数列求和练习题(含答案)

合集下载

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.数列{an }满足a1=1,且对任意的m,n∈N*,都有am+n=a m+a n+mn,则+++…+=()A.B.C.D.【答案】B【解析】令m=1得an+1=a n+n+1,即an+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),上述n-1个式子相加得an -a1=2+3+…+n,所以an=1+2+3+…+n=,当n=1时,a1=1满足上式,所以an= (n∈N*),因此==2(-),所以+++…+=2(1-+-+…+-)=2(1-)=2.函数f(x)对任意x∈R都有. (1)求和(n∈N*)的值;(2)数列{an }满足:,求an;(3)令,,,试比较Tn 和Sn的大小。

【答案】(1),;(2);(3).【解析】(1)由于函数f(x)对任意x∈R都有,则令可求的;再令求出;(2)利用倒序相加结合(1)的结论可求出;(3)由及第(2)问的结论求出,用放缩法变形(),用裂项相消法求,再与比较大小.(1)令=2,则;令得,(4分)(2)由,两式相加得:,∴,(8分)(3),(n≥2)∴.(12分)【考点】倒序相加、裂项相消法求数列的前项和.3.对任意,函数满足,设,数列的前15项的和为,则.【答案】【解析】因为,所以即因此数列任意相邻两项和为因为,因此所以或,又由.【考点】数列求和4.已知函数,且,则()A.0B.100C.5050D.10200【答案】C【解析】因为,所以,选C.5.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出.试题解析:(1)解法1:当时,,当时,.是等差数列,,得.又,,,、、成等比数列,,即,解得.解法2:设等差数列的公差为,则.,,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,②①②得. .解法2:由(1)得.,.,①由,两边对取导数得,.令,得. .【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导6.数列{an }满足an+1+(-1)n an=2n-1,则{an}的前60项和为____________.【答案】1830【解析】当时,;当时,;当时,.将与相减得:;将与相减得:.所以,,所以.【考点】数列.7.在数列{an }中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=.【答案】299【解析】设定值为M,则an +an+1+an+2=M,进而an+1+an+2+an+3=M,后式减去前式得an+3=an,即数列{an}是以3为周期的数列.由a7=2,可知a1=a4=a7=…=a100=2,共34项,其和为68;由a9=3,可得a 3=a6=…=a99=3,共33项,其和为99;由a98=4,可得a2=a5=…=a98=4,共33项,其和为132.故数列{an}的前100项的和S100=68+99+132=299.8..己知数列满足,则数列的前2016项的和的值是___________.【答案】1017072【解析】这个数列既不是等差数列也不是等比数列,因此我们要研究数列的各项之间有什么关系,与它们的和有什么联系?把已知条件具体化,有,,,,…,,,我们的目的是求,因此我们从上面2015个等式中寻找各项的和,可能首先想到把出现“+”的式子相加(即为偶数的式子相加),将会得到,好像离目标很近了,但少,而与分布在首尾两个式子中,那么能否把首尾两个式子相减呢?相减后得到,为了求,我们又不得不求,依次下去,发现此路可能较复杂或者就行不通,重新寻找思路,从头开始我们有,即,而,∴,因此,我们由开始的三个等式求出了,是不是还可用这种方法求出呢?下面舍去,考察,,,同样方法处理,,从而,于是,而,正好504组,看来此法可行,由此我们可得.【考点】分组求和.9.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图10.已知数列的各项都是正数,前项和是,且点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求.【答案】(Ⅰ);(Ⅱ)。

(完整版)求数列通项公式与数列求和精选练习题(有答案)

(完整版)求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和112342421{},1(1,2,3,)3(1),,{}.(2)n n n n n na n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4n n n n nn n n a n S a a S n nS nS a +++====L 数列的前项和记为已知,证明数列是等比数列*121{}(1)()3(1),;(2):{}.n n nn n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列11211{},,.2n n n n a a a a a n n +==++ 已知数列满足求练习1 练习2 练习3 练习4112{},,,.31n n n n n a a a a a n +==+ 已知数列满足求111511{},,().632n n n n n a a a a a ++==+ 已知数列中,求111{}:1,{}.31n n nn n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式练习8 等比数列{}n a 的前n 项和Sn=2n-1,则2232221na a a a ++++Λ练习9 求和:5,55,555,5555,…,5(101)9n-,…;练习5 练习6练习7练习10 求和:1111447(32)(31)n n+++⨯⨯-⨯+L练习11 求和:111112123123n ++++= +++++++LL练习12 设{}na是等差数列,{}nb是各项都为正数的等比数列,且111a b==,3521a b+=,5313a b+=(Ⅰ)求{}na,{}nb的通项公式;(Ⅱ)求数列nnab⎧⎫⎨⎬⎩⎭的前n项和n S.答案练习1答案:练习2 证明: (1)注意到:a(n+1)=S(n+1)-S(n)代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列 (2)由(1)知,{S(n)/n}是以1为首项,2为公比的等比数列。

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.数列的通项,其前项和为,则为()A.B.C.D.【答案】A【解析】,注意到数列的周期为3,并且【考点】1.三角恒等变换;2.数列求和2.设等比数列都在函数的图象上。

(1)求r的值;(2)当;(3)若对一切的正整数n,总有的取值范围。

【答案】(1)(2)(3)【解析】(1)由已知可得,当时,是等比数列, 4分(2)由(1)可知,8分(3)递增,当时,取最小值为所以一切的 12分【考点】数列求通项求和点评:数列求和采用的错位相减法,此法适用于通项公式为关于n的一次式与指数式的乘积形式的数列,第三问不等式恒成立转化为求数列前n项和的最值,期间借助了数列的单调性}中,,试猜想这个数列的通项公式。

3.在数列{an【答案】【解析】因为,,所以,。

【考点】本题主要考查数列的递推公式,等差数列的通项公式。

点评:简单题,考察数列要从多方面入手,如本题中,通过研究的特征,利用等差数列的知识,使问题得解。

4.对正整数,设曲线在处的切线与轴交点的纵坐标为,则数列的前项和的公式是【答案】=-2n-1(n+2),所以,切线方程为:y+2n=-2n-1(n+2)(x-2),【解析】因为y'|x=2=(n+1)2n,令x=0,求出切线与y轴交点的纵坐标为y=。

所以,则数列{}的前n项和Sn【考点】本题主要考查导数的几何意义,直线方程,等比数列的求和公式。

点评:中档题,切线的斜率等于函数在切点的导函数值。

最终转化成等比数列的求和问题。

5.在数列中,=1,,其中实数.(I)求;(Ⅱ)猜想的通项公式, 并证明你的猜想.【答案】(Ⅰ)(Ⅱ)猜想:应用数学归纳法证明。

【解析】(Ⅰ)由6分(Ⅱ)猜想:①当时,,猜想成立;②假设时,猜想成立,即:,则时,=猜想成立.综合①②可得对,成立. 12分【考点】本题主要考查归纳法及数学归纳法。

点评:中档题,“归纳,猜想,证明”是创造发明的良好方法。

利用数学归纳法证明命题的正确性,要注意遵循“两步一结”。

数列求和-简单(含答案)

数列求和-简单(含答案)

数列求和1.已知数列{}n a 的前n 项和为n S ,))(1(31*∈-=N n a S n n (1)求21,a a ;(2)求知数列{}n a 的通项公式。

【答案】(1)12-,14(2)nn a 21-=【解析】(1)由))(1(31),1(311111*∈-=-=N n a a a S 得211-=∴a 又)1(3122-=a S即41),1(312221=-=+a a a a 得,当)1(31)1(31211---=-=≥--n n n n n a a S S a n 时,得211-=-n n a a 所以 21-=q 公比,n n a 21-=考点:求数列通项 2.已知等差数列{}n a 满足:52611,18a a a =+=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n n n a b 3+=,求数列}{n b 的前n 项和n S .【答案】(Ⅰ)21n a n =+;(Ⅱ)2323212-+-+=n n n n S .【解析】(Ⅰ)设{}n a 的首项为1a ,公差为d ,则由18,11625=+=a a a 得⎩⎨⎧=+=+186211411d a d a ,解得13,2,a d ==所以21n a n =+;(Ⅱ)由12+=n a n 得213nn b n =++.]()()123357213333nn S n =++++++++++⎡⎤⎣⎦ ()12231333221322n n n n n n +-=++=+-+-考点:1.等差数列;2.等比数列求和;3.分组转化法求和. 3.已知数列{}n a 是等比数列,数列{}n b是等差数列,且,,,.(Ⅰ)求{}n b 通项公式;(Ⅱ)设n n n b a c -=,求数列{}n c 的前n 项和.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)设等比数列的公比为,则,所以,,所以.设等比数列的公比为,因为,,所以,即,(Ⅱ)由(Ⅰ)知,,,所以.从而数列的前项和.4.已知数列{}n a 是等差数列, {}n b 是等比数列,且,,,.(1)求{}n a 的通项公式;(2)设n n n b a c +=,求数列{}n c 的前n 项和{}n T .【答案】(1);(2).【解析】(1)设数列的公差为,的公比为,由,,得,,即有,,则,故.(2)由(1)知,,∴…….5.已知{}n a 是公差不为零的等差数列,且12a =,1a ,5a ,17a 成等比数列. (1)求数列{}n a 的通项公式;(2)设2n an n b a =+,求数列{}n b 的前n 项和n T .【答案】(1)1n a n =+; (2)n T ()21242n n n n ++=++-.【解析】(1)设等差数列{}n a 的公差为d , 由1a ,5a ,17a 成等比数列得:25117a a a =⋅,即()()2242216d d +=⨯+, 整理得()10d d -=, 0d ≠Q ,1d ∴=,∴ ()2111n a n n =+-⨯=+. (2)由(1)可得+12+1n n b n =+.所以123n n T b b b b =+++⋅⋅⋅+()()()()234121122123121n n +++=++++++++++L()()23412222123n n n +=+++⋅⋅⋅+++++⋅⋅⋅++()211222122n n n n +⨯+-⨯=++-()21242n n n n ++=++-考点:等差数列和等比数列的性质,等差数列的通项公式,分组求和法,等差等比数列的求和公式.6.已知数列{}n a 的前n 项和2*,2n n nS n N +=∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2(1)n an n n b a =+-,求数列{}n b 的前2n 项和.【答案】(Ⅰ)数列{}n a 的通项公式为n a n =; (Ⅱ)数列{}n b 的前2n 项和21222n n T A B n +=+=+-【解析】(Ⅰ)当1n =时,111a S ==;当2n ≥时,221(1)(1)22n n n n n n n a S S n -+-+-=-=-=, 故数列{}n a 的通项公式为n a n =.(Ⅱ)由(Ⅰ)知2(1)n n n b n =+-⋅,记数列{}n b 的前2n 项和为2n T ,则1222(222)(12342)n n T n =++++-+-+-+ ,记122222,12342nA B n =+++=-+-+-+ ,则2212(12)2212n n A +-==--, (12)(34)[(21)2]B n n n =-++-++--+= ,故数列{}n b 的前2n 项和21222n n T A B n +=+=+-7.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列{a n +b n }是首项为1,公比为c 的等比数列,求数列{b n }的前n 项和S n .【答案】(Ⅰ)32n a n =-+;(Ⅱ)当c =1时,S n =()312n n -+n =232n n+;当c ≠1时,S n =()312n n -+11nc c--. 【解析】(Ⅰ)设等差数列{a n }的公差为d ,则1127232929a d a d +=-⎧⎨+=-⎩解得113a d =-⎧⎨=-⎩∴数列{a n }的通项公式为a n =-3n +2.(Ⅱ)∵数列{a n +b n }是首项为1,公比为c 的等比数列,∴a n +b n =c n -1,即-3n +2+b n =c n -1,∴b n =3n -2+c n -1. ∴S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+cn -1)=()312n n -+(1+c +c 2+…+c n -1). 当c =1时,S n =()312n n -+n =232n n+;当c ≠1时,S n =()312n n -+11n c c--.考点:1.数列的通项公式;2.数列的求和;3.等差数列和等比数列的性质应用.8.已知数列{}n a 的前n 项和为n S ,且2n S n =.数列{}n b 为等比数列,且11b =,48b =. (1)求数列{}n a ,{}n b 的通项公式;(2)若数列{}n c 满足n n b c a =,求数列{}n c 的前n 项和n T .【答案】(1) 21n a n =-,12n n b -= (2)122n n T n +=-- 【解析】(Ⅰ )∵ 数列{}n a 的前n 项和为n S ,且2n S n =,∴ 当2n ≥时,221(1)21n n n a S S n n n -=-=--=-.当1n =时,111a S == 亦满足上式,故21n a n =-(*n N ∈).又数列{}n b 为等比数列,设公比为q ∵ 11b =,3418b b q ==, ∴2q =.∴ 12n n b -= (*n N ∈).(Ⅱ)2121n nn b n c a b ==-=-.123n n T c c c c =+++12(21)(21)(21)n=-+-++- 12(222)nn =++- 2(12)12n n -=--.所以 122n n T n +=--.考点:等差数列,等比数列,求和9.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (1)求n a 及n S ;(2)令n b =211n a -(n N *∈),求数列{}n b 的前n 项和n T . 【答案】(1)2n+1n a =;n S =2n +2n 。

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.已知数列的前项和为,且,;数列中,点在直线上.(1)求数列和的通项公式;(2)设数列的前和为,求;【答案】(1),(2)【解析】(1)求数列的通项公式用公式法即可推导数列为等比数列,根据等比数列通项公式可求。

求的通项公式也用公式法,根据已知条件可知数列为等差数列,根据等差数列的通项公式可直接求得。

(2)用列项相消法求和。

试题解析:解:(1)∵,∴当时,…2分所以,即∴数列是等比数列.∵,∴∴. 5分∵点在直线上,∴,即数列是等差数列,又,∴.…7分(2)由题意可得,∴, 9分∴,…10分∴. 14分【考点】1求数列的通向公式;2数列求和。

2.数列的通项公式,则该数列的前()项之和等于.A.B.C.D.【答案】B【解析】,令,解得.故选B.【考点】数列求和的其他方法(倒序相加,错位相减,裂项相加等)3.设数列中,,则通项 ___________.【答案】.【解析】由已知得,即数列后项与前项的差,求它的通项公式的方法是的累加法,,=.【考点】数列的求和.4.已知数列的前n项和,则()A.20B.19C.18D.17【答案】C【解析】当时,有【考点】数列求通项点评:由数列前n项和求通项5.观察下列三角形数表:第一行第二行第三行第四行第五行………………………………………….假设第行的第二个数为.(1)依次写出第八行的所有8个数字;(2)归纳出的关系式,并求出的通项公式.【答案】(1)根据已知条件可知每一个数字等于肩上两个数之和,那么可知第八行中的8个数字为8,29,63,91,91,63,29,8(2)【解析】(1)8,29,63,91,91,63,29,8(规律:每行除首末数字外,每个数等于其肩上两数字之和)(2)由已知:,所以有:,, ,……,,将以上各式相加的:所以的通项公式为:。

【考点】累加法求解数列的通项公式点评:主要是考查了递推关系式的运用,结合累加法来求解数列的通项公式,属于基础题。

数列求和练习题(含答案)

数列求和练习题(含答案)

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16D.130B [∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.]3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( )A .9B .18C .36D .72B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4,∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.]已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和. [解](1)由已知得⎩⎨⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2,3分所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n =1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1,8分所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.12分已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15.(1)求{a n }的通项公式; (2)设b n =2nna a ,求数列{b n }的前n 项和T n . [解] (1)设等差数列{a n }的公差为d ,首项为a 1. ∵S 3=6,S 5=15,∴⎩⎪⎨⎪⎧3a 1+12×3×(3-1)d =6,5a 1+12×5×(5-1)d =15,即⎩⎪⎨⎪⎧a 1+d =2,a 1+2d =3,解得⎩⎪⎨⎪⎧a 1=1,d =1.3分∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n .5分 (2)由(1)得b n =a n 2a n=n2n ,6分∴T n =12+222+323+…+n -12n -1+n 2n ,①①式两边同乘12, 得12T n =122+223+324+…+n -12n +n2n +1,② ①-②得12T n =12+122+123+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n-n 2n +1,10分 ∴T n =2-12n -1-n2n .12分一、选择题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )【导学号:31222189】A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1D .n 2-n +1-12nA [该数列的通项公式为a n =(2n -1)+12n , 则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+ (12)=n 2+1-12n .]2.在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n +1}的前10项和为( )A .100B .110C .120D .130C [{a n +a n +1}的前10项和为a 1+a 2+a 2+a 3+…+a 10+a 11=2(a 1+a 2+…+a 10)+a 11-a 1=2S 10+10×2=120.故选C.]3.(2016·湖北七校2月联考)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里B [由题意,知每天所走路程形成以a 1为首项,公比为12的等比数列,则a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=96,即第二天走了96里.故选B.] 6.设数列{a n }的前n 项和为S n ,且a n =sin n π2,n ∈N *,则S 2 016=__________. 0 [a n =sin n π2,n ∈N *,显然每连续四项的和为0. S 2 016=S 4×504=0.]9.已知数列{a n }中,a 1=1,又数列⎩⎨⎧⎭⎬⎫2na n (n ∈N *)是公差为1的等差数列.(1)求数列{a n }的通项公式a n ; (2)求数列{a n }的前n 项和S n . [解](1)∵数列⎩⎨⎧⎭⎬⎫2na n 是首项为2,公差为1的等差数列,∴2na n =2+(n -1)=n +1,3分解得a n =2n (n +1).5分(2)∵a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n-1n +1, ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n-1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.12分3.设S n 是数列{a n }的前n 项和,已知a 1=3,a n +1=2S n +3(n ∈N *).(1)求数列{a n }的通项公式;(2)令b n =(2n -1)a n ,求数列{b n }的前n 项和T n . [解] (1)当n ≥2时,由a n +1=2S n +3得a n =2S n -1+3, 两式相减,得a n +1-a n =2S n -2S n -1=2a n , ∴a n +1=3a n ,∴a n +1a n=3.当n =1时,a 1=3,a 2=2S 1+3=2a 1+3=9,则a 2a 1=3.3分∴数列{a n }是以a 1=3为首项,公比为3的等比数列. ∴a n =3×3n -1=3n .5分(2)法一:由(1)得b n =(2n -1)a n =(2n -1)·3n ,7分 ∴T n =1×3+3×32+5×33+…+(2n -1)·3n ,① 3T n =1×32+3×33+5×34+…+(2n -1)·3n +1,②①-②得-2T n =1×3+2×32+2×33+…+2×3n -(2n -1)·3n +1 =3+2×(32+33+…+3n )-(2n -1)·3n +1 =3+2×32(1-3n -1)1-3-(2n -1)·3n +1=-6-(2n -2)·3n +1.10分 ∴T n =(n -1)·3n +1+3.12分法二:由(1)得b n =(2n -1)a n =(2n -1)·3n .7分 ∵(2n -1)·3n =(n -1)·3n +1-(n -2)·3n , ∴T n =b 1+b 2+b 3+…+b n=(0+3)+(33+0)+(2×34-33)+…+[(n -1)·3n +1-(n -2)·3n ] =(n -1)·3n +1+3.12分。

数列求和解答题50道(解析版)

数列求和解答题50道(解析版)

数列求和解答题50道1.已知各项均为正数的数列{a n }的前n 和S n 满足4S n =(a n +1)2(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =a n +2a n ,求数列{b n }的前n 项和T n .【解析】(1)∵4S n =(a n +1)2(n ∈N *),n ≥2时,4S n-1=(a n -1+1)2,相减可得:4a n =(a n +1)2-(a n -1+1)2,化为:(a n +a n -1)(a n -a n -1-2)=0,∵a n +a n -1>0,∴a n -a n -1-2=0,即a n -a n -1=2,∴数列{a n }是公差为2的等差数列,n =1时,4S 1=4a 1=(a 1+1)2,解得a 1=1.∴a n =1+2(n -1)=2n -1.(2)b n =a n +2a n =2n -1+22n -1=2n -1+12×4n .∴数列{b n }的前n 项和T n =n (1+2n -1)2+12×4(4n -1)4-1=n 2+2(4n -1)3.2.已知各项均为正数的数列{a n }的前n 项和S n 满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.(1)求{a n }的通项公式:(2)设数列{b n }满足b n =a n ,n 是奇数2n ,n 是偶数,并记T n 为{b n }的前n 项和,求T 2n .【解析】(1)由a 1=S 1=16(a 1+1)(a 1+2),整理可得:a 21-3a 1+2=0,结合a 1=S 1>1,解得a 1=2由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2)得(a n +1+a n )(a n +1-a n -3)=0,又a n >0,得a n +1-a n =3从而{a n }是首项为2公差为3的等差数列,故{a n }的通项公式为a n =3n -1.(2)T 2n =(a 1+a 3+⋅⋅⋅+a 2n -1)+(22+24+⋅⋅⋅+22n )=n (2+6n -4)2+4(1-4n )1-4=4n +1-43+3n 2-n . 3.已知数列{a n }满足a 1-12+a 2-122+⋯+a n -12n =n 2+n (n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{a n }的前n 项和S n .【解析】(Ⅰ)∵a 1-12+a 2-122+⋯+a n -12n =n 2+n ,(n ∈N +)①∴a 1-12+a 2-122+⋯+a n -1-12n -1=(n -1)2+n -1=n 2-n (n ≥2,n ∈N +),②由①-②得:a n -12n =2n ,∴a n =n •2n +1+1,n≥2,n ∈N +,③在①中,令n =1,得a 1=5,适合③式,∴a n =n •2n +1+1,n ∈N +.(Ⅱ)设b n =n •2n +1,其前n 项和为T n ,则:T n =1×22+2×23+⋯+n ×2n +1,①2T n =1×23+2×24+⋯+n ×2n +2,②②-①,得T n =-22-23-⋯-2n +1+n •2n +2=(n -1)•2n +2+4.∴S n =T n +n =(n -1)•2n +2+n +4.4.已知数列{a n }的前n 项和S n =-12n 2+kn (k ∈N ),且S n 的最大值为8(1)确定常数k ,求a n ;(2)设b n =1a n a n +1,若数列{b n }的前n 项和为T n ,T n >m 恒成立,求m 的取值范围.【解析】(1)数列{a n }的前n 项和S n =-12n 2+kn (k ∈N ),即为S n =-12(n -k )2+k 22,可得当n =k 时,取得最大值k 22,即有k 22=8,解得k =4;则S n =-12n 2+4n ,a 1=S 1=72,n ≥2时,a n =S n -S n -1=-12n 2+4n --12(n -1)2+4(n -1) =92-n ,上式对n =1也成立,则a n =92-n ;(2)b n =1a n a n +1=4(9-2n )(7-2n )=212n -9-12n -7,可得前n 项和为T n =21-7-1-5+1-5-1-3+⋯+12n -9-12n -7=21-7-12n -7 ,当n ≤3时,T n 增大;当n ≥4时,T n 增大,由T 1=435,T 4=-167,可得T n 的最小值为-167,∵T n >m 恒成立,可得m <-167.5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N +,且S n的最大值为8.(1)确定k 的值;并求数列{a n }的通项公式;(2)若数列9-2a n2n 的前n 项和T n .证明:T n <4.【解析】(1)∵S n =-12n 2+kn =-12(n -k )2+12k 2,又n ,k ∈N +,所以当n =k 时,(S n )max =12k 2,由题设12k 2=8,故k =4,可得S n =-12n 2+4n ;当n =1时,a 1=S 1=72;当n ≥2时,a n =S n -S n -1=-12n 2+4n --12(n -1)2+4(n -1) =92-n ,上式也满足n =1,即a n =92-n ,n ∈N +;(2)证明:a n =92-n ,9-2a n 2n =n 2n -1,故前n 项和T n =1•12 0+2•12 1+⋯+n •12 n -1,12T n =1•12 +2•12 2+⋯+n •12 n ,两式相减可得12T n =1+12+12 2+⋯+12 n -1-n •12 n =1-12n 1-12-n •12 n ,化简可得T n =4-(n +2)•12 n -1,则T n <4.6.已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(Ⅰ)确定常数k ,并求a n ;(Ⅱ)求数列9-2a n2n 的前n 项和T n .【解析】(Ⅰ)数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8,当n =k 时,S n 取得最大值,则12k 2=8,解得k =4,可得S n =-12n 2+4n ,a 1=S 1=4-12=72,n ≥2时,a n =S n -S n -1=-12n 2+4n +12(n -1)2-4(n -1)=92-n ,上式对n =1也成立,则a n =92-n ;(Ⅱ)数列9-2a n 2n ,即为数列n 2n -1 ,则前n 项和T n =1•12 0+2•12 1+3•122+⋯+n •12n -1,12T n =1•12 +2•12 2+3•123+⋯+n •12n,两式相减可得,12T n =1+12 1+122+⋯+12 n -1-n •12 n =1-12 n1-12-n •12 n,化简可得T n =4-(n +2)•12n -1.7.设S n 为等差数列{a n }的前n 项和.已知a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解析】(1)设等差数列{a n }的公差为d ,首项为a 1由题意可得a 1+2d =57a 1+7×62d =49,解得a 1=1d =2 ,所以{a n }的通项公式为a n =2n -1.(2)由(1)得b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,从而T n =121-13+13-15 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.8.设数列{a n }的前n 项和为S n ,且S n =2n -1.数列b 1=2,b n +1-2b n =8a n .(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,且S n =2n-1.当n =1时,解得a 1=1,当n ≥2时,S n -1=2n -1-1,所以a n =S n -S n -1=2n -1(首项符合通项),故a n =2n -1,数列b 1=2,b n +1-2b n =8a n =2n +2,所以b n +12n +1-b n 2n=2(常数),所以数列b n2n 是以b 121=1为首项,2为公差的等差数列.所以b n =(2n -1)⋅2n ,则T n =1⋅21+3⋅22+⋯+(2n -1)⋅2n ①,2T n =1⋅22+3⋅23+⋯+(2n -1)⋅2n +1②,①-②得-T n =2(2+22+⋯+2n )-2-(2n -1)⋅2n +1,解得T n =(2n -3)⋅2n +1+6.9.已知等差数列{a n }的前n 项和为S n ,且S l 5=225,a 3+a 6=16.(Ⅰ)证明:{S n }是等差数列;(Ⅱ)设b n =2n⋅a n ,求数列{b n }的前n 项和T n .【解析】(Ⅰ)设公差为d 的等差数列{a n }的前n 项和为S n ,且S l 5=225,a 3+a 6=16.则:S 15=225a 3+a 6=16 解得:a 1=1,d =2,所以:S n =1+3+⋯+(2n -1)=n 2,则:S n =n ,所以:S n -S n -1=n -n +1=1(常数).故:数列{S n }是等差数列;(Ⅱ)由已知条件b n =2n⋅a n =(2n -1)⋅2n,所以:T n =1⋅21+3⋅22+⋯+(2n -1)⋅2n①2T n =1⋅22+3⋅23+⋯+(2n -1)⋅2n +1②,①-②得:T n =(2n -3)⋅2n +1+6.10.已知数列{a n }是公差不为0的等差数列,a 1=3,a 1•a 4=a 22.(1)求{a n }的通项公式及a n 的前n 项和S n 的通项公式;(2)b n =1S 1+1S 2+⋯+1S n,求数列{b n }的通项公式,并判断b n 与23的大小.【解析】(1)设a 1=a ,公差为d ,则a (a +3d )=(a +d )2,解得d =a =3,所以a n =3n ,S n =3n (n +1)2.(2)1S n =23⋅1n (n +1)=231n -1n +1,从而b n =1S 1+1S 2+⋯+1S n=231-12+12-13+⋯+1n -1n +1 =231-1n +1 =23-23(n +1)<23,故b n <23.11.已知正项数列{a n }的前n 项和为S n ,若数列log 13a n是公差为-1的等差数列,且a 2+2是a 1,a 3的等差中项.(1)证明数列{a n }是等比数列,并求数列{a n }的通项公式;(2)若T n 是数列1a n的前n 项和,若T n <M 恒成立,求实数M 的取值范围.【解析】【解答】(1)证明:∵数列log 13a n 是公差为-1的等差数列,∴log 13a n =log 13a 1-(n -1),∴a na 1=3n -1.∴n ≥2时,a n a n -1=3n -13n -2=3,数列{a n }是以3为公比的等比数列.∴a 2=3a 1,a 3=9a 1.∵a 2+2是a 1,a 3的等差中项,∴2(a 2+2)=a 1+a 3,∴2(3a 1+2)=a 1+9a 1,解得a 1=1.∴数列{a n }是以3为公比,1为首项的等比数列.∴a n =3n -1.(2)解:1a n =13n -1.∴T n =1-13 n1-13=321-13 n.∵T n <M 恒成立,∴M ≥32.∴实数M 的取值范围是32,+∞ .12.已知等差数列{a n }的前n 项和为S n ,a 8=S 3,a 4=2a 2-2.(1)求数列{a n }的通项公式;(2)设b n =1S n +2,其前n 项和为T n ,证明:T n <12.【解析】(1)解:设等差数列{a n }的公差为d ,依题意得a 1+7d =3a 1+3da 1+3d =2(a 1+d )-2,解得:a 1=4d =2 ,∴a n =4+2(n -1)=2n +2;(2)证明:由(1)得:S n =(4+2n +2)n2=n 2+3n ,∴b n =1S n +2=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2,∴T n =12-13 +13-14+⋯+1n +1-1n +2 =12-1n +2<12.13.已知数列{a n }的前n 项和为S n ,且满足2a n -S n =1(n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2(1+S n ),求数列1b n b n +1的前n 项和T n .【解析】(Ⅰ)∵2a n -S n =1,令n =1,解得a 1=1,n≥2,又2a n -1-S n -1=1,两式相减,得a n =2a n-1,∴{a n }是以a 1=1为首项,q =2为公比的等比数列,∴a n =2n -1;(Ⅱ)∵1+S n =2n ,∴b n =log 2(1+S n )=log 22n=n ,1b n b n +1=1n (n +1)=1n -1n +1∴T n =11×2+12×3+⋯+1n (n +1)=1-12 +12-13 +⋯+1n -1n +1=1-1n +1=nn +1.14.已知正项等比数列{a n }满足a 1=2,a 3a 7=322,数列b n 的前n 项和为S n ,b n =2n -2.(Ⅰ)求{a n }的通项公式与S n ;(Ⅱ)设c n =a n +1S n +1,求数列{c n }的前n 项和T n .【解析】(Ⅰ)根据题意,a 1=2,a 25=322,∴a 1=2,a 5=32,∴q =2,所以a n =2n ,因为b n =2n -2,数列{b n }为公差2,首项为0的等差数列,∴S n =n (0+2n -2)2=n 2-n ;(Ⅱ)根据题意,c n =a n +1S n +1=2n +1(n +1)n=2n +1n -1n +1所以T n =2(1-2n )1-2+1-12 +12-13 +⋯+1n -1n +1 =2n +1-1-1n +1.15.在等差数列{a n }中,a 1=-8,a 2=3a 4.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =4n (12+a n )(n ∈N *),T n 为数列{b n }的前n项和,若T n =95,求n 的值.【解析】(Ⅰ)设等差数列{a n }的公差是d ,由a 1=-8,a 2=3a 4得:-8+d =3(-8+3d )解得d =2,所以a n =-10+2n ;(Ⅱ)由(Ⅰ)知a n =-10+2n ,∴b n =4n (12+a n )=4n (2n +2)=21n -1n +1 ,所以T n=211-12 +12-13 +⋯+1n -1n +1 =2n n +1,由T n =95解得n =9.16.等差数列{a n }中,公差d ≠0,a 5=14,a 23=a 1a 11.(1)求{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和S n .【解析】(1)∵{a n }是等差数列,公差d ≠0,a 5=14,a 23=a 1a 11,可得a 1+4d =14,(a 1+2d )2=a 1(a 1+10d ),解得a 1=2,d =3,所以{a n }的通项公式;a n =a 1+(n -1)d =3n -1;(2)bn=1a n a n +1=1(3n -1)(3n +2)=1313n -1-13n +2,数列{b n }的前n 项和S n =1312-15+15-18+⋯+13n -1-13n +2=1312-13n +2 =16-19n +6=n 6n +4.17.在等差数列{a n }中,已知a 2=3,a 7=8.(1)求数列{a n }的通项公式;(2)设数列1a n a n +1 的前n 项和为S n ,若S n =512,求n 的值.【解析】(1)设公差为d 的等差数列{a n }中,已知a 2=3,a 7=8.所以a 7-a 2=5d =5,解得d =1,由于a 2=a 1+d ,所以a 1=2.故a n =n +1.(2)由于a n =n +1,所以1a n a n +1=1(n +1)(n +2)=1n +1-1n +2,则S n =12-13+13-14+⋯+1n +1-1n +2=512,整理得12-1n +2=512,解得n =10.18.已知公差不为0的等差数列{a n }满足a 3=9,a 2是a 1,a 7的等比中项.(1)求{a n }的通项公式;(2)设数列{b n }满足b n =1n (a n +7),求{b n }的前n 项和S n .【解析】(1)设等差数列{a n }的公差为d (d ≠0),则a 1+2d =9(a 1+d )2=a 1⋅(a 1+6d )解得d =4或d =0(舍去),a 1=1,∴a n =1+4(n -1)=4n -3.(2)∵b n =1n (a n +7)=141n -1n +1 ,∴Sn=b 1+b 2+b 3+⋯+b n =1411-12 +12-13 +⋯+1n -1n +1 =141-1n +1 =n 4n +4.19.已知数列{a n }的前n 项和为S n ,且2S n =3a n +4n -7.(1)证明:数列{a n -2}为等比数列;(2)若b n =a n -2(a n +1-1)(a n -1),求数列{b n }的前n 项和T n .【解析】【解答】证明:(1)数列{a n }的前n 项和为S n ,且2S n =3a n +4n -7①.当n =1时,解得:a 1=3,当n ≥2时,2S n -1=3a n -1+4n -11②.①-②得:a n =3a n -1-4,整理得:a n -2a n -1-2=3(常数)所以:数列{a 2-2}是以a 1-2=1为首项,3为公比的等比数列.(2)由于:数列{a 2-2}是以a 1-2=1为首项,3为公比的等比数列,故:a n -2=3n -1,所以:b n =a n -2(a n +1-1)(a n -1)=3n -1(3n +1)(3n -1+1)=1213n -1+1-13n +1,所以:Tn=12130+1-131+1+⋯+13n -1+1-13n +1=1212-13n +1.20.已知数列{a n }的前n 项和为S n ,点(a n ,S n )在直线y =2x -2上,n ∈N *(1)求{a n }的通项公式;(2)若b n =n +(a n -1)log 2a n ,求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,点(a n ,S n )在直线y =2x -2上,n ∈N *所以:S n =2a n -2①,当n =1时,a 1=2a 1-2,解得:a 1=2.当n ≥2时,S n -1=2a n -1-2②,①-②得:a n =2a n -2a n -1,整理得:an a n -1=2(常数),故:数列的通项公式为:a n =2⋅2n -1=2n (首项符合通项).故:a n =2n .(2)b n =n +(a n -1)log 2a n =n •2n,所以T n =1⋅21+2⋅22+⋯+n ⋅2n ①,2T n =1⋅22+2⋅23+⋯+n ⋅2n +1②,①-②得:-T n =21+22+⋯+2n -n ⋅2n +1,整理得:T n =(n -1)⋅2n +1+2.21.已知{a n }是等差数列,且lg a 1=0,lg a 4=1.(1)求数列{a n }的通项公式(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和.【解析】(1)数列{a n }是等差数列,设公差为d ,且lg a 1=0,lg a 4=1.则:a 1=1a 1+3d =10 ,解得:d =3所以:a n =1+3(n -1)=3n -2.(2)若a 1,a k ,a 6是等比数列{b n }的前3项,则:a 2k=a 1⋅a 6,整理得:a k =3k -2,解得:k =2;所以:等比数列{b n }的公比为q =4.所以:b n =4n -1.则a n +b n =3n -2+4n -1,故:S n =(1+1)+(4+41)+⋯+(3n -2+4n -1)=n (3n -1)2+4n -14-1=32n 2-12n +13(4n-1).22.已知数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =(n +1)a n (n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =(a n +1)2S n,求数列{b n }的前n 项和T n .【解析】(Ⅰ)数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =(n +1)a n (n ∈N *).当n =2时,2S 2=3a 2,整理得a 1=2.所以2S n =(n +1)a n ,故2S n -1=(n +1-1)a n-1,两式相减得(n -1)a n =na n -1,所以a n =a na n -1⋅a n -1a n -2⋯a2a 1⋅a 1=2n (首项符合通项).故a n =2n .(Ⅱ)由于a n =2n ,所以b n =(a n +1)2S n=4n 2+4n +1n (n +1)=4+1n (n +1)=4+1n -1n +1.故T n =b 1+b 2+⋯+b n =4n +1-12+12-13+⋯+1n -1n +1 =4n +1-1n +1.23.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1)n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(Ⅰ)求q 的值和{a n }的通项公式;(Ⅱ)设b n =log 2a 2n -1a 2n,n ∈N *,求数列{b n }的前n 项和.【解析】(Ⅰ)数列{a n }满足a n +2=qa n (q 为实数,且q ≠1)n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列,所以(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3.所以a 2(q -1)=a 3(q -1),由于q ≠1,所以a 3=a 2=2,解得q =2.①当n =2k -1时,a n =a 2k -1=2n -12,②当n =2k 时,a n =a 2k =2n2.所以数列的通项公式为:an=2n -12(n 为奇数)2n 2(n 为偶数).(Ⅱ)由(Ⅰ)得:b n =log 2a 2n -1a 2n =n -12n,所以T n =021+122+⋯+n -12n ①,则12T n =022+123+⋯+n -12n +1,②①-②得12T n =141-12n -11-12-n -12n +1,整理得T n =1-n +12n .24.已知公差不为0的等差数列{a n }与等比数列{b n }满足a 1=b 1=1,a 2=b 2,a 4=b 3.(1)求数列{a n }、{b n }的通项公式;(2)设T n =a 1b n +a 2b n -1+⋯+a n b 1,求T n .【解析】(1)设公差为d 且不为0的等差数列{a n }与公比为q 的等比数列{b n }满足a 1=b 1=1,a 2=b 2,a 4=b 3.故a n =a 1+(n -1)d ,b n =b 1⋅q n -1,所以1+d =q 1+3d =q 2 ,解得d =1,q =2.故a n =n ,b n =2n -1.(2)由于a n =n ,b n =2n -1,所以T n =1⋅2n -1+2⋅2n -2+⋯+n ⋅20①,12T n =1⋅2n -2+2⋅2n -3+⋯+n ⋅20-1②①-②得:12T n =2n -1+2n -2+⋯+2+1-n2=2n -1-n2.所以T n =2n +1-(n +2).25.已知等比数列{a n }是首项为1的递减数列,且a 3+a 4=6a 5.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .【解析】(1)由a 3+a 4=6a 5,得6q 2-q -1=0,解得q=12或q =-13.∵数列{a n }为递减数列,且首项为1,∴q =12.∴a n =1×12 n -1=12n -1.(2)∵T n =1⋅12 0+2⋅12 1+3⋅122+⋯+n⋅12 n -1,∴12T n =1⋅12 1+2⋅12 2+3⋅12 3+⋯+n ⋅12 n .两式相减得12T n =12 0+12 1+12 2+⋯+12 n -1-n ⋅12n =1-12 n1-12-n 12 n =2-2⋅12 n -n ⋅12 n=2-n +22n,∴T n =4-n +22n -1.26.已知数列{a n }满足a 1+2a 2+3a 3+⋯+na n =n (n ∈N *).(1)求数列{a n }的通项公式a n ;(2)令b n =a n a n +2(n ∈N *),T n =b 1+b 2+⋯+b n ,求证:T n<34.【解析】(1)数列{a n }满足a 1+2a 2+3a 3+⋯+na n =n ①,当n ≥2时,a 1+2a 2+3a 3+⋯+(n -1)a n -1=n -1②,①-②得:a n =1n,当n =1时,a 1=1(首项符合通项),故:a n =1n.(2)由于:a n =1n,所以:b n =a n a n +2=1n (n +2)=121n -1n +2 ,所以:T n =121-13+12-14+⋯+1n -1n +2 =121+12-1n +1-1n +2 <34.27.已知公差不为0的等差数列{a n }的首项a 1=3,且a 1+1,a 2+1,a 4+1成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,n ∈N *,S n 是{b n }的前n 项和,求使S n <113成立的最大的正整数n .【解析】(1)公差不为0的等差数列{a n }的首项a 1=3,且a 1+1,a 2+1,a 4+1成等比数列.则:(a 2+1)2=(a 1+1)(a 4+1),解得:d =4或0(舍去),故:a n =3+4(n -1)=4n -1,(2)由于:a n =4n -1,所以:a n +1=4n +3,所以:b n =1a n a n +1=1(4n -1)(4n +3)=1414n -1-14n +3,故:S n =1413-17+17-111+⋯+14n -1-14n +3 =1413-14n +3 =n 12n +9,所以:要使S n <113成立整理得:1413-14n +3 <113,解得:n <9由于n 为自然数,所以:n 的最大值为8.28.已知数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求数列{a n }的通项公式;(2)若数列{b n -a n }是等差数列,且b 1=2,b 3=14,求数列{b n }的前n 项和T n ⋅【解析】(1)数列{a n }的前n 项和为S n ,且2S n =3a n-1①.当n =1时,解得:a 1=1.当n ≥2时,2S n -1=3a n -1-1②,①-②得:a n =3a n -1,故:an a n -1=3(常数),所以:数列{a n }是以1为首项,3为公比的等比数列.所以:a n =3n -1(首项符合通项),故:a n =3n -1.(2)数列{b n -a n }是等差数列,且b 1=2,b 3=14,所以:设c n =b n -a n .c 1=b 1-a 1=1,c 3=b 3-a 3=14-9=5,则:公差d =c 3-c 12=5-12=2,所以:c n =2n -1.则:b n =a n +c n =3n -1+2n -1,故:T n =(30+31+⋯+3n -1)+(1+3+⋯+2n -1)=(3n -1)3-1+n (2n -1+1)2=3n -12+n 229.设数列{a n }满足a 1=2,a n +1=2a n ,数列{b n }的前n 项和S n =12(n 2+n ).(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n b n ,求数列{c n }的前n 项和T n .【解析】(1)数列{a n }满足a 1=2,a n +1=2a n ,则:a n +1a n=2(常数)所以:数列{a n }是以a 1=2为首项,2为公比的等比数列.故:a n =2⋅2n -1=2n ,由于:数列{b n }的前n 项和S n =12(n 2+n ).当n =1时,解得:b 1=1,当n ≥2时,b n =S n -S n -1=12(n 2+n )-12(n-1)2-12(n -1)=n .由于首项符合通项,故:a n =n .(2)由(1)得:c n =a n b n =n ⋅2n ,所以:T n =1⋅21+2⋅22+⋯+n ⋅2n ①,2T n =1⋅22+2⋅23+⋯+n ⋅2n +1②,①-②得:-T n =(21+22+⋯+2n )-n ⋅2n +1,解得:T n =(n -1)⋅2n +1+2.30.已知首项为1的等差数列{a n }的前n 项和为S n ,已知S 3为a 4与a 5的等差中项.数列{b n }满足b n =2S n +n2n.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n •b n }的前n 项和为T n .【解析】(1)设公差为d ,首项为1的等差数列{a n }的前n 项和为S n ,已知S 3为a 4与a 5的等差中项.则:2(3+3d )=1+3d +(1+4d ),解得:d =4,故:a n =1+4(n -1)=4n -3,所以:S n +n 2n =n (1+4n -3)2+n 2n =n .故:数列{b n }满足b n =2S n +n2n=2n .(2)根据已知条件:a n ⋅b n =(4n -3)⋅2n ,则:T n =1⋅21+5⋅22+⋯+(4n -3)⋅2n ①,2T n =1⋅22+5⋅23+⋯+(4n -3)⋅2n +1②,①-②得:T n =(4n -3)⋅2n -4(22+23+⋯+2n )-2,整理得:T n =(4n -7)•2n +1+14.31.设数列{a n }的前n 项和为S n ,已知S n =2a n -1.(1)求数列{a n }的通项公式;(2)若b n =a n +1(a n +1-1)(a n +2-1),求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和为S n ,已知S n =2a n -1.①当n =1时,解得:a 1=1.当n ≥2时,S n -1=2a n -1-1.②①-②得:a n =2a n -2a n -1,整理得:a n =2a n -1,故:an a n -1=2(常数),所以:数列{a n }是以1为首项,2为公比的等比数列.故:a n =1⋅2n -1=2n -1(首项符合通项).故:a n =2n -1,(2)由于b n =a n +1(a n +1-1)(a n +2-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以:T n =121-1-122-1+⋯+12n -1-12n +1-1=1-12n +1-1.32.已知等差数列{a n }的前n 项和为S n ,a 3=4,S 6=27.(1)求{a n }的通项公式;(2)设b n =2a n ,记T n 为数列{b n }的前n 项和.若T m =124,求m .【解析】【解答】(本小题满分12分)解:(1)设{a n }的首项为a 1,公差为d ,由已知得a 1+2d =46a 1+15d =27,解得a 1=2d =1.所以a n =a 1+(n -1)d =n +1.(2)由(1)可得b n =2n +1,∴{b n }是首项为4,公比为2的等比数列,则T n =4(1-2n)1-2=4(2n -1).由T m =124,得4(2m -1)=124,解得m =5.33.已知数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =a n +1S n ⋅S n +1,求数列{b n }的前n 项和T n .【解析】(Ⅰ)数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .当n =1时,解得:a 1=2.当n ≥2时,2a n =2+S n ,①2a n -1=2+S n -1,②①-②得:a n =2a n -1,整理得:a n a n -1=2(常数),所以:a n =2⋅2n -1=2n ,(Ⅱ)由于S n =2(2n -1)2-1=2⋅(2n -1),b n =a n +1S n ⋅S n +1=2n +12(2n -1)(2n +1-1)=1212n -1-12n +1-1,所以:T n =121-13 +⋯+12n-1-12n +1-1=121-12n +1-134.已知{a n }是公差不为0的等差数列,且满足a 1=2,a 1,a 3,a 7成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a n +2a n ,求数列{b n }的前n 项和S n .【解析】(Ⅰ)设{a n }的公差为d ,因为a 1,a 3,a 7成等比数列,所以a 23=a 1a 7.所以(a 1+2d )2=a 1(a 1+6d ).所以4d 2-2a 1d =0.由d ≠0,a 1=2得d =1,所以a n =n +1.(Ⅱ)由(Ⅰ)知,b n =a n +2a n =n +1+2n +1,所以S n =[2+3+4+⋯+(n +1)]+(22+23+24+⋯+2n +1)=n (n +3)2+4(1-2n)1-2=2n +2+n 2+3n -82.35.在数列{a n }中,已知a n >0,a 1=1,a n +21-a n 2-a n +1-a n =0.(1)求证:数列{a n }是等差数列;(2)设数列{a n }的前n 项和为S n ,b n =1S n,求数列{b n }的前n 项和T n .【解析】【解答】证明:(1)由a 2n +1-a 2n -a n +1-a n =0,得(a n +1-a n -1)(a n +1+a n )=0,因为a n >0,所以a n +1-a n =1,又因为a 1=1,所以数列{a n }是首项为a 1=1,公差为1的等差数列.解:(2)由(1)可得,S n =na 1+12n (n -1)d =n +12n (n -1)=n (n +1)2.∴b n =1S n =2n (n +1)=21n -1n +1 .∴T n =b 1+b 2+⋯+b n =211-12+12-13+⋯++1n -1n +1=21-1n +1 =2nn +1.36.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n(4n 2-1)2n.(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .【解析】(1)数列{a n }的前n 项和S n =2n +1-2,当n =1时,a 1=S 1=2,当n ≥2时,则:a =S n -S n -1=2n +1-2-2n +2=2n .由于n =1时,符合通项,故:a n =2n .(2)由于:a n =2n ,故:bn=a n (4n 2-1)2n =14n 2-1=1(2n +1)(2n -1)=1212n -1-12n +1 .所以:T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.37.已知数列{a n }的前n 项和是S n ,若a n +1=a n +1(n ∈N *),S 3=12.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解析】(Ⅰ)因为a n +1=a n +1(n ∈N *),所以数列{a n }是公差为1的等差数列.又因为S 3=12,则a 1=3,所以,a n =a 1+(n -1)d =n +2(n ∈N *).(Ⅱ)由(Ⅰ)知,b n =1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,则T n =b 1+b 2+b 3+⋯+b n =13-14+14-15+15-16+⋯+1n +2-1n +3=13-1n +3=n 3n +9(n ∈N *)38.设数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -1a n =n 3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =n ,n 为奇数1a n,n 为偶数,求数列{b n }的前n 项和S n .【解析】(1)数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -1a n =n3①,当n ≥2时,数列{a n }满足:a 1+3a 2+32a 3+⋯+3n -2a n -1=n -13②,①-②得:3n -1a n =13,所以:a n =13n ,当n =1时,a 1=13(符合通项),故:a n =13n .(2)由于b n =n ,n 为奇数1a n,n 为偶数,所以:b n =n ,n 为奇数3n ,n 为偶数,①当n 为奇数时:S n =1+32+3+34+⋯+3n -1+n=(n +1)2⋅(1+n )2+99n -12-1 9-1=n 2+2n +14+9(3n -1-1)8.②当n 为偶数时,S n =1+32+3+34+⋯+(n -1)+3n=n 2⋅(1+n -1)2+99n 2-1 9-1=n 24+9(3n -1)8.39.在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *).(1)求证:数列{a n +n }是等比数列,并求{a n }的通项公式;(2)求数列{a n }的与前n 项和S n .【解析】(1)证明:∵a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *).∴a n +n =2(a n -1+n -1),∴数列{a n +n }是等比数列,首项为4,公比为2.∴a n =4×2n -1-n =2n +1-n .(2)解:数列{a n }的与前n 项和S n =(22+23+⋯+2n +1)-(1+2+⋯+n )=4(2n -1)2-1-n (1+n )2=2n +2-4-n 2+n 2.40.设等差数列{a n }的前n 项和为S n ,且a 3=6,S 6=42.(Ⅰ)求数列{a n }的通项公式(Ⅱ)设b n =a n ,n 为奇数2a n2,n 为偶数,求数列{b n }的前2n 项和.【解析】(Ⅰ)设首项为a 1,公差为d 的等差数列{a n}的前n 项和为S n ,由a 3=6,S 6=42得a 1+2d =66a 1+6×52d =42,解得a 1=2d =2 ,所以a n =2+2(n -1)=2n .(Ⅱ)由于a n =2n ,所以设b n =a n ,n 为奇数2a n2,n 为偶数=2n (n 为奇数)2n(n 为偶数) ,所以T n =[2+6+10+14+⋯+2(2n -1)]+(22+24+⋯+22n )=2n 2+434n -141.已知数列{a n }的前n 项和为S n ,且S nn是等差数列,a 1=2,a 2=4.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1(a n -1)(2n +1),求数列{b n }的前n 项和T n .【解析】(1)由题意得S 11=1,S22=3,设等差数列S nn 的公差为d ,则d =S 22-S 11=1.∴Sn n=2+(n -1)×1=n +1,∴S n =n (n +1),当n ≥2时,a n =S n -S n -1=2n ,经检验a 1=2也满足上式,∴a n =2n (n ∈N *),(2)b n =1(a n -1)(2n +1)=1(2n -1)(2n +1)=1212n -1-12n +1,∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1 =121-12n +1,∴T n =n2n +1.42.已知正项等差数列{a n }满足:S n 2=a 31+a 32+⋅⋅⋅+a n 3,n ∈N *,S n 是数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)令b n =(-1)n 4n(2a n -1)(2a n +1)(n ∈N *),数列{b n }的前n 项和为T n ,求T 2n .【解析】(1)正项等差数列{a n }满足:S n 2=a 31+a 32+⋅⋅⋅+a n 3,①,当n =1时,解得a 1=1;当n =2时,S 22=a 31+a 32,整理得a 22-a 2-2=0,解得a 2=2或-1(负值舍去),故公差d =a 2-a 1=1,故a n =n .(2)由(1)得:b n =(-1)n4n(2a n -1)(2a n +1)=(-1)n4n(2n -1)(2n +1)=(-1)n12n -1+12n +1 ,所以T 2n =-1-13+13+15+...+14n -1+14n +1=14n +1-1=-4n4n +143.已知数列{a n }满足:a 1=12,数列1a n 的前n 项和S n =3n 2+n2.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a n a n +1,求数列{b n }的前n 项和T n .【解析】(1)当n ≥2时,S n -1=3(n -1)2+(n -1)2=3n 2-5n +22,则1a n =S n -S n -1=3n 2+n 2-3n 2-5n +22=3n -1.又当n =1时,1a 1=2满足上式,所以1a n =3n -1,则a n =13n -1.(2)又(1)可知b n =a n a n +1=1(3n -1)(3n +2)=1313n -1-13n +2,所以T n =b 1+b 2+b 3+⋯+b n -1+b n =1312-15+15-18+18-111+⋯+13n -4-13n -1+13n -1-13n +2 =1312-13n +2 =n 6n +4.所以数列{b n }的前n 项和T n =n 6n +4.44.已知等比数列{a n }的前n 项和为S n ,且a n +1=2S n +1(n ∈N +).(1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =3b n-1,求数列b n a n 的前n 项和T n .【解析】(1)当n =1时,a 2=2a 1+1,当n ≥2时,a n +1-a n =2S n -2S n -1=2a n ,即a n +1=3a n ,∴等比数列{a n }的公比是3,∴a 2=3a 1,即2a 1+1=3a 1,故a 1=1,故数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1;(2)由(1)知,a n =3n -1,又a n =3b n -1,∴b n -1=n -1,故b n =n ,∴b n a n =n3n -1,则T n =130+231+332+⋅⋅⋅+n -23n -3+n -13n -2+n 3n -1,①,13T n =131+232+333+⋅⋅⋅+n -23n -2+n -13n -1+n 3n,②两式相减得:23T n =130+131+132+⋅⋅⋅+13n -3+13n -2+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n,∴T n =94-2n +34×3n -1.45.已知数列{a n }的前n 项和为S n ,且对任意正整数n 均满足S 12+S 222+S 323+⋅⋅⋅+S n 2n =n -1+12n .(1)求数列{a n }的通项公式;(2)记b n =2n S n S n +1,数列{b n }的前n 项和为T n ,求满足T n ≥20212022的最小正整数n 的值.【解析】(1)当n =1时,S 12=12,得S 1=1.当n ≥2时,由S 12+S 222+S 323+⋅⋅⋅+S n2n =n -1+12n ①,得S 12+S 222+S 323+⋅⋅⋅+S n -12n -1=(n -1)-1+12n -1②,①-②得S n 2n =1-12n (n ≥2),∴S n =2n -1(n ≥2),当n =1时,得a 1=S 1=1;当n ≥2时,由a n =S n -S n -1=2n -1-2n -1+1=2n -1.又a 1=1也满足上式,所以a n =2n -1.(2)由(1)得b n=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,所以S n=12-1-122-1+122-1-123-1+⋯+12n-1-1 2n+1-1=1-12n+1-1,由1-12n+1-1≥20212022得2n+1-1≥2022,即2n+1≥2023,因为210<2023<211,所以n+1≥11,即n≥10,故满足T n≥20212022的最小正整数为10.46.已知数列{a n}的前n项和为S n,且满足2a n-S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=a n+1(a n+1-1)(a n+2-1),数列{b n}的前n项和为T n,求证:23≤T n<1.【解析】(1)由2a n-S n=1(n∈N*),可得2a1-S1= 2a1-a1=1,即a1=1,当n≥2时,2a n-1-S n-1=1,又2a n-S n=1,相减可得2a n-2a n-1=a n,即a n=2a n-1,则a n=2n-1;(2)证明:b n=a n+1(a n+1-1)(a n+2-1)=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,T n=1-13+13-17+17-115+...+12n-1-1 2n+1-1=1-12n+1-1,由{T n}是递增数列,可得T n≥T1=23,且T n<1.所以23≤T n<1.47.已知公差不为零的等差数列{a n}的前n项和为S n,且S4=16,a22=a1a5.(1)求数列{a n}的通项公式a n和S n;(2)若b n=1a n a n+1,数列{b n}的前n项和T n满足T n≥48101,求n的最小值.【解析】(1)设数列{a n}的公差为d,由题意知4a1+6d=16,(a1+d)2=a1(a1+4d),解得a1=1,d=2,所以a n=1+(n-1)×2=2n-1,S n=n(1+2n-1)2=n2.(2)由(1)得,b n=1(2n-1)(2n+1)=1212n-1-12n+1,所以T n=121-13+13-15+⋅⋅⋅+12n-1-12n+1=121-12n+1=n2n+1,令n2n+1≥48101,得n≥485,又n∈N*,所以n的最小值为10.48.公差不为0的等差数列{a n}的前n项和为S n,且a1,a2,a6成等比数列,S6=51.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1(n∈N*),数列{b n}的前n项和记为T n,求证:T n<13.【解析】(1)设{a n}公差为d,∵a1,a2,a6成等比数列,S6=51,∴a1⋅a6=a22a1+a2+a3+a4+a5+a6=51,即a1(a1+5d)=(a1+d)26a1+6×52d=51,解得a1=1,d=3,∴a n=3n-2,(2)证明:b n=1a n a n+1=1(3n-2)(3n+1)=1313n-2-13n+1,∴T n=131-14+14-17+⋅⋅⋅+13n-2-13n+1=131-13n+1=13-133n+1<13,∴T n<13.49.已知数列{a n}的前n项和为S n,且满足2a n=S n+n-1.(1)求证:{a n+1}为等比数列;(2)设b n=2n(a n+2)(a n+1+2),数列{b n}的前n项和为T n,求证:T n<1.【解析】【解答】证明:(1)当n=1时,2a1=a1+1-1,解得a1=0,当n≥2时,2a n-2a n-1=S n+n-1-(S n-1+n-2),化为:a n=2a n-1+1.变形为:a n+1=2(a n-1+1),a1+1=1,∴{a n+1}为等比数列,首项为1,公比为2.(2)由(1)可得:a n+1=2n-1,∴a n=2n-1-1.∴b n=2n(a n+2)(a n+1+2)=2n(2n-1+1)(2n+1)=212n-1+1-12n+1,∴数列{b n}的前n项和为T n=2120+1-121+1++⋯⋯+12n-1+1-12n+1=212-12n+1<1,∴T n<1.50.已知数列{a n}的前n项和为S n,且满足S n+n=2a n(n∈N*).(1)证明:数列{a n+1}是等比数列;(2)设b n=2na n a n+1,求数列{b n}的前n项和T n.【解析】(1)当n=1时,a1+1=2a1得a1=1.当n≥2时,S n+n=2a nS n-1+n-1=2a n-1,两式相减得a n=2a n-1+1(n≥2),即a n+1=2(a n-1+1)(n≥2),所以数列{a n+1}是以2为公比,以2为首项的等比数列,(2)由(1)知a n+1=2n(n∈N*),即a n=2n-1(n∈N*).∵b n=2na n a n+1=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,则T n=b1+b2+⋯+b n=1-13+13-17+⋯+12n-1-12n+1-1=1-12n+1-1.。

数列求和专题(必考必练,方法全面,有答案)

数列求和专题(必考必练,方法全面,有答案)

数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。

解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。

经典的数列通项公式与数列求和练习题(有答案)

经典的数列通项公式与数列求和练习题(有答案)

经典的数列通项公式与数列求和练习题(有答案)一、斐波那契数列斐波那契数列是最经典的数列之一,它的通项公式为:$$F(n) = F(n-1) + F(n-2)$$其中 $F(1) = 1$,$F(2) = 1$。

以下是一些关于斐波那契数列的练题:练题1:求斐波那契数列的第10项。

解答:根据通项公式进行递归计算,得出第10项为34。

练题2:求斐波那契数列的前20项的和。

解答:利用循环计算斐波那契数列的前20项,并将每项相加得到总和为6765。

二、等差数列等差数列是一种常见的数列类型,它的通项公式为:$$a_n = a_1 + (n - 1) \cdot d$$其中 $a_1$ 是首项,$d$ 是公差。

以下是一些关于等差数列的练题:练题1:已知等差数列的首项 $a_1 = 3$,公差 $d = 5$,求该数列的前10项。

解答:根据通项公式,将$a_1$ 和$d$ 代入,依次计算出前10项为:3, 8, 13, 18, 23, 28, 33, 38, 43, 48。

练题2:已知等差数列的首项 $a_1 = 2$,公差 $d = -4$,求该数列的前15项的和。

解答:根据通项公式和等差数列前n项和的公式,将 $a_1$、$d$ 和$n$ 代入,计算出前15项的和为:-420。

三、等比数列等比数列是另一种常见的数列类型,它的通项公式为:$$a_n = a_1 \cdot q^{(n-1)}$$其中 $a_1$ 是首项,$q$ 是公比。

以下是一些关于等比数列的练题:练题1:已知等比数列的首项 $a_1 = 2$,公比 $q = 3$,求该数列的前8项。

解答:根据通项公式,将 $a_1$ 和 $q$ 代入,依次计算出前8项为:2, 6, 18, 54, 162, 486, 1458, 4374。

练题2:已知等比数列的首项 $a_1 = 5$,公比 $q = \frac{1}{4}$,求该数列的前12项的和。

解答:根据通项公式和等比数列前n项和的公式,将 $a_1$、$q$ 和$n$ 代入,计算出前12项的和为 $\frac{5}{1 - \frac{1}{4}} =\frac{20}{3}$。

(完整版)数列求和合集例题与标准答案)

(完整版)数列求和合集例题与标准答案)

数列求和汇总答案一、利用常用求和公式求和利用下列常用求和公式求和是数列求和地最基本最重要地方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 例1、已知,求地前n 项和.3log 1log 23-=x ⋅⋅⋅++⋅⋅⋅+++nx x x x 32解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得(利用常用公式)nn x x x x S +⋅⋅⋅+++=32===1-x x x n --1)1(211)211(21--n n 21练习:求地和.22222222123456...99100-+-+-+--+解:2222222212345699100-+-+-+--+ ()()()()2222222221436510099=-+-+-++- ()()()()()()()()2121434365651009910099=-++-++-++-+ 3711199=+++ +由等差数列地求和公式得()50503199S 50502+==二、错位相减法求和这种方法是在推导等比数列地前n 项和公式时所用地方法,这种方法主要用于求数列{a n ·b n }地前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.例2求和:………………………①132)12(7531--+⋅⋅⋅++++=n n x n x x x S 解:由题可知,{}地通项是等差数列{2n -1}地通项与等比数列{}地通项之积1)12(--n xn 1-n x设……………………….②(设制错位)nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=①-②得(错位相减)n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--再利用等比数列地求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+练习:求数列前n 项地和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n解:由题可知,{}地通项是等差数列{2n}地通项与等比数列{}地通项之积n n 22n 21设…………………………………①n n nS 2226242232+⋅⋅⋅+++=………………………………②(设制错位)14322226242221++⋅⋅⋅+++=n n nS ①-②得(错位相减)1432222222222222211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴1224-+-=n n n S 三、反序相加法求和这是推导等差数列地前n 项和公式时所用地方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.)(1n a a +例3求地值89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++解:设………….①89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S 将①式右边反序得…………..②(反序)1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S 又因为1cos sin ),90cos(sin 22=+-=x x x x ①+②得(反序相加)=89)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S ∴S=44.52、求和:222222222222222101109293832921101++++++++++ 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见地数列,然后分别求和,再将其合并即可.例4、求和:⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+n n y x y x y x 11122 ()1,1,0≠≠≠y x x 解:原式=()nx x x x ++++ 32⎪⎪⎭⎫ ⎝⎛++++n y y y 1112=()yy y xx x n n 1111111-⎪⎪⎭⎫⎝⎛-+--=nn n n y y y x x x --+--++1111练习:求数列地前n 项和:, (231),,71,41,1112-+⋅⋅⋅+++-n aa a n 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n 将其每一项拆开再重新组合得(分组))23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 当a =1时,=(分组求和)2)13(n n n S n -+=2)13(nn +当时,=1≠a 2)13(1111n n a a S nn -+--=2)13(11n n a a a n -+---练习:求数列地前n 项和.∙∙∙+∙∙∙),21(,,813,412,211nn 解:n n n n n n n n S 211)1(21)21212121()321()21(81341221132-++=+∙∙∙+++++∙∙∙+++=++∙∙∙+++=五、裂项法求和这是分解与组合思想在数列求和中地具体应用.裂项法地实质是将数列中地每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和地目地.通项分解(裂项)如:例5求数列地前n 项和.⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 解:设(裂项)n n n n a n -+=++=111则(裂项求和)11321211+++⋅⋅⋅++++=n n S n =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n 练习:求13,115,135,163之和.解:94911(21)9171()7151()5131()311(21)9171(217151(21)5131(21)311(2197175153131163135115131=-=⎥⎦⎤⎢⎣⎡-+-+-+-=-+-+-+-=⨯+⨯+⨯+⨯=+++六、合并法求和针对一些特殊地数列,将某些项合并在一起就具有某种特殊地性质,因此,在求数列地和时,可将这些项放在一起先求和,然后再求S n .例6、数列{a n }:,求S 2002.n n n a a a a a a -====++12321,2,3,1解:设S 2002=2002321a a a a +⋅⋅⋅+++由可得n n n a a a a a a -====++12321,2,3,1,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵(找特殊性质项)0665646362616=+++++++++++k k k k k k a a a a a a ∴S 2002=(合并求和)2002321a a a a +⋅⋅⋅+++=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5练习:在各项均为正数地等比数列中,若地值.103231365log log log ,9a a a a a +⋅⋅⋅++=求解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列地性质(找特殊性质项)q p n m a a a a q p n m =⇒+=+和对数地运算性质得N M N M a a a ⋅=+log log log (合并求和))log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++==)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列地通项求和先根据数列地结构及特征进行分析,找出数列地通项及其特征,然后再利用数列地通项揭示地规律来求数列地前n 项和,是一个重要地方法.例7、求5,55,555,…,地前n 项和.解:∵a n =59(10n -1)∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1)=59[(10+102+103+……+10n )-n]=(10n +1-9n-10)练习:求数列:1,,,地前n 项和.解:=e an dAl l h i ng si nt h er be ng ae od =版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX74J0X用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.LDAYtRyKfEUsers may use the contents or services of this article forpersonal study, research or appreciation, and other non-commercialor non-profit purposes, but at the same time, they shall abide bythe provisions of copyright law and other relevant laws, and shallnot infringe upon the legitimate rights of this website and itsrelevant obligees. In addition, when any content or service ofthis article is used for other purposes, written permission andremuneration shall be obtained from the person concerned and the relevant obligee.Zzz6ZB2Ltk转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

数列求和专项练习(含答案)

数列求和专项练习(含答案)

数列求和专项练习1.在等差数列{}n a 中,已知34151296=+++a a a a ,求前20项之和。

2.已知等差数列{}n a 的公差是正数,且,4,126473-=+-=a a a a 求它的前20项之和。

3.等差数列{}n a 的前n 项和S n =m ,前m 项和S m =n (m>n ),求前m+n 项和S n+m4.设y x ≠,且两数列y a a a x ,,,,321和4321b y b b x b ,,,,,均为等差数列,求1243a a b b --5.在等差数列{}n a 中,前n 项和S n ,前m 项和为S m ,且S m =S n , n m ≠,求S n+m6.在等差数列{}n a 中,已知1791,25S S a ==,问数列前多少项为最大,并求出最大值。

7.求数列的通项公式:(1){}n a 中,23,211+==+n n a a a(2){}n a 中,023,5,21221=+-==++n n n a a a a a9.求证:对于等比数列前n 项和S n 有)(32222n n n n n S S S S S +=+10. 已知数列{}n a 中,前n 项和为S n ,并且有1),(241*1=∈+=+a N n a S n n (1)设),(2*1N n a a b n n n ∈-=+求证{}n b 是等比数列;(2)设),(2*N n a c nn ∈=求证{}n b 是等差数列;11.设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n 项和.【规范解答】(Ⅰ)由已知,当时,而,满足上述公式,所以的通项公式为. (Ⅱ)由可知,①从而 ②①②得{}n a 12a ={}n a n n b na ={}n b n S 1n ≥[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=12a ={}n a 212n n a -=212n n n b na n -==•35211222322n n n s -=•+•+•++•23572121222322n n n s +=•+•+•++•-3521212(12)22222n n n n s -+-=++++-•即 12.已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-13.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;211(31)229n n S n +⎡⎤=-+⎣⎦(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n qa a . (Ⅰ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .14. 设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】所以,13,1,3,1,n n n a n -=⎧=⎨>⎩1363623n n +=-⨯ ,又1T 适合此式.13631243nnn T +=-⨯ 15.知等差数列满足:,,的前n 项和为.(1)求及;(2)令(n N *),求数列的前n 项和. 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列的公差为d ,因为,,所以有,解得, 所以;==. (2)由(1)知,所以b n ===, 所以==,即数列的前n 项和=.{}n a 37a =5726a a +={}n a n S n a n S n b =211n a -∈{}n b n T n a nS n b {}n a 37a =5726a a +=112721026a d a d +=⎧⎨+=⎩13,2a d ==321)=2n+1n a n =+-(n S n(n-1)3n+22⨯2n +2n 2n+1n a =211n a -21=2n+1)1-(114n(n+1)⋅111(-)4n n+1⋅n T 111111(1-+++-)4223n n+1⋅-11(1-)=4n+1⋅n4(n+1){}n b n T n4(n+1)。

数列求和综合练习题(含答案)

数列求和综合练习题(含答案)

数列求和综合练习题一、选择题1.已知数列{}n a 的前n 项和为n S ,若11++=n n a n ,10n S =,则=n ( )A .90B .121C .119D .1202.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A.172 B.192C.10D.12 3.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.630 4.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则6S 等于( )A .142 B .45 C .56 D .675.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( ) A.12 B.314 C.172 D.1526.设是等差数列的前项和,已知,则等于 ( )A. 13B. 35C. 49D. 637.等差数列的前n 项和为= ( ) A .18 B .20 C .21D .228.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( ) A.1- B.1 C.2- D.29.设等差数列{}n a 的前n 项和为n S ,若111-=a ,664-=+a a ,则当n S 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 10.在等差数列中,已知,则该数列前11项的和等于( )A .58B .88C .143D . 17611.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46D .1312.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( ) A .12 B .14 C .15 D .1613.等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则{}n a 的前9项和为( ) {}n a 5128,11,186,n S a S a ==则{}n a 4816a a +=11S二、解答题14.已知数列{}n a 的前n 项和()2*,n S n n N =∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 是等比数列,公比为()0q q >且11423,b S b a a ==+,求数列{}n b 的前n 项和n T .15.已知等差数列{}n a 的前n 项和为n S ,且93=S ,731,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足nn n a b 2)1(-=,求数列{}n b 的前n 项和n T .16.设数列{}n a 的前n 项和122nn S ,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知数列}{n a 的各项均为正数,n S 是数列}{n a 的前n 项和,且3242-+=n n n a a S . (1)求数列}{n a 的通项公式;(2)n n n nn b a b a b a T b +++== 2211,2求已知的值.18.已知数列}{n a 的前n 项和nn S 2=,数列}{n b 满足)12(,111-+=-=+n b b b n n ()1,2,3,n =.(1)求数列}{n a 的通项n a ; (2)求数列}{n b 的通项n b ; (3)若nb ac nn n ⋅=,求数列}{n c 的前n 项和n T .19.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式; (2)若*)(,1211N n a a a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .20.已知数列{a n }的前n 项和2n n S a =-,数列{b n }满足b 1=1,b 3+b 7=18,且112n n n b b b -++=(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若nnn a b c =,求数列{c n }的前n 项和T n.21.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项. (1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .22.设数列{}n a 满足11=a )(211*+∈=-N n a a n n n (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n S三、填空题23.已知等比数列{}n a 的各项均为正数,若11a =,34a =,则2________;a =此数列的其前n 项和__________.n S =24.已知等差数列{}n a 中,52=a ,114=a ,则前10项和=10S .25.设等比数列{}n a 的前n 项和为n S ,已知488,12,S S ==则13141516a a a a +++的值为 . 26.设n S 是等差数列{}n a 的前n 项和,且3613S S =,则912S S = .27.等差数列{}n a 中,10120S =,那么29a a += .28.[2014·北京海淀模拟]在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q =________.29.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = . 30.已知等差数列{}n a 中,已知8116,0a a ==,则18S =________________.31.已知等比数列的前项和为,若,则的值是 .32.已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= _________ . 33.数列{}n an 项和为9n S =,则n =_________.34.[2014·浙江调研]设S n 是数列{a n }的前n 项和,已知a 1=1,a n =-S n ·S n -1(n≥2),则S n =________.}{n a n n S 62,256382-==S a a a a 1a参考答案1.D【解析】n n n n a n -+=++=111 ,()()111...23)12(-+=-+++-+-=∴n n n S n ,1011=-+n ,解得120=n .【命题意图】本题考查利用裂项抵消法求数列的前n 项和等知识,意在考查学生的简单思维能力与基本运算能力. 2.B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式3.B 【解析】试题分析:因为13n n a a +=+,所以13n n a a +-=。

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.已知数列的前项和为,且2.(1)求数列的通项公式;(2)若求数列的前项和.【答案】(1);(2)。

【解析】(1)根据可求数列的通项公式,注意验证;(2)把(1)代入(2),然后先分组求和,一部分用裂项相消,一部分用等差数列求和公式。

试题解析:(1)由,得,2分两式相减得,, 4分又时,适合上式,。

6分8分10分12分【考点】(1)的应用;(2)数列求和:分组求和、裂项相消、公式法。

2.等差数列,该数列前n项和取最小值时,n= 。

【答案】15或16【解析】是递增数列,所以当或时取最小值【考点】数列求和与性质点评:结合数列性质:若则可得到数列中正负项分界的位置,利用单调性可得到所有负数项之和最小3.在数列{an}中,,试猜想这个数列的通项公式。

【答案】【解析】因为,,所以,。

【考点】本题主要考查数列的递推公式,等差数列的通项公式。

点评:简单题,考察数列要从多方面入手,如本题中,通过研究的特征,利用等差数列的知识,使问题得解。

4.若数列{},(n∈N)是等差数列,则有数列b=(n∈N)也是等差数列,类比上述性质,相应地:若数列{c}是等比数列,且c>0(n∈N),则有d=_____________________(n∈N)也是等比数列。

【答案】【解析】在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{an}是等差数列,则当bn =时,数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn =时,数列{bn}也是等比数列.故答案为:【考点】本题考查了类比推理的运用点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).5.已知数列的首项为,且,则这个数列的通项公式为___________【答案】【解析】根据题意,由于数列的首项为,且,故可知数列当n=1时,也满足上式,因此故可知答案为【考点】数列的通项公式点评:解决的关键是根据递推式来采用累加法来求解数列的通项公式,属于基础题。

数学课程数列求和练习题及答案

数学课程数列求和练习题及答案

数学课程数列求和练习题及答案在数学课程中,数列求和是一种重要的数学概念和技巧。

通过练习数列求和题目,我们能更好地理解和应用数列的知识。

本文将为大家提供一些数列求和的练习题及答案,帮助大家巩固对这一知识点的理解。

1. 题目:求和数列1+2+3+...+100的和。

解析:这是一个从1到100的等差数列,首项为1,末项为100,公差为1。

我们可以使用求和公式来计算其和。

根据求和公式S = (首项 + 末项) * 项数 / 2,带入数值计算可得:S = (1 + 100) * 100 / 2 = 5050答案:1+2+3+...+100的和为5050。

2. 题目:求和数列2+4+6+...+100的和。

解析:这是一个从2到100的等差数列,首项为2,末项为100,公差为2。

同样地,我们可以使用求和公式来计算其和。

计算过程如下:首项 = 2末项 = 100公差 = 2项数 = (末项 - 首项) / 公差 + 1 = (100 - 2) / 2 + 1 = 50 + 1 = 51S = (首项 + 末项) * 项数 / 2 = (2 + 100) * 51 / 2 = 102 * 51 / 2 = 2601答案:2+4+6+...+100的和为2601。

3. 题目:已知数列1+3+5+...+99的和为S,求S的值。

解析:这是一个从1到99的等差数列,首项为1,末项为99,公差为2。

同样地,我们可以利用求和公式计算其和。

计算过程如下:首项 = 1末项 = 99公差 = 2项数 = (末项 - 首项) / 公差 + 1 = (99 - 1) / 2 + 1 = 98 / 2 + 1 = 50S = (首项 + 末项) * 项数 / 2 = (1 + 99) * 50 / 2 = 100 * 50 / 2 = 5000答案:数列1+3+5+...+99的和为5000。

4. 题目:求和数列1^2 + 2^2 + 3^2 + ... + 10^2的和。

数列求和 经典练习题(含答案解析)

数列求和 经典练习题(含答案解析)

1.在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34 得4a 1+38d =34=20a 1+190d=5(4a 1+38d)=5×34=170由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17 S 20=1702.已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得由②,有a 1=-2-4d ,代入①,有d 2=4 再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得: a 4+a 6=a 3+a 7 即a 3+a 7=-4 又a 3·a 7=-12,由韦达定理可知: a 3,a 7是方程x 2+4x -12=0的二根 解方程可得x 1=-6,x 2=2又=+×S 20a d 20120192解法二 S =(a +a )202=10(a a )20120120×+(a 2d)(a bd)12 a 3d a 5d = 41111++=-①+++-②⎧⎨⎩∵ d >0 ∴{a n }是递增数列 ∴a 3=-6,a 7=23. 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d 按题意,则有=-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)①-②,得A(m 2-n 2)+B(m -n)=n -m ∵m ≠n ∴ A(m +n)+B=-1 故A(m +n)2+B(m +n)=-(m +n) 即S m+n =-(m +n)4.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,d =a =2a 10S 1807120--a 373,=-,=S na d m S ma d n (m n)a d =n mn 1m11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212即+-∴··a d =11m n S m n a m n m n d m n a m n d m n++=++++-=+++-+12121211()()()()()Am Bm n An Bn m22+=①+=②⎧⎨⎪⎩⎪b b y b 234,,,均为等差数列,求.b b a a 4321--5.在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .且S m =S n ,m ≠n∴S m+n =06. 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.∵a 1=25,S 17=S 9 解得d =-2∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等分析解 d =y x 51(1)=y x52(2)可采用=由a a m na ab b m n ----------21433264(2)(1)÷,得b b a a 432183--=解 S (m n)a (m n)(m n 1)d(m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d(m n)a (m n)(m n 1)=011112122d即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212根据题意:+×,=+×S =17a d S 9a d 1719117162982∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∵a 1=25,S 9=S 17∴a n =25+(n -1)(-2)=-2n +27即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系. 由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14 ∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0 ∴S 13=169最大.解法四 根据等差数列前n 项和的函数图像,确定取最大值时的n . ∵{a n }是等差数列 ∴可设S n =An 2+Bn二次函数y=Ax 2+Bx 的图像过原点,如图3.2-1所示∵S 9=S 17,∴取n=13时,S 13=169最大差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩∴×+××+×,解得-9252d =1725d d =29817162∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩∴对称轴 x =9+172=137.求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到+2说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.8. 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----⇒aq 2=4a +②解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列 即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.9.证 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n-1 S 2n =S n +(a 1q n +a 1q n+1+…+a 1q 2n-1) =S n +q n (a 1+a 1q +…+a 1q n-1) =S n +q n S n =S n (1+q n )类似地,可得S 3n =S n (1+q n +q 2n )说明 本题直接运用前n 项和公式去解,也很容易.上边的解法,灵活地处理了S 2n 、S 3n 与S n 的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 10.数列{a n }是等比数列,其中S n =48,S 2n =60,求S 3n .解法一 利用等比数列的前n 项和公式若q=1,则S n =na 1,即na 1=48,2na 1=96≠60,所以q ≠1①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq++.S S =S (S S )n 22n 2n 2n 3n ∴++++S +S =S [S (1q )]=S (22q q )n 22n 2n 2n n 2n2n 2nS (S S )=S [S (1q )S (1q q )]=S (22q q )S S =S (S S )n 2n 3n n n n n n 2n n 2n 2nn 22n 2n 2n 3n +++++++∴++∵S =a (1q )1n 1n --q=S n (1+q n +q 2n )解法二 利用等比数列的性质:S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列 ∴ (60-48)2=48·(S 3n -60) ∴ S 3n =63. 解法三 取特殊值法取n=1,则S 1=a 1=48,S 2n =S 2=a 1+a 2=60 ∴ a 2=12∵ {a n }为等比数列S 3n =S 3=a 1+a 2+a 3=6311.已知数列{a n }中,S n 是它的前n 项和,并且S n+1=4a n +2(n ∈N*),a 1=1(1)设b n =a n+1-2a n (n ∈N*),求证:数列{b n }是等比数列;解 (1)∵ S n+1=4a n +2 S n+2=4a n+1+2S =a (1)a (1)(1+)1q 2n 11--=--=+q qq q S q nn n n n 211()∴q =14S =a (1q )1qn 3n 13n --=-++-a q q q qn n n 12111()()∴S =48(1+116)=633n +14∴ q =a a a =3213=14(2)c =a 2(n N*){c }n nnn 设∈,求证:数列是等差数列.两式相减,得S n+2-S n+1=4a n+1=4a n (n ∈N*) 即:a n+2=4a n+1-4a n变形,得a n+2-2a n+1=2(a n+1-2a n ) ∵ b n =a n+1-2a n (n ∈N*) ∴ b n+1=2b n由此可知,数列{b n }是公比为2的等比数列. 由S 2=a 1+a 2=4a 1+2,a 1=1 可得a 2=5,b 1=a 2-2a 1=3 ∴ b n =3·2n-1将b n =3·2n-1代入,得说明 利用题设的已知条件,通过合理的转换,将非等差、非等比数列转化为等差数列或等比数列来解决(2) c =a 2(n N*)c =b 2n nnn+1n n+1∵∈∴-=-=-++++c a a a a n n n n n n nn 11112222c c =34(n N*)n+1n -∈由此可知,数列是公差的等差数列,它的首项,故+-·即:{c }d =34c =a 2c =(n 1)C =34n 11n n =-12123414n。

数列求和的习题及答案

数列求和的习题及答案

数列求和的习题及答案1.已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.2.设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.3. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S4.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.5. 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 6. 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值7.求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 8.求数列{n(n+1)(2n+1)}的前n 项和. 9. 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.10. 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.11.求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 12. 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 13. 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.14. 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 15. 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.16. 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.答案:1.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32(利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 2.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32(利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21 ∴ 当88-n ,即n =8时,501)(m ax =n f3.解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+4.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S5.证明: 设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-113)12()12(…………..…….. ②①+②得n nn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴ nn n S 2)1(⋅+=6.解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.57.解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- 8.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n=k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n9.解:设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n 10. 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n11 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立12.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 013. 解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =514. 解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =1015. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091n n ---⋅ =)91010(8111n n --+ 16.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n(设制分组)=)4131(8)4121(4+-+++-+⋅n n n n(裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313。

数列求前n项和方法汇总及练习(含答案)

数列求前n项和方法汇总及练习(含答案)

数列求和方法汇总及经典练习(含答案)一、公式法:利用以下公式求数列的和 1.d n n na a a n Sn n 2)1(2)(11-+=+=({}n a 为等差数列)2.qqa a q q a Sn n n --=--=11)1(11 (1≠q )或)1(1==q na Sn ({}n a 为等比数列) 3.6)12)(1(3212222++=+⋅⋅⋅⋅⋅⋅⋅+++n n n n4.23333]2)1([321+=+⋅⋅⋅⋅⋅⋅⋅+++n n n 等公式 例已知数列{}n a ,其中()12111,3,22n n n a a a a a n +-===+≥,记数列{}n a 的前n 项和为n S ,数列{}ln n S 的前n 项和为n U ,求n U 。

解:由题意,{}n a 是首项为1,公差为2的等差数列前n 项和()211212n n S n n ++-=⋅=,2ln ln 2ln n S n n ==()()2ln1ln 2ln 2ln !n U n n =+++=二、分组求和法对于数列{}n a ,若⋅⋅⋅⋅⋅⋅±±=nn nC b a 且数列{}n b 、{}n c ……都能求出其前n 项的和,则在求{}n a 前n 项和时,可采用该法例如:求和:999.09999.0999.099.09.0个n Sn ⋅⋅⋅+⋅⋅⋅⋅⋅⋅++++= 解:设n n na --=⋅⋅⋅⋅⋅⋅=10199.09个 n a a a a a Sn +⋅⋅⋅⋅⋅⋅++++=∴4321)101()101()101()101()101(4321n ------+⋅⋅⋅⋅⋅⋅+-+-+-+-=)1010101010()111(43211n n -----+⋅⋅⋅⋅⋅⋅++++-+⋅⋅⋅⋅⋅⋅++=相加个 )101(91n n ---= 三、倒序相加法(或倒序相乘法)将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,S n 表示从第一项依次到第n 项的和,然后又将S n 表示成第n 项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。

数列求和习题及答案

数列求和习题及答案

数列求和习题及答案(共3页) -本页仅作为预览文档封面,使用时请删除本页-§ 数列求和(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.在等比数列{a n } (n ∈N *)中,若a 1=1,a 4=18,则该数列的前10项和为( )A .2-128B .2-129C .2-1210D .2-12112.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n -23.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( ) A .126 B .130C .132D .1344.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-4005.数列1·n ,2(n -1),3(n -2),…,n ·1的和为( )n(n +1)(n +2) n(n +1)(2n +1) n(n +2)(n +3)n(n +1)(n +2)二、填空题(每小题6分,共24分)6.等比数列{a n }的前n 项和S n =2n-1,则a 21+a 22+…+a 2n =________.7.已知数列{a n }的通项a n 与前n 项和S n 之间满足关系式S n =2-3a n ,则a n =__________.8.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和S n =________.9.设关于x 的不等式x 2-x<2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 三、解答题(共41分)10.(13分)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足关系式2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正数n ,总有T n <1.11.(14分)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.12.(14分)已知等差数列{a n }的首项a 1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式; (2)设b n =1n (a n +3)(n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t36总成立若存在,求出t ;若不存在,请说明理由.答案6. 13(4n-1) 7. 12⎝ ⎛⎭⎪⎫34n -18.n n +110010. (1)解 由已知得⎩⎪⎨⎪⎧2S n =3a n -3,2S n -1=3a n -1-3 (n ≥2).故2(S n -S n -1)=2a n =3a n -3a n -1,即a n =3a n -1 (n ≥2). 故数列{a n }为等比数列,且公比q =3. 又当n =1时,2a 1=3a 1-3,∴a 1=3.∴a n =3n. (2)证明 ∵b n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+…+b n=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1<1. 11解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28, ① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2,∴a n =2n. (2)由(1)得b n =-n ·2n,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n).设T n =1×2+2×22+…+n ·2n,③ 则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n-n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2,∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n>26.∵24=16<26,25=32>26,且y =2x是单调递增函数, ∴满足条件的n 的最小值为5.12解 (1)由题意得(a 1+d)(a 1+13d)=(a 1+4d)2,整理得2a 1d =d 2.∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *). (2)b n =1n (a n +3)=12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1n -1n +1=12⎝⎛⎭⎪⎫1-1n +1=n2(n +1). 假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12(n +2)-n 2(n +1)=12(n +2)(n +1)>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t<9.又∵t ∈Z,∴适合条件的t 的最大值为8.。

数列求和专项复习答案

数列求和专项复习答案
数列求和专项复习
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知数列 各项为正, , ,记 , ,则
A. B.
C. D.
2.已知数列 满足 ,则 ()
A. B. C. D.
二、填空题
3.已知数列 中, , ,前n项和为 .若 ,则数列 的前15项和为______.
①当 为偶数时, ;
由 得: ,又 , ;
②当 为奇数时, ;
综上所述:满足 的最小正整数 的值为 .
10.(1) ;
(2) .
【分析】(1)由题知 ,进而结合 得数列 是等差数列,进而得答案;
(2)结合(1)得 ,进而根据错位相减法求解即可.
(1)
解: ( ),
当 时, ,∴ ,
当 时,由 ,得 ①
(2)结合(1)写出 的表达式,利用裂项相消的方法求出 ,即可证明结论.
(1)
(i)证明:∵数列 均为正项数列,其中 ,
且满足 成等比数列, 成等差数列,
∴ , ,
∴ , ,
∴ , ,即 ,
∴ , ,
∴{ }是等差数列.
(ii)∵ , ,∴ ,
∴ ,
∴ .

(2)
证明:∵



∴ .
12.答案见解析
若补充条件②: ,
由 ,即 ,又 ,
所以 ,
所以 ,
由于该数列 是递减数列,所以不存在k,使得 取最小值,故实数λ不存在.
若补充条件③: ,
由 ,得 ,
又 ,所以 ,
所以 ,
由等差数列 的前n项和 存在最小值 ,则 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1
n (n +1)
,则S 5等于( )
A .1 B.5
6 C.16D.130
B [∵a n =1n (n +1)=1n -1
n +1

∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5
6.]
3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( )
A .9
B .18
C .36
D .72
B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.]
已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =
1
a n a n +1
,求数列{b n }的前n 项和. [解](1)由已知得⎩⎪⎨⎪

2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×9
2d =10a 1+45d =100,
解得⎩⎨⎧
a 1=1,
d =2,
3分
所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n =1(2n -1)(2n +1)=
12⎝ ⎛⎭⎪⎫12n -1-12n +1,8分 所以T n =12⎝ ⎛
⎭⎪⎫1-13+13-15+…+12n -1-12n +1
=12⎝
⎛⎭⎪⎫1-12n +1=n 2n +1.12分
已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15.
(1)求{a n }的通项公式; (2)设b n =
2
n
n
a a ,求数列{
b n }的前n 项和T n . [解](1)设等差数列{a n }的公差为d ,首项为a 1. ∵S 3=6,S 5=15,
∴⎩⎪⎨⎪⎧
3a 1+12×3×(3-1)d =6,5a 1+1
2×5×(5-1)d =15,即⎩⎨⎧
a 1+d =2,a 1
+2d =3, 解得⎩
⎨⎧
a 1=1,d =1.3分
∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n .5分 (2)由(1)得b n =a n 2a n
=n
2n ,6分
∴T n =12+222+3
23+…+n -12n -1+n 2n ,①
①式两边同乘1
2, 得
12T n =122+223+324+…+n -12n +n
2n +1,② ①-②得12T n =12+122+123+…+12n -n 2n +1
=12⎝ ⎛
⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -
n 2n +1,10分 ∴T n =2-1
2n -1-n
2n .12分
一、选择题
1.数列112,314,518,7116,…,(2n -1)+1
2n ,…的前n 项和S n 的值等于( )
【导学号:31222189】
A .n 2+1-12n
B .2n 2-n +1-12n
C .n 2+1-12
n -1D .n 2-n +1-1
2n
A [该数列的通项公式为a n =(2n -1)+1
2n , 则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+1
22+ (12)
=n 2+1-1
2n .]
2.在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n +1}的前10项和为( )
A .100
B .110
C .120
D .130
C [{a n +a n +1}的前10项和为a 1+a 2+a 2+a 3+…+a 10+a 11=2(a 1+a 2+…+a 10)+a 11-a 1=2S 10+10×2=120.故选C.]
3.(2016·湖北七校2月联考)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )
A .192里
B .96里
C .48里
D .24里
B [由题意,知每天所走路程形成以a 1为首项,公比为1
2的等比数列,则a 1⎝ ⎛

⎪⎫1-1261-12
=378,解得a 1=192,则a 2=96,即第二天走了96里.故选B.] 6.设数列{a n }的前n 项和为S n ,且a n =sin n π
2,n ∈N *,则S 2 016=__________. 0 [a n =sin n π
2,n ∈N *,显然每连续四项的和为0. S 2 016=S 4×504=0.]
9.已知数列{a n }中,a 1=1,又数列⎩
⎨⎧⎭
⎬⎫
2na n (n ∈N *)是公差为1的等差数列.
(1)求数列{a n }的通项公式a n ; (2)求数列{a n }的前n 项和S n .
[解](1)∵数列⎩
⎨⎧⎭
⎬⎫
2na n 是首项为2,公差为1的等差数列,
∴2
na n
=2+(n -1)=n +1,3分
解得a n =2
n (n +1).5分
(2)∵a n =
2n (n +1)=2⎝ ⎛⎭
⎪⎫1
n -1n +1,
∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1
n -1n +1
=2⎝

⎭⎪⎫1-1n +1=2n n +1.12分 3.设S n 是数列{a n }的前n 项和,已知a 1=3,a n +1=2S n +3(n ∈N *). (1)求数列{a n }的通项公式;
(2)令b n =(2n -1)a n ,求数列{b n }的前n 项和T n . [解](1)当n ≥2时,由a n +1=2S n +3得a n =2S n -1+3, 两式相减,得a n +1-a n =2S n -2S n -1=2a n , ∴a n +1=3a n ,∴a n +1
a n
=3.
当n =1时,a 1=3,a 2=2S 1+3=2a 1+3=9,则a 2
a 1
=3.3分
∴数列{a n }是以a 1=3为首项,公比为3的等比数列. ∴a n =3×3n -1=3n .5分
(2)法一:由(1)得b n =(2n -1)a n =(2n -1)·3n ,7分 ∴T n =1×3+3×32+5×33+…+(2n -1)·3n ,① 3T n =1×32+3×33+5×34+…+(2n -1)·3n +1,②
①-②得-2T n =1×3+2×32+2×33+…+2×3n -(2n -1)·3n +1 =3+2×(32+33+…+3n )-(2n -1)·3n +1 =3+2×32(1-3n -1)1-3-(2n -1)·3n +1
=-6-(2n -2)·3n +1.10分
∴T n=(n-1)·3n+1+3.12分
法二:由(1)得b n=(2n-1)a n=(2n-1)·3n.7分
∵(2n-1)·3n=(n-1)·3n+1-(n-2)·3n,
∴T n=b1+b2+b3+…+b n
=(0+3)+(33+0)+(2×34-33)+…+[(n-1)·3n+1-(n-2)·3n]=(n-1)·3n+1+3.12分。

相关文档
最新文档