matlab凸轮轮廓设计与仿真说明书
基于MATLAB的凸轮轮廓线设计与运动仿真毕业设计
(此文档为word格式,下载后您可任意编辑修改!)第1章绪论1.1 机构学的现状与发展1.1.1 机构学的概况机构学是以运动几何学和力学为主要理论基础,以数学分析为主要手段,对各类机构进行运动和动力分析与综合的学科。
机构学为创造新的机器和进行机械发明与改革提供正确有效的理论和方法,以设计出更经济合理、更先进的机械设备,来满足生产发展和人们生活的需求。
机构学的发展将直接影响到机械工业各类产品的工作性能以及许多行业生产设备的机械化和自动化程度。
机构学作为机械工程技术科学中的一门主要基础学科,近年来由于机电一体化高技术科学特别是工业机器人与特种机器人的发展对机构学理论和技术上的要求,使机构学学科达到了一个崭新的阶段。
在国际学术讨论会上,各国科学家一致认为它有如旭日东升,正显出其无比强大的生命力。
机构学一方面由简单的运动分析与综合向复杂的运动分析与综合方面发展,另一方面也由机构运动学向机构动力分析与综合方向发展,研究机构系统的合理组成的方法及其判据,分析研究机器在传递运动、力和做功过程中出现的各种问题。
机构精度问题也相应地由静态分析走向动态分析。
机构联结件的间隙在高速运转时有不容忽视的影响,因而需要研究机构间间隙、摩擦、润滑与冲击引起的机构变形、稳态与非稳态下的动态响应和过渡过程问题。
在惯性力作用下,由于机构上刚度薄弱环节的弹性变形,由此研究以振动理论多自由度模态化、线性与非线性、随机的功率谱与载荷谱等为分析手段和方法而形成的运动弹性动力学问题,以及视整个机构系统为柔性的多柔体系统动力学和逆动力学分析、综合及控制问题。
它是把整个机构看成是由多刚体组成的多刚体动力学、结构动力学及自动控制等学科发展的交叉边缘学科。
由多种、多个构件组成的机构称为组合机构。
组合机构与机构系统组成理论的发展使机构学已成为重型、精密及各种复合机械和智能机械、仿生机械、机器人等高技术科学的设计基础理论学科。
1.1.2机构学的现状(1)平面与空间连杆机构的结构理论研究研究机构的结构单元及机构拓扑结构特征,如主动副存在准则、活动度类型及其判定、拓扑结构的同构判定、消极子运动链判定等。
用仿真生成凸轮轮廓线的步骤
用仿真生成凸轮轮廓线的步骤一、引言凸轮是机械传动中常用的一种元件,用于控制机械运动。
通过凸轮的运动,可以实现对其他机械元件的运动轨迹和速度的控制。
为了设计和制造高效可靠的凸轮,需要对凸轮的轮廓线进行仿真和优化。
本文将介绍使用仿真方法生成凸轮轮廓线的步骤。
二、建立凸轮模型需要在计算机软件中建立凸轮的三维模型。
可以使用CAD软件或者仿真软件来完成这一步骤。
在建立凸轮模型时,需要考虑凸轮的形状、轴向和径向尺寸以及凸轮上的凸起部分。
三、确定凸轮运动规律凸轮的轮廓线是根据凸轮的运动规律来确定的。
凸轮运动规律可以通过数学方法建立,也可以通过运动学仿真来确定。
在确定凸轮运动规律时,需要考虑凸轮的转动角度和运动速度。
四、进行凸轮仿真在进行凸轮仿真之前,需要确定仿真软件和仿真参数。
常用的凸轮仿真软件有ADAMS、CATIA、SolidWorks等。
在进行凸轮仿真时,需要输入凸轮模型和凸轮运动规律,并设置仿真参数,如仿真时间、时间步长等。
然后,通过仿真软件进行凸轮的运动仿真,得到凸轮的轨迹数据。
五、生成凸轮轮廓线通过凸轮仿真得到的凸轮轨迹数据,可以用来生成凸轮的轮廓线。
常用的方法有两种:一种是将凸轮轨迹数据导入CAD软件中,然后根据轨迹数据绘制凸轮轮廓线;另一种是使用数学方法,根据凸轮运动规律和凸轮轨迹数据,通过插值和拟合等方法生成凸轮轮廓线。
六、优化凸轮轮廓线生成凸轮轮廓线后,还可以对凸轮轮廓线进行优化。
通过调整凸轮轮廓线的形状和尺寸,可以改变凸轮的运动规律和运动速度,从而满足实际需求。
常用的优化方法有形状优化和参数优化。
形状优化是通过改变凸轮的形状来优化凸轮的运动规律;参数优化是通过改变凸轮的尺寸和凸起部分的位置来优化凸轮的运动速度。
七、验证凸轮轮廓线在生成和优化凸轮轮廓线之后,需要对其进行验证。
可以通过数学方法和实验方法进行验证。
数学方法是通过计算凸轮轮廓线的数学模型来验证凸轮的运动规律和运动速度;实验方法是通过实际的凸轮测试来验证凸轮的运动轨迹和速度。
凸轮轮廓线的绘制(MATLAB)
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程名称:精密机械学基础设计题目:直动从动件盘形凸轮的设计院系:航天学院控制科学与工程系班级: 0904102班设计者:陈学坤学号: ********** 设计时间: 2011年10月直动从动件盘形凸轮机构的计算机辅助设计说明:凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。
此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。
首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。
。
1 凸轮轮廓方程*()()*()()*()*()X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+-(X,Y):凸轮轮廓线上的任意一点的坐标。
E :从动件的偏心距,OC 。
R :凸轮的基园半径,OA 。
J :凸轮的转角。
S :S=f(J)为从动件的方程。
So :O S =H 为从动件的最大位移(mm )。
J1、J2、J3、J4为从动件的四个转角的区域。
S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。
2 实例R=40,E=10,H=50,J1=J2=J3=J4=900。
3 MATLAB 程序设计用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组:J=[J1,J2,J3,J4];S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4];用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,ds ds ds dt dt V dJ dJ dtω===在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以ds ds ds ds dt dt V dJ dt dJ dtω====速度 同理可得:dJds dtdva 22==加速度4 程序运行结果图一:余弦速运动规律下的凸轮轮廓曲线图二:余弦加速作用下的S-α曲线图三:余弦加速作用下的v-t曲线图四:余弦加速作用下的a-t曲线5 附程序:function tulunR=40;E=10;H=50;J1=90;J2=90;J3=90;J4=90;S0=(R^2-E^2)^(1/2);syms J S dJ dS d2J d2SJ11=linspace(0,J1,500);S1=(H/2).*(1-cos(pi.*J11/J1));X1=E.*cos(J11.*pi/180)+(S0+S1).*sin(J11.*pi/180); Y1=(S0+S1).*cos(J11.*pi/180)-E.*sin(J11.*pi/180);J22=linspace(J1,J1+J2,300);S2=J22./J22.*H;X2=E.*cos(J22.*pi/180)+(S0+H).*sin(J22.*pi/180); Y2=(S0+H).*cos(J22.*pi/180)-E.*sin(J22.*pi/180);J33=linspace(J1+J2,J1+J2+J3,300);S3=H-(H/2).*(1-cos(pi*J33/J3));X3=E*cos(J33*pi/180)+(S0+S3).*sin(J33*pi/180);Y3=(S0+S3).*cos(J33*pi/180)-E*sin(J33*pi/180);J44=linspace(J1+J2+J3,J1+J2+J3+J4,300);X4=E.*cos(J44*pi/180)+S0*sin(J44*pi/180);Y4=S0.*cos(J44*pi/180)-E*sin(J44*pi/180);S4=J44./J44.*0;X=[X1,X2,X3,X4];Y=[Y1,Y2,Y3,Y4];figure(1);plot(X,Y);hold on;t=linspace(0,2*pi,500);x=R*cos(t);y=R*sin(t);plot(x,y);title('凸轮的轮廓曲线');axis([-90,90,-90,90]);axis square;figure(2);plot(J11,S1);hold on;plot(J22,S2);plot(J33,S3);plot(J44,S4);ylabel('S');xlabel('α/rad');title('S-α曲线');J=[J11,J22,J33,J44];S=[S1,S2,S3,S4];dS=diff(S)./diff(J); %通过对位移求导后可得速度。
基于Matlab和Pro/E的凸轮轮廓曲线设计及从动件运动学仿真
凸轮 机构是 自动机械 或 自动控 制装 置 中广泛应 用 的机 构之 一 ,是 由凸轮 、从 动件 推杆 和机架 组 成 的高副 机构 ,与其 他传 动机 构 相 比 ,凸轮 机构 具 有 结 构 紧 凑 、 传动精 度 高 、动 力 特 性 好 、运 动平 稳 等 优 点 J。凸 轮 机构的设计 ,关键是获得精 确的凸轮轮廓曲线来满足 从动 件各 种预 期 的运动 规律 ,以实 现机 械 的 自动化 ,而 凸轮 曲线 特性 优 良与 否直 接 影 响到 凸 轮 机构 的效 率 、 精度 以及 寿命 。
关键 词 :凸轮 轮廓 线 ;Matlab:辅助设 计 ;Pro/E 中 图分类 号 :TP391 文献标 识码 :A
Design of cam profile cu rve and kinem atics sim ulation based on M atlab and Pro/E
XIAO Bangdong,HUANG H ao, XU Zhong
凸轮 轮廓 曲线 的设 计 一 般 可 分 为 图解 法 和 解 析 法 ,其 中图解法 只适 用 于从动 件运 动规律 较 简单 ,对 凸 轮轮 廓 曲线精度 要求 不 高 的场 合 。解析 法则 可针对 复 杂 的从 动 件运 动规 律建 立 相 应 的方 程 ,精 确地 计 算 出 轮廓 线 上各点 的 坐标 ,然 后 把 凸轮 的轮 廓 曲线精 确 地 绘 制 出来 。Matlab是 一 种 科 学计 算 软 件 ,通过 其 强 大 的矩 阵 处理 和绘 图功能 J,利 用 Matlab编程 可 进行 凸
ple,according to the design requirement,we established the mathematica l model of cam contour curve and utilized Matlab to realize cain prof ile cur ve of precise aided design and f ollower motion simulation, cam contour point coordinates generated were impoaed to Pro/E ,Eventually,werealized the design of com plicated three——dimensional modeling of the cam .The process provides a sim ple and accurate m eth— od for the design of the cam profile. K eywords:cam profile; Matlab;aided design;Pro/E
凸轮廓线设计MATLAB程序
凸轮轮廓及其综合1. 凸轮机构从动件的位移凸轮是把一种运动转化为另一种运动的装置。
凸轮的廓线和从动件一起实现运动形式的转换。
凸轮通常是为定轴转动,凸轮旋转运动可被转化成摆动、直线运动或是两者的结合。
凸轮机构设计的内容之一是凸轮廓线的设计。
定义一个凸轮基圆r b 作为最小的圆周半径。
从动件的运动方程如下:L(ϕ)=r b +s(ϕ)设凸轮的推程运动角和回程运动角均为β,从动件的运动规律均为正弦加速度运动规律,则有:s(ϕ)=h(βϕ-π21sin(2πϕ/β)) 0≤ϕ≤β s(ϕ)=h -h(ββϕ--π21sin(2π(ϕ-β/β)) β≤ϕ≤2β s(ϕ)=0 2β≤ϕ≤2π上式是从动件的位移,h 是从动件的最大位移,并且0≤β≤π。
如果假设凸轮的旋转速度ω=d ϕ/dt 是个常量,则速度υ、加速度a 和瞬时加速度j (加速度对时间求异)分别如下:速度:υ(ϕ)=βωh (1-cos(2πϕ/β)) 0≤ϕ≤β υ(ϕ)=-βωh (1-cos(2π(ϕ-β)/β) β≤ϕ≤2β υ(ϕ)=0 2β≤ϕ≤2π加速度:a(ϕ)=222βπωhsin(2πϕ/β)) 0≤ϕ≤βa(ϕ)=-222βπωhsin(2π(ϕ-β)/β) β≤ϕ≤2βa(ϕ)=0 2β≤ϕ≤2π瞬时加速度:j(ϕ)=3324βωπhcos(2πϕ/β)) 0≤ϕ≤βj(ϕ)=-3324βωπhcos(2π(ϕ-β)/β) β≤ϕ≤2βj(ϕ)=0 2β≤ϕ≤2π定义无量纲位移S=s/h 、无量纲速度V=υ/ωh 、无量纲加速度A=a/h ω3和无量纲瞬时加速度J=j/h ω3。
若β=60°,则如下程序可以对以上各个量进行计算。
beta=60*pi/180;phi=linspace(0,beta,40);phi2=[beta+phi];ph=[phi phi2]*180/pi;arg=2*pi*phi/beta;arg2=2*pi*(phi2-beta)/beta;s=[phi/beta-sin(arg)/2/pi 1-(arg2-sin(arg2))/2/pi];v=[(1-cos(arg))/beta-(1-cos(arg2))/beta];a=[2*pi/beta^2*sin(arg)2*pi/beta^2*sin(arg2)];j=[4*pi^2/beta^3*cos(arg)4*pi^2/beta^3*cos(arg2)]:subplot(2,2,1)plot(ph,s,ˊK ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊDisplacement(S)ˊ)g=axis; g(2)=120; axis(g)subplot(2,2,2)plot(ph,v,ˊk ˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊVelocity(V)ˊ)g=axis; g(2)=120; axis(g)subplot(2,2,3)plot(ph,a,ˊk ˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊAcceleration(A)ˊ)g=axis;g(2)=120;axis(g)subplot(2,2,4)plot(ph,j,ˊkˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊJerk(J)ˊ)g=axis;g(2)=120;axis(g)2 平底盘形从动作参考下图得到如下关系:在(x,y)坐标系中,凸轮轮廓的坐标为Rx和Ry,刀具的坐标为Cx和Cy:Rx=Rcos( θ+ϕ) Ry=Rsin( θ+ϕ)C x=Ccos( γ+ϕ) C y=Ccos( γ+ϕ)其中, R=θcos L θ=arctan ⎪⎪⎭⎫ ⎝⎛ϕd dL L 1 c=γγcos c L + γ=arctan ⎪⎪⎭⎫ ⎝⎛+c L d dL γϕ/ r c 是刀具的半径,且dL/d ϕ=V(ϕ)/ω。
matlab凸轮轮廓设计及仿真说明书
滚子半径
=40
1
第一章:工作意义
1.1本次课程设计意义1.2已知条件
第二章:工作设计过程5
2.1:设计思路5
2.2:滚子从动件各个阶段相关方程6
2.பைடு நூலகம்:盘型凸轮理论与实际轮廓方程7
工工“..A作……'A程过A程
3.1:滚子从动件各各阶段MATLAB程序编制…*8
3.2:凸轮的理论实际运动仿真程序编制
12
第四章…?: •……
运行结果
17
4.1:滚子运动的位移图17
4.2:滚子运动的速度图17
4.3:滚子运动的加速度图,局部加速度图……18—
44滚子运动的仿真图19
4.5:滚子运动的理论与实际轮廓图20
6.1:参考文献
22
第一章:工作意义
1.1 本次课程设计意义凸轮是一个具有曲线轮廓或凹槽的构件, 一般为主动件, 作等速回转运动或往复直线运动。与凸轮轮廓接触,并传递 动力和实 现预定的运动规律的构件, 一般做往复直线运动或 摆动,称为从动件。凸轮机构在应用中的基本特点在于能使
程和回程。凸轮轮廓曲线决定于位移曲线的
形状。在某些机械中,位移曲线由工艺过程决定,但一般
情况下只有行程和对应的凸轮转角根据工作需要决定,而
曲线的形状则由设计者选定,可以有多种运动规律。传统的凸轮运动
规律有等速、等加速-等减速、余弦加速度和正弦 加速度等。等速运 动规律因有速度突变,会产生强烈的刚性 冲击,只适用于低速。等加 速-等减速和余弦加速度也有加速度突变,会引起柔性冲击,只适用
思路口。因此,基于MATLAB件进行凸轮机构的解析法设计,可以解
决设计工作量大的问题。
本此课程设计基于MATLAB软件进行凸轮轮廓曲线的 解析法 设计,并 对的运动规律凸轮进行仿真,其具体方法为首先精确地 计算出轮 廓线
用matlab绘制凸轮教程(详细)
首先看一下理论轮廓线的方程式X=(S0+S1)sinθ+ ecosθY= (S0+S1) cosθ+ esinθ式中,e为偏心距,S0=sqrt(r0^2-e^2),r0为偏心圆半径%先设置凸轮的基本参数,偏心距离e,基圆半径rb,滚轮半径rr,角速度w,推杆上升的最大行程h。
h=30;w=12;rb=50;e=12;rr=10;s0=sqrt(rb*rb-e*e);% 偏心距e=12,基圆rb=50,滚轮半径rr=10,角速度w=12,最大上升h=30q=120*pi/180;%这里我规定推程运动角为120度qs=(120+30)*pi/180;%远休止角为150度q1=(120+30+150)*pi/180;%回程运动角为300度for i=1:1:120 %将120度按1度均分,从而得到各个度数上的轮廓坐标qq(i)=i*pi/180.0;s1=(h*qq(i)/q)-(h/(2*pi))*sin(2*pi*qq(i)/q);v1=w*(h/q)-(w*h/q)*cos(2*pi*qq(i)/q);x(i)=(s0+s1)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+s1)*cos(qq(i))-e*sin(qq(i));%理论轮廓线的坐标a(i)=(s0+s1)*cos(qq(i))-e*sin(qq(i)); %cos(i)b(i)=(s0+s1)*sin(qq(i))-e*cos(qq(i)); %sin(i)xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));%实际工作轮廓线的坐标endfor i=121:1:150qq(i)=i*pi/180;s2=h;v2=0;x(i)=(s0+s2)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+s2)*cos(qq(i))-e*sin(qq(i));a(i)=(s0+s2)*cos(qq(i))-e*sin(qq(i));b(i)=(s0+s2)*sin(qq(i))-e*cos(qq(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=151:1:300qq(i)=i*pi/180;qq1(i)=qq(i)-150*pi/180;s3=h-h*qq1(i)/(q1-qs);v3=-w*h/(q1-qs);x(i)=(s0+s3)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+s3)*cos(qq(i))-e*sin(qq(i));a(i)=(s0+s3)*cos(qq(i))-e*sin(qq(i));b(i)=(s0+s3)*sin(qq(i))-e*cos(qq(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=301:1:360qq(i)=i*pi/180;x(i)=(s0+0)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+0)*cos(qq(i))-e*sin(qq(i));a(i)=(s0+0)*cos(qq(i))-e*sin(qq(i));b(i)=(s0+0)*sin(qq(i))-e*cos(qq(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endplot(x,y,'r',xx,yy,'g')%用plot函数绘制曲线text(0,20,'理论轮廓线')%理论轮廓线的坐标位于为(0,20)text(65,40,'实际轮廓线')%实际轮廓线的坐标位于(65,40)hold on附图:。
基于MATLAB的凸轮设计
中国地质大学(武汉)1.凸轮要求=10mm,凸轮以等角设计一对心直动滚子推杆盘形凸轮机构,滚子半径rr速度逆时针回转。
凸轮转角=0~120 时,推杆等速上升20mm;=120~180 时,推杆远休止;=180~270时,推杆等加速等减速下降20mm;=270~360时,推杆近休止。
要求推程的最大压力角<=30,试选取合适的基圆半径,并绘制凸轮的廓线。
问此凸轮是否有缺陷,应如何补救。
2.列出凸轮运动方程0<<2/32/3<<2/3<<3. 由方程写MATLAB源程序%1.已知参数clear;r0=50; %基圆半径rr=10; %滚子半径h=20; %行程delta01=120;%推程运动角delta02=60; % 远休角delta03=90;%回程运动角hd=pi/180;du=180/pi;n1=delta01+delta02;n2=delta01+delta02+delta03;%2凸轮曲线设计n=360;for i=1:360%计算推杆运动规律if i<=delta01s(i)=30/pi*(i*hd);ds(i)=30/pi;ds=ds(i);elseif i>delta01 && i<=n1;s(i)=h;ds(i)=0;ds=ds(i);elseif i>n1 && i<=(n1+delta03/2)s(i)=-140+320/pi*(i*hd)-160/pi^2*(i*hd)^2; ds(i)=320/pi-320/pi^2*(i*hd);ds=ds(i);elseif i>(n1+delta03/2) && i<=n2s(i)=360-480/pi*(i*hd)+160/pi^2*(i*hd)^2;ds(i)=-480/pi+320/pi^2*(i*hd);ds=ds(i);elseif i>n2 && i<=ns(i)=0;ds=0;end%计算凸轮轨迹曲线xx(i)=(r0+s(i))*sin(i*hd);%计算理论轮廓曲线yy(i)=(r0+s(i))*cos(i*hd);dx(i)=ds*sin(i*hd)+(r0+s(i))*cos(i*hd);%计算导数 dy(i)=ds*cos(i*hd)-(r0+s(i))*sin(i*hd);xp(i)=xx(i)+rr*dy(i)/sqrt(dx(i)^2+dy(i)^2);yp(i)=yy(i)-rr*dx(i)/sqrt(dx(i)^2+dy(i)^2);end%3.输出凸轮轮廓曲线figure(1);hold on;grid on;axis equal;axis([-(r0+h-30) (r0+h+10) -(r0+h+10) (r0+rr+10)]);text(r0+h+3,4,'X');text(3,r0+rr+3,'Y');text(-6,4,'O');title('对心直动滚子推杆盘形凸轮设计');xlabel('x/mm');ylabel('y/mm');plot([-(r0+h-40) (r0+h)],[0 0],'k');plot([0 0],[-(r0+h) (r0+rr)],'k');plot(xx,yy,'r--');%»绘凸轮实际轮廓曲线ct=linspace(0,2*pi);plot(r0*cos(ct),r0*sin(ct),'g');%绘凸轮基圆plot(rr*cos(ct),r0+rr*sin(ct),'k');%绘滚子圆plot(0,r0,'o');%滚子圆中心plot([0 0],[r0 r0+30],'k');plot(xp,yp,'b'); %绘凸轮实际轮廓曲线%4. 凸轮机构运动仿真%计算凸轮滚子转角xp0=0;yp0=r0-rr;dss=sqrt(diff(xp).^2+diff(yp).^2);%对轮廓曲线进行差分计算ss(1)=sqrt((xp(1)-xp0)^2+(xp(1)-yp0)^2);%轮廓曲线第一点长度for i=1:359ss(i+1)=ss(i)+dss(i);%计算实际廓曲线长度endphi=ss/rr;%计算滚子转角%运动仿真开始figure(2);m=moviein(20);j=0;for i=1:360j=j+1;delta(i)=i*hd;%凸轮转角xy=[xp',yp'];%凸轮实际轮廓曲线坐标A1=[cos(delta(i)),sin(delta(i));%凸轮坐标旋转矩阵-sin(delta(i)),cos(delta(i))];xy=xy*A1;%旋转后实际凸轮曲线坐标clf;%绘凸轮plot(xy(:,1),xy(:,2));hold on;axis equal;axis([-(120) (470) -(100) (140)]);plot([-(r0+h-40) (r0+h)],[0],'k');%绘凸轮水平轴plot([0 0],[-(r0+h) (r0+rr)],'k');%绘凸轮垂直轴plot(r0*cos(ct),r0*sin(ct),'g');%绘基圆plot(rr*cos(ct),r0+s(i)+rr*sin(ct),'k');绘滚子圆plot([0 rr*cos(-phi(i))],[r0+s(i) r0+s(i)+rr*sin(-phi(i))],'k');% 绘滚子圆标线plot([0 0],[r0+s(i) r0+s(i)+40],'k');%绘推杆%绘推杆曲线plot([1:360]+r0+h,s+r0);plot([(r0+h) (r0+h+360)],[r0 r0],'k');plot([(r0+h) (r0+h)],[r0 r0+h],'k');plot(i+r0+h,s(i)+r0,'*');title('对心直动滚子推杆盘形凸轮设计');xlabel('x/mm');ylable('y/mm');m(j)=getframe;endmovie(m);4.运动仿真结果在MATLAB中可以看出轮廓曲线有一处缺口。
matlab凸轮设计
偏置直动尖端推杆盘型凸轮机构一、凸轮参数二、推杆运动规律进程段 余弦加速度运动进程段 S= H-H*(1-cos(pi*i/J1))/2 (00~900) 回程段 余弦加速度运动回程段 S= H*(1-cos(pi*i/J3))/2 (1800~2700) 凸轮廓线方程:)sin(*)()cos(*22J S E R J E X +-+= )sin(*)cos(*)(22J E J S E R Y -+-= 三、程序设计%凸轮机构参数E=10; %偏距H=50; %升程b=0:pi/10:2*pi;R=40; %基圆半径x2=R*cos(b); %基圆轮廓y2=R*sin(b);x1=10*sin(b);%偏心圆轮廓y1=10*cos(b);J1=90; %推程J3=90; %回程s0=sqrt(R^2-E^2);s1=(H/2)*(1-cos(pi*i/J1)); %推程,余弦加速度运动 s2=H*eig(eye(360))'; %停歇,s=Hs3=H-(H/2)*(1-cos(pi*i/J3));%回程,余弦加速度运动 s4(1,360)=0; %停歇,s=0 x(1,360)=0;y(1,360)=0;%凸轮机构循环代码for i=1:360if i>=270s(i)=0;elseif i>=180s(i)=H-H*(1-cos(pi*i/J1))/2;elseif i>=90s(i)=H;elses(i)=H*(1-cos(pi*i/J3))/2;endx(i)=E*cos(pi*i/180)+(s0+s(i))*sin(pi*i/180);y(i)=(s0+s(i))*cos(pi*i/180)-E*sin(pi*i/180); end%凸轮轮廓曲线figure(1)plot(x,y,'-r',x1,y1,'-b',x2,y2,'-g','linewidth',2); title('凸轮轮廓曲线');xlabel('x'),ylabel('y');axis([-80,120,-100,60]);grid on;%位移曲线figure(2)plot(s,'-r','linewidth',2);title('位移曲线');xlabel('转角'),ylabel('位移')axis([0,400,-10,60]);grid on;四、运行结果。
凸轮运动Matlab仿真-Matlab课程设计
Matlab 课程设计李俊机自091设计题目一:凸轮机构设计已知轮廓为圆形的凸轮(圆的半径为100mm、偏心距为20mm),推杆与凸轮运动中心的距离20mm,滚子半径为10mm,请利用matlab仿真出凸轮推杆的运动轨迹和运动特性(速度,加速度),并利用动画演示出相关轨迹和运动特性。
%总程序代码clc;clf;clear;p=figure('position',[100 100 1200 600]);for i=1:360%画圆形凸轮R=100; %圆形凸轮半径A=0:0.006:2*pi;B=i*pi/180;e=20; %偏心距a=e*cos(B);b=e*sin(B);x=R*cos(A)+a;y=R*sin(A)+b;subplot(1,2,1)plot(x,y,'b','LineWidth',3);%填充fill(x,y,'y')axis([-R-e,R+e,-R-e,R+e+100]);set(gca,'Xlim',[-R-e,R+e])set(gca,'Ylim',[-R-e,R+e+100])axis equal;axis manual;axis off;hold on;plot(a,b,'og')plot(e,0,'or')plot(0,0,'or','LineWidth',3)%画滚子gcx=0; %滚子中心X坐标r=10; %滚子半径gcy=sqrt((R+r)^2-a^2)+b; %滚子中心Y坐标gx=r*cos(A)+gcx; %滚子X坐标gy=r*sin(A)+gcy; %滚子Y坐标plot(gx,gy,'b','LineWidth',2);%画其它部分plot([0 a],[0 b],'k','LineWidth',4)plot([3 3],[170 190],'m','LineWidth',4)plot([-3 -3],[170 190],'m','LineWidth',4)%画顶杆gc=120;dgx=[0 0];dgy=[gcy gcy+gc];plot(dgx,dgy,'LineWidth',4);hold off%画位移图sx(i)=B;sy(i)=gcy;subplot(3,2,2)plot(sx,sy,'b','LineWidth',3)title('位移线图')grid onhold off;%画速度图vx(i)=B;vy(i)=20*cos(B) + (40*cos(B).*sin(B))./(121 - 4*cos(B).^2).^(1/2);subplot(3,2,4)plot(vx,vy,'g','LineWidth',3)title('速度线图')grid onhold off;%画加速度图ax(i)=B;ay(i)=(40*cos(B).^2)./(121 - 4*cos(B).^2).^(1/2) - 20*sin(B) - (40*sin(B).^2)/(121 -4*cos(B).^2).^(1/2) - (160*cos(B).^2.*sin(B).^2)/(121 - 4*cos(B).^2).^(3/2); subplot(3,2,6)plot(ax,ay,'r','LineWidth',3),xlabel('B')title('加速度线图')grid onhold off;M=getframe;end截图附:通过求导求速度和加速度%求速度syms B;a=e*cos(B);b=e*sin(B);s=sqrt((R+r).^2-a.^2)+b;v=diff(s)结果:v =20*cos(B) + (40*cos(B)*sin(B))/(121 - 4*cos(B)^2)^(1/2)%求加速度syms B;v =20*cos(B) + (40*cos(B)*sin(B))/(121 - 4*cos(B)^2)^(1/2);a=diff(v)结果:a =(40*cos(B)^2)/(121 - 4*cos(B)^2)^(1/2) - 20*sin(B) - (40*sin(B)^2)/(121 - 4*cos(B)^2)^(1/2) - (160*cos(B)^2*sin(B)^2)/(121 - 4*cos(B)^2)^(3/2)。
凸轮廓线设计方案MATLAB程序
■2凸轮轮廓及其综合1.凸轮机构从动件的位移凸轮是把一种运动转化为另一种运动的装置。
凸轮的廓线和从动件一起实现运动形式的转换。
凸轮通常是为定轴转动,凸轮旋转运动可被转化成摆动、直线运动或是两者的结合。
凸轮机构设计的内容之一是凸轮廓线的设计。
定义一个凸轮基圆r b 作为最小的圆周半径。
从动件的运动方程如下:L(「)=r b +s(「)a( :) = 0 2 3 w ' w 2n设凸轮的推程运动角和回程运动角均为 3,从动件的运动规律均为正弦加速度运动规律, 则有:s( :) = h(:—sin(2 n / 3 )) Ow w 3s( :) = h — h(心―|31- sin(2 n (「- 3 / 3 ))s( :) = 0 2上式是从动件的位移,h 是从动件的最大位移,并且 o w3w如果假设凸轮的旋转速度 3= d 「/dt 是个常量,则速度 加速度a 和瞬时加速度j(加速度对时间求异)分别如下:速度:h(:)=(1-cos(2 n ■■ / 3 ))0W W加速度:h(;:)=—:(1-cos(2 n (「- 3 )/(;:)=0 2 3 w w 2 na(「)=..厂sin(2 n ■■/ 3 ))a( J =-sin(2 n ( ■- 3 )/ 3 )3w w 23beta=60*pi/180;phi=li nspace(0,beta,40);phi2=[beta+phi]; ph=[phi phi2]*180/pi; arg=2*pi*phi/beta;arg2=2*pi*(phi2-beta)/beta;s=[phi/beta-si n(arg)/2/pi 1-(arg2-si n(arg2))/2/pi]; v=[(1_cos(arg))/beta_(1_cos(arg2))/beta]; a=[2*pi/beta A 2*si n(arg)2*pi/beta A 2*si n(arg2)];j=[4*pi A 2/beta A 3*cos(arg)4*pi A 2/beta A 3*cos(arg2)]:subplot(2,2,1) plot(ph,s, / K x ) xlabel( / Cam angle(degrees) / ) ylabel( / Displacement(S) x ) g=axis; g(2)=120; axis(g) subplot(2,2,2) plot(ph,v, / k x,[0 120],[0 0],/ k-- / ) xlabel( / Cam angle(degrees) / )ylabel(/ Velocity(V)')g=axis; g(2)=120; axis(g) subplot(2,2,3)plot(ph,a, / k x ,[0 120],[0 0], / k--')xlabel( / Cam angle(degrees) / ) ylabel( / Acceleration(A) x ) g=axis; g(2)=120; axis(g) subplot(2,2,4)plot(ph,j, / k ,,[0 120],[0 0],/ k-- j瞬时加速度:j(.)=4-:3 hcos(2 n ■■/ 3 )) j(伫4n ( - 3)/ 3)j(定义无量纲位移S=s/h 、无量纲速度 V=u / 3 h 、无量纲加速度 A=a/h 3 3和无量纲瞬时加速度 J=j/h 3 3。
基于AutoCAD, VB,Mathematica和Working model的凸轮设计与仿真
基于AutoCAD, VB,Mathematica和Working model的凸轮设计与仿真目录摘要 (1)引言 (1)凸轮设计要求 (2)Excel软件辅助设计 (2)AutoCAD凸轮轮廓线设计 (3)VB编程作凸轮轮廓线并仿真 (4)Mathematica编程作凸轮轮廓线 (9)Working Model凸轮仿真 (13)各个软件比较 (15)课题研究收获 (15)参考文献 (16)摘要凸轮是具有曲面轮廓的构件,一般多为原动件。
当凸轮为原动件时,通常做等速的转动或移动,而从动件就按照预期的输出特性要求做连续或间隙的往复运动,移动或平面复杂运动。
本文主要介绍用Excel 计算凸轮轮廓线坐标数据,然后导入AutoCAD和Working model中生成凸轮轮廓线。
还介绍了用VB和Mathematica编程来设计凸轮轮廓线并对凸轮进行仿真。
主要技术要求是熟悉凸轮设计基本原理及相关理论计算,能熟练使用Excel,AutoCAD和Working model等软件,熟悉VB和Mathematica编程语言,能将他们相结合起来应用到设计仿真中。
关键词:凸轮,Excel,AutoCAD,Working model,VB和Mathematica,设计,仿真。
引言盘形凸轮设计的主要任务是绘制凸轮的轮廓曲线, 传统设计方法分为图解法和解析法两种。
其中图解法是根据从动件的位移曲线, 按“反转法”原理, 做出从动件在反转过程中所占据的一系列位置, 从而求得凸轮轮廓曲线。
图解法可用手工法和计算机辅助设计的方法进行。
手工图解法设计凸轮的轮廓曲线误差较大, 故对于精度要求高的高速凸轮往往不能满足要求。
计算机辅助作图的方法来作凸轮曲线需要足够多的轨迹上的点的坐标才能达到高的精度要求。
但是求解大量点的坐标计算繁琐,所以我们就利用Excel强大的的表格数据处理功能来准确便捷的计算出足够多的点的坐标数据,然后将这些数据导入AutoCAD中生成凸轮轮廓线,我们还将数据导入Working Model中,这就可以对凸轮的运动做直观地观察。
matlab凸轮运动仿真课程设计
matlab凸轮运动仿真课程设计一、课程目标知识目标:1. 学生能够理解凸轮运动的基本原理,掌握运用MATLAB进行凸轮运动仿真的方法。
2. 学生能够运用MATLAB软件构建凸轮运动模型,分析凸轮运动的特点及其在不同参数下的变化。
3. 学生能够掌握MATLAB中与凸轮运动相关的基本命令和函数,并运用这些工具进行数据分析和处理。
技能目标:1. 学生能够运用MATLAB软件设计简单的凸轮运动仿真程序,具备实际操作能力。
2. 学生能够通过MATLAB仿真实验,分析凸轮运动中的关键参数,并对其进行优化。
3. 学生能够独立解决在凸轮运动仿真过程中遇到的技术问题,具备一定的故障排查和问题解决能力。
情感态度价值观目标:1. 学生通过学习MATLAB凸轮运动仿真,培养对机械运动的兴趣和热情,增强对工程技术的认识。
2. 学生能够意识到理论知识与实际应用之间的联系,增强学以致用的意识。
3. 学生在团队协作中培养沟通与协作能力,学会尊重他人意见,共同解决问题。
本课程针对高年级学生,在掌握一定MATLAB基础知识和凸轮运动原理的基础上,以提高学生的实际操作能力和创新能力为目标。
课程注重理论与实践相结合,强调学生的主体地位,通过项目式教学,培养学生独立思考和解决问题的能力。
通过本课程的学习,使学生能够更好地将所学知识应用于实际工程问题中,提高综合运用知识的能力。
二、教学内容1. 凸轮运动原理回顾:简要复习凸轮机构的基本构成、运动特点及运动规律,重点回顾教材中关于凸轮运动分析的章节内容。
2. MATLAB软件基础:复习MATLAB的基本操作、编程语法和数据类型,为后续凸轮运动仿真打下基础。
3. 凸轮运动仿真方法:介绍MATLAB在凸轮运动仿真中的应用,包括建模、求解和结果分析等步骤,结合教材相关章节进行讲解。
4. MATLAB凸轮运动建模:详细讲解如何使用MATLAB软件构建凸轮运动模型,包括参数设置、函数调用和模型验证等。
凸轮廓线设计MATLAB程序
凸轮轮廓及其综合1. 凸轮机构从动件的位移凸轮是把一种运动转化为另一种运动的装置。
凸轮的廓线和从动件一起实现运动形式的转换。
凸轮通常是为定轴转动,凸轮旋转运动可被转化成摆动、直线运动或是两者的结合。
凸轮机构设计的内容之一是凸轮廓线的设计。
定义一个凸轮基圆r b 作为最小的圆周半径。
从动件的运动方程如下:L()=r b +s()ϕϕ设凸轮的推程运动角和回程运动角均为β,从动件的运动规律均为正弦加速度运动规律,则有:s()=h(-sin(2π/β)) 0≤≤βϕβϕπ21ϕϕs()=h -h(-sin(2π(-β/β)) β≤≤2βϕββϕ-π21ϕϕs()=0 2β≤≤2πϕϕ上式是从动件的位移,h 是从动件的最大位移,并且0≤β≤π。
如果假设凸轮的旋转速度ω=d /dt 是个常量,则速度υ、加速度a 和瞬时加速度ϕj (加速度对时间求异)分别如下:速度:υ()=(1-cos(2π/β)) 0≤≤βϕβωh ϕϕυ()=-(1-cos(2π(-β)/β) β≤≤2βϕβωh ϕϕυ()=0 2β≤≤2πϕϕ加速度:a()=sin(2π/β)) 0≤≤βϕ222βπωh ϕϕa()=-sin(2π(-β)/β) β≤≤2βϕ222βπωh ϕϕa()=0 2β≤≤2πϕϕ瞬时加速度:j()=cos(2π/β)) 0≤≤βϕ3324βωπh ϕϕj()=-cos(2π(-β)/β) β≤≤2βϕ3324βωπh ϕϕj()=0 2β≤≤2πϕϕ定义无量纲位移S=s/h 、无量纲速度V=υ/ωh、无量纲加速度A=a/hω3和无量纲瞬时加速度J=j/hω3。
若β=60°,则如下程序可以对以上各个量进行计算。
beta=60*pi/180;phi=linspace(0,beta,40);phi2=[beta+phi];ph=[phi phi2]*180/pi;arg=2*pi*phi/beta;arg2=2*pi*(phi2-beta)/beta;s=[phi/beta-sin(arg)/2/pi 1-(arg2-sin(arg2))/2/pi];v=[(1-cos(arg))/beta-(1-cos(arg2))/beta];a=[2*pi/beta^2*sin(arg)2*pi/beta^2*sin(arg2)];j=[4*pi^2/beta^3*cos(arg)4*pi^2/beta^3*cos(arg2)]:subplot(2,2,1)plot(ph,s,ˊKˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊDisplacement(S)ˊ)g=axis; g(2)=120; axis(g)subplot(2,2,2)plot(ph,v,ˊkˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊVelocity(V)ˊ)g=axis; g(2)=120; axis(g)subplot(2,2,3)plot(ph,a,ˊkˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊAcceleration(A)ˊ)g=axis;g(2)=120;axis(g)subplot(2,2,4)plot(ph,j,ˊkˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊJerk(J)ˊ)g=axis;g(2)=120;axis(g)2 平底盘形从动作参考下图得到如下关系:在(x,y)坐标系中,凸轮轮廓的坐标为Rx和Ry,刀具的坐标为Cx和Cy:Rx =Rcos( θ+) Ry =Rsin( θ+)ϕϕC x =Ccos( γ+) C y =Ccos( γ+)ϕϕ其中,R= θ=arctan θcos L ⎪⎪⎭⎫ ⎝⎛ϕd dL L 1c= =arctan γγcos c L +γ⎪⎪⎭⎫ ⎝⎛+c L d dL γϕ/r c 是刀具的半径,且dL/d =V()/ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏置盘型凸轮创新课程设计课程名称:机械原理设计题目:偏置盘型凸轮设计院系:机电学院班级: 09机41 设计者:辉学号: 09294040 指导教师:王卫辰学校:师大学前言凸轮轮廓曲线的设计,一般可分为图解法和解析法.利用图解法能比较方便地绘制出各种平面凸轮的轮廓曲线.但这种方法仅适用于比较简单的结构,用它对复杂结构进行设计则比较困难,而且利用图解法进行结构设计,作图误差较大,对一些精度要求高的结构不能满足设计要求.解析法可以根据设计要求,通过推导机构中各部分之间的几何关系,建立相应的方程,精确地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线精确地绘制出来.但是,当从动件运动规律比较复杂时,利用解析法获得凸轮的轮廓曲线的工作量比较大.而MATLAB软件提供了强大的矩阵处理和绘图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路口。
因此,基于MATLAB软件进行凸轮机构的解析法设计,可以解决设计工作量大的问题。
本此课程设计基于MATLAB软件进行凸轮轮廓曲线的解析法设计,并对的运动规律凸轮进行仿真,其具体方法为首先精确地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比较精确的凸轮轮廓曲线和推杆的位移、速度及加速度曲线以及仿真。
目录前言 1 第一章:工作意义 3 1.1本次课程设计意义 3 1.2 已知条件 4 第二章:工作设计过程 5 2.1:设计思路 5 2.2:滚子从动件各个阶段相关方程 6 2.3:盘型凸轮理论与实际轮廓方程 7 第三章:工作程序过程 7 3.1:滚子从动件各各阶段MATLAB程序编制 8 3.2:凸轮的理论实际运动仿真程序编制 12 第四章:运行结果 17 4.1:滚子运动的位移图 17 4.2:滚子运动的速度图 17 4.3:滚子运动的加速度图,局部加速度图 18 4.4:滚子运动的仿真图 19 4.5:滚子运动的理论与实际轮廓图 20 第五章:设计总结 21 5.1:总结 21 第六章:参考文献 226.1:参考文献22第一章:工作意义1.1本次课程设计意义凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。
与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。
凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。
因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。
由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。
凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。
从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。
尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。
在带滚子的直动从动件盘形凸轮机构中,凸轮回转一周从动件依次作升-停-降-停4个动作。
从动件位移s(或行程高度h)与凸轮转角Φ(或时间t)的关系称为位移曲线。
从动件的行程h有推程和回程。
凸轮轮廓曲线决定于位移曲线的形状。
在某些机械中,位移曲线由工艺过程决定,但一般情况下只有行程和对应的凸轮转角根据工作需要决定,而曲线的形状则由设计者选定,可以有多种运动规律。
传统的凸轮运动规律有等速、等加速-等减速、余弦加速度和正弦加速度等。
等速运动规律因有速度突变,会产生强烈的刚性冲击,只适用于低速。
等加速-等减速和余弦加速度也有加速度突变,会引起柔性冲击,只适用于中、低速。
正弦加速度运动规律的加速度曲线是连续的,没有任何冲击,可用于高速。
曲线是凸轮机构设计的关键,常用的设计方法有解析法和图解法。
在本次课程设计对偏心盘型凸轮进行设计,一方面是为对以前机械原理容进行加深印象,另一方面是为提高CAE/CAM/CAD计算机辅助设计,为下学期的毕业设计做好前期准备,以及提高自我能力。
提高编程能力,理解产品设计相关准备,为以后工作打下及基础。
运用计算机进行凸轮设计解析法设计,从而获得设计凸轮实际以及理论轮廓曲线轨迹。
1.2 已知条件偏心距e=15,基圆半径=40,滚子半径=10,推程运动角Ф=,远休止角Ф=,回程运动角Ф'=,近休止角Ф’=,从动件推杆滚子在推程以等加速等减速运动规律上升,升程规律=60,回程以简谐运动规律返回原处,凸轮逆时针回转,推杆偏于凸轮回转中心的右侧。
(s为滚子推杆从动件移动的规律)升程许用压力角,回程需用压力角。
第二章:工作设计过程2.1设计思路根据机械原理书上用解析法设计凸轮轮廓线的实质是建立凸轮轮廓线的数学方程式。
已知偏距e,基圆半径r,从动件的运动规律s=s(δ),则理论凸轮轮廓曲线方程:,。
()而实际凸轮的曲线方程:以此作为程序编制基础算法,然后明确程序编制需要哪些变量,利用MATLAB中相关函数进行计算,求出需要设计的理论,实际凸轮的轮廓曲线,并且利用PLOT函数进行画图,把从动件加速度,速度,位移进行画出来,并生成一个小型的动画,进行凸轮与滚子推杆从动件之间运动规律的仿真设计。
2.2:滚子从动件各个阶段相关方程推程等加速段 : 20φ≤ϕ≤,即50x 0≤≤ 根据: ,,: 2x 2503s =,x 1253v =,1253a =。
推程等减速: φ≤ϕ≤φ2,即100x 50≤≤ 根据:()22h 2h s ϕ-φφ-=,()ϕ-φφω=h 4v ,φω-=2h 4a ()2x 100250360s --=,()ϕ-φφ=2h 4v ,1253a -=当处于远休止:s φ+φ≤ϕ≤φ,即160x 100≤≤S=h,v=0,a=0即:s=60,v=0,a=0回程简谐远动:'s s φ+φ+φ≤ϕ≤φ+φ,即250x 160≤≤()⎥⎦⎤⎢⎣⎡φ-φ-ϕφπ+=s 'cos 12h s ,()s ''sin 2h v φ-φ-ϕφπφπω-=, ()s ;2'22cos 2h a φ-φ-ϕφπφωπ-= 则:⎪⎭⎫ ⎝⎛-+=80x 21cos 3030s , ⎪⎭⎫ ⎝⎛--=80x 21sin 15v⎪⎭⎫ ⎝⎛--=80x 21cos 5.7a 处于近休止:π≤ϕ≤φ+φ+φ2s 's ,即360x 250≤≤ 0a ,0v ,0s ===2.3:盘型凸轮理论与实际轮廓方程盘型凸轮理论方程:,()盘型凸轮实际方程:第三章:工作程序过程3.1:滚子从动件各各阶段MATLAB 程序编制求从动件位移,加速度,速度曲线,这里根据前面所列函数,我定义矩阵步长为piπ,r0为基圆半径,rr 为滚子半径,h 为升程,e 为偏心距,delta01为推程运动角,delta02为远休止角,delta03为回程运动角,hd 为角度转换弧度制,du 为弧度制转换为角度制,n=360,并定义5个计数向量,分别是tan1,tan2,tan3,tan4,tan4, tan5,分别属于前面讨论5情况matlab程序:clear;r0=40;rr=10;h=60;e=15;delta01=100;delta02=60;delta03=90;hd=pi/180;du=180/pi;se=sqrt(r0*r0-e*e);n1=delta01+delta02;n3=delta01+delta02+delta03;n=360;tan1=0:pi/200:delta01/2;s1=2*h*tan1.^2/delta01^2;v1=4*h*tan1*hd/(delta01*hd)^2;a1=3/125;tan2=delta01/2:pi/200:delta01;s2=h-2*h*(delta01-tan2).^2/delta01^2;v2=4*h*(delta01-tan2)*hd/(delta01*hd)^2;a2=-3/125;tan3=delta01:pi/200:n1;s3=h;v3=0;a3=0;tan4=n1:pi/200:n3;k=tan4-n1;s4=0.5*h*(1+cos(pi*k/delta03));v4=-0.5*pi*h*sin(pi*k/delta03)/(delta03*hd)^2;a4=0.5*pi*pi*h*cos(pi*k/delta03)/(delta03*hd)^2; tan5=n3:pi/200:n;s5=0;v5=0;a5=0;figure(1);hold on;grid on;title('偏置盘形凸轮从动件位移');xlabel('x/mm');ylabel('y/mm');plot([-(r0+h-40) (r0+h)],[0 0],'k');plot([0,0],[-(r0+h) (r0+rr)],'k');plot(tan1,s1,'r',tan2,s2,'r',tan3,s3,'r',tan4,s4,'r',tan5,s 5,'r');figure(2);title('偏置盘形凸轮从动件速度');hold on;grid on;xlabel('x/mm');ylabel('y/mm');plot([-(r0+h-40) (r0+h)],[0 0],'k');plot([0,0],[-(r0+h) (r0+rr)],'k');plot(tan1,v1,'r',tan2,v2,'r',tan3,v3,'r',tan4,v4,'r',tan5,v 5,'r');figure(3);title('偏置盘形凸轮从动件加速度');hold on;grid on;xlabel('x/mm');ylabel('y/mm');plot(tan1,a1,'r',tan2,a2,'r',tan3,a3,'r',tan4,a4,'r',tan5,a 5,'r');figure(4);title('偏置盘形凸轮从动件局部加速度');hold on;grid on;xlabel('x/mm');ylabel('y/mm');plot(tan1,a1,'r',tan2,a2,'r',tan3,a3,'r',tan5,a5,'r');在这里figure(1)代表从动件位移曲线,figure(2)代表从动件速度曲线,figure(3)代表从动件全部加速度曲线,Figure(4)代表从动件局部加速度,因为在第四段曲线跳跃太大所以多一个图进行观察。