模电实验11

合集下载

模拟电路实验指导书

模拟电路实验指导书

目录实验一整流、滤波、稳压电路 (1)实验二单级交流放大器(一) (5)实验三单级交流放大器(二) (7)实验四两级阻容耦合放大电路 (9)实验五负反馈放大电路 (11)实验六射极输出器的测试 (14)实验七 OCL功率放大电路 (16)实验八差动放大器 (18)实验九运算放大器的基本运算电路(一) (20)实验十集成运算放大器的基本运算电路(二) (22)实验十一比较器、方波—三角波发生器 (24)实验十二集成555电路的应用实验 (26)实验十三 RC正弦波振荡器 (30)实验十四集成功率放大器 (32)实验十五函数信号发生器(综合性实验) (34)实验十六积分与微分电路(设计性实验) (36)实验十七有源滤波器(设计性实验) (38)实验十八电压/频率转换电路(设计性实验) (40)实验十九电流/电压转换电路(设计性实验) (41)实验一整流、滤波、稳压电路一、实验目的1、比较半波整流与桥式整流的特点。

2、了解稳压电路的组成和稳压作用。

3、熟悉集成三端可调稳压器的使用。

二、实验设备1、实验箱(台)2、示波器3、数字万用表三、预习要求1、二极管半波整流和全波整流的工作原理及整流输出波形。

2、整流电路分别接电容、稳压管及稳压电路时的工作原理及输出波形。

3、熟悉三端集成稳压器的工作原理。

四、实验内容与步骤首先校准示波器。

1、半波整流与桥式整流:●分别按图1-1和图1-2接线。

●在输入端接入交流14V电压,调节使I O=50mA时,用数字万用表测出V O,同时用示波器的DC档观察输出波形记入表1-1中。

图1-1图1-2Vi(V) V O(V) I O (A) V O波形半波桥式2、加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图1-3接线,比较并测量接C 与不接C两种情况下的输出电压V O及输出电流I O,并用示波器DC档观测输出波形,记入表1-2中。

图1-33上述电路不动,在电容后面加稳压二极管电路(510Ω、VDz),按图1-4接线。

模电实验(附答案)

模电实验(附答案)

实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。

2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。

偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。

三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。

1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。

2)检查接线无误后,接通电源。

3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。

然后测量U B 、U C ,记入表1中。

表1测 量 值计 算 值U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.627.2600.65.22B2所有测量结果记入表2—1中。

5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。

2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。

模电实验报告

模电实验报告

河北科技大学实验报告级专业班学号年月日姓名同组人指导教师张凤凌实验名称实验一常用电子仪器的使用练习成绩实验类型综合型批阅教师一、实验目的(1)学习直流稳压电源、信号发生器、交直流毫伏毫安表和示波器的使用方法。

(2)掌握交直流毫伏毫安表测量静态信号和动态信号的方法。

(2)掌握用示波器观测波形及测量频率和幅值的方法。

二、实验仪器与元器件(1)直流稳压电源1台(2)信号发生器1台(3)交直流毫伏毫安表1台(4)6502型示波器1台三、实验内容及步骤1.直流稳压电源的使用(1)使稳压电源输出+9V电压选择0~30V作为电压输出端。

“可调/固定”键弹起,调节“电压调节”旋钮,从数码显示器上观察输出电压的变化,使数码显示为9V,并使用毫伏毫安表直流挡测量+9V。

(2)使稳压电源输出±12V电压将“可调/固定”键按下,按图2-1-2接线,将其中一路接成+12V,另一路接成-12V。

使用毫伏毫安表的直流挡进行测量,表的地线(黑色线)与稳压电源的参考电位“GND”相连,测试线(红色线)分别测量+12V和-12V。

2.交直流毫伏毫安表的使用(1) 测量+9V、±12V的直流电压。

(2) 测量5mV的交流电压。

3.信号发生器的使用方法信号发生器能产生正弦波、方波、三角波等模拟信号,频率范围为2Hz~2MHz,分六挡连续可调;输出幅度为0V~25V P-P,连续可调。

模拟信号从“模拟输出”端输出。

(1)衰减开关“-20dB”和“-40dB”的作用波形选择“正弦波”,频率挡位选择“2k”。

调节“频率调节”旋钮,使数字频率计上的数码显示为1kHz。

当信号发生器衰减开关为0dB时(“-20dB”和“-40dB”键均弹起),调节其“幅度调节”旋钮,用毫伏毫安表的交流挡测量输出信号的电压值为5V(有效值)。

当衰减值分别为-20dB、-40dB和-60dB时,测量各输出电压值,将结果记入表2-1-1中。

表2-1-1 幅度衰减开关衰减值数据记录(2)使信号发生器输出电压为5mV、频率1kHz的正弦波信号信号发生器选择“正弦波”,频率为1kHz,衰减开关“-20dB”和“-40dB”同时按下。

(精品)11级模电实习指导书.docx

(精品)11级模电实习指导书.docx

集成功率放大电路的制作1.实训目的1.熟悉万用表、示波器等仪器的使用。

2.了解功率放大电路的构成,加深对功率放大电路的感性认识。

3.掌握电路元器件的选择及检测方法。

4.熟悉集成功率放大电路的型号、参数及其应用。

2.实训器材双踪示波器;万用表;电烙铁、电路板制作工具、电路板及其元件等。

3.实训过程(1)分析电路工作原理集成功率放大电路如图6-1所示。

三极管C1815组成前置放大级,主要是补偿其后音调电路的信号衰减,两个100KQ 的电位器及其附属元件组成衰减式高低音调节电路(均衡电路),经调节后的音频信号送入集成功率放大电路TDA2030A, 进行功率放大,推动多媒体音箱发声。

电源由50W,次级电压20V的变压器经整流滤波后提供。

如果采用集成功率放大电路LM1872,其输出功率将更大。

9-12V集成功率放大电路电原理图OLM317ill1 2 3C18151TO-921. Emitter2. Collector3. BaseI?说明:1. 电路焊接完成后,仔细逐条检查线路是否连通、输入端子和输出端子以及相邻线路之间是否有短路现象, 有则需排除故障;2. 如果线路检查完毕,没有短路和断路问题,将变压器次级电压(交流12V )接入电路,用万用表测量整流滤波输出电 压值(约为15V )是否正常,测量TDA2030A 的第5脚(Vcc ),第3脚(地)和第1脚(Vcc/2)电压是否正常,然 后调节三极管C1815的基极偏置电位器PR1 (100K ),使C1815的Uce 约为2.8V 左右,静态工作点基本合适;断电, 接入信号源和音箱重新开机,分别调节音量和音调旋钮,观察声音的变化。

o kLL?岸OO1..二oLk n?33OA2z ?DD J FT -2KUULII□□uF/Ur(a )引脚排列底面视。

模电实验11

模电实验11

模拟电子技术实验第十一次实验波形发生电路实验报告2016.12.22一、 实验目的1、 学习用集成运放构成正弦波、方波和三角波。

2、 学会波形发生电路的调整和主要性能指标的测试方法。

二、 实验原理由集成运放构成的正弦波、方波和三角波发生电路有多种形式,本实验采用最常用且比较简单的几种电路来做分析。

1、 RC 桥式正弦波振荡电路下图所示为RC 桥式正弦波振荡电路。

其中RC 串并联电路构成正反馈支路,同时起到选频网络的作用。

R1、R2、Rw 及二极管等元件构成负反馈和稳幅环节。

调节电位器Rw ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。

D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保持输出波形正、负半周对称。

R3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率:12o f RCπ= 起振的幅值条件:12f R R ≥ (具体推导见书第406页)其中23(//)f w D R R R R r =++,D r 是二极管正向导通电阻调整反馈电阻Rf (调Rw ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应当适当加大Rw ;如波形失真严重,则应当适当减小Rw 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R作量程内的频率细调。

2、方波发生电路由集成运放构成的方波发生电路和三角波发生电路,一般均包括比较电路和RC积分电路两大部分。

下图所示为由迟滞比较器及简单RC积分电路组成的方波-三角波发生电路。

它的特点是线路简单,但三角波的线性度较差。

主要用于产生方波,或对三角波要求不高的场合。

电路振荡频率:21122ln(1)of ffRR CR=+式中11''wR R R=+,22'''wR R R=+方波输出幅值:om ZV V=±三角波输出幅值:212CM ZRV VR R=+调节电位器Rw(即改变R2/R1,),可以改变振荡频率,但三角波的幅值也随之变化。

模拟电子技术实验报告

模拟电子技术实验报告

专业:电气工程及其自动化班级:学号:姓名:指导教师:开课时间:2011至2012学年第一学期成绩:开课学院:电气信息学院实验室:实验楼415室姓名:专业:电气工程及其自动化学号:实验三单级低频放大器实验时间:2011年11月1日一、实验目的:1.进一步熟悉几种常用低频电子仪器的使用方法。

2.掌握单级放大器静态工作点的调测方法。

3.观察静态工作点的变化对输出波形的影响。

4.学习电压放大倍数及最大不失真输出电压幅度的测试方法。

二、实验原理:放大器的的基本任务是不失真大的放大信号,即实现输入变化量的控制作用。

要使放大器正常工作,除了必须有保证晶体管正常工作的偏置电压外,还须有合理的电路结构形式和配置恰当的元器件参数,使得放大器工作在放大区内,即必须设置合适的静态工作点Q。

静态工作点设置过高,会引起饱和失真。

对于小信号单级放大器而言,由于输出交流信号幅度很小,非线性失真不是主要问题,可根据具体要求设置静态工作点。

例如希望交流信号幅度很小,噪声低工作点Q可适当选得低一些:如希望放大器增益高,工作点可适当选得高些。

如果输入信号幅度较大,则要保证输出波形不失真,此时的工作点应先在交流负载线的中点,以获得最大不失真的输出电压幅度。

图2.3.5为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u o,从而实现了电压放大。

图2.3.5 共射极单管放大器实验电路在图2.3.5电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算CCB2B1B1B U R R R U +≈U CE =U CC -I C (R C +Re ) 电压放大倍数be LC V r R R βA // -=输入电阻R i =R B1 // R B2 // r be 输出电阻 R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

模电的实验报告

模电的实验报告

模电的实验报告模电的实验报告模电这门课程,它是一门综合应用相关课程的知识和内容来解决书本上定理的课程以及锻炼学生们的动手操作能力。

下面是模电的实验报告,欢迎阅读!模电的实验报告1在本学期的模电实验中一共学习并实践了六个实验项目,分别是:①器件特性仿真;②共射电路仿真;③常用仪器与元件;④三极管共射级放大电路;⑤基本运算电路;⑥音频功率放大电路。

实验中,我学到了PISPICE等仿真软件的使用与应用,示波器、信号发生器、毫伏表等仪器的使用方法,也见到了理论课上学过的三极管、运放等元件的实际模样,结合不同的电路图进行了实验。

当学过的理论知识付诸实践的时候,对理论本身会有更具体的了解,各种实验方法也为日后更复杂的实验打下了良好的基础。

几次的实验让我发现,预习实验担当了不可或缺的作用,一旦对整个实验有了概括的了解,对理论也有了掌握,那实验做起来就会轻车熟路,而如果没有做好预习工作,对该次实验的内容没有进行详细的了解,就会在那里问东问西不知所措,以致效率较低,完成的时间较晚。

由于我个人对模电理论的不甚了解,所以在实验原理方面理解起来可能会比较吃力,但半学期下来发现理论知识并没有占过多的比例,而主要是实验方法与解决问题的方法。

比如实验前先要检查仪器和各元件(尤其如二极管等已损坏元件)是否损坏;各仪器的地线要注意接好;若稳压源的电流示数过大,证明电路存在问题,要及时切断电路以免元件的损坏,再调试电路;使用示波器前先检查仪器是否故障,一台有问题的示波器会给实验带来很多麻烦。

做音频放大实验时,焊接电路板是我新接触的一个实验项目,虽然第一次焊的不是很好,也出现了虚焊的情况,但技术都是在实践中成熟,相信下次会做的更好些。

而这种与实际相结合的`电路,在最后试听的环节中,也给我一种成就感,想来我们的实验并非只为证实理论,也可以在实际应用上小试身手。

对模电实验的建议:①老师在讲课过程中的实物演示部分,可以用幻灯片播放拍摄的操作短片,或是在大屏幕上放出实物照片进行讲解,因为用第一排的仪器或元件直接讲解的话看的不是很清楚。

模电课程设计实验报告

模电课程设计实验报告

《模拟电子技术》课程设计报告系另___________ 机电科学与工程系专业班级:____________小组成员:____________学生姓名:_______指导教师:王枫陈秀宏 ___________2011年12月31日河北科技师范学院欧美学院目录一、实验名称二、设计任务及主要技术指标和要求三、选题的目的和意义论述四、方案的可行性论证五、拟选方案的工作原理六、方案设计依据七、系统框图八、总电路图九、仿真结果图十、元件参数与元件种类十一、实验结果与误差分析十二、电路功能与特性总结目录十三、参考文献实验名称双向对讲机的设计设计任务及主要技术指标和要求采用集成运放和集成功放及阻容元件等构成对讲机电路,实现甲、乙双方异地有线通话对讲;双向对讲,互不影响;电源电压+ 9V,功率w0.5W三、选题的目的和意义论述1.目的(1)通过实验了解集成功率放大器的原理以及不同电路形式功放电路特点。

(2)通过实验了解TDA2822集成功率放大器典型电路的应用。

(3)通过实验了解功率放大电路的主要技术指标和测试方法。

2.意义论述模拟电子技术课程设计对所学的基础理论知识是一次实践检测的过程。

本次实验课题为双工有线对讲机,完成对多路对讲机的设计、装配与调试。

讲话扬声器通过讲话多路开关把信号送入放大系统,然后经过听话多路开关送入用作听话的扬声器,如果讲话扬声器和听话扬声器的功能互换时,对应的地址也应互换。

系统中还设置禁止使用端,在不使用对讲系统时,该禁止端使讲话多路开关和听话多路开关停止工作。

交换机的全双工是指交换机在发送数据的同时也能够接收数据,两者同步进行,这好像我们平时打电话一样,说话的同时也能够听到对方的声音。

目前的交换机都支持全双工。

全双工的好处在于迟延小,速度快。

在实验理论过程中,我们既可以验证模拟电路理论的正确性和使用性,又可以在此过程中间发现理论中没有遇到过的问题,形成新的解决问题的思路。

通过试验方案的比较与调试,最终取得了成功。

模电实验思考题

模电实验思考题

实验准备1,使用函数信号发生器及直流稳压电源是应注意什么?答:应注意正确将函数信号发生器和直流稳压电源要注意要接地。

2,如何用示波器测量正弦波信号的频率和电压大小?答:看示波器的“v/div”和“T/div”对应示波器上的格子,读出电压的峰峰值U和周期,求出电压和频率。

3双踪示波器的“断续”和“交替”工作方式之间的差别是什么?4,晶体管毫伏表测出的是正弦波的什么值?如果波形不是正弦波,是否采用晶体管毫伏管来测量器电压值?答:测出的是正弦波的有效值,能。

5.晶体毫伏表与万用表的交流表电压档有何不同?答:晶体毫伏表测出的是电压的有效值。

交流表电压档测出的是电路中的瞬时电压。

实验一1测量静态工作点用何仪表?测量放大倍数用何仪表?答:测量静态工作点用万用表,测量放大倍数用晶体毫伏表。

2.如何正确选择放大电路的静态工作点,在调试中应注意什么?答:不断减小输出频率,和调节R调出正弦波,并调出最大不失真。

3测量R档数值,不断开于基极的连线,行吗?为什么?答:不行,因为会影响R的数值。

4.放大器的非线性失真在那些情况下可能出现?5.负载电阻R8变化时对放大器电路的静态工作点Q有误影响?对放大倍数Au有无影响?答:对静态工作点Q有影响,对放大倍数Au有影响。

实验二1.第二级的接入给第一级的电压放大倍数带来什么影响?为什么?答:减小了第一级的放大倍数2.二级单独工作是测出的电压放大倍数的乘积是否等于二级连接工作测得的总的电压放大倍数?答:不等于3.第一级的输出不经耦合电容C2,而直接接到第二级的基极,对电路的静态工作点有何影响?第二级有无负载对第一级的输出以及第一,第二级的静态工作点有无影响?答:会使第一级与第二级的静态工作点相互影响,第一级的集电极与第二级的基极等电势。

无影响4.为什么放大器在频率较低或较高时,电压放大倍数均要下降?答:放大器都有其放大的频率范围。

实验三:负反馈放大电路1·本实验属于什么类型的反馈?作用如何?答:电流并联负反馈2·如果要在实验三上的基础上(不增加放大倍数的级数)构成并联电流负反馈,应如何连线?实验四:差动放大电路1·差动放大器的差模输出电压是与输入电压的差还是和成正比例?答:与差成正比例2·当加到差动放大器两管基极的输入信号幅值相等,相位相同时,理想情况下的双端输出电压等于多少?答:输出电压为零3·差动放大器对差模输入信号起放大作用,还是起抑制作用?对共模信号呢?答:对差模信号起放大作用,对共模信号起抑制作用。

模电(实验 模拟运算电路)10-11(2)

模电(实验  模拟运算电路)10-11(2)

实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
3、同相比例运算电路(图4) 、同相比例运算电路( ) RF 100k R1 Ui 10k +12V Uo Ui -12V + R 10k RW 100k -12V RF 10k +12V Uo
+ R 9.1k RW 100k
实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
集成运算放大器的基本应用—模 实验 集成运算放大器的基本应用 模 拟运算电路
一、实验目的 1、掌握集成运放管脚的识别方法。 、掌握集成运放管脚的识别方法。 2、研究由集成运算放大器组成的比例、加法、 、研究由集成运算放大器组成的比例、加法、 减法等基本运算电路的功能。 减法等基本运算电路的功能。 二、实验原理 本实验采用的集成运算放大器型号为µA741(或 本实验采用的集成运算放大器型号为 ( F007),引脚排列如图 所示。 ),引脚排列如图 所示。 ),引脚排列如图1所示 它是八脚双列直插式组件。 它是八脚双列直插式组件。
Байду номын сангаас 实验 集成运算放大器的基本应用—模拟运算电路 集成运算放大器的基本应用 模拟运算电路
8
7
6
5
µA741 + 1 2 3
图1 7脚为正电源端; 脚为正电源端; 脚为正电源端 4脚为负电源端; 脚为负电源端; 脚为负电源端 1脚和 脚为失调调零端,1脚和 脚之间可接入一 脚和5脚为失调调零端 脚和5脚之间可接入一 脚和 脚为失调调零端, 脚和 只几十k 的电位器并将滑动触头接到负电源端; 只几十 的电位器并将滑动触头接到负电源端; 8脚为空脚。 脚为空脚。 脚为空脚

模电实验十-功率放大电路实验

模电实验十-功率放大电路实验
放大8.2Ω负载(扬声器)时的指标。
五.实验报告要求 1.掌握电路工作原理和各元器件的作用。 2. 为什么要调整中点电压? 3. 整理实验数据,并与理论值比较,分析误差原因。
三、实验电路原理图
两个二极管D1、D2供给V2和V3一定的正偏压,使两管在静态时处于微导通状态,以克服交越失真。
D1
D2
实验板 (实验箱的右下角)
1. 静态工作点的调节:在没有交流信号输入的情况下,调节电位器使中点A的电位等于Vcc/2。
四.实验内容及步骤
调节电位器使得A点电压为6V
实验十一 功率放大电路实验
一.实验目的 1、理解OTL低频功率放大器的工作原理 2、学习0TL功率放大器的工作点的调试方法 3、学会功放电路输出功率、效率的测试方法
二. 实验仪器 1.低频信号源 2.双踪示波器 3.低频毫伏表 4.万用表 5.模拟电路实验箱
用一根导线引+12V到Vcc
A
2. 测量额定功率
输入端接f=1kHz,幅度约为200mVpp的正弦信号。用示波器观察输出信号的波形。逐渐增大输入信号的幅度,直到刚好使输出波形不出现失真为止,此时的输出电压为最大不失真电压Vom ,输出功率为最大不失真功率。
3. 测量效率
式中POM为输出的额定功率,PC为输出额定功率时所消耗的电源功率。在测额定功率的基础上,把数字万用表为电流档(200mA),串入12V电源与功放电路之间,如下图,读出ICC。Pc=Vcc×ICC

模电电路实验

模电电路实验

模电电路实验实验目的本实验旨在通过搭建和调试模电电路,加深对模拟电路基本概念的理解,掌握模拟电路的测量方法和调试技巧。

实验器材和材料•功能发生器•双踪示波器•直流电源•可变电阻•电容和电感元件•万用表•连接线等实验内容实验一:直流偏置电源实验目的通过搭建直流偏置电源电路,了解直流稳压电源的工作原理,掌握直流电源的调整和测量方法。

实验步骤1.将直流电源连接到功能发生器的输出端。

2.将功能发生器与示波器相连,观察输出波形,调整幅度和频率。

3.将可变电阻与电容和电感元件连接,调整阻值和测量电压,观察电路输出。

4.依次改变电容和电感元件的数值,观察输出波形的变化。

实验目的通过搭建放大电路,了解放大电路的工作原理,掌握放大电路的测量技巧和放大倍数的调整方法。

实验步骤1.将功能发生器与放大电路相连,调整输出波形的幅度和频率。

2.使用万用表测量放大电路的输入和输出电压,计算放大倍数。

3.改变电阻的数值,观察输出波形的变化,调整放大倍数。

4.将频率调整到共振频率附近,观察输出波形是否失真。

实验目的通过搭建滤波电路,了解滤波电路的工作原理,掌握滤波电路的计算和测量方法。

实验步骤1.将功能发生器与滤波电路相连,调整输出波形的幅度和频率。

2.使用示波器观察输出波形,并测量输出电压。

3.根据测量值计算滤波电路的截止频率和增益。

4.改变电容和电感元件的数值,观察输出波形的变化,调整截止频率和增益。

实验结果分析通过实验一、实验二和实验三的实验,我们可以对模拟电路的基本原理有更深入的理解。

实验一主要了解了直流偏置电源的工作原理和调整方法;实验二主要了解了放大电路的工作原理和调整方法;实验三主要了解了滤波电路的工作原理和调整方法。

通过这些实验,我们还可以了解到电容和电感元件对电路性能的影响,并且掌握了测量和调试模拟电路的技巧。

实验总结通过本次模拟电路实验,我们深入了解了模拟电路的基本原理和调试方法。

我们掌握了直流偏置电源、放大电路和滤波电路的工作原理和调整方法,并通过实际的实验操作加深了理论的理解。

模拟电路实验讲义(11级)

模拟电路实验讲义(11级)

模拟电路实验讲义(11级使用,16学时)本讲义与实验参考书《电子线路设计·实验·测试(第三版)》(谢自美主编)配合使用,预习时以本讲义为线索,重点参考上述实验教材的相关内容。

实验要求1.实验前必须充分预习,完成指定的预习任务。

预习要求如下:1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。

2)完成各实验“预习要求”中指定的内容。

3)熟悉实验任务。

4)复习实验中所用各仪器的使用方法及注意事项。

2.使用仪器和实验箱前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。

3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。

4.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。

找出原因、排除故障,经指导教师同意再继续实验。

5.实验过程中需要改接线时,应关断电源后才能拆、接线。

6.实验过程中应仔细观察实验现象,认真记录实验结果(数据波形、现象)。

所记录的实验结果经指导教师审阅签字后再拆除实验线路。

7.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。

8.实验后每个同学必须按要求独立完成实验报告。

实验一、二 单级放大电路研究(7学时,两次)一、实验目的1.熟悉电子元器件和模拟电路实验箱。

2.掌握示波器、信号源等常用仪器使用的使用方法。

3.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。

4.学习测量放大电路Q 点,A V ,r i ,r o 的方法,了解共射极电路特性。

5.学习和研究放大电路的动态性能。

二、实验仪器1.双踪示波器。

2.信号发生器。

3.万用表。

三、预习要求1.三极管及单管放大电路工作原理。

2.放大电路静态和动态测量方法(实验参考书P112-113)。

3.双踪示波器的工作原理(实验参考书P390)。

4.常用电子元器件常识(实验参考书P408)。

模拟电子技术实验报告答案

模拟电子技术实验报告答案

模拟电子技术实验报告答案引言模拟电子技术实验是电子工程专业中重要的基础实验之一。

通过模拟电子技术实验,学生可以掌握各种模拟电子电路的特性和设计方法,并将理论知识应用于实践中。

本文将介绍一系列模拟电子技术实验的答案,包括实验题目、实验步骤、实验结果分析等。

实验一:放大电路实验题目设计一个放大电路,输入电压为1V,要求输出电压放大倍数为10倍。

实验步骤1.根据题目要求,选择合适的放大电路拓扑结构,常见的有共射极、共集电极和共基极三种结构,本实验选择共射极结构。

2.根据放大倍数为10倍,可以使用一个普通的放大电路进行级联以获得所需的放大倍数。

即将输入信号接到第一个放大电路的输入端,输出端接到第二个放大电路的输入端,通过级联方式实现10倍放大。

3.根据实际情况确定所需器件的参数,包括BJT晶体管的类型、电阻的取值等。

4.根据电路拓扑和参数,利用电路分析和计算方法计算得到各个元件的取值。

5.根据计算结果,选择合适的元件进行实际电路的搭建。

6.进行实际测量,输入1V的信号,并测量输出电压的值。

7.比较实际测量结果和理论计算结果,分析可能的误差来源。

实验结果分析通过实验测量得到的结果为:•输入电压:1V•输出电压:10V根据实验结果与理论计算结果的比较,发现实验结果与理论计算结果基本一致,可以证明实验设计及测量操作的正确性。

然而,实际电路中存在一些误差来源,如元件的内阻、元件参数的漂移等,这些误差会对实验结果产生一定的影响。

因此,在进行电路设计和实验测量时,需要综合考虑各种因素,并进行合理的误差分析。

实验二:直流电源设计实验题目设计一个直流电源电路,输出电压为5V,输出电流为1A,要求电源稳定性好、负载能力强。

实验步骤1.根据题目要求和实际需求,选择合适的直流电源拓扑结构。

常见的直流电源拓扑结构有线性稳压电源和开关稳压电源两种,本实验选择线性稳压电源。

2.根据所需的输出电压和电流,计算得到所需的变压器参数。

3.根据变压器参数,选择合适的变压器进行实际电路的搭建。

模电、数电实验报告

模电、数电实验报告

模拟电子技术实验指导书周明编写实验一实验台、万用表、示波器和信号发生器的使用内容:略实验二单级交流放大器(一)一、实验目的1、学习晶体管放大电路静态工作点的测试方法,进一步理解电路元件参数对静态工作点的影响,以及调整静态工作点的方法。

2、进一步熟悉常用电子仪器的使用方法。

二、实验设备1、实验台2、示波器3、计算机4、数字万用表三、预习要求1、熟悉单管放大电路,掌握不失真放大的条件。

2、了解负载变化对放大倍数的影响。

四、实验内容及步骤实验前校准示波器。

1、测量并计算静态工作点●按图2-1接线。

图2-1●将输入端对地短路,调节电位器R P2,使V C=Ec/2 (取6~7伏),测静态工作点V C、V E、V B及V b1的数值,记入表2-1中。

●按下式计算I B 、I C,并记入表2-1中。

表2-12、测量电压放大倍数及观察输入、输出电压相位关系。

在实验步骤1的基础上,把输入与地断开,接入f=1KHz 、V i =5mV的正弦信号,负载电阻分别为R L =2K Ω和R L =∞,用毫伏表测量输出电压的值,用示波器观察输入电压和输出电压波形,并比较输入电压和输出电压的相位,画于表2-3中,在不失真的情况下计算电压放大倍数:Av=Vo/V 1,把数据填入表2-2中:表2-33、观察R C =3K ,R L =2K 时对放大倍数的影响。

在实验步骤2的基础上,把R C 换成3K ,重新测定放大倍数,将数据填入表2-4 中。

表2-44、测量电压参数,计算输入电阻和输出电阻。

按照图3-1接线 调整RP2,使V C =Ec/2(取6~7伏),测试V B 、V E 、V b1的值,填入表3-1中。

表3-1● 输入端接入f=1KHz 、V i =20mV 的正弦信号。

● 分别测出电阻R 1两端对地信号电压V i 及V i ′按下式计算出输入电阻R i :● 测出负载电阻R L 开路时的输出电压V ∞ ,和接入R L (2K )时的输出电压V 0 , 然后按下式计算出输出电阻R 0;将测量数据及实验结果填入表3-2中。

全版模电实验教案实验

全版模电实验教案实验

全版模电实验教案实验一、实验目的1. 理解模拟电子技术的基本概念和原理。

2. 熟悉常见模拟电子电路的组成和功能。

3. 掌握基本模拟电子电路的实验操作方法。

4. 提高实验观察和分析问题的能力。

二、实验原理1. 放大电路:了解放大电路的基本组成,掌握放大电路的输入输出特性,包括静态工作点、动态范围等。

2. 滤波电路:理解滤波电路的作用和分类,掌握滤波电路的设计方法,分析滤波电路的频率响应特性。

3. 振荡电路:了解振荡电路的原理和分类,掌握振荡电路的稳定性和频率控制方法。

4. 调制解调电路:理解调制解调电路的原理和功能,掌握调制解调电路的组成和操作方法。

5. 非线性电路:了解非线性电路的特点和应用,掌握非线性电路的分析方法。

三、实验设备与材料1. 信号发生器2. 示波器3. 万用表4. 电子元件(电阻、电容、电感、二极管、晶体管等)5. 实验板6. 导线四、实验内容与步骤1. 实验一:放大电路(1)搭建一个基本放大电路,包括输入电阻、输出电阻、反馈电阻等。

(2)调整静态工作点,使放大电路处于最佳工作状态。

(3)测量并记录放大电路的输入输出特性,包括放大倍数、频率响应等。

2. 实验二:滤波电路(1)设计并搭建一个低通滤波电路,滤除高频噪声。

(2)调整滤波电路的截止频率,满足实际应用需求。

(3)使用示波器观察滤波电路的频率响应特性。

3. 实验三:振荡电路(1)搭建一个LC振荡电路,产生正弦波信号。

(2)调整LC振荡电路的频率,观察振荡信号的稳定性。

(3)分析并测量振荡电路的频率响应特性。

4. 实验四:调制解调电路(1)搭建一个调幅调制电路,实现模拟信号的调幅。

(2)搭建一个解调电路,恢复调幅信号。

(3)调整调制解调电路的参数,分析信号的调制解调效果。

5. 实验五:非线性电路(1)搭建一个非线性电路,如二极管限幅电路。

(2)观察并测量非线性电路的输出特性。

(3)分析非线性电路在实际应用中的优势和局限性。

五、实验要求与评分标准1. 实验报告:要求实验报告内容完整,包括实验目的、原理、设备、内容、步骤、结果及分析。

《模电实验》PPT课件

《模电实验》PPT课件

横坐标
0 0.1 0.2 0.4 0.7
1
对应频率 791 996 1254 1987 3964 7910
增益A
20lg|A/AV|
表2
给滤波器输入1v的正弦波,其频率为3kHz,用毫伏表测量 记录此时的输出电压Vo,即得到通带电压增益AV
按表2中的对应频率调节信号源频率,注意保持输入电压1v 不变,用毫伏表测量滤波器输出电压(即增益A),填表2
有源滤波器
滤波器的功能是,使特定频率的信号通过, 而抑制(衰减)其他频率的信号。本次实验 的目的是熟悉二阶滤波器的构成及特性,掌 握滤波器幅频特性的测量方法。
1
AV
1
R4 R3
f0
n 2
2
1 R1R2C1C2
Q
R1R2C1C2
C2 (R1 R2 ) R1C1(1 AV )
2
Q
R1R2C1C2
C2 (R1 R2 ) R1C1(1 AV )
Q=0.707
Q<0.707
理想的低通幅频响应
Q>0.707
3
滤波器参数的确定步骤:
根据功能需要,确定滤波器特征频率 f0
Q值应当尽量接近0.707,可较其稍小。 根据公式和阻容系列值确定参数。
4
该低通滤波器特征频率计算:
f0 2
1
366Hz
1
对应频率 791 996 1254 1987 3964 7910
增益A
20lg|A/AV|
表2
对应频率 10横坐标 791
12
横坐标 对应频率
增益A
-1 -0.7 -0.5 -0.4 -0.3 79.1 157.8 250.1 314.9 396.4

Microsoft Word - 2011年数模电实验doc - 东华大学

Microsoft Word - 2011年数模电实验doc - 东华大学

电子技术实验指导书东华大学电工电子中心2011.31实 验 须 知实验是研究自然科学的一种重要方法,而电子学又是一门实践性很强的学科。

因此,电子技术实验在电子学教学环节中更显得重要。

电子技术实验除了进一步巩固理论知识之外,主要培养学生掌握电子实验的操作技能,*常用仪器的正确使用,为将来从事*电类专业工作打好基础。

通过电子技术实验课程,期望学生达到如下要求:1、能较熟练的使用双踪示波器、函数发生器、交流毫伏表、数字万用表等常用的电子仪器、仪表。

2、能独立操作简单的实验,并能运用理论知识分析、解决实验中出现的一般问题。

3、能熟练、准确地测量实验数据,绘制工整的实验曲线,分析实验结果,编写合格的实验报告。

这本实验教材是根据电子学教学大纲,结合我室的教学实践及电工电子实验室现有的实验器材和实验仪器设备而编写的。

除实验内容外,教材中还介绍了一些常用电子测量仪器的使用方法,希望学生在预习实验时仔细阅读。

实验注意事项:1、每次实验前必须认真预习实验指导书,准备预习报告,了解实验内容、所需实验仪器设备及实验数据的测试方法,并划好必要的记录表格,以备实验时作原始记录。

实验中教师将检查学生的预习情况,未预习者不得进行实验。

2、学生在实验中不得随意交换或搬动其他实验桌上的器材、仪器、设备。

3、实验仪器的使用必须严格按实验指导书中说明的方法操作,特别是直流电源和函数发生器的输出端切切不可短路或过载。

如因操作不认真或玩弄仪器设备造成仪器设备损坏,必须酌情作出赔偿。

4、实验中如出现故障,应尽量自己检查诊断,找出故障原因然后排除。

如果由于设备原因无法自行排除的,再向指导教师或实验室管理人员汇报。

5、实验必须如实记录实验数据,积极思考,注意实验数据是否符合理论分析,随时纠正接线或操作错误。

6、实验结束后必须先将实验数据记录提交指导教师查阅,经认可签字后才能拆线。

拆线前必须确认电源已切断。

离开实验室前,必须将实验桌整理规范。

7、实验报告在课后完成,并在下次实验时上交。

西电模电实验报告-精品

西电模电实验报告-精品

【关键字】方案、目录、情况、思路、方法、环节、条件、增长、系统、平衡、合理、加大、保持、建立、制定、提出、掌握、了解、研究、关键、稳定、网络、理想、根本、基础、需要、工程、能力、方式、作用、任务、关系、分析、调节、形成、满足、保证、维护、指导、帮助、解决、调整、实现、提高、关键点西电模电实验报告篇一:西安交通大学模电实验报告(2)模拟电子技术实验实验报告西安交通大学电信学院计算机11班姓名:司默涵电话:学号:18实验日期:XX年4月日报告完成日期:XX年4月日实验2.2 含负反馈的多级晶体管放大电路预习报告一、实验目的1.构建多级共射极放大电路,对静态工作点、放大倍数进行调节,使其满足设计要求。

2.测量多级放大电路的放大倍数、输入电阻、输出电阻和频率特性。

3.在多级放大电路中引入电压串联负反馈。

4.测量负反馈电路的放大倍数、输入电阻、输出电阻和频率特性等,并与开环放大电路相应的技术指标进行比较。

二、实验原理本实验要求将2个共射极单管放大电路,按照阻容耦合方式进行级联,并在此基础上,由输出端引入电压串连负反馈。

对整个电路的要求,一般靠各个放大电路的指标体现。

因此,需要事先对单元电路的指标提出要求。

本实验中,我们首先构建一个多级的、开环放大倍数大于XX的放大电路,并在此基础上引入电压串联负反馈。

1.多级放大电路图,这个电路具有稳定静态工作点的作用。

第一级和第二级的静态工作点互不干扰,第一级放大电路的静态分析如下,第二级静态分析类推:根据晶体管微变等效电路,对放大电路的动态分析如下:当和相差较大时,为其中较大的。

当和接近时,根据电路参数和实际调试结果,在晶体管β大约为100左右时,整个放大电路的电压放大倍数约为几千倍,输入电阻约为2kΩ左右,输出电阻约为1kΩ左右,下限截止频率约为100Hz左右,上限截止频率约为30kHz左右。

当然,上述参数只是一个大致范围,具体指标将与各自电路参数有关。

电路调节过程如下:1) 首先按照图;2) 在C2右端观察输出,按照实验2.1方法,对前级电路进行静态工作点调节; 3) 从C2左端断开,按照实验2.1方法,对后级放大电路单独调节静态工作点;4) 重新连接电路,测试放大倍数,此时两个放大器都处于最佳的静态工作点,观察电压放大倍数是否满足大于XX的要求;如果满足,则调试结束;5) 如果不满足,则增加前级的RC,或者减小RW1,此时静态工作点开始向饱和区靠拢,就是牺牲了最佳静态工作点,获取满足要求的电压放大倍数。

模电实验(附答案)讲解

模电实验(附答案)讲解

实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。

2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。

偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。

三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。

1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。

2)检查接线无误后,接通电源。

3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。

然后测量U B 、U C ,记入表1中。

表1B2所有测量结果记入表2—1中。

5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。

2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。

1)检查线路无误后,接通电源。

从信号发生器输出一个频率为1KHz 、幅值为10mv (用毫伏表测量u i )的正弦信号加入到放大器输入端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电子技术实验第十一次实验波形发生电路实验报告2016.12.22一、 实验目的1、 学习用集成运放构成正弦波、方波和三角波。

2、 学会波形发生电路的调整和主要性能指标的测试方法二、实验原理由集成运放构成的正弦波、方波和三角波发生电路有多种形式,本实验采 用最常用且比较简单的几种电路来做分析。

1、RC 桥式正弦波振荡电路下图所示为RC 桥式正弦波振荡电路。

其中 RC 串并联电路构成正反馈支路, 同时起到选频网络的作用。

R1、R2 Rw 及二极管等元件构成负反馈和稳幅环节。

调节电位器Rw ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利 用两个反向并联二极管 D1、D2正向电阻的非线性特性来实现稳幅。

D1、D2采 用硅管(温度稳定性好),且要求特性匹配,才能保持输出波形正、负半周对称。

R3的接入是为了削弱二极管非线性的影响,以改善波形失真。

起振的幅值条件: R L-2 (具体推导见书第406页)R 1其中R^ R w R 2 (R a //r D ),D 是二极管正向导通电阻调整反馈电阻Rf (调Rw ),使电路起振,且波形失真最小。

如不能起振,则 说明负反馈太强,应当适当加大 Rw ;如波形失真严重,则应当适当减小 Rw 。

改变选频网络的参数C 或R,即可调节振荡频率。

一般采用改变电容C 作频 率量程切换,而调节R 作量程内的频率细调。

2、方波发生电路电路的振荡频率:12 二RC由集成运放构成的方波发生电路和三角波发生电路,一般均包括比较电路和RC积分电路两大部分。

下图所示为由迟滞比较器及简单RC积分电路组成的方波-三角波发生电路。

它的特点是线路简单,但三角波的线性度较差。

主要用于产生方波,或对三角波要求不高的场合。

R i式中R =R'+R w',R2 =R2‘+R/'方波输出幅值:二V Z三角波输出幅值:V CM R^V ZR + R2调节电位器Rw (即改变R2/R1),可以改变振荡频率,但三角波的幅值也随之变化。

如要互不影响,则可以通过改变Rf或Cf来实现振荡频率的调节。

3、三角波和方波发生电路如把迟滞比较电路和积分电路首尾相接形成正反馈闭环系统,如下图所示,则比较电路A1输出的方波经积分电路A2积分可以得到三角波,三角波又触发比较器自动翻转形成方波,这样既可构成三角波、方波发生电路。

方波幅值:V O M 、V Z 三角波幅值:V OM 二邑V ZR 2调节Rw 可以改变振荡频率,改变比值 R1/R2可以调节三角波的幅值。

三、实验设备与器件1、 土 12V 直流电源2、 交流毫伏表3、 双踪示波器4、 运算放大器 卩A741X 25、 稳压管 2CW231X 1 6 二极管 IN4148X 2 7、 电阻器等 8、 频率计四、实验内容1、RC 桥式正弦波振荡电路按图连接实验电路(1) 接通土 12V 电源,调节电位器Rw ,使输出波形从无到有,从正弦波到出现 失真。

描绘Vo 的波形,记下临界起振、正弦波输出及失真情况下的 Rw 值,分 析负反馈强弱对起振条件及输出波形的影响。

(2) 调节电位器Rw,使输出电压Vo 幅值最大且不失真,用交流毫伏表分别测 量输出电压V O 、反馈电压V+和V-,分析研究振荡的幅值条件。

(3) 用示波器或频率计测量振荡频率 fo ,然后在选频网络的两个电阻上并联同 一阻值电阻,观察记录振荡频率的变化情况,并与理论值进行比较。

(4) 断开二极管D2、D2,重复(2)的内容,将测试结果与(2)进行比较,分电路振荡频率:R 4R(R f R w )C rWATQ --------------------- [ -------- p析D1、D2的稳幅作用。

(5)RC串并联网络幅频特性观察:将RC串并联网络与运放断开,由函数信号发生器输入3V左右的正弦信号,并用双踪示波器同时观察RC串并联网络输入、输出波形。

保持输入幅值不变,从低到高改变频率,当信号源达到某一频率时,RC串并联网络输出将达到最大值(约IV),且输入输出同相位。

此时的信号源频率:f = fo =—1—2兀RC2、方波发生电路按图连接实验电路。

(1)将电位器Rw调至中心位置,用双踪示波器观察并描绘方波Vo及三角波Vc的波形(注意对应关系),测量其幅值及频率,记录之。

(2)改变Rw滑动点的位置,观察Vo、Vc幅值及频率变化情况。

把滑动点调至最上端和最下端,测出频率范围,记录之。

(3)将Rw恢复至中心位置,将一只稳压管短接,观察Vo波形,分析Dz的限幅作用。

3、三角波和方波发生电路按图连接实验电路。

(1)将电位器Rw调至合适位置,用双踪示波器观察并描绘三角波输出Vo及方波输出Vo'测其幅值、频率及Rw值,记录之。

(2)改变Rw的位置,观察对Vo、Vo'幅值及频率的影响。

(3)改变R1 (或R2),观察对Vo、Vo'幅值及频率的影响。

五、实验结果与总结1、RC桥式正弦波振荡电路(1)实验数据:Vo的波形:正弦波分析:Rw 越大,则反馈电阻Rf 越大,负反馈越弱。

当 Rf 过小时,负反馈太强, 使得电路无法起振。

当增大 Rf 时,负反馈减弱,电路开始满足起振条件,输出 正弦波。

当Rf 继续增大时,负反馈过弱,使得不再满足稳幅要求,输出波形发 生失真。

实验中 临界起振时的 Rw 为2.763k Q ,此时 Rf=Rw+R2+R3=19.963Q ,R2,与 ^-2的起振幅值条件相符。

引起偏差的原因可能是负反馈 回路的电阻或正反馈回路的电阻电容的实际值与理论值不同 (2)实验数据:输出电压Vo (V )反馈电压V+(V )反馈电压V- (V )R 1ID *«EWVRQMl_n_n_出现失真分析:振荡的幅值条件由实验数据可以看出,V+与V-之间有微小差别,V-比V+大0.277V 。

电路中,若要能够发生振荡,则必须满足 AF>1的幅值条件。

另外,发生振 荡时,F=1/3 (具体证明见后面),所以要求A>1/3。

(3)实验数据:其中计算值由公式f o1计算得到 2兀RC由实验数据可以看到,并联前和并联后的计算值都比测量值略高, 可能的原 因是实际的R 或C 值比理论值偏大。

同时,并联后的fo 的测量值和计算值都是1并联前的两倍,与公式fo — 相符。

2JT RC(4) 实验数据:分析:由实验数据可以看出,断开 D1、D2后,输出电压Vo 增大,反馈电压V+减 小,反馈电压V-有很微小的下降。

从实验数据可以体现出 D1、D2的稳幅作用。

D1、D2的稳幅作用:D1、D2通过改变运放的放大倍数来实现稳幅。

运放的 输出电压超过一定幅度时,负半周 D1导通,正半周D2导通,二极管正向导通 电压小,相当于减小反馈电阻,从而增强负反馈,减小放大倍数,实现稳幅。

(5)当频率为1.275kHz 时,输出电压达到最大值0.953V ,约为1V 。

且此时输入 输出波形同相位,如下图所示:R — R//^―jwC jwC1 13 j(wRC ) wRC幅频特性为当f=fo 时,F =1/3,输入与输出相位差为01.275kHz 与之前的测量值基本相等。

造成与计算值不同的可能的原因是实际的 R 或C 值比理论值偏大。

同时,输出电压的实际值为0.953V ,约等于3*( 1/3)=1V ,与理论相符。

12 - RC的理论计算值在前面已经提到过,是1.59kHz ,而测量值为 理论上:R//1 jwC令w ^RC ,有代入上式,有fo -2-RC1Ff 厂 3 j( - o) f o f相频特性为TDAAA■2、方波发生电路(1)Rw位置方波幅值Vo(V) 三角波幅值Vc( V) 方波频率(kHz)三角波频率(kHz)测量值测量值理论值测量值r理论值测量值「中间(21.5k Q )7.510 4.460 4.51 1.404 4.51 1.404最上端(42.5k Q ) 8.0007.180 1.0230.665 1.0230.665最下端(0.5 Q ) 7.330 2.00515.524 2.64515.524 2.645实验数据:频率的理论值通过12R f C f ln(1 2R2)R i计算得到可以看出,波的频率的测量值与理论值相差很大,的Cf、Rf、R1、R2值与理论电路图中不符。

波形图:Rw在中间位置可能的原因是实际电路中Rw最大(2)Rw变大时,方波和三角波的频率减小,幅值增大;Rw变小时,方波和三角波的频率增大,幅值减小。

频率的变化范围为:0.665kHz-2.645kHz分析:易知当Rw变大时,R1变小,R2变大,R2/R1变大;Rw变小时,R1 变大,R2变小,R2/R1变小。

所以,当Rw变小(变大)时,根据f = ______ R ______1 o4R(R f R w)C r可以得到,振荡频率fo增大(减小),三角波幅值减小(增大),方波幅值也有微小的减小(增大),但由于Vz的限制,变化很小。

(3)讨论二极管Dz的限幅作用: 短接一只稳压管后的波形:Rw最小R2R, R2VCM当输出电压(即方波)的幅值过大时,由于二极管的稳压作用,幅值会被限制在V N当Vo为正时,Dz1发挥稳压作用;当Vo为负时,Dz2发挥稳压作用所以它们可以保证较好地限幅效果。

3、三角波和方波发生电路(1)实验数据由数据可以看到,对于三组数据,频率的理论计算值都是是测量值的两倍左右,误差接近50%,可能的原因是R1或R2的对应电阻接错。

同时这印证了理论计算公式的合理性。

(2)波形图:Rw最大-10-Rw最小Li MSO220ZA tKJT* MCI L.i W!<OPE 益=.、J"Rw适中-11-(3)a. Rw变化时:由数据可以看出,Rw变大时,频率减小,方波与三角波幅值变化不大;Rw 变小时,频率增大,方波与三角波幅值变化不大。

这与理论计算公式相符:电路振荡频率:f° = --------- 1 -----------2R f C f In(1 +2只2)式中R =R'+R/,R2 =R2'+R/'方波输出幅值:二V Z三角波输出幅值:V CM R^V ZR十R2b. R1、R2变化时:波形图:初始R1 从10k Q 变到20k Q-12--13 -由实验数据发现,R1从10k Q 变到20k Q”与R2从20k Q 变到10k Q”两种 情况下,方波的幅值、三角波幅值与波的频率都基本相等, 这通过理论计算式可 以解释:方波幅值:V 0M '= V Z 三角波幅值:V OM ='vz&当R1、R2变化时,只要R1/R2增大,就会造成电路振荡频率减小,三角波 幅值增大,方波幅值基本不变。

相关文档
最新文档