13.4造桥选址问题

合集下载

造桥选址问题案例设计甘晓云

造桥选址问题案例设计甘晓云
设计意图:拓展2是对问题2所总结方法的灵活应用,发展学生的思维能力.
六、小结提升
(一)要使所得到的路径最短,就是要通过平移,使除河宽不变外,其他路径经平移后能在一条直线上.最后还是应用“两点之间,线段最短”解决问题.
(二)综合问题1、2,在解决最短路径问题时,我们通常可以利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.
方法2:如图6,将点A沿与第一条河流垂直的方向平移一个河宽到A1,将B沿与第二条河垂直的方向平移一个河宽到B1,连接A1B1与两条河分别相交于N、P,在N、P两处,分别建桥MN、PQ,所得路径AQPMNB最短.
设计意图:拓展1是直接对问题2所总结方法的直接应用,加深对问题2的理解.
拓展2:如图9,如果在上述条件不变的情况下,两条河不平行,又该如何建桥?
所以,基于以上分析,确定本节课的重点:利用平移将最短路径问题转化为“两点之间,线段最短”问题.
二、目标与目标解析
(一)目标
能利用平移解决某些最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化和化归的思想.
(二)目标解析
本节课所要达成的目标,一是能将实际问题中的“地点”、“河”抽象为数学中的“点”、“线’,把实际问题抽象为数学的线段和最小问题;二是能利用平移将和最小问题转化为“两点之间,线段最段”问题;三是能通过逻辑推理证明所求距离最短;四是在探索最短路径的过程中,体会平移的“桥梁”作用,感悟数学转化思想.
针对学生可能出现的问题,我的教学策略是这样的:
通过创设具有启发性、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,在教学过程中,将学生以6个人为一个小组,通过小组讨论交流学案的形式,相互配合,提出问题,并积极的解决问题,通过讨论、交流得到解决方法,培养学生的合作学习能力.并结合几何画板演示加深学生的理解。在教学模式上,以学生为主体,将课堂还给学生,给学生一个充分展示自己的舞台,在小组合作探究后,让学生代表在白板上演示自己小组的成果展示,使学生在这个过程中获得成功的体验,从而激发对数学的激情。在这节课堂教学中,充分利用白板、几何画板等现代多媒体工具,使学生对抽象、复杂的关系有了更直接、明了具体的感观,激发学生对数学的兴趣.

13.4课题学习最短路径问题

13.4课题学习最短路径问题
A N M B
P
C
M ’
本节课你有什么收获?
①学习了利用轴对称解决最短路径问题 ②感悟和体会转化的思想
补偿提高
如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径. C 山
Q
P
河岸
A
大桥
B
思路分析: 由于两点之间线段最短,所以首先可连接PQ,线 段PQ 为旅游船最短路径中的必经线路.将河岸抽象为 一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到 C 一点R,使PR与QR 的和最 Q 河岸 山 小”. P A
B
A C
l
两点之间,线段最短.
B
分析:
B
A A C
l
C
lBBiblioteka (1)这两个问题之间,有什么相同点和不同点? (2)我们能否把左图A、B两点转化到直线l 的异侧呢?
(3)利用什么知识可以实现转化目标?
如图,作点B关于直线 l 的对称点B′ . 当点C在直线 l 的什么位置时,AC与CB′的和最小?
B A C
思考:
你能把这个问题转化 为数学问题吗?
如图假定任选位置造桥MN, 连接AM和BN,从A到B的路径是 AM+MN+BN,那么折线AMNB在什 么情况下最短呢?
A M
a b
N
B
由于河宽是固定的,因此当 AM+NB最小时,AM+MN+NB最小.
分析:
A A' N M
a
b
A C
l
B
B
如图,如果将点A沿与河岸垂直的方向平移到点A′, 使AA′等于河宽,则AA′=MN,AM=A′N,问题转化为:当 点N在直线b的什么位置时,A′N+NB最小? 参考右图,利用“两点之间,线段最短”可以解决.

13.4最短路径问题5--造桥选址型

13.4最短路径问题5--造桥选址型

13.4最短路径问题5--造桥选址型一.【知识要点】2.方法:①“异侧两点两线定长线段,先平移再连接,用交点作定长线段,顺次连接即为所求”;②“同侧两点一线定长线段,先平移任一点,再对称另一点,后连接两对应点,用交点作定长线段,顺次连接即为所求”。

二.【经典例题】1.(平移变换与最短路径) 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)【问题 1】“造桥选址”作法作图原理直线m∥ n,在m、n,上分别求点M、N,使MN ⊥m,且AM+MN+BN的值最小。

将点A向下平移MN的长度单位得A',连A'B,交n于点N,过N作NM⊥ m于M .两点之间线段最短.AM+MN+BN 的最小值为A'B+MN.【问题 2】作法作图原理在直线l上求两点M、N(M 在左),使MN a,并使AM+MN+NB 的值最小 .将点A向右平移a个长度单位得A',作A'关于l的对称点A'',连A''B,交直线l于点N,将N点向左平移a个单位得M.两点之间线段最短.AM+MN+BN 的最小值为A''B+MN.2.已知直线上,线段CD的长度是固定的,且线段CD在直线上左右滑动,(1)若点A,B为直线l异侧的两个点,试确定CD的位置,使得A→C→D→B的路程最短.(2)若点A,B为直线l同侧的两个点,试确定CD的位置,使得A→C→D→B的路程最短.3.涪城护城河在 CC'处直角转弯,河宽相等,从 A 处到达 B 处,需经过两座桥 DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使 A 到 B 点路径最短?三.【题库】【A】【B 】【C 】【D 】1.(1)已知直线的同侧有A ,B 两点,要在直线上确定一点P ,使PA +PB 的值最小。

小明同学的做法如图:①作点A 关于直线l 的对称点A ′,连接A ′B 交l 于点P ,则PA +PB =A ′P +PB =A ′B ,由“两点之间,线段最短”可知,点P 即为所求的点.请问小明同学的做法是否正确?说明理由。

八年级-人教版-数学-上册-第2课时造桥选址问题

八年级-人教版-数学-上册-第2课时造桥选址问题

例 已知线段 a,点 A,B 在直线 l 的同侧,在直线 l 上求作两点 P, Q (点 P 在点 Q 的左侧)且 PQ=a,使得四边形 APQB 的周长最小.
分析:先在直线 l 上取PQ=a(如图),
连接AP,QB,AB,此时在四边形 APQB中, A 线段PQ和线段AB的长度是固定的,所以当 AP+QB最小时,四边形 APQB 的周长最小 .
A
M
a
当 AM+NB 最小时,
Nb
AM+MN+NB 最小.
B
问题转化为:当点 N 在直线 b 的什么位置时,AM+NB 最小?
能否通过图形的变化将问题转化为研究过的问题呢?
A
M
a
A
Nb B
N B
将 AM 沿与河岸垂直的方向平移,点 M 移动到点 N,点 A 移动到 点 A′,则 AA′=MN,AM+NB=A′N+NB.
第2课时 造桥选址问题
如图,在直线 l 上求作一点 C,使得 CA+CB 最短. B
A
A
C
l
C
l
B 点 A,B 在直线 l 异侧
B′ 点 A,B 在直线 l 同侧
问题 (造桥选址问题)如图,A 和 B 两地在一条河的两岸,现要在河上
造一座桥 MN,桥造在何处可使从 A 到 B 的路径 AMNB 最短?(假定河 的两岸是平行的直线,桥要与河垂直.)
(3)过 N 作 NM⊥a 于M,线段 MN 即为桥的位置.此时从 A 到 B
的路径 AMNB 最短.
A
a
M
你能试着证明一下吗?
A′
b
N B
证明:在直线 b 上任取一点N′ ,过点 N′ 作N′M′⊥a,连接 AM′, A′N′,N′B,

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。

人教版八年级上册数学 13.4 课题学习 最短路径问题13.4 课题学习 最短路径问题教学设计

人教版八年级上册数学   13.4 课题学习  最短路径问题13.4  课题学习  最短路径问题教学设计

13.4.课题学习《最短路径》教学设计一、教材分析1、地位作用:随着课改的深入,数学更贴近生活,更着眼于解决生产、经营中的问题,于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题。

这类问题的解答依据是“两点之间,线段最短”或“垂线段最短”,由于所给的条件的不同,解决方法和策略上又有所差别。

初中数学中路径最短问题,体现了数学来源于生活,并用数学解决现实生活问题的数学应用性。

2、目标和目标解析:(1)目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.(2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“连点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.3、教学重、难点教学重点:利用轴对称将最短路径问题转化为“连点之间,线段最短”问题教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.二、教学准备:多媒体课件、导学案三、教学过程A B C P Q山 河岸求直线同侧的两点与直线上一点所连线段的和最小的问题,要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.B分别是直线l同侧的两个点,在这时先作点B关于直线AB′的交点.两地之间有两条河,现要在两条河上各造一桥分别建在何处才能使从(假定河的两岸是平行的直线,桥要与河岸垂直)B村的距离相等,则应选择在哪建厂?B两村的水管最短,应建在什么地方?班举行文艺晚会,桌子摆成如图桌面上摆满了橘子,处的学生小明先拿橘子再拿糖果,然后到图a 图b四、反思小结布置作业)本节课研究问题的基本过程是什么?)轴对称在所研究问题中起什么作用?解决问题中,我们应用了哪些数学思想方法?。

人教版八年级上册数学课题学习造桥选址问题课件

人教版八年级上册数学课题学习造桥选址问题课件

交所直以线问a题于还点可M以,转当化点为N在:直当线点bN的在什直
么线位b的置什时么,位AM置+时M,N+ANMB+最N小B最?小?
思维分析
人教版八年级上册数学课题学习造桥 选址问 题课件
人教版八年级上册数学课题学习造桥 选址问 题课件
拓展应用
拓展1:如图,如果A、B两地之间有两
条平行的河,我们要建的桥都是与河岸
垂直的。我们如何找到这个最短的距离
呢?
A
河流1
方法
人教版八年级上册数学课题学习造桥 选址问 题课件
图像
河流2 B
பைடு நூலகம்
人教版八年级上册数学课题学习造桥 选址问 题课件
方法:将点A沿与第一条河流垂直的 方向平移一个河宽到A1,将B沿与第 二条河垂直的方向平移一个河宽到B1, 连接A1B1与两条河分别相交于P、M, 在P、M两处,分别建桥PQ 、 MN, 所得路径AQPMNB最短。
人教版八年级上册数学课题学习造桥 选址问 题课件
13.4 课题学习 最短路径问题(2)
造桥选址问题
人教版八年级上册数学课题学习造桥 选址问 题课件
人教版八年级上册数学课题学习造桥 选址问 题课件
教学目标
1、知识与技能: 理解利用平移的方法,解决最短路径问题。 2、过程与方法: (1)在观察、操作、归纳等探索过程中,培养 学生的实际动手能力; (2)在运用知识解决有关问题的过程中,体验 并掌握探索、归纳最短路径选取的方法。 3、情感、态度与价值观 (1)体会数学与现实生活的联系,增强克服困 难的勇气和信心; (2)会应用数学知识解决一些简单的实际问题, 增强应用意识; (3)使学生进一步形成数学来源于实践,反过 来又服务于实践的辩证唯物主义观点。

13.4 课题学习 最短路径问题

13.4  课题学习  最短路径问题

13.4 课题学习最短路径问题教学目标1.了解将军饮马及造桥选址两个常见类型.2.会解答将军饮马及造桥选址中的最短路径问题.3.能初步应用将军饮马及造桥选址两个常见类型完成类似题目.教学重点难点1.将实际问题抽象为数学问题.2.解答最短路径问题.课时安排2课时.教案A、B第1课时教学内容将军饮马.教学过程一、导入新课问题1 如下图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?二、探究新知1.将实际问题抽象为数学问题师生活动:学生尝试回答,并相互补充,最后达成共识.(1)把A、B两地抽象为两个点;(2)把河边l近似地看成一条直线(下图),C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.2.尝试解决数学问题(1)由这个问题,我们可以联想到下面的问题:如图,点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?利用已经学过的知识,可以很容易地解决上面的问题,即:连接AB,与直线l相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.(2)现在要解决的问题是:点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?(3)如何能把点B移到l的另一侧B′处,同时对直线l上的任一点C,都保持CB 与CB′的长度相等,就可以把问题转化为“上图”的情况,从而使新问题得到解决.(4)你能利用轴对称的有关知识,找到符合条件的点B′吗?学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:作出点B关于l 的对称点B′,利用轴对称的性质,可以得到CB′=CB(下右图).连接AB′,则AB′与l 的交点即为所求.3.证明“最短”师生共同分析,合作证明“AC+BC”最短.证明:如上右图,在直线l上的任一点C′(与点C不重合),连接AC′,BC′,B′C′,由轴对称的性质知:BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.提问:证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里“C′”的作用是什么?学生相互交流,教师适时点拨,最后达成共识.三、巩固练习已知P是△ABC的边BC上的点,你能在AB、AC上分别确定一点Q和R,使△PQR 的周长最短吗?学生独立完成,必要时教师点拨指导.四、课堂小结总结用数学解决实际问题的步骤.第2课时教学内容造桥选址.教学过程一、导入新课造桥选址问题:如下图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)二、探究新知1.将实际问题抽象为数学问题把河的两岸看成两条平行线a和b(下图),N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?2.尝试解决数学问题(1)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?(2)如下左图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样,问题就转化为:当点N在直线b的什么位置时,A′N+NB最小?(3)如上右图,在连接A′,B两点的线中,线段A′B最短.因此,线段A′B与直线b的交点N的位置即为所求.3.证明“最小”为了证明点N的位置即为所求,我们不妨在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+M′N′+N′B.你能完成这个证明吗?证明:如上右图,在△A′N′B中,∵A′B<A′N′+BN′,∴A′N+BN+MN<AM′+BN′+M′N′.∴AM+MN+BN<AM′+M′N′+BN′.即AM+MN+BN最小.三、课堂小结归纳:在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.。

人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例

人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
3.教师对学生的学习过程和成果进行全面评价,关注学生的成长和进步。
4.鼓励学生积极参与评价,培养学生的评价能力和批判性思维。
四、教学内容与过程
(一)导入新课
1.教师通过一个有趣的现实生活中的选址问题,如“如何在两个村庄之间建一座桥,使得两地之间的距离最短?”引起学生的兴趣。
2.学生尝试用自己的知识解决此问题,教师引导学生思考问题的方法论。
人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
一、案例背景
人教版数学八年级上册13.4课题学习“最短路径造桥选址实验教学”探究优秀教学案例,是基于学生在学习了平面直角坐标系、一次函数和二次函数等知识的基础上,对“线性规划”的初步认识。此章节内容旨在让学生通过实验探究,掌握线性规划的基本方法,解决实际问题。
在教学过程中,我以“最短路径造桥选址”为例,让学生结合生活实际,探讨如何在一个城市中选择最佳的桥梁建设位置,以达到连接两个区域、节省路程、提高效率的目的。通过对问题的探究,引导学生运用所学的数学知识,解决实际问题,提高学生的实践能力和创新能力。
在教学设计上,我充分考虑了学生的认知规律和兴趣,将抽象的数学知识与具体的生活情境相结合,以实验教学为主线,让学生在动手操作、观察分析、合作交流的过程中,掌握线性规划的方法。同时,我注重引导学生进行思考,激发学生的学习兴趣,培养学生的自主学习能力。
4.全面提高学生的数学素养:通过对实际问题的解决,本节课不仅使学生掌握了线性规划的基本方法,还培养了学生的观察力、动手能力、思维能力、沟通能力和团队协作能力,全面提高了学生的数学素养。
5.教学策略灵活多样:教师根据学生的认知规律和兴趣,采用了情景创设、问题导向、小组合作等多种教学策略,使学生在轻松愉快的氛围中学习,提高了教学效果。

13.4 课题学习——最短路径问题

13.4 课题学习——最短路径问题
P
根据:两点之间线段最短.
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜 访海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全 程最短?
B
A l
探索新知
精通数学、物理学的海伦稍加思索,利用轴 对称的 知识回答了这个问题.这个问题后来被称 为“将军饮马 问题”. 你能将这个问题抽象为数学问题吗?
A
B
归纳小结
(1)本节课研究问题的基本过程是什么?
(2)轴对称在所研究问题中起什么作用?
八年级
上册
13.4 课题学习 最短路径问题
江西省赣州中学
黄学财
如图所示,从A地到B地有三条路可供选择,你 会选走哪条路最近?你的理由是什么?
C A
①D
E B


两点之间,线段最短。
F
(Ⅰ)两点在一条直线异侧:
已知:如图,A,B在直线L的两侧,在L
上求一点P,使得PA+PB最小。
连接AB,线段AB与直线L的交点P ,就是所求。 思考??? 为什么这样做就能得到 最短距离呢?
B
A
l
探索新知
将A,B 两地抽象为两个点,将河l 抽象为一条直线.
如图,点A,B 在直线l 的同侧,点C 是直线上的一个 动点,当点C 在l 的什么位置时,AC 与CB 的和最小? · A· l
B
(Ⅱ) 两点在一条直线同侧:
已知:如图,A、B在直线 l 的同一侧,在 l 上求 一点,使得PA+PB最小. 作法:① 作点B关于直线 l 的对称点B′. ② 连接AB′,交直线 l 于点P. 点P的位置即为所求. 为什么这样做就能得 到最短距离呢? MA + MB′>PA+PB ′ 即MA + MB′>PA+PB 三角形任意两边之和大于第三边

13.4.最短路径(2)—造桥选址问题电子教案

13.4.最短路径(2)—造桥选址问题电子教案

13.4.最短路径(2)—
造桥选址问题
精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢2
13.4造桥选址问题
一.学习目标:
1、能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
2、在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 二.重点难点:
学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 学习难点:如何利用轴对称将最短路径问题转化为线段和最小问题. 三.合作探究:(同学合作,教师引导) 1.温故知新:
前面我们研究过最短路径问题,求最短路径的依据有:
(1) . (2) . 2.探究新知: 问题2 造桥选址问题
如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)
思维分析:
1.如右图假定任选位置造桥MN,连接AM 和BN,从A 到B 的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
2.利用上面的“求最短路径的依据”解决问题:我们遇到了什么障碍呢?
四.感悟与反思:
A ·
· B
A ·
· B。

人教版八年级上册数学:13.4 课题学习 最短路径问题(二)

人教版八年级上册数学:13.4 课题学习 最短路径问题(二)

N
O
PQ
B
N'
回顾提升
通过这节课的学习你有哪些收获?
1.运用轴对称的性质和“两点之间,线段最 短”的性质,解决最短路径的问题. 2.运用轴对称的性质和“两点之间,线段最 短”的性质,解决线段之差最大或最小的问 题.
当点N在直线b的什 么位置时, AM+MN+NB最小?
图13.4-7
操作探究,解决问题
问题3 上面的问题可以转化为下面的问题: 当点N在直线b的什么位置时,AM+MN+NB 最小?
(2)由于河岸宽
度是固定的,因此
求AM+MN+NB最
小的问题可以转化
为什么问题?
图13.4-7
操作探究,解决问题
问题3 上面的问题可以转化为下面的问题: 当点N在直线b的什么位置时,AM+MN+NB 最小?
当点P(或Q)在直线 OB的什么位置时, a MP+ NQ最小?
O
A
M N B
操作探究,解决问题
(2)能否通过图形的变化(轴对称、平移 等),把上图转化为“两点分别在一条直 线的同侧,在直线上找一点,使这个点到 前面两点的距离的和最短”的情况?
当点Q在直线OB的什么位置时, M′Q+NQ最小?
A
a
(3)两个图形关于某条直线对称或一个图形 是轴对称图形,如果它们的对应线段或延长 线相交,那么交点在对称轴上.
复习回顾,引出课题
(1)点A,B分别是直线l异侧的两个点,如 何在l上找到一个点,使得这个点到点A、点B 的距离的和最短? (2)点A,B分别是直线l同侧的两个点,如 何在l上找到一个点,使得这个点到点A、点B 的距离的和最短?

辽宁省大连市甘井子区2024-2025学年八年级上学期期中阶段性学习质量抽测数学试卷(含答案)

辽宁省大连市甘井子区2024-2025学年八年级上学期期中阶段性学习质量抽测数学试卷(含答案)

2024-2025学年度第一学期期中阶段性学习质量抽测八年级数学(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在美术字中,有些汉字是轴对称图形.下面四个汉字中,可以看作是轴对称图形的是( )A. B. C. D.2.六边形的外角和等于( )A.180°B.270°C.360°D.720°3.如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接并延长到点D ,使.连接并延长到点E ,使.连接,可证,那么测量出的长就是池塘两端A ,B 的距离证明.的依据是( )(第3题)A. B. C. D.4.如图,在中,,,,点D 是的中点,,则的长度是( )(第4题)A.0.5B.1C.2D.45.如图,,若,,则的长度是()AC CD CA =BC CE CB =DE ABC DEC ≅△△DE ABC DEC ≅△△SAS AAS AAS HLRt ABC △90ACB ∠=︒30A ∠=︒2BC =AB DE AC ⊥DE EFG NMH ≅△△ 1.1EH = 3.3NH =GH(第5题)A.1.1B.2.1C.2.2D.3.36.如图,在中,,,是的角平分线,则( )(第6题)A.65°B.75°C.85°D.90°7.如图,在中,,点D 在上,且,下列结论正确的是( )(第7题)A. B. C. D.8.如图,在中,,,的高与的比是( )(第8题)A. B. C. D.9.如图,在中,以点A 为圆心,适当长为半径作弧,交于点G ,交于点H ;再分别以点G ,H为圆心,大于的长为半径作弧,两弧交于点O ;连接并延长交于点D .点P 是上的一点,过点P 分别作,,交于点E ,E 过点D 作于点M ,于点N ,交于点K ,于点L .下列线段的数量关系正确的是( )ABC △40BAC ∠=︒75B ∠=︒AD BAC ∠ADB ∠=ABC △AB AC =AC BD BC AD ==36A ∠=︒66ABC ∠=︒70C ∠=︒105ADB ∠=︒ABC △2AB =4BC =ABC △AD CE 1:11:21:32:1ABC △AB AC 12GH AO BC AD PE AB ∥PF AC ∥BC DM AB ⊥DN AC ⊥PE PF(第9题)A. B. C. D.10,如图,电信部门要在S 区修建一座电视信号发射塔.设计要求:发射塔到两个城镇A ,B 的距离相等,到两条高速公路m 和n 的距离也相等.关于发射塔应修建的位置,下列说法正确的是( )(第10题)A.线段的中点B.直线m 和n 的交角(锐角)的角平分线与线段的交点C.线段的垂直平分线和直线m 和n 的交角(锐角)的角平分线的交点D.线段的垂直平分线和线段的垂直平分线的交点第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.如图,和关于直线对称,,______°.(第11题)12.如图,,,重垂足分别为E ,F ,,若要依据证明,则需添加的一个条件是______.(第12题)13.如图,从A 处观测C 处的仰角,从B 处观测C 处的仰角,则DE DF =PE PF =2DM DL =MK NL=AB AB AB OA OB ABC △A B C '''△MN AB BC ⊥A B C '''∠=AE BC ⊥DF BC ⊥BE CF =HL BAE CDF ≅△△30CAD ∠=︒45CBD ∠=︒ACB ∠=(第13题)14.如图,五边形的内角都相等,且,,则x 的值是______.(第14题)15.如图,是等边三角形,是中线,延长至点E ,使,,垂足为F .若,,则的面积是______.(用含a 和b 的式子表示)(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(本小题8分)如图,,,.求的度数.(第16题)17.(本小题8分)如图,点B ,E ,C ,F 在一条直线上,,,.求证:.ABCDE 12∠=∠34∠=∠ABC △BD BC CE CD =DF BE ⊥AB a =BD b =BDE △CD AB ⊥1A ∠=∠65B ∠=︒ACB ∠AB DE =AC DF =BE CF =A D ∠=∠18.(本小题8分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(第18题)(1)请画出关于y 轴对称的图形,并直接写出顶点的坐标______;(2)关于x 轴对称的图形为.①不用画图,请直接写出三个顶点的坐标:______,______,______;②若内任意一点P 的坐标为,则点在内的对应点的坐标为______.(用含x 和y 的式子表示)(建议:先用铅笔画图,确定无误后用黑色水性笔画在答题卡上)19.(本小题8分)如图,点D 在上,点E 在上,,,和相交于点O .求证:.(第19题)20.(本小题8分)如图,中,,,平分,平分,过点O 作交,于点M ,N .求的周长.ABC △()4,1A -()1,1B --()3,2C -ABC △111A B C △1A ABC △222A B C △2A 2B 2C ABC △(),x y P 222A B C △2P AB AC AB AC =B C ∠=∠BE CD OD OE =ABC △10AB =7AC =BO ABC ∠CO ACB ∠MN BC ∥AB AC AMN △(第20题)21.(本小题10分)【课题回顾】在学习《13.4课题学习最短路径问题》时,根据“两点之间,线段最短”和“垂线段最短”探究了“将军饮马”和“造桥选址”两个问题,并初步运用探究经验解决线段和最小值的数学问题.【问题探究】如图1,在等边中,点D 为中点,点P ,Q 分别为,上的点,,,点M 是线段上的动点,连接,,求的最小值.(1)小明提出的探究思路如下:如图2,作点Q 关于直线的对称点,连接交于点M ,连接,根据“两点之间,线段最短”,可知此时的值最小.①请你运用小明的探究思路,证明此时的值最小;②求的最小值.【类比探究】(2)如图3,在平面直角坐标系中,点A 坐标为,点B 为y 轴正半轴上一点,连接,,点C 为中点,平分交边于点D ,点P 为边上的一个动点.若点M 在线段上,连接,,当的值最小时,请直接写出点P 的坐标______.(图1) (图2) (图3)(第21题)22.(本小题12分)【发现问题】在全等三角形研究“筝形”的数学活动中,学习了筝形的定义:有两组邻边分别相等的四边形叫做筝形,以及筝形的边、角、对角线的性质.小明在学完十三章《轴对称》后,将学过的角平分线的性质与判定定ABC △BC AC BC 2AP CQ ==1DQ =AD MP MQ MP MQ +AD Q 'PQ 'AD MQ MP MQ +MP MQ +MP MQ +()4,0AB 30ABO ∠=︒AB OD AOB ∠AB OB OD MC MP MC MP +理,线段垂直平分线的性质与判定定理的图形进行了整理,发现这些图形中都存在筝形,且筝形是轴对称图形.【提出问题】小明利用筝形是轴对称图形对它的面积进行了探究,得到了筝形面积与对角线的数量关系.(1)如图1,在四边形中,,,对角线与相交于点O .求证:.(图1)(图2)(第22题)【分析问题】(2)如图2,在四边形中,,,于点B ,于点D ,点M ,N 分别是,上的点,且,求的周长.(用含a 的式子表示)【解决问题】(3)①如图3,在中,点D 为内一点,平分,且.求证:.②如图4,在中,,,点D ,E 分别是边,上的动点,当四边形为筝形时,请直接写出______°.(图3)(图4)(第22题)23.(本小题13分)【活动初探】在学习等十三章《轴对称》数学活动3时,我们利用等腰三角形的轴对称性发现等腰三角形中有许多相等的线段或角,因此利用图形的轴对称性可以探究图形中边与角的数量关系.(1)如图1,在中,,点D 为中点,于点E ,于点F .求证:.ABCD AB AD =CB CD =AC BD 12ABCD S AC BD =⋅筝形ABCD AB AD a ==CB CD =AB BC ⊥AD CD ⊥AD AB MCD NCB MCN ∠+∠=∠AMN △ABC △ABC △AD BAC ∠BD CD =AB AC =ABC △80A ∠=︒30B ∠=︒BC AB AEDC BDE ∠=ABC △AB AC =BC DE AB ⊥DF AC ⊥DE DF =(图1)(图2)(第23题)【变式再探】(2)如图2,在中,,和分别为等边三角形,与相交于点G ,连接并延长,交于点D ,求证:点D 为的中点.(图3)(备用图)(第23题)【类比深探】(3)在中,,点D 为中点,,点F 为直线上一动点,点E 为射线上一动点(点E 不与点A ,C 重合),,连接.①如图3,当点F 在点A 上方,猜想并证明,,的数量关系;②若,,,请直接写出______(用含m ,n 的代数式表示).ABC △AB AC =CFA △BEA △CF BE AG BC BC ABC △AB AC =BC 30ABC ∠=︒AD CA FB FE =BE AC AE DF AC m =AE n =2m n >DF =2024-2025学年度第一学期期中阶段性学习质量抽测八年级数学参考答案第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.B.2.C.3.A.4.B.5.C.6.C.7.A.8.B.9.D. 10.C.第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.90. 12.. 13.15. 14.36.15..三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(本小题8分)解:∵,∴.……2分∴在中,.……4分∵,∴.……6分∵在中,,∴.……8分(第16题)17.(本小题8分)证明:∵,∴.……1分∴.……2分在和中,……4分∴.……6分∴.……8分AB CD =38ab CD AB ⊥90ADC ∠=︒Rt ACD △90CAD C ∠+∠=︒1A ∠=∠145A ∠=∠=︒ABC △65B ∠=︒180ACB A B∠=︒-∠-∠1804565=︒-︒-︒70=︒BE CF =BE EC CF EC +=+BC EF =ABF △DCE △AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩()SSS ABC DEF ≅△△A D ∠=∠(第17题)18.(本小题8分)解:(1);……1分图正确;……4分(第18题)(2)①,,;……7分.……8分19.(本小题8分)证明:在和中,……2分∴.……3分∴.……4分∴.∴.……5分在和中,......6分∴.......7分∴. (8)分()14,1A ()24,1A --()21,1B -()23,2C --()2,P x y -ABE △ACD △A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABE ACD ≅△△AE AD =AB AD AC AE -=-BD CE =OBD △OCE △BOD COE B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS OBD OCE ≅△△OD OE =(第19题)20.(本小题8分)证明:∵平分,平分,∴,.……1分∵,∴,.……2分∴,.……4分∴,.……6分∵…………7分∴的周长为17.……8分(第20题)21.(本小题10分)(1)①证明:如图,在上另取一点,连接,,,∵点Q 关于直线的对称点为,点M ,在上,∴,.∴.……1分在中,∵, (2)分BO ABC ∠CO ACB ∠12∠=∠34∠=∠MN BC ∥25∠=∠36∠=∠15∠=∠46∠=∠MB MO =NO NC =AMN C AM MN AN=++△AM MO NO AN=+++AM MB NC AN=+++AB AC=+17=AMN △AD M 'PM 'M Q ''M Q 'AD Q 'M 'AD MQ MQ ='M Q M Q '=''MP MQ MP MQ PQ +=+=''M PQ ''△PQ PM M Q <''+''∴.即的值最小.……3分(第21题)②解:∵是等边三角形,点D 为中点,∴,,.……4分∵,,∴.∴.……5分∵点Q 关于直线的对称点为,∴.∴.……6分∴.∵,∴是等边三角形.……7分∴.∴的最小值为4.……8分(2).……10分22.(本小题12分)(1)证明:∵,,∴垂直平分.……1分∵,∴MP MQ PM M Q '+'<'+MP MQ +ABC △BC 2AB AC BC CD ===60C ∠=︒AD BC ⊥2CQ =1DQ =3CD BD CQ DQ ==+=6AB AC BC ===AD Q '1DQ DQ ='=2BQ AP BD DQ ==-'='4CP CQ AC AP BC BQ '==-'=-=60C ∠=︒CPQ ' 4PQ CP '==MP MQ +()0,2AB AD =CB CD =AC BD ACD ABC ABCD S S S =+△△筝形()11112222ABCD S AC OD AC OB AC OD OB AC BD =⋅+⋅=+=⋅筝形即.……2分(2)如图2,延长至E ,使,连接,∵,,∴.在和中,∴.……3分∴,.∵,∴.……4分在和中,∴.……5分∴∴的周长.……6分(第22题图2)(3)①证明:如图3,过点D 作于M ,过点D 作于N ,∵平分,,,∴.……7分又∵,∴.……8分∴.12ABCD S AC BD =⋅筝形AD DE BN =CE AB BC ⊥AD CD ⊥90CDE CBN ∠=∠=︒CDE △CBN △CD CB CDE CBNDE BN =⎧⎪∠=∠⎨⎪=⎩()SAS CDE CBN ≅△△ECD NCB ∠=∠CE CN =MCD NCB MCN ∠+∠=∠MCD ECD MCN MCE ∠+∠=∠=∠MCN △MCE △CN CE MCN MCEMC MC =⎧⎪∠=∠⎨⎪=⎩()SAS MCN MCE ≅△△.MN ME =AMN △AM MN AN=++AM ME AN=++AM MD DE AN=+++AD BN AN=++2AD AB a =+=DM AB ⊥DN AC ⊥AD BAC ∠DM AB ⊥DN AC ⊥DM DN =BD CD =()Rt Rt HL BDM CDN ≅△△ABD ACD ∠=∠∵,∴.……9分∴.∴.∴.……10分(第22题图3)②100°或40°.……12分23.(本小题13分)(1)证明:∵,点D 为中点,∴平分.……1分∵,,∴.……2分(第23题图1)(2)证明:∵,∴.……3分∵和分别为等边三角形,∴.……4分∴.∴.∴.……5分∵,∴垂直平分.∴点D 为的中点 (6)分BD CD =DBC DCB ∠=∠ABD DBC ACD DCB ∠+∠=∠+∠ABC ACB ∠=∠AB AC =AB AC =BC AD BAC ∠DE AB ⊥DF AC ⊥DE DF =AB AC =ABC ACB ∠=∠CFA △BEA △60FCA EBA ∠=∠=︒ABC EBA ACB FCA ∠-∠=∠-∠GBC GCB ∠=∠GB GC =AB AC =AD BC BC(第23题图2)(3)①猜想:.证明:如图3,过点F 作于M ,过点F 作,交延长线于点N ,∴.∵,点D 为中点,∴,平分.∵,∴.∵,∴.……7分∵,∴.∴.……8分∴.在中,,∴.∴.同理.……9分∴.∴.∴.在中,,∴.……10分∴.∴.……11分(第23题图3)②或.……13分12AE AC DF =+FM AE ⊥FN BA ⊥BA 90FME FNB ∠=∠=︒AB AC =BC AD BC ⊥AD BAC ∠30ABC ∠=︒60BAD CAD FAM FAN ∠=∠=∠=∠=︒FM AE ⊥FN BA⊥FM FN =FB FE =()Rt Rt HL EFM BFN ≅△△EM BN =AE AM AB AN -=+Rt AFM △60FAM ∠=︒30AFM ∠=︒12AM AF =12AN AF =1122AE AF AB AF -=+AE AB AF =+AE AC DF AD =+-Rt ABD △30ABC ∠=︒1122AD AB AC ==12AE AC DF AC =+-12AE AC DF =+12m n +12m n -。

13.4--课题学习--最短路径问题

13.4--课题学习--最短路径问题
解:图略. 理由:垂线段最短.
知识点 2 运用“两点之间线段最短”解决最短路径问题
问题1 牧人饮马问题 相传,古希腊亚历山大城里有一位久负盛名的学者,
名叫海伦.有一天,一位将军专程拜访海伦,求教一 个百思不得其解的问题:
如图,牧马人从A地出发,到一条笔直的河边 l 饮马, 然后到B地.牧马人到河边的什么地方饮马,可使所走 的路径最短?
B
A
l
C
B
两点之间,线段最短.
分析:
B
A
A
C
l
l
C
B
(1)这两个问题之间,有什么相同点和不同点?
(2)我们能否把左图A、B两点转化到直线l 的异侧呢?
(3)利用什么知识可以实现转化目标?
如图,作点B关于直线 l 的对称点B′ . 当点C在直线 l 的什么位置时,AC与CB′的和最小?
B A
l
C
B′
1. 最短路径问题的类型: (1)两点一线型的线段和最小值问题; (2)两线一点型线段和最小值问题; (3)两点两线型的线段和最小值问题; (4)造桥选址问题.
2. 解决最短路径问题的方法:借助轴对称或平移的知 识,化折为直,利用“两点之间,线段最短”或 “垂线段最短”来求线段和的最小值.
B A
l
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.
你能将这个问题抽象为数学问题吗?
分析:
B B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC与BC的和最小?
联想:
如图,点A、B分别是直线l异侧的两个点, 如何在 l 上找到一个点,使得这个点到点A、点B 的距离的和最短?

《造桥选址问题》课件

《造桥选址问题》课件

环保性原则
总结词
在建桥过程中,应尽可能减少对环境的 破坏和污染,保护生态环境和自然资源 。
VS
详细描述
在选址阶段,应充分考虑桥梁建设对周围 环境的影响,包括土地利用、水资源、野 生动植物等。应尽量选择环境影响较小的 地点,避免在生态敏感区域建设桥梁。同 时,在施工过程中应采取有效的环保措施 ,减少粉尘、噪音、废水的排放,降低对 环境的负面影响。
造桥选址的案例分析
长江大桥选址案例
总结词
地理位置重要、工程难度大
详细描述
长江大桥是中国交通网络中的重要节点,连接了多个省份和 城市。由于长江的特殊地理环境和水文条件,选址需要考虑 诸多因素,如河床稳定性、水深、河流通航等,以确保桥梁 的稳定性和安全性。
黄河大桥选址案例
总结词
地质条件复杂、环境保护要求高
4. 形成调查报告,提出 建议。
优点:能够全面了解桥 址周边的实际情况,为 决策提供可靠依据。
缺点:需要大量时间和 人力投入,成本较高。
数学模型法
• 定义:数学模型法是通过建立数学模型,对桥址 进行定量分析和预测,从而确定最优选址方案的 方法。
数学模型法
步骤 1. 确定影响桥址选择的主要因素。
2. 建立数学模型,进行模拟分析。
对环境保护和可持续发展的影响
科学的选址可以减少对环境的破坏,实现可持续发展,保护生态平衡。
02
造桥选址的原则
稳定性原则
总结词
在选址过程中,首要考虑的是桥梁结构的稳定性,以确保桥梁在使用过程中的安全性和 耐久性。
详细描述
桥梁的稳定性取决于地质勘察、水文条件、气候条件等多种因素的综合评估。在选址阶 段,需要对桥墩所在地的地质构造、岩石力学性质、地下水位等进行深入勘察,以确保

人教版数学八年级上册13.4《最短路径问题(2)》名师教案

人教版数学八年级上册13.4《最短路径问题(2)》名师教案

课题学习最短路径问题〔第二课时〕造桥选址问题〔邹敏〕一、教学目标:〔一〕学习目标1.熟练应用轴对称变换知识,提高解决实际问题的能力;2.学会利用平移变换知识解决造桥选址的最短路径问题;3.体会平移变换在解决最值问题中的作用,感悟转化思想.〔二〕教学重点教学重点:利用平移将“造桥选址〞的实际问题转化为“两点之间,线段最短〞问题〔三〕教学难点教学难点:如何利用平移将最短路径问题转化为线段和最小问题二、教学设计〔一〕课前设计1.预习任务⑴平移不改变图形的和;⑵三角形三边的数量关系:三角形任意两边的差第三边;⑶如图,直线AB,CD且AB∥CD,在直线AB上任取不同两点P、Q,过P、Q 分别作CD的垂线,垂足分为M、N,那么PM与QN的大小关系为〔〕A.PM>QN B.PM=QN C.PM<QN D.不能确定答案:⑴形状,大小;⑵小于;⑶B2.预习自测⑴直线AB上有一点P,当点P在时,P A+PB有最小值,最小值为AB 的值;⑵直线AB上有一点P,当点P在时,PB-P A等于AB的值;⑶直线AB 上有一点P ,当点P 在 时,P A -PB 等于AB 的值;图1图3图2B AP B AP 【知识点】线段的和差 【数学思想】分类讨论,数形结合【思路点拨】直线AB 上有一点P ,此时点P 与线段AB 的位置关系有两种:①如图1,点在线段AB 上;②如图2和图3,点在线段BA 的延长线上或点在直线AB 的延长线上.【解题过程】⑴当点P 在线段AB 上时,如图1,P A +PB =AB 即P A +PB 最小值为AB 的值;⑵当点P 在线段BA 的延长线上时,如图2,PB -P A =AB ;⑶当点P 在线段AB 的延长线上时,如图3,P A - PB =AB ;【答案】⑴线段AB 上;⑵线段BA 的延长线上;⑶线段AB 的延长线上.⑷如图,点 A 、B 在直线l 的同侧,在直线l 上能否找到一点P ,使得|PB -P A |的值最大? l B A【知识点】两点之间线段最短,三角形两边的差小于第三边【思路点拨】当点P 、点A 、点B 不共线时,根据“三角形任意两边的差小于第三边〞 ,那么|PB -P A |<AB ; 当点P 与A 、B 共线,点P 在线段BA 的延长线上时,即点P 为直线AB 与直线l 的交点,那么|PB -P A |=AB .【解题过程】⑴当点P 在直线l 上且点P 、点A 、点B 不共线时|PB -P A |<AB ;⑵当点P 在线段BA 的延长线与直线l 的交点时,如图,PB -P A =AB ,即 |PB -P A |=AB ;【答案】如图,连接BA 并延长交直线l 于P ,此时|PB -P A |的值最大.〔二〕课堂设计1.知识回忆⑴在平面内,一个图形沿一定方向、移动一定的距离,这样的图形变换称为平移变换〔简称平移〕. 平移不改变图形的形状和大小.⑵三角形三边的数量关系:三角形两边的差小于第三边2.问题探究探究一运用轴对称解决距离之差最大问题●活动①回忆旧知,引入新知师:上节课我们认识了精通数学、物理学的学者海伦,解决了数学史中的经典问题——“将军饮马问题〞,但善于观察与思考的海伦在解决“两点〔直线同侧〕一线〞的最短路径问题时他从另一角度发现了“最大值〞的情况:●活动②整合旧知,探究新知例1. 如图,A、B两点在直线l的异侧,在直线l上求作一点C,使|AC-BC|的值最大.【知识点】轴对称变换,三角形三边的关系【思路点拨】根据轴对称的性质、利用三角形三边的关系,通过比拟来说明最值问题是常用的一种方法.此题的突破点是作点A(或点B)关于直线l的对称点A′(或B′),利用三角形任意两边之差小于第三边,再作直线A′B(AB′)与直线l交点C.【解题过程】如图1所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的延长线交l于点C,那么点C即为所求.Arrayl●活动③类比建模,证明新知师:回忆我们是怎么利用轴对称的知识证明“两点〔直线同侧〕一线型〞时AC +BC 最小的吗?试类比证明“|AC-BC|最大〞的作法是否正确性?理由:在直线l上任找一点C ′ (异于点C ),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,那么有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.又在△A′BC′中,C′A -C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.练习点A、B均在由面积为1的一样小矩形组成的网格的格点上,建立平面直角坐标系,如下图.假设P是x轴上使得|PA-PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,请在图中画出点P与点Q.【知识点】两点之间线段最短,三角形任意两边的差小于第三边,三角形任意两边的和大于第三边【思路点拨】当点P与A、B共线时,即在线段AB的延长线上,点P为直线AB 与x轴的交点,那么此时P是x轴上使得|PA-PB|的值最大的点,即|P A-PB|=AB. 将点A、B看成y轴同侧有两点:在y轴上求一点Q,使得QA+QB最小【解题过程】⑴延长线段AB,AB与x轴交于点P,那么此时P是x轴上使得|PA -PB|的值最大的点,即|P A-PB|=AB;⑵作点A关于x轴的对称点A′,A′B 的连线交y轴于点Q,那么点Q是y轴上使得QA+QB的值最小的点.【答案】如图,点P与点Q即为所求:探究二 利用平移解决造桥选址问题★▲●活动①结合实际,难点分解师:常说“遇山开路,遇水搭桥〞,生活中的建桥问题与我们所学习的轴对称有什么关系呢?如图,在笔直河岸CD 上的点A 处需建一座桥,连接河岸EF ,且CD ∥EF .显然当桥AB 垂直于河岸时,所建的桥长最短. D C E F A B D C E F A●活动②生活中的实际问题例2. 如图,A 、B 两地位于一条河的两岸,现需要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?〔假设河的两岸是平行的直线,桥要与河岸垂直〕【知识点】平移知识,两点之间线段最短 【思路点拨】需将实际问题抽象成数学问题:从点A 到点B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.如图1,此时两线段AM 、BN 应在同一平行方向上,平移MN 到A A ′,那么A A ′=MN ,AM +NB = A′N+NB ,这样问题就转化为:当点N 在直线b 的什么位置时,A′N+NB 最小?如图2,连接A ′,B 两点的线中,线段 A ′B 最短,因此,线段A ′B 与直线b 的交点N 的位置即为所求,即在点N 处造桥MN ,所得路径A→M→N→B 是最短的.图1【解题过程】⑴如图2,平移MN到AA′〔或者过点A作A A′垂直于河岸〕,且使AA′等于河宽.⑵连接BA′与河岸的一边b交于点N.⑶过点N作河岸的垂线交另一条河岸a于点M.【答案】如下图,那么MN为所建的桥的位置.图2●活动③几何证明上述作图为什么是最短的?请你想想.先让学生小组合作完成,进展展示、分享.证明:由平移的性质,得MN∥AA′,且MN= AA′,AM=A′N,AM∥A′N,所以A、B两地的距离:AM+MN+BN= AA′+ A′N+ BN = AA′+ A′B.如图2,不妨在直线b上另外任意取一点N′,假设桥的位置建在N′M′处,过点N′作N′M ′⊥a,垂足为M ′,连接AM ′,A′N ′,N ′B.由平行知:AM′=A′N′,AA′= N′M′,那么建桥后AB两地的距离为:AM′+M′N′+N′B=A′N′+AA′+N′B=AA′+A′N′+N′B. 在△A′N′B 中,∵A′N′+N′B>A′B,∴AA′+A′N′+N′B>AA′+A′B,即AM′+M′N′+N′B>AM+MN+BN.所以桥建在MN处,AB两地的路程最短.【设计意图】利用平移等变换把问题转化为容易解决的问题,从而做出最短路径的选择.练习如图1,江岸两侧有A、B两个城市,为方便人们从A城经过一条大江到B城的出行,今欲在江上建一座与两岸垂直的大桥,且笔直的江岸互相平行.应如何选择建桥的位置,才能使从A地到B地的路程最短?【知识点】平移的知识,两点之间线段最短【思路点拨】从A到B要走的路线是A→M→N→B,如下图,而MN是定值,于是要使路程最短,只要AM+BN最短即可.此时两线段应在同一平行方向上,平移MN到AC,从C到B应是余下的路程,连接BC的线段即为最短的,此时不难说明点N即为建桥位置,MN即为所建的桥.【解题过程】(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽;(2)连接BC与河岸的一边交于点N;(3)过点N作河岸的垂线交另一条河岸于点M.【答案】如图2所示,那么MN为所建的桥的位置.3. 课堂总结知识梳理本堂课主要知识为两个最值问题:〔1〕利用轴对称知识解决“线段距离之差最大〞问题;〔2〕利用平移、两点间线段最短解决“造桥选址〞问题.重难点归纳解决线段最值问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.⑴“距离之差最大〞问题的两种模型:①如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大;②如果两点在一条直线的异侧时,先作其中一点关于直线的对称点,转化为①即可.通常求最大值或最小值的情况,常取其中一个点的对称点来解决,而用三角形三边的关系来推证说明其作法的正确性.⑵“造桥选址〞问题的关键是把各条线段转化到一条线段上.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.〔三〕课后作业根底型自主突破1.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.那么符合要求的输水和输煤气分管道的连接点依次是〔〕A.F和C B.F和E C.D和C D.D和E 【知识点】最短路径问题.【思路点拨】图中隐含了两个“两点〔同侧〕一线型〞的模型.【解题过程】由轴对称的最短路线的要求可知:输水分管道的连接点是点B关于a的对称点B′与A的连线的交点F,煤气分管道的连接点是点A关于b的对称点A′与B的连线的交点C.应选A.【答案】A2. 如下图,一面镜子MN竖直悬挂在墙壁上,人眼O的位置与镜子MN上沿M 处于同一水平线.有四个物体A、B、C、D放在镜子前面,人眼能从镜子看见的物体有〔〕A.点A、B、CB. 点A、B、DC. 点B、C、DD. 点A、B、C、D 【知识点】轴对称的知识【思路点拨】物体在镜子里面所成的像就是数学问题中的物体关于镜面的对称点,人眼从镜子里所能看见的物体是它关于镜面的对称点,必须在眼的视线范围内.如下列图示,分别作A、B、C、D四点关于直线MN的对称点A′、B′、C′、D′.由于C′不在∠MON内部,故人能从镜子里看见A、B、D三个物体.【解题过程】如下列图示,分别作A、B、C、D四点关于直线MN的对称点A′、B′、C′、D′.由于C′不在∠MON内部,故人能从镜子里看见A、B、D三个物体.【答案】B3.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为〔〕A.50°B.60°C.70°D.80°A【知识点】轴对称知识、两点之间线段最短、三角形的外角以及三角形内角和、四边形内角和【解题过程】∵在四边形ABCD中,∠C=50°,∠B=∠D=90°,∴∠BAD=130°延长AB到P,使BP=AB,延长AD到Q,使DQ=AD,那么点A关于BC的对称点为点P,关于CD的对称点为点Q,连接PQ与BC相交于点E,与CD相交于点F,如图,PQ的长度即为△AEF的周长最小值;又∵∠BAD=130°,∴在△APQ 中,∠P+∠Q=180°-130°=50°.∵∠AEF=∠P+∠P AE=2∠P,∠AFE=∠Q+∠QAF=2∠Q,∴∠AEF+∠AFE=2(∠P+∠Q)=2×50°=100°,∴∠EAF =180°-100°=80°【思路点拨】①补全图形,转化为“一点两线型〞求三角形周长最小的问题;②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的外角以及三角形内角和知识运用整体思想解决.【答案】D4.如图,村庄A,B在公路l的同侧,在公路l上有一个公交车站点P,此点P使得|PB-PA|值最大,试作出公交车站P的位置.BAl【知识点】两点之间线段最短,三角形任意两边的差小于第三边【思路点拨】当点P、点A、点B不共线时,根据“三角形任意两边的差小于第三边〞,那么|PB-P A|<AB;当点P与A、B共线时,即在线段BA的延长线上,点P为直线AB与直线l的交点,那么|PB-P A|=AB.【解题过程】⑴当点P在直线l上且点P、点A、点B不共线时|PB-P A|<AB;⑵当点P在线段BA的延长线与直线l的交点时,如图,PB-P A=AB,即|PB-P A|=AB;【答案】如图,点P为所求公交车站的位置.5. 如图,等边△ABC的边长为2,AD是BC边上的中线,E是AD边上的动点,F是AC边上的中点,当EF+EC取得最小值时,求∠ECF的度数.(图2)E F'D C B A F FD C AB E【知识点】等腰三角形的“三线合一〞,轴对称知识,两点之间线段最短【思路点拨】拆分出点F 、点C 和直线AD ,构成“两点一线型〞的根本模型是解决此题的关键,连接CF′〔或者连接BF 〕与直线AD 交于点E ,此时EF+EC 取得最小值为CF′〔或者BF 〕,但题目要求∠ECF 的度数,那么只能连接CF′,根据等腰三角形 “三线合一〞的性质求解.【解题过程】取AB 得中点F′,那么等边三角形AC 边的中点F 与点F′关于直线AD 对称;连接CF′,与直线AD 相交于点E ,此时 EF +ECCF′是等边△ABC 的边AB 上的中线,所以CF′平分∠ACB ,那么∠ECF 的度数是30°.作图解题之前应该忽略图中的点E ,如图1,又由“两点一线型〞的最短距离的模型得到图2;(图1)D CB AF【答案】∠ECF 的度数为30°6. 如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,AD 是∠BAC 的平分线.假设P 、Q 分别是AD 和AC 上的动点,求PC +PQ 的最小值.【知识点】轴对称的知识、垂线段最短、角平分线的性质【数学思想】数形结合,转化【解题过程】如图,过点C 作CM ⊥AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC于点Q ,∵AD 是∠BAC 的平分线,∴PQ =PM ,这时PC +PQ 有最小值,最小值为CM 的长度. ∵AC =6,BC =8,AB =10,S △ABC =12AB •CM =12AC •BC ,∴CM =AC BC AB ⋅=6810⨯=245,即PC +PQ 的最小值为245.【思路点拨】因为∠BAC 的对称轴是∠BAC 的平分线所在的直线AD ,所以点Q 的对称点在射线AB 上.假设点Q 关于直线AD 的对称点为点M , PC +PQ =PC +PM , 又当PC 、PM 共线时,PC +PM 的最小值为线段CM 的最小值,根据垂线段最短,所以当CM ⊥AB 时线段CM 的值最小.过点C 作CM ⊥AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,因为AD 是∠BAC 的平分线,得出PQ =PM ,这时PC +PQ 有最小值,最小值为CM 的长度,再运用S △ABC =12AB •CM =12AC •BC ,得出CM 的值,即PC +PQ 的最小值.此题主要考察了轴对称问题,解题的关键是找出满足PC +PQ 有最小值时点P 和Q 的位置.【答案】245能力型 师生共研7.如下图,在边长为3的等边三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 是线段EF 上一个动点,连接BP 、GP ,求△BPG 周长的最小值. G EF C AP【知识点】轴对称的知识、两点之间线段最短【思路点拨】要使△PBG 的周长最小,而BG 是一个定值,只要使BP +PG 最短即可,那么转化为“两点一线型〞的最短路径问题. 连接AB 交直线EF 于点P即当P和E重合时,此时BP+PG最小,即△PBG的周长最小.【解题过程】如图,连接AG交EF于M.∵等边△ABC,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC,EF∥BC,那么AG⊥EF,AM=MG,∴A、G关于EF对称,连接AB交直线EF于点P,即当P和E重合时,此时BP+PG最小,即△PBG的周长最小,∵AP=PG,BP=BE,∴最小值是:PB+PG+BG=AE+BE +BG=AB+BG.【答案】探究型多维突破8. 读一读:勾股定理提醒了直角三角形边之间的关系: 在直角三角形中,两直角边a、b的平方和等于斜边c的平方,即a²+b²=c² .我国古代学者把直角三角形的较短直角边称为“勾〞,较长直角边为“股〞,斜边称为“弦〞,所以把这个定理成为“勾股定理〞.例如:直角三角形的两个直角边分别为3、4,那么斜边c2= a2+b2=9+16=25,那么斜边c为5. 借助勾股定理我们可以解决更多最短路径问题,勾股定理的具体内容我们将在八年级下册中学到.借助勾股定理,请尝试完成下面的练习:如图,A、B两个村庄位于河流CD的同侧,它们到河流的距离AC=10km,BD=30km,且CD=30km.现在要在河流CD上建立一个泵站P向村庄供水,铺设管道的费用为每千米2万元,要使所花费用最少,请确定泵站P的位置,并求出此时所花费用的最小值为多少?〔保存痕迹,不写作法〕【知识点】轴对称的知识、两点之间线段最短【思路点拨】根据得出作点A关于直线l的对称点A′,连接A′B,那么A′B与直线l的交点P到A、B两点的距离和最小,再构造直角三角形利用勾股定理即可求出.此题主要考察了用轴对称解决最短路径问题和勾股定理的应用,解题关键是构建直角三角形.【解题过程】依题意,只要在直线l上找一点P,使点P到A、B两点的距离和最小.作点A关于直线l的对称点A′,连接A′B,那么A′B与直线l的交点P到A、B两点的距离和最小,且PA+PB=PA′+PB=A′B.又过点A′向BD作垂线,交BD的延长线于点E,在直角三角形A′BE中,A′E=CD=30,BE=BD+DE=40,根据勾股定理可得:A′B=50〔千米〕即铺设水管长度的最小值为50千米.所以铺设水管所需费用的最小值为:50×2=100〔万元〕.【答案】100万元9. 读一读:勾股定理提醒了直角三角形边之间的关系: 在直角三角形中,两直角边a、b的平方和等于斜边c的平方,即a²+b²=c² .我国古代学者把直角三角形的较短直角边称为“勾〞,较长直角边为“股〞,斜边称为“弦〞,所以把这个定理成为“勾股定理〞.例如:直角三角形的两个直角边分别为3、4,那么斜边c2= a2+b2=9+16=25,那么斜边c为5. 借助勾股定理我们可以解决更多最短路径问题,勾股定理的具体内容我们将在八年级下册中学到.借助勾股定理,请尝试完成下面的练习:如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q 分别在边OB、OA上,那么MP+PQ+QN的最小值是.【知识点】轴对称的知识【思路点拨】点M、N分别在边OA、OB上的定点,作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.【解题过程】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.∴根据轴对称的定义可知:∠N′OQ=∠M′OB=∠AOB=30°,O N′=ON=3,OM′=OM=1,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′=22=10.故答案为10.31【答案】10自助餐1. 如图,小河CD边有两个村庄A村、B村,现要在河边建一自来水厂E为A 村与B村供水,自来水厂建在什么地方到A村、B村的距离和最小?请在下列图中找出点E的位置.〔保存作图痕迹,不写作法〕【知识点】轴对称知识,两点之间线段最短【思路点拨】利用轴对称求最短路线的方法得出A点关于直线CD的对称点A′,再连接A′B交CD于点E,即可得出答案.【解题过程】如下图,点E即为所求.2. 如图,在一条笔直的公路l旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之差即|PB-P A|最小? (保存作图痕迹及简要说明)l BA【知识点】线段垂直平分线的知识,绝对值的知识【思路点拨】因为绝对值具有非负性,即|PB -AP |≥ 0,所以当点PA=PB 时, |PB -P A |最小值为0.【解题过程】 作线段AB 的垂直平分线,与直线l 交于点P ,交点P 即为符合条件的点.如图,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P ,那么P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.【答案】如图,点P 为所求公交车站的位置.3. 如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC +BC 的长度最短,作法为:①作点B 关于直线l 的对称点B ′;②连接AB ′与直线l 相交于点C ,那么点C 为所求作的点.在解决这个问题时没有运用到的数学知识或方法是〔 〕lA .转化思想B .三角形的两边之和大于第三边C .两点之间,线段最短D .三角形的一个外角大于与它不相邻的任意一个内角【知识点】轴对称的知识、两点之间最短【解题过程】∵点B 和点B ′关于直线l 对称,且点C 在l 上,∴CB =CB ′,又∵AB ′交l 与C ,且两条直线相交只有一个交点,∴CB ′+CA= AB ′最短,即此时点C 使CA +CB 的值最小,将轴对称最短路径问题转化为“两点之间,线段最短〞,表达了转化的思想,验证时利用三角形的两边之和大于第三边.应选D .【思路点拨】利用“两点之间线段最短〞分析并验证即可.此题主要考察了利用轴对称知识解决最短路径问题,但凡涉及最短距离的问题,一般要考虑线段的性质定理“两点之间线段最短〞,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.【答案】D4.如图,在△ABC 中,AC =5,EF 垂直平分BC ,点P 为直线EF 上的任一点,那么AP +BP 的最小值= .【知识点】轴对称知识、两点之间线段最短【数学思想】数形结合.【解题过程】∵EF 垂直平分BC , ∴B 、C 关于EF 对称.连接AC 交EF 于D ,∴当P 和D 重合,即当点P 在直线EF 上的D 点处时,AP +BP 的值最小,最小值等于AC 的长为5.【思路点拨】根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP +BP 的最小值为AC 长度5.【答案】5 DA B CEF P5. 如图,在平面直角坐标系中,PQ ⊥x 轴于点Q ,P 〔-4,8〕. 直线AB 垂直平分线段OQ ,交x 轴于点C ,点M 为直线AB 上的一动点,过M 作y 轴的垂线,垂足为点N ,连接PM 、NQ ,求PM +MN +NQ 的最小值;【知识点】平移知识,两点之间线段最短【思路点拨】将直线AB 和y 轴看作河的两岸,点P 和点Q′看作河岸两侧的点,转化为造桥选址问题.从P 到Q 要走的路线是P →M →N →Q ,如下图,而MN 是定值,于是要使路程最短,只要PM +QN 最短即可.此时两线段应在同一平行方向上,平移MN 到PP′,从P′→N →Q 应是余下的路程,当P′N + NQ 的值最小时PM +MN +NQ 有最小值.作点Q 关于y 轴的对称点Q′,连接P′Q′的线段即为最短, P′Q′与y 轴的交点为N ,过N 作直线AB 的垂线,垂足为点M ,那么PM +MN +NQ 的最小值为线段P′Q′的长.【解题过程】因为PQ ⊥x 轴于点Q ,P 〔-4,8〕所以Q 〔-4,0〕又因为直线AB 垂直平分线段OQ ,交x 轴于点C ,所以C 〔-2,0〕.如图2,过点P 作PP′⊥AB 于P′,且PP′等于OC .又作点Q 关于y 轴的对称点Q′〔4,0〕,连接P′Q′与y 轴的交点为N ,过N 作直线AB 的垂线,垂足为点M ,那么PM +MN +NQ 的最小值为线段P′Q′+MN 的长.又易得P′C =8, Q ′C =6,借助勾股定理,在直角三角形P′CQ ′中可得P′Q′=22''C Q C P +=2268+=10,所以PM +MN +NQ 的最小值为10+2=12.【答案】PM +MN +NQ 的最小值为12.。

13.4.最短路径(2)—造桥选址问题

13.4.最短路径(2)—造桥选址问题

造桥选址问题
一.学习目标:
1、能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
2、在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
二.重点难点:
学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.
学习难点:如何利用轴对称将最短路径问题转化为线段和最小问题.
三.合作探究:(同学合作,教师引导)
1.温故知新:
前面我们研究过最短路径问题,求最短路径的依据有:
(1) .
(2) .
2.探究新知:
问题2 造桥选址问题
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直)
思维分析:
1.如右图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢
2.利用上面的“求最短路径的依据”解决问题:我们遇到了什么障碍呢
四.感悟与反思:
A ·
· B A ·
· B。

造桥选址问题乐乐课堂

造桥选址问题乐乐课堂

造桥选址问题乐乐课堂摘要:I.引言- 造桥选址问题背景- 乐乐课堂介绍II.造桥选址问题的基本概念- 选址的重要性- 影响选址的主要因素III.造桥选址问题的解决方法- 定性分析法- 定量分析法- 综合评价法IV.案例分析- 案例一:某地区桥梁选址分析- 案例二:某地区桥梁选址分析V.结论- 造桥选址问题解决的意义- 乐乐课堂在造桥选址问题中的贡献正文:I.引言在我国,桥梁建设是交通基础设施的重要组成部分,对于地方经济发展和社会进步具有深远影响。

因此,选址问题成为桥梁建设中的关键环节。

乐乐课堂作为一家专注于知识普及的教育机构,旨在为广大青少年提供科学、有趣的课程,助力我国桥梁建设事业。

本文将结合乐乐课堂,探讨造桥选址问题。

II.造桥选址问题的基本概念造桥选址问题是指在桥梁建设过程中,根据一定的标准和原则,选择一个适合修建桥梁的具体位置。

选址是否合理,将对桥梁的使用寿命、安全性能、经济效益等方面产生重要影响。

选址时需要考虑的主要因素包括:地质条件、地形地貌、气候环境、水文条件、交通需求等。

III.造桥选址问题的解决方法为了解决造桥选址问题,我们可以采用以下方法:1.定性分析法:通过对影响选址的因素进行定性分析,初步筛选出适合修建桥梁的位置。

2.定量分析法:在定性分析的基础上,采用数学模型和计算方法,对选址进行定量分析,进一步优化选址方案。

3.综合评价法:结合定性分析和定量分析的结果,对各个选址方案进行综合评价,最终确定最佳选址。

IV.案例分析为了更直观地展示造桥选址问题的解决过程,我们以两个实际案例进行分析:案例一:某地区桥梁选址分析在某地区,由于经济发展和交通需求的不断增长,新建一座桥梁成为当务之急。

通过定性分析和定量分析,我们初步筛选出两个选址方案。

经过综合评价,最终确定了一个最适合的选址。

该选址不仅符合各项建设标准,而且能够最大限度地满足当地居民的出行需求。

案例二:某地区桥梁选址分析在某地区,由于地理环境和气候条件的限制,桥梁选址成为一大难题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
1 / 1'
13.4造桥选址问题
一.学习目标:
1、能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
2、在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 二.重点难点:
学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 学习难点:如何利用轴对称将最短路径问题转化为线段和最小问题. 三.合作探究:(同学合作,教师引导) 1.温故知新:
前面我们研究过最短路径问题,求最短路径的依据有:
(1) . (2) . 2.探究新知: 问题2 造桥选址问题
如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)
思维分析:
1.如右图假定任选位置造桥MN,连接AM 和BN,从A 到B 的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
2.利用上面的“求最短路径的依据”解决问题:我们遇到了什么障碍呢?
四.感悟与反思:
A ·
· B
A ·
· B。

相关文档
最新文档