上册数学各章知识点总结](https://img.taocdn.com/s3/m/762b336069dc5022abea00a4.png)
第1章 走进数学世界1.在n ·n 的正方形方格中,有1²+2²+3²+…2.幻方: 三阶幻方:四阶幻方: 第2章 有理数2.1.1正数和负数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)☀注意:零既不是正数,也不是负数.2.1.2有理数分类:方法1:整、分法方法2:正、零、负法16 2 313 5 11 108 9 7 612 414 15 1 有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.2.2.1数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.2.2.2在数轴上比较数的大小方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)☀注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。
负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较除(2.2.2)在数轴上比较数的大小的方法比较两个负数的大小的方法:两个负数,绝对值大的反而小.2.6.1有理数的加法法则法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)☀注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.2.6.2有理数加法的运算律加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.2.9.1有理数的乘法法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)2.9.2有理数乘法的运算律乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.☀注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在aⁿ中,a叫做底数,n叫做指数,aⁿ读作a的n次方,aⁿ看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10ⁿ的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.☀注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.☀注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10ⁿ看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.☀注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减3.1.1用字母表示数☀注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.3.1.2代数式定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.3.1.3列代数式列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.3.3.1单项式定义:由数与字母的乘积组成的代数式叫做单项式.☀注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.3.3.2多项式定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.3.3.3升幂排列与降幂排列定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.☀注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.3.4.1同类项定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.3.4.2合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.3.4.3去括号与添括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.☀注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.3.4.4整式的加减运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.☀注意:圆柱、球体等含有曲面的立体图形不称为多面体.4.2.1由立体图形到视图视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.4.2.2由视图到立体图形☀注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.4.5.1点和线点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.4.5.2线段的长短比较比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.☀注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)4.6.1角角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角.角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)☀注意:描述物体运动的方向时,要以正北、正南方向为基准.4.6.2角的比较和运算题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.6.3余角和补角余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.☀注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线5.1.1对顶角对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角.对顶角的性质:对顶角相等.5.1.2垂线垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.5.1.3同位角、内错角、同旁内角同位角的定义:内错角的定义:同旁内角的定义:5.2.1平行线平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”. 两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.5.2.2平行线的判定判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行.5.2.3平行线的性质性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。
第2章 整式的加减(教案)华东师大版(2024)数学七年级上册
![第2章 整式的加减(教案)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/40b62cec68dc5022aaea998fcc22bcd126ff42f9.png)
第2章 整式的加减 2.1 列代数式1.使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系; 2.初步培养学生观察、分析及抽象思维的能力; 3.学生能熟练地根据题意列出相应的代数式; 4.能用代数式表示一些有特别含义的数.重点如何根据题意列出正确的代数式. 难点能处理表示特别意义的数的代数式.一、导入新课1.从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?2.若用s 表示路程,t 表示时间,v 表示速度,你能用s 与t 表示v 吗?3.一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少? (用l 表示周长,则l =4a 厘米;用S 表示面积,则S =a 2平方厘米) 二、探究新知 1.用字母表示数从这些例子,我们可以体会到,用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.我们在书写含有字母的式子的时候要注意什么? ①代数式中出现的乘号,通常写作“·”或省略不写,如5×n ,常写作5·n 或5n ; ②数字与字母相乘时,数字写在字母前面,如5n ,一般不写作n5;③除法运算写成分数形式,如1500÷t 通常写作1500t (t ≠0).2.代数式代数式的定义:在前面的研究中出现的如16n ,s 5 ,2a +32 b 2,a ,b ,a +b ,ab ,a 2,(a+b)2,15,5 050,n (n +1)2 ,5x ,st 等式子,它们都是由数和字母、字母和字母用运算符号连接所形成的式子,我们称它们为代数式.注意:单独的一个数或一个字母也是代数式.3.列代数式:通过前面的探究,我们知道可以用字母来表示数.在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列代数式,使问题变得简洁,更具有一般性.三、课堂练习1.设甲数为a ,乙数为b ,用代数式表示:(1)甲乙两数的和的2倍________;(2)甲、乙两数的平方和________;(3)甲乙两数的和与甲乙两数的差的积____________;(4)甲、乙两数和的平方________.2.我们知道:23 =2×10+3;865=8×100+6×10+5=8×102+6×10+5.类似地:3725=________×103+7×________+2×10+5×________.3.某三位数的个位数字为a,十位数字为b,百位数字为c,则此三位数可表示为________.四、课堂小结1.代数式的定义:由数和字母、字母和字母用运算符号连接所形成的式子,我们称它们为代数式.注意:单独的一个数或一个字母也是代数式.2.列代数式时应注意弄清楚数量之间的关系,正确列出代数式,还要注意其语言的顺序,按先后顺序来列出正确的代数式,并结合规范的代数式表达方式.五、课后作业教材习题3.1第1,4,5,6题.本节课是学生由具体的数之间的数量关系到用字母表示数字的过渡,让学生体会由具体思维到抽象思维的过渡,故在设计其教学过程中,注意所选例题及练习题由易到难,循序渐进,使学生逐步掌握好这一内容,为今后的学习打下一个良好的基础,同时也使学生的抽象思维能力得到初步培养.2.2代数式的值1.使学生掌握代数式的值的概念,并会求代数式的值;2.培养学生准确地运算能力,并适当地渗透对应的思想.重点当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点正确地求出代数式的值.一、导入新课1.某礼堂第1排有18个座位,往后每排比前一排多2个座位,问:(1)第n排有多少个座位?(用含n的代数式表示)(2)第10排、第15排、第23排各有多少个座位?2.学生以小组为单位进行探索,得出结果:(1)第n排有18+2(n-1)个座位;(2)第10排,即当n=10时,18+2(n-1)=18+2×9=36;第15排,即当n=15时,18+2(n-1)=18+2×14=46;第23排,即当n=23时,18+2(n-1)=18+2×22=62.二、探究新知由前面的探究可知:当n 取不同的数值时,代数式18+2(n -1)计算得出的结果不同,以上结果可以说明:当n =10时,代数式18+2(n -1)的值是36.一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算出的结果,叫做代数式的值.小结:(1)求代数式的值的步骤:①代入,将字母所取的值代入代数式中;②计算,按照代数式指明的运算进行计算,得出结果. (2)注意的几个问题:①由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母取值,把“当……时”写出来;②如果字母的值是负数、分数,代入时应加上括号; ③代数式中省略了乘号时,代入数值以后必须添上乘号. 三、课堂练习1.当x =12 时,代数式12 (x 2+1)的值是什么?2.当a =-1,b =4时,求代数式a2+3(b -1)的值.3.已知a ,b 互为相反数,c ,d 互为倒数,m 的相反数是-7,求-m 2-4cd +a +bm的值.四、课堂小结 1.代数式的定义一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.2.求代数式的值的步骤及应该注意的问题. 五、课后作业 教材习题3.2本节课的重点是代数式的值的概念,难点是如何准确求出代数式的值.前一节刚学习了列代数式,本节可以从列代数式引入,在引出概念时,教材给出字母的一个值,求代数式的值.我觉得不能让学生体验到代数式的值的不唯一,应该自己根据问题的背景,给出代数式中的字母的几个值,求出相应代数式的值.由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想.2.3 整式 2.3.1 单项式1.要求学生能充分理解单项式的特征,能分辨一个代数式是不是单项式; 2.能写出一个单项式的系数与次数; 3.能根据条件,写出符合条件的单项式.重点能熟练写出一个单项式的次数与系数. 难点能逆向写出符合条件的单项式.一、导入新课1.什么样的式子是代数式? 2.列代数式:(1)若正方形的边长为a ,则正方形的面积是________;(2)若三角形一边长为a ,并且这条边上的高为h ,则这个三角形的面积为________; (3)若m 表示一个有理数,则它的相反数是________;(4)小明从每月的零花钱中拿出x 元钱捐给希望工程,一年下来小明共捐款________元. 二、探究新知 1.单项式的概念观察思考:前面通过探究得到的代数式a 2,12 ah ,-m ,12x.它们的共同的特点是什么?小结:上面列出的代数式是由数字与字母的乘积组成的代数式,这样的代数式叫做单项式.注意:(1)单项式是只有数字与字母的积; (2)单独的一个数或一个字母也是单项式. 2.单项式的系数和次数既然单项式是由数字与字母组成的,为了方便,我们有: (1)一个单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率π是常数;(即π是数字而不是字母); (2)当一个单项式的系数是1或-1时,“1”通常省略; (3)单项式的系数是带分数时,通常写成假分数. 三、课堂练习1.在①m ,②-23 a ,③16 x 2y ,④x +y 2 ,⑤abc ,⑥3a +b ,⑦0中,是单项式的有________________(只填序号).2.单项式-2x 2y3的系数是________,次数是________.3.若单项式(3m -2)xy n -1的系数是2,次数是4,则n 2-3m =________. 四、课堂小结1.单项式的定义:由数字与字母的乘积组成的代数式,这样的代数式叫做单项式. 注意:(1)单项式是只有数字与字母的积; (2)单独的一个数或一个字母也是单项式. 2.单项式的系数和次数:(1)一个单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率π是常数;(即π是数字而不是字母)(2)当一个单项式的系数是1或-1时,“1”通常省略;(3)单项式的系数是带分数时,通常写成假分数.五、课后作业教材习题3.3第1题.本节课的主要内容是在学习代数式中的单项式,学习分辨一个代数式是否是单项式,所以要掌握单项式的主要特征.在掌握此概念的基础上,理解单项式的系数与次数,要特别注意单项式的次数的教学,可以从正反两个方面进行训练,加深学生对单项式的次数的理解.2.3.2多项式2.3.3升幂排列与降幂排列1.要求学生能充分认识单项式与多项式的区别;2.能掌握多项式的有关概念,包括多项式的项、项数、次数、最高次项等;3.能将一个多项式按某个字母的升幂排列和降幂排列.重点多项式的相关概念.难点多项式的次数.一、导入新课1.什么样的式子是单项式?单项式的系数和次数分别是什么?2.列代数式:(1)若三角形的三条边长分别为a,b,c,则三角形的周长是________;(2)某班有男生x人,女生21人,则这个班的学生一共有________人;(3)如图,阴影部分的面积为________.二、探究新知1.多项式的有关概念(1)观察思考:上面探究的这些式子是单项式吗?a+b+c x+212ar-πr2(2)它们都有什么共同特点?它们与单项式有什么联系和区别?由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的表达能力,通过对特征的讲述,由学生自己归纳出多项式的定义,教师可给予适当的提示及补充.小结:(1)多项式的概念:上面列出的代数式都是由几个单项式相加而成的,几个单项式的和叫做多项式.(2)多项式的项:多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.(3)多项式的次数:多项式中次数最高项的次数,叫做多项式的次数.(4)整式的概念:单项式和多项式统称整式.注意:(1)多项式是由单项式构成的,它是几个单项式的和;(2)多项式的次数不是所有项的次数之和;(3)多项式的每一项都包括它前面的符号.教师介绍多项式的项和次数以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.2.升幂排列与降幂排列(1)任意交换多项式x2+x+1中各项的位置,可以得到哪些不同的排列方式?在这些排列方式中,你认为哪几种比较有规律?(2)学生自主探究,得出结论;任意交换多项式x2+x+1中各项的位置,可以得到6种不同的排列方式,在这些排列方式中,“x2+x+1”与“1+x+x2”的排列是比较有规律的,那么,它们有什么规律呢?(3)学生观察思考后回答.教师小结:我们可以发现:这两种排列方式有一个共同特点:x的指数呈现一种逐渐变小或逐渐变大的排列顺序.从上面的两种整齐的写法中,我们发现:除了美观之外,还会为今后的计算带来方便,因而我们常常把一个多项式各项的位置按照其中一字母的指数大小顺序来排列.(4)升幂排列与降幂排列的概念:把一个多项式按照同一个字母的指数从大到小的顺序排列,叫做这个多项式按此字母的降幂排列;把一个多项式按照同一个字母的指数从小到大的顺序排列,叫做这个多项式按此字母的升幂排列.三、课堂练习1.填空题:(1)下列整式:-25x2,12(a+b)c,3xy,0,2a-33,-5a2+a中,是单项式的有________________________________________________________________________,是多项式的有________________________________________________________________________.(2)多项式-53a3b-7ab-6ab4+1是________次________项式,次数最高项的系数是________.(3)-54a2b-43ab+1是________次________项式,其中三次项系数是________,二次项为________,常数项为________.2.指出下列多项式的次数与项: (1)2xy 3 -14; (2)a 2+2a 2b +ab 2-b 2.3.把多项式3xy -4x 2y 2+x 3-5y 3重新排列: (1)按x 的升幂排列________________________________________________________________________ (2)按y 的升幂排列________________________________________________________________________ 四、课堂小结1.多项式的相关概念及应该注意的问题. 2.升幂排列与降幂排列及应该注意的问题. 五、课后作业教材第98页练习,第100页练习1,2题.本节课主要内容是多项式的相关概念和升幂排列与降幂排列,首先以实际的例子引入多项式,主要让学生区别多项式与单项式,找到多项式的特征,弄清多项式与单项式的联系与区别;接着教师指出多项式的项和次数,这里要特别注意多项式的次数与单项式次数的区别,避免学生混淆.教师通过具体的实例,让学生体会什么是升幂排列与降幂排列,这里主要提醒学生注意在移动多项式的项的时候,要连同它的符号一起移动.2.4整式的加减2.4.1同类项2.4.2合并同类项1.使学生能掌握同类项的概念,并能在多项式中找到同类项;2.能逆向运用同类项的概念,确定某些指数的值;3.理解合并同类项的法则并能熟练运用;4.能在合并同类项的基础上,进行简单的化简求值的运算.重点作为同类项必须满足的条件,会合并同类项.难点同类项概念的逆向运用.一、导入新课1.指出多项式3x2y-4xy2-3+5x2y+2xy2+5的项有哪些.学生观察后回答:这个多项式的项中有3x2y,-4xy2,-3,5x2y,2xy2,5.2.我们常常把具有相同特征的事物归为一类.你能按照一定的标准,将上面的项进行分类吗?怎样分?你的标准是什么?学生自主探究后,进行小组讨论,得出结果,教师鼓励学生进行不同的尝试,并进行比较.二、探究新知1.同类项的概念(1)上面同学们按照不同的标准将以上六项进行了分类,如果我们按照如下分类:3x2y与5x2y,-4xy2与2xy2,-3与5,同学们观察一下,它分类的标准是什么?小结:所含字母相同,相同字母的指数相同.引导学生思考这些所谓相同特征的项有什么相同的特征.(2)同类项的概念:所含字母相同,并且相同字母的指数也相等的项叫做同类项.(3)注意:①同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②所有的常数项都是同类项;③同类项的判断是以它的总体特征来判断,而不能仅仅看它们的位置,如:系数字母指数3x2y 3x 2y 15x2y 5从上我们很容易发现,这两个所谓的同类项,只有系数不同,而字母相同,而且相同的字母的指数也相同.2.合并同类项(1)单项式3x2y与5x2y是不是同类项?(2)试一试计算3x2y+5x2y的结果是多少?怎样进行计算?3x2y+5x2y=(3+5)x2y=8x2y(3)小结:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(4)想一想:怎样合并下列多项式中的同类项?3x2y-4xy2-3+5x2y+2xy2+5学生尝试计算,教师示范讲解:3x2y-4xy2-3+5x2y+2xy2+5=3x2y+5x2y-4xy2+2xy2-3+5=(3x2y+5x2y)+(-4xy2+2xy2)+(-3+5)=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2(5)通过刚才的解答,请同学们总结合并同类项的一般步骤有哪些?小结:进行合并同类项的一般步骤:(1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起;(3)利用有理数的加减混合运算,进行系数相加;(4)字母与字母的指数不变.三、课堂练习1.所含________相同,并且________也相同的项叫做同类项.2.在代数式4x2+4xy-8y2-3x+1-5x2+6-7x2中,4x2的同类项是____________,6的同类项是________.3.若2x k y k+2与3x2y n的和为5x2y n,则k=________,n=________.4.若-3x m-1y4与13x2y n+2是同类项,求m,n的值.5.合并同类项:(1)3x2-1-2x-5+3x-x2;(2)-0.8a2b-6ab-1.2a2b+5ab+a2b.四、课堂小结1.同类项的概念:所含字母相同,并且相同字母的指数也相等的项叫做同类项.2.理解同类项的概念及要注意的问题.3.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.4.进行合并同类项的一般步骤.五、课后作业教材第102页练习1,2,3题,第105页练习第1,2,3题.本节课教学内容是同类项、合并同类项,它是本章的重点内容,也是本章的一个难点内容,对后面的学习非常重要,所以一定要要求学生掌握同类项的特征,会正确的合并同类项.在教学中,要通过具体的实例来讲解同类项的特征,举出容易混淆的例子让学生进行辨别,以加深学生的理解,然后通过反向运用,渗透逆向思维的数学思想.在讲解合并同类项时,一是紧扣法则进行计算,二是强调步骤与方法的规范性.2.4.3去括号与添括号1.了解去括号法则依据,理解去括号法则,并初步理解去括号法则的合理性;2.使学生掌握添括号法则,并能熟练地按要求正确地添括号,进行整式的化简.重点理解去括号与添括号法则并能用法则进行正确去括号和添括号.难点括号前面是“-”号和括号前有系数的括号的去法,运用添括号进行整式的简便运算.一、导入新课情境1:某时,2路某趟公交车上有乘客a名,后来在第一个停靠站上来了b名乘客,在第二个停靠站又上来了c名乘客,则(1)此时,此公交车上有乘客________名;(2)还可以理解为:后来一共上来了乘客________名,因而此时公交车上共有乘客________名.由于以上的两个式子________与________都表示同一个量,所以我们有________________.由情境1得到:a+(b+c)=a+b+c情境2:若图书馆内有x名同学,后来有些同学因上课要离开,第一批走了y名同学,第二批又走了z名同学,试用与“情境1”相同的方法,用两种方式写出图书馆内还剩下的同学数.由情境2得到:x-(y+z)=x-y-z.二、探究新知1.去括号法则:(1)由a+(b+c)=a+b+c和x-(y+z)=x-y-z,你发现去括号有什么规律?(2)去括号法则:①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.2.需要注意的几个问题:(1)去括号是去掉了两部分:括号与括号前的符号;(2)括号内的项的变与不变是统一的;(3)如果括号前有数字,那么这个数字必须乘以括号内的每一项.3.添括号法则:(1)从去括号的运算中,我们知道:a+(b+c)=a+b+ca-(b+c)=a-b-c根据等式的性质,我们有:a+b+c=a+(b+c)a-b-c=a-(b+c)观察思考:变化后的式子相当于添加了括号,那么添括号有什么规律?(2)教师小结添括号法则:所添括号前面是“+”号,括到括号里的各项都不变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.注意:添括号与去括号的过程正好相反,添括号是否正确,可以用去括号进行检验.三、课堂练习1.根据去括号法则,在横线上填上“+”号或“-”号:(1)a________(-b+c)=a-b+c;(2)a________(b-c-d)=a-b+c+d;(3)________(a-b)________(c+d)=c+d-a+b.2.已知x+y=2,则x+y+3=________,5-x-y=________.3.化简:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b);(4)3(5x+4)-(3x-5).四、课堂小结1.去括号法则及去括号时注意的问题.2.添括号法则及添括号时注意的问题.五、课后作业教材第107页练习第1,2,3题,第109页练习第1,2题.本节课去括号的知识是在旧知识的基础上进行发展的.在去括号过程中,必须抓住其特征:括号前是“+”号还是“-”号,去掉括号与符号后,括号内的项到底要不要变号,有什么规律,都必须有总结性的结果.而添括号法则,关键是在实际题目中的应用,在应用中当所添括号前的符号是“-”时,所括到括号内的所有的项都必须改变正负号,这是本节最难的,也是最容易出错的知识点.另外,正确的掌握去括号法则是进行整式加减的基础,所以可以通过不同类别的去括号的训练,增强学生对法则运用的熟练性和去括号的准确性,为后面的学习奠定基础.2.4.4整式的加减1.通过对以前所学知识的综合复习,从而顺利过渡到整式的加减运算;2.在整式的加减中,能灵活结合各方面运算法则,进行正确的计算,提高计算的灵活性.重点结合各方面知识进行整式的加减运算.难点如何更灵活,更准确地进行整式的加减.一、导入新课做一做:某学生合唱团出场时第一排站了n人,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?①学生写出答案:n+(n+1)+(n+2)+(n+3)②提问:以上答案还能进一步化简吗?如何化简?我们进行了哪几步运算?③学生尝试计算.二、探究新知出示投影:例1①求单项式5x2y,-2x2y,2xy2,-4x2y的和;②5x2y+(-2x2y)+2xy2+(-4x2y).提问:在这几个单项式相加时,为什么-2x2y,-4x2y要加上括号.(在学生讨论后,教师作必要强调)出示投影:例2 1.说出下列单项式的和:①-3x,-2x,-5x2,5x2;②-2n,3n2,-5n2.2.写出下列第一个式子减去第二个式子的差:①3ab,-2ab;②5ax2,-4x2a.出示投影:例3①求3x2+6x+3与4x2+7x-6的和.②n+(n+1)+(n+2)+(n+3).教师巡视,然后针对学生出现的问题,集中讲评在列代数式时,可能有的学生对多项式不加括号,教师要引导学生分析为什么每个多项式要加括号.变式训练:(3x2+6x+3)-(4x2+7x-6).小结(1)整式的化简实质上就是整式的加减,去括号和合并同类项是整式加减的基础.(2)整式加减的一般步骤可以总结为:①如果有括号,那么先去括号;②如果有同类项,再合并同类项.三、课堂练习1.将代数式先化简,再求值:2a2-b2+2(b2-a2)-(a2+2b2),其中a=243,b=3.2.计算:2(x-3x2+1)-3(2x2-x-2).3.先化简,再求值:5x-[3x-x(2x-3)],其中x=2.4.如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少b cm,求这个三角形的周长.四、课堂小结1.整式的加减实际上就是去括号、合并同类项这两个知识的综合.2.整式的加减的一般步骤:(1)如果有括号,那么先算括号;(2)如果有同类项,则合并同类项.3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.4.数学是解决实际问题的重要工具.五、课后作业教材第111页练习第1,2,3题.通过实际问题,让学生经历一个实际背景,去体会进行整式的加减的必要性.通过“去括号、合并同类项”习题的练习归纳、总结出整式的加减的一般步骤,培养学生的观察、分析、归纳和概括的能力,掌握知识的发生发展过程,理解整式的加减实质就是去括号、合并同类项,教学过程中由学生小组讨论概括出整式的加减的一般步骤,然后出示例题,由学生解答.同时采取由学生出题,其他同学抢答等形式,来提高学生的学习兴趣,充分发挥他们的主观能动性,提高课堂教学效益.。
1.11 有理数的乘方(教案)华东师大版(2024)数学七年级上册
![1.11 有理数的乘方(教案)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/7065b19b59f5f61fb7360b4c2e3f5727a5e924ba.png)
1.11 有理数的乘方第1课时 乘方及其运算1.使学生理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想.重点有理数乘方的运算.难点有理数乘方运算的符号法则.一、导入新课1.计算:(1)(-934 )÷3;(2)(-6)÷(-4)÷(-115 ).2.在小学我们已经学习过a·a ,记作a 2,读作a 的平方(或a 的2次方);a·a·a 记作a 3,读作a 的立方(或a 的3次方);那么a·a·a·a 可以记作什么?读作什么?a·a·a·a·a 呢?a ·a ·a ·…·a,\s\do4(n 个)) (n 为正整数)呢?例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.2.在a n 中,a 叫做底数,n 叫做指数,a n 读作a 的n 次方,a n 可看作是a 的n 次方的结果时,也可读作a 的n 次幂.例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂.3.一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写.二、探究新知1.计算:(1)(-2)3;(2)(-2)4;(3)(-2)5.解:(1)原式=(-2)(-2)(-2)=-8;(2)原式=(-2)(-2)(-2)(-2)=16;(3)原式=(-2)(-2)(-2)(-2)(-2)=-32.小结:根据上面的计算,你能总结出有理数乘方运算的符号法则吗?(1)根据有理数乘法运算法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.(2)你能把上述的结论用数学符号语言表示吗?当a>0时,a n >0(n 是正整数);当a<0时,⎩⎪⎨⎪⎧a n >0(n 是偶数),a n <0(n 是奇数); 当a =0时,a n =0(n 是正整数).(以上为有理数乘方运算的符号法则)a 2n =(-a)2n (n 为正整数);a 2n -1=-(-a)2n -1(n 为正整数);a 2n ≥0(a 是有理数,n 是正整数).三、课堂练习1.(-4)5读作什么?其中-4叫做什么数?5叫做什么数?(-4)5是正数还是负数?2.计算:(1)(-1)3; (2)(-1)10; (3)(0.1)3;(4)(32 )4; (5)(-2)3×(-2)2;(6)(-12 )3×(-12 )5; (7)103; (8)105.四、课堂小结1.乘方的有关概念(1)求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.(2)a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可读作a 的n 次幂.(3)一个数可以看作这个数本身的一次方.2.有理数乘方运算的符号法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.要注意括号的作用.五、课后作业教材课后练习第1题,习题2.11第1,2题.有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点,所以我在这一节课的教学中从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学.在每一个知识点的讲授时,结合具体的实际例子来进行讲解,及时进行总结,形成方法.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在教学中要加以引导,逐步渗透这一思想.第2课时科学记数法1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算;2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.重点正确运用科学记数法表示较大的数.难点正确掌握10的幂指数特征.一、导入新课同学们,你们能够迅速地读出和记住下列数字吗?1.光的速度约是300 000 000 m/s,它相当于速度为6 m/s的自行车的速度的多少倍?2.全世界人口数大约是7 400 000 000人;3.第五次人口普查时,中国人口约为1 300 000 000人;4.中国的国土面积约为9 600 000平方千米;5.我国信息工业总产值将达到383 000 000 000元.这样的数,读和写都不方便,接下来,让我们一起来探究一种科学的记数方法吧.二、探究新知1.10n的特征(1)计算102,103,104,…并讨论102表示什么,指数与运算结果中的0的个数有什么关系,与运算结果的位数有什么关系.小结:0的个数和指数相同,整数位数比指数多1.(2)练习:①把下面各数写成10的幂的形式:1000,10 000 000,10 000 000 000.②指出下列各数各是几位数:102,105,1012,1025.2科学记数法定义综上所述,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数法叫做科学记数法.三、课堂练习1.设n是一个正整数,则10n+1是()A.n个10相乘所得的积B.是一个n+1位的整数C.10后面有n+1个0的整数D.是一个n+2位的整数2.用科学记数法表示下列各数:(1)100 000;(2)378 000;(3)-112 000; (4)2945;(5)1346.30.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104; (2)6.070×103;(3)104; (4)-2.24×103.四、课堂小结1.什么是科学记数法?一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n 是正整数,这种记数法叫做科学记数法.2.用科学记数法表示一个数时,10的指数与原数的整数位数有什么关系?10的指数比原数的整数位数少1.五、课后作业教材习题2.12第1,2,3题.在上一节课中,学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数,本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数,在表示中应重点注意10的指数与原数的整数位数的关系.。
1.2.1 数轴 课件 2024-2025-华东师大版(2024)数学七年级上册
![1.2.1 数轴 课件 2024-2025-华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/f7aee38c3086bceb19e8b8f67c1cfad6195fe997.png)
解:如右图示三 种移动方法;
移动长度之和为:
① 10+8=18; ② 8+2=10; ③ 10+2=12.
且在原点的左侧,则点 P 表示的数是 -5 . 4. 画出数轴并表示下列有理数:
解:如下图所示.
-5
0
3
–5 –4 –3 –2 –1 0 1 2 3 4 5 6
5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4 个 单位长度到达点 A,再向右爬了 2 个单位长度到达点 B, 然后又向左爬了 10 个单位长度到达点 C. (1) 将 A,B,C 三点所表示的数在下图中的数轴上表示 出来;
x
课后小结
有 理 数
数与点 的转化
数 轴
三 要 素
在直线上任取一点表示数 0, 这个点叫做_原__点____
通常规定直线上原点向右(向 上)为 正方向 ,原点向左 (向下)为_负__方__向____
选取适当的长度作为_单__位__长__度
当堂练习
1.在数轴上表示 -1.2 的点在( B ) A.-1与 0 之间 B.-2 与 -1 之间
(3) 如果移动点 A,B,C 中的两个点,使得三个点重 合,你有几种移动方法?请分别求出移动的长度之和.
C
①A B
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
C
②A B
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
C
③A B
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
解:如下图所示.
-4
5
-1 0 0.5
-4 -3 -2 -1 O0 1 2
34 34
2. (滨州) 在数轴上,点 A 表示 -2 . 若从点 A 出发,
华东师大版七年级上册数学各章核心内容总结
![华东师大版七年级上册数学各章核心内容总结](https://img.taocdn.com/s3/m/deaf624853ea551810a6f524ccbff121dd36c5a6.png)
华东师大版七年级上册数学各章核心内容总结第一章:整数- 研究整数的概念和表示法- 掌握整数的加减运算规则- 理解整数的乘法、除法和取余运算- 运用整数在日常生活中的应用第二章:小数- 理解小数的概念和表示法- 研究小数的加减运算规则- 掌握小数的乘法和除法运算- 运用小数进行多步运算和解决实际问题第三章:代数- 研究代数中的字母、数字和符号的表示法- 掌握代数中的常用运算符号和运算规则- 理解代数式的含义和求解代数方程- 运用代数进行表达和解决实际问题第四章:图形的初步认识- 掌握平面图形的名称和性质描述- 研究图形的分类和特征- 理解图形的面积和周长的概念- 运用图形进行计算和解决实际问题第五章:相交线和平行线- 理解相交线和平行线的概念- 掌握相交线和平行线之间的关系- 研究计算相交线和平行线之间的角度- 运用相交线和平行线解决实际问题第六章:三角形- 理解三角形的概念和性质- 掌握三角形的分类和构造方法- 研究计算三角形的周长和面积- 运用三角形解决实际问题第七章:整式初步- 研究整式的概念和表示法- 掌握整式的加减乘除运算- 理解整式的代数式的含义和求解方程- 运用整式进行计算和解决实际问题第八章:消除法与配方法- 理解消元法和配方法的基本思想- 掌握消元法和配方法的具体步骤- 研究通过消元法和配方法求解方程组- 运用消元法和配方法解决实际问题总结华东师大版七年级上册的数学内容涵盖了整数、小数、代数、图形、相交线、平行线、三角形、整式初步、消除法和配方法等方面的知识。
通过本册书的学习,学生们将掌握数学基本概念和运算规则,并能运用数学知识解决实际问题。
华东师大版七年级数学上册知识要点归纳
![华东师大版七年级数学上册知识要点归纳](https://img.taocdn.com/s3/m/03115c5702768e9951e73845.png)
1.法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零.(4)一个数与零相加,仍得这个数.(二)有理数的减法1.法则:减去一个数,等于加上这个数的相反数.(三)有理数的加减混合运算1.方法和步骤:(1)将有理数加减法统一成加法,然后省略括号和加号.(2运用加法法则、加法运算律进行简便运算。
(四)有理数的乘法1.法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数与零相乘,都得零.(3)几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.【简记为“奇负偶正”】⑷几个数相乘,有一个因数为零,积为零.(五)有理数的除法1.法则:⑴除以一个数等于乘以这个数的倒数.⑵两数相除,同号得正,异号得负,并把绝对值相除.⑶零除以任何一个不等于零的数,都得零.⑷乘积为1的两个数互为倒数.(六)有理数的乘方1.法则:⑴正数的任何次幂都是正数.⑵负数的奇次幂是负数,负数的偶次幂是正数.(七)有理数的混合运算1.运算顺序:⑴先算乘方,再算乘除,最后算加减.⑵同级运算,按照从左到右的顺序进行.⑶如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.(八)科学记数法、近似数1.科学记数法:把一个大于10的数记成ax10n的形式。
说明:[1]a是一个只有一位整数的数。
[2]10的指数n比原数的整数数位少1.2. 近似数[1]近似数:指一个与实际数非常接近的数.[2]一般地,一个近似数四舍五入到某位,就说这个近似数精确到哪一位.第三章整式的加减[l]复习内容:主要复习列代数式,求代数式的值.(一)代数式的有关知识1.代数式是用运算符号(加、减、乘、除、乘方)把数和表示数的字母连结而成的式子。
单独一个数或一个字母也是代数式.2.代数式的书写格式:①若是数字与数字相乘,仍然用“×”号;若是字母与字母相乘,通常省略乘号,且按字母的顺序排列.例如b×a应写成ab.②数字与字母相乘,或数字与小括号相乘时,乘号可省略不写,但数字要写在前面.例如4×a应写成4a;3×(m+n)应写成3(m+n)..③代数式中出现除法运算时,应写成分数的形式.例如2x÷y应写成2xya2b不能④代数式中出现带分数与字母相乘时,应把带分数化成假分数.如52 a2b.写成212⑤代数式的最后运算是加减运算时,如需注明单位的必须用括号把整个式子括起来.如(a-b)元不能写成a-b元.3.列代数式:一般是根据“先读先写”的原则来列代数式.(二)代数式的值1.方法与步骤:⑴用数值代替代数式中的字母,简称“代入”.⑵按照代数式指定的运算顺序计算出结果,简称“求值”.说明:代数式的值是由代数式中的字母所取的值决定的.因此,在代入前,必须先写“当……时”.第三章整式的加减⑵复习内容:整式、单项式、多项式、同类项的概念,合并同类项,去括号,添括号及整式的加减运算.(一)单项式1.定义:表示数字与字母的积的代数式叫做单项式.单独一个数或一个字母也是单项式.2.单项式中的数字因数叫做单项式的系数.3.一个单项式中所有字母的指数的和,叫做这个单项式的次数.(二)多项式1.定义:几个单项式的和叫做多项式.2.多项式的项:多项式中,每一个单项式叫做多项式的项.不含字母的项叫做常数项.3.多项式的次数:多项式中,次数最高的项的次数,叫做多项式的次数.4.多项式的排列:⑴升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列.⑵降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列.(三)同类项、合并同类项1.定义:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.所有的常数项也是同类项.2.判断标准:⑴所含字母相同;⑵相同字母的次数相同.3.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的次数保持不变.(四)去括号与添括号1.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号.括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都要变号.2.添括号法则:所添括号前面是“+”号,括到括号里的各项都不变号.所添括号前面是“-”号,括到括号里的各项都要变号.(五)整式的加减1.步骤:①若有括号,则先去括号;②如有同类项,再合并同类项.第四章图形的初步认识另外:*平行于同一条直线的两条直线也互相平行. *垂直于同一条直线的两条直线也互相平行.4.平行线的特征:(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
Байду номын сангаас
6
5
2
3
7
4
0
数据收集的过程有这样几个步骤:
第一步、明确调查问题——我们班同学最喜欢 上哪门课? 第二步、确定调查对象——我班每一个同学。 第三步、选择调查方法——可以用举手或站起 来的方法。 第四步、展开调查——主持人报到某一门学科 时,喜欢的同学举手 (站出来)。 第五步、记录结果——数出举手(站出来)人 数,记录在表格上。 第六步、得出结论——人数最多的学科即为最 喜欢的学科。
四、归纳总结,加深理解
‚通过统计得到的数据,反映出了我们同 学身上存在的一些缺点和不良习惯,真是‘不 调查不知道,一调查吓一跳。’我们必须改掉 缺点,形成良好的生活、学习习惯,完善自我。 看来数据的作用确实不小。‛
五、课后作业:
必做题P188、1、2、5。
选作题:P188、6。
就“父母回家后,你会主动倒一杯水吗?”这一问题 调查全组同学,并填出统计表,表示你的统计结果,并谈谈 你对调查结果的看法。 倒水情况 人 数 主动倒水
父母叫时才倒
有时会倒 基本不倒
‚辛勤三十日,母瘦雏渐肥。即入空 巢时,啁啾夜悲时。思尔为雏日,高 飞背母时。同学们要从为父母主动倒 一杯水这一小事做起,分担一些家务, 体现你对父母的体贴。‛
华东师大版七年级数学上册第五章第一节
刘喜荣
一、 创设问题情境
在日常生活中,我们可能遇到下面一些问题 ◆选举我们班的班干部 ◆同学们最喜欢哪一个电视节目? ◆班里同学出生主要集中在哪一年? ◆本级全体学生的平均年龄为多少岁?
二、引导操作,探究新知
1.合作探究,产生收集数据的过程
科 目 人 数 语 数 外 社 会 1 地 音 体 美 政 劳 技 2 电 脑 15
起床方式 别人叫醒 闹钟叫醒 自己醒来 其他 人数 344 176 128 152
⑶请你仔细观察刚才的例子和练习, 你会发现同一问题中各频数之间有关 系,各频率之间也有关系,并把你的 发现告诉你周围同学。
三、实践与拓展
先简单回顾前面学过的内容:“通过刚才的学习, 我们已清楚了数据收集的过程,了解并计算了频数 和频率,发现了频数、频率的性质。下面的时间, 我们应用刚刚掌握的知识进行一次调查。” 再投影 提问:
2、介绍频数、频率概念
定义: 频数
频率 提出问题: 在下列一组数:86、868、886、 888、868、688、666中,数字8和6出 现的频数和频率分别是多少?
3、探究频数、频率关系
⑴请说出英语“I like China very much. ”中元音字母、辅音字 母的频数和频率。
⑵每天早上你是如何醒来的?下面 是一所学校初中800名学生早晨起 床方式的统计表,请问:这所学校 的学生各种起床方式的频数各是多 少?频率各是多少?