中考数学压轴题 复习提高题学能测试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、中考数学压轴题
1.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52
-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .
(1) 求抛物线214
y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.
①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;
②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.
2.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.
(1)求边AD 的长;
(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.
3.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .
(1)求外接圆⊙O 的半径;
(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形
CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .
①连接BN ,当BN ⊥DE 时,求AM 的值;
②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;
③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.
4.综合与实践
4A 纸是我们学习工作最常用的纸张之一, 其长宽之比是2:1,我们定义:长宽之比是2:1的矩形纸片称为“标准纸”.
操作判断:
()1如图1所示,矩形纸片2()ABCD AD AB =
是一张“标准纸”,将纸片折叠一次,使点B 与D 重合,再展开,折痕EF 交AD 边于点,E 交BC 边于点F ,若1,AB =求CF 的
长,
()2如图2,在()1的基础上,连接,BD 折痕EF 交BD 于点O ,连接,BE 判断四边形BFDE 的形状,并说明理由.
探究发现:
()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.
5.已知:如图,二次函数213222
y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .
(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.
(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.
6.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.
(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;
(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范
围;
(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.
7.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).
(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °
(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.
②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.
(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.
8.如图,平面上存在点P、点M与线段AB.若线段AB上存在一点Q,使得点M在以PQ 为直径的圆上,则称点M为点P与线段AB的共圆点.
已知点P(0,1),点A(﹣2,﹣1),点B(2,﹣1).
(1)在点O(0,0),C(﹣2,1),D(3,0)中,可以成为点P与线段AB的共圆点的是;
(2)点K为x轴上一点,若点K为点P与线段AB的共圆点,请求出点K横坐标x K的取值范围;
(3)已知点M(m,﹣1),若直线y=1
2
x+3上存在点P与线段AM的共圆点,请直接
写出m的取值范围.
9.附加题:在平面直角坐标系中,抛物线21
y ax
a
=-与y轴交于点A,点A关于x轴的对称点为点B,
(1)求抛物线的对称轴;
(2)求点B坐标(用含a的式子表示);
(3)已知点
1
1,
P
a
⎛⎫
⎪
⎝⎭
,(3,0)
Q,若抛物线与线段PQ恰有一个公共点,结合函数图像,
求a的取值范围.
10.如图,射线AM上有一点B,AB=6.点C是射线AM上异于B的一点,过C作
CD⊥AM,且CD=4
3
AC.过D点作DE⊥AD,交射线AM于E. 在射线CD取点F,使得CF
=CB,连接AF并延长,交DE于点G.设AC=3x.
(1)当C在B点右侧时,求AD、DF的长.(用关于x的代数式表示) (2)当x为何值时,△AFD是等腰三角形.