高数函数,极限和连续总结

合集下载

高数函数极限与连续

高数函数极限与连续
表示方法
通常用符号"lim(x->x0) f(x) = f(x0)"表示函数f(x)在点x0处连 续。
间断点类型及判定方法
第一类间断点
左右极限都存在,包括可去间断 点(左右极限相等但不等于函数 值)和跳跃间断点(左右极限不 相等)。
第二类间断点
左右极限至少有一个不存在,包 括无穷间断点(极限为无穷大) 和震荡间断点(极限震荡不存 在)。
高数函数极限与连续
contents
目录
• 函数极限概念与性质 • 数列极限与收敛性判断 • 函数连续性概念与性质 • 闭区间上连续函数性质研究 • 极限与连续在实际问题中应用 • 总结回顾与拓展延伸
01 函数极限概念与性质
函数极限定义及表示方法
函数极限的定义
设函数f(x)在点x0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数 ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x0|<δ时,对应的函 数值f(x)都满足不等式|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0时的极限。
数列极限的符号表示
若数列{an}的极限为a,则记作lim(n→∞)an=a。
收敛数列性质与判定定理
1 2 3
收敛数列的有界性
收敛数列一定是有界数列,但反之不一定成立。
收敛数列的保号性
若数列收敛于a,且a>0(或a<0),则存在正 整数N,使得当n>N时,数列的通项an也大于0 (或小于0)。
判定定理
洛必达法则
对于0/0型或∞/∞型的未定式极限,可通过 求导后求极限来解决。
因式分解法
通过因式分解简化数列的通项表达式,进而 求极限。

大一高数知识点总结全

大一高数知识点总结全

大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。

希望这份总结对你的学习有所帮助。

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

高数中的函数极限与连续性研究

高数中的函数极限与连续性研究

高数中的函数极限与连续性研究函数的极限和连续性是高等数学中的重要概念和工具,对理解和解决各种数学问题起着关键的作用。

本文将研究和介绍高数中的函数极限和连续性的相关内容,包括定义、性质和应用等方面。

一、函数极限的定义与性质函数极限是指当自变量趋于某一特定值时,函数的值趋于无限接近于某一确定的值。

在高数中,我们常用极限符号“lim”来表示函数极限。

设函数f(x)的定义域为D,x是定义域内的变量,则对于实数a,如果存在实数L,使得对于任意小的正实数ε,都存在一个正实数δ,使得只要x满足0 < |x - a| < δ,则可推出|f(x) - L| < ε,则称函数f(x)在x趋于a时的极限为L。

这通常用以下数学符号表示:lim┬(x→a)⁡〖f(x) = L〗函数极限有以下几个重要的性质:1.极限的唯一性:如果函数f(x)在x趋于某一实数a时极限存在,则该极限是唯一确定的。

2.局部有界性:如果函数f(x)在x趋于某一实数a时极限存在,那么它在a的某个邻域内是有界的。

3.极限运算法则:两个函数的极限之和等于它们的极限之和,两个函数的极限之积等于它们的极限之积。

二、连续性的定义与性质函数连续性是指函数在某一点上没有断裂和跳跃,并且函数值与自变量的变化呈现连续的关系。

具体而言,函数f(x)在定义域内的某点a处连续,需满足以下三个条件:首先,f(a)存在;其次,lim┬(x→a)⁡〖f(x)存在〗;最后,lim┬(x→a)⁡〖f(x) = f(a)〗。

函数连续性的性质与应用:1.连续函数的性质:连续函数的和、差、积、商(除以不为零的函数)仍然是连续函数。

2.零点定理:如果连续函数f(x)在区间[a, b]内有两个函数值异号的点,则在这两个点之间至少存在一个零点。

3.介值定理:如果连续函数f(x)在区间[a, b]内取到两个不同的函数值,那么它在这个区间内取到介于这两个值之间的任意值。

三、函数极限与连续性的应用函数极限和连续性在高等数学中有广泛的应用,特别是在微积分和数学分析方面。

同济版高数知识点归纳总结大全

同济版高数知识点归纳总结大全

同济版高数知识点归纳总结大全# 同济版高数知识点归纳总结大全## 一、极限与连续1. 极限的定义:数列极限、函数极限、无穷小量。

2. 极限的性质:唯一性、有界性、保号性、夹逼定理。

3. 无穷小的比较:高阶无穷小、同阶无穷小。

4. 极限的运算法则:四则运算、复合函数的极限。

5. 连续性:连续点、连续函数、间断点的分类。

6. 连续函数的性质:局部有界性、最值定理、零点定理。

## 二、导数与微分1. 导数的定义:导数的几何意义、物理意义。

2. 基本初等函数的导数:幂函数、指数函数、对数函数、三角函数。

3. 导数的运算法则:和差法则、积商法则、链式法则。

4. 高阶导数:二阶导数、三阶导数及其应用。

5. 隐函数与参数方程的导数:隐函数求导、参数方程求导。

6. 微分:微分的定义、微分与导数的关系。

## 三、中值定理与导数的应用1. 罗尔定理:定理条件、几何意义。

2. 拉格朗日中值定理:定理条件、几何意义、应用。

3. 柯西中值定理:定理条件、应用。

4. 泰勒公式:泰勒展开、麦克劳林公式。

5. 导数在几何上的应用:曲线的切线、法线、弧长、曲率。

6. 导数在物理上的应用:速度、加速度、变速运动。

## 四、不定积分1. 不定积分的定义:原函数、积分号。

2. 基本积分公式:基本积分表。

3. 换元积分法:第一类换元法、第二类换元法。

4. 分部积分法:分部积分公式、应用。

5. 有理函数的积分:部分分式分解、积分。

6. 三角函数的积分:正弦函数、余弦函数的积分。

## 五、定积分1. 定积分的定义:黎曼和、定积分的性质。

2. 定积分的计算:牛顿-莱布尼茨公式、定积分的换元法、分部积分法。

3. 定积分的应用:面积、体积、平均值、物理意义。

4. 反常积分:无穷区间上的积分、无界函数的积分。

## 六、多变量函数微分学1. 偏导数:偏导数的定义、高阶偏导数。

2. 全微分:全微分的定义、全微分与偏导数的关系。

3. 多元函数的极值:拉格朗日乘数法、条件极值。

高数大一知识点总结基础

高数大一知识点总结基础

高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。

函数具有定义域、值域、奇偶性、周期性等性质。

2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。

极限的存在性与唯一性可以通过数列极限的定义来判定。

3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。

连续函数具有局部性质及整体性质。

4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。

凸凹性指函数图像在某一区间上的弯曲程度。

二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。

微分的计算可以使用导数。

2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。

高阶导数的计算可以使用导数的性质和公式。

3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。

4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。

三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。

2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。

3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。

4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。

四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。

2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。

3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。

幂级数常用于函数展开与近似计算。

五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。

大一高数知识点总结

大一高数知识点总结

大一高数知识点总结大一高等数学是一门基础课程,重点讲解一元函数的极限、连续性、导数以及定积分等内容。

以下是对大一高等数学知识点的总结:一、函数及极限1. 函数的概念:定义域、值域、对应关系2. 极限的概念:数列极限和函数极限的定义3. 极限的性质:唯一性、局部有界性、保号性、保序性、夹逼定理4. 无穷大与无穷小:无穷大的定义与性质、无穷小的定义与性质、等价无穷小5. 极限运算法则:四则运算、复合函数、极限的存在准则6. 常用极限:基本极限、反函数极限、三角函数极限、指数函数和对数函数极限、洛必达法则二、连续性与间断点1. 连续函数的定义:初等函数的连续性、反函数的连续性、复合函数的连续性2. 间断点的分类:第一类间断点、第二类间断点、可去间断点、跳跃间断点、无穷间断点3. 连续函数的性质:介值定理、零点定理、连续函数的保号性、闭区间上连续函数的最值定理三、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的性质:四则运算法则、复合函数求导、反函数求导、常用函数的导数3. 高阶导数:二阶导数、高阶导数4. 导数的几何应用:切线与法线、函数图形的凹凸性、极值与变曲率5. 微分的概念:微分的定义、微分的性质、微分近似计算四、函数的应用1. 泰勒公式与函数展开:泰勒公式及其应用、函数展开与近似计算、求极限与展开2. 极值问题:最值问题的转化、最大最小值的判断方法、约束最值问题的求解3. 曲线的拟合与函数模型:最小二乘法及其应用、曲线拟合的方法与模型选择五、定积分1. 定积分的概念:黎曼和、不定积分与原函数、定积分的定义与性质2. 定积分的计算:定积分的基本性质、定积分的换元法、分部积分法、换限积分法、参数方程与极坐标下的定积分3. 定积分的应用:定积分的几何应用、物理应用、平均值与积分中值定理、变限积分与定积分的微分学应用总之,大一高等数学是培养学生逻辑思维和分析问题的能力的基础课程。

大一下册高数复习知识点

大一下册高数复习知识点

大一下册高数复习知识点大一下册高等数学是大一学生在学习数学方面的重要课程之一。

本文将为大家总结大一下册高数的复习知识点,供大家参考和学习。

一、极限与连续1. 函数的极限函数的极限是指当自变量无限接近某一特定值时,函数的取值接近于一个常数的性质。

其中包括左极限、右极限和无穷极限。

2. 连续与间断函数在某一点上连续是指函数在该点的极限与函数在该点的值相等,否则函数在该点上间断。

根据间断的性质,可以将间断分为可去间断、跳跃间断和无穷间断。

3. 介值定理与零点存在定理介值定理表明,若函数在区间[a, b]上连续,则函数在该区间上可以取到任意两个介于f(a)和f(b)之间的值。

零点存在定理指出,若函数在区间[a, b]上连续,并且f(a)和f(b)异号,则在该区间上至少存在一个零点。

二、导数与微分1. 导数的定义导数表示函数在某一点上的变化率,可以用极限的概念进行定义。

对于函数f(x),在点x处的导数定义为f'(x) = lim(△x→0)[f(x+△x) - f(x)]/△x。

2. 基本导数公式常见的基本导数公式包括常数函数、幂函数、指数函数、对数函数和三角函数等,应熟练掌握它们的导数表达式和求导法则。

3. 导数的几何意义导数可以表示函数在某一点处的切线斜率,通过导数可以分析函数的单调性、极值和拐点等性质。

三、积分与不定积分1. 定积分的概念定积分表示函数在一个闭区间上的面积值,可以看作是函数在该区间上的累积效应。

2. 不定积分的概念不定积分表示函数在某一点的原函数,也可称为反导函数。

3. 基本积分公式常见的基本积分公式包括常数函数、幂函数、指数函数、对数函数和三角函数等的积分表达式和求积法则。

四、微分方程1. 微分方程的定义微分方程是含有未知函数及其导数的方程,描述了函数与其导数之间的关系。

2. 常微分方程的解法常微分方程包括一阶和二阶微分方程,可以使用分离变量法、齐次方程法、二阶线性常系数齐次方程法等方法求解。

大一高数知识点总结完整版

大一高数知识点总结完整版

大一高数知识点总结完整版导言:大学高级数学(简称高数)是一门对很多理工科学生来说非常重要的课程。

在大一期间,我们学习了高数的基础知识,这些知识对我们后续学习进一步的数学课程以及其他学科都有很大帮助。

下面将对大一高数的几个重要知识点进行总结,以便于我们复习巩固。

1. 一元函数的极限和连续性1.1 函数的极限:介绍了函数极限的概念、定义和性质。

包括左极限和右极限,无穷大极限等。

1.2 连续性:介绍了函数连续性的概念,以及一些函数连续性的判定方法,如闭区间上的连续函数必定有界。

1.3 中值定理:包括罗尔定理、拉格朗日中值定理和柯西中值定理等,讲述了函数导数和函数性质之间的关系。

2.1 导数的定义:介绍了导数的定义和性质,导数的图形意义以及几何意义。

2.2 导数的四则运算法则:讲述了求和、差、积和商的函数的导数的法则。

2.3 高阶导数:介绍了导数的概念,如一阶导数、二阶导数等。

2.4 微分:讲述了微分的定义、性质和微分形式。

3. 微分中值定理和泰勒级数3.1 罗尔中值定理和拉格朗日中值定理:介绍了导数中值定理的概念和应用。

3.2 泰勒级数:讲述了泰勒级数的概念、性质以及泰勒展开公式的推导。

4.1 不定积分的定义和常用公式:介绍了不定积分的定义和性质,以及一些基本的不定积分公式。

4.2 定积分和变量替换法:讲述了定积分的概念和性质,以及变量替换法在定积分中的应用。

5. 定积分的应用5.1 平均值、面积和弧长:介绍了定积分在求函数平均值、曲线下面积和弧长等方面的应用。

5.2 微分方程的应用:讲述了定积分在求解微分方程的问题中的应用。

6. 多元函数的极限与连续性6.1 多元函数的极限:讲述了多元函数的极限的定义和判定方法。

6.2 多元函数的偏导数:介绍了多元函数的偏导数的定义和计算方法。

6.3 多元函数的连续性:讲述了多元函数的连续性的概念和性质。

7. 重积分7.1 二重积分:介绍了二重积分的定义和性质,以及二重积分的计算方法。

高数知识点总结电子版

高数知识点总结电子版

高数知识点总结电子版一、函数、极限与连续函数的基本概念:包括函数的定义、性质、表示方法以及常见函数类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)。

极限的定义与性质:涉及函数极限的概念、性质,无穷小量与无穷大量的关系,以及夹逼准则等。

函数的连续性:包括连续的定义、连续函数的性质,以及间断点的分类等。

二、导数与微分导数的概念与性质:涉及导数的定义、几何意义、计算方法以及高阶导数等。

微分的定义与运算:包括微分的几何意义、计算方法以及性质等。

三、微分中值定理与泰勒公式微分中值定理:涉及罗尔定理、拉格朗日中值定理等。

泰勒公式:包括泰勒公式的定义、应用以及误差分析等。

四、不定积分与定积分不定积分的概念与性质:涉及原函数的概念、不定积分的计算方法以及性质等。

定积分的概念与计算:包括定积分的定义、性质、计算方法以及定积分的应用(如几何意义、物理应用等)。

五、空间解析几何与向量代数空间解析几何的基本概念:涉及空间直角坐标系、向量的概念与运算等。

曲面与曲线的方程:包括常见曲面(如球面、柱面、锥面等)和曲线的方程以及性质。

六、多元函数的微分学多元函数的基本概念:包括多元函数的定义、性质以及偏导数等。

多元函数的极值与最值:涉及多元函数的极值定理、条件极值以及最值的求法等。

七、无穷级数常数项级数的概念与性质:包括级数的定义、收敛与发散的概念以及常见级数(如等比级数、调和级数等)的性质。

函数项级数的概念与运算:涉及函数项级数的定义、收敛与一致收敛的概念以及运算等。

八、微分方程微分方程的基本概念:包括微分方程的定义、分类以及解的概念等。

一阶与二阶微分方程的解法:涉及常见的一阶与二阶微分方程的解法以及应用。

请注意,以上仅为高数知识点总结的一部分,完整的高数知识点还包括更多细节和深入的内容。

在实际学习过程中,建议结合教材和参考书进行系统学习和巩固。

同时,电子版的形式可以根据个人需求进行编辑和调整,以便更好地适应自己的学习风格和进度。

高数笔记(全)

高数笔记(全)

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim⑵当0x x →时,)(x f 的极限:A x f x x =→)(lim 0左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。

高等数学知识点归纳大一

高等数学知识点归纳大一

高等数学知识点归纳大一在大一的高等数学学习中,我们接触到了许多重要的数学知识点。

这些知识点为我们打下了坚实的数学基础,并为我们今后学习更高级的数学课程奠定了基础。

本文将对大一高等数学所涉及的知识点进行归纳和总结。

一、极限与连续1. 数列极限数列极限是我们首先学习的重要概念。

对于给定的数列,我们需要判断它是否存在极限,并进一步计算这个极限值。

2. 函数极限在大一的高等数学中,我们学习了函数极限的概念。

对于给定的函数,我们需要确定其极限值,并利用极限的性质进行相关的计算。

3. 连续性连续性是函数和数列极限的重要性质。

我们学习了连续函数的定义及其性质,并应用连续性进行函数的分析和计算。

二、导数与微分1. 导数的概念导数是函数微分学中一个重要的概念。

我们学习了导数的定义及其几何意义,并应用导数求解函数的极值问题。

2. 求导法则在学习导数的基础上,我们掌握了一系列的求导法则,包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等。

3. 高阶导数与隐函数求导除了一阶导数,我们还学习了高阶导数的概念,并学会了对高阶导数进行计算。

此外,我们还研究了隐函数求导的方法。

三、微分中值定理与应用1. 罗尔定理与拉格朗日中值定理罗尔定理和拉格朗日中值定理是微分学中非常重要的定理。

它们为我们的函数分析提供了很多便利,并在实际问题的求解中有很多应用。

2. 泰勒展开与近似计算泰勒展开是一种重要的数学工具,可以将函数在某一点附近用多项式逼近。

这在实际问题中的应用非常广泛。

四、不定积分与定积分1. 不定积分不定积分是求解原函数的工具,我们学习了基本的不定积分法和一些常用的积分公式。

2. 定积分定积分是计算曲线下面的面积以及求解定积分方程的工具。

我们学习了定积分的定义及其计算方法。

3. 牛顿-莱布尼兹公式牛顿-莱布尼兹公式是微积分中非常重要的公式,它将不定积分和定积分联系起来,提供了非常便利的计算方法。

五、常微分方程1. 高阶线性常微分方程我们学习了高阶线性常微分方程的基本理论和解法,包括齐次线性微分方程和非齐次线性微分方程。

知识点总结高数一

知识点总结高数一

知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。

数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。

函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。

极限的性质包括唯一性、有界性、局部性、夹逼性等。

2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。

3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。

无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。

在极限运算中,无穷小和无穷大的性质十分重要。

4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。

连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。

二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。

求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。

2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。

3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。

微分公式包括基本微分公式、换元法、分部积分法等。

4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。

三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。

高数知识点总结

高数知识点总结

高数知识点总结高等数学是大学必修课程,也是各个理工科专业的基础课程。

在学习高等数学的过程中,我们需要掌握和理解一些重要的知识点。

下面将对一些常见的高数知识点进行总结。

一. 极限与连续1. 极限的定义和性质:极限是函数在某点逼近的结果,可以通过函数的左右极限来判断。

常用的极限性质有极限的唯一性、四则运算法则、夹逼准则等。

2. 连续与不连续:连续是指函数在某点和周围的点都存在极限并且这些极限相等。

常见的不连续点有可去间断点、跳跃间断点和无穷间断点。

二. 导数与微分1. 导数的定义和性质:导数是函数在某点处的变化率,可以描述函数曲线的陡峭程度。

导数的性质包括可导的充分必要条件、导数与函数连续的关系、导数的四则运算法则等。

2. 微分与高阶导数:微分是导数的一种表示形式,通过微分可以求得函数值的近似值。

高阶导数表示导数的导数,可以描述更加复杂的曲线变化。

三. 积分与定积分1. 不定积分和定积分的定义:不定积分是求导的逆运算,可以得到函数的原函数。

定积分是求函数在一定区间上的累积值,可以计算曲线下的面积或弧长。

2. 积分的性质和计算方法:积分的性质包括线性性质、区间可加性等。

计算积分可以通过换元法、分部积分法、定积分的几何应用等方法。

四. 一元函数的应用1. 函数的最值和极值点:函数的最值是函数在定义域上的最大值和最小值,极值点是函数的导数等于零或不存在的点。

通过求函数的导数可以找到函数的极值点。

2. 函数的图像与曲线的特性:函数的图像可以通过绘制函数的曲线来了解其性质。

常见的曲线特性有单调性、凹凸性、拐点等。

五. 多元函数的极限、偏导数与全微分1. 多元函数的极限:多元函数的极限是指在多元空间中某点的邻域内,函数值无限接近于某个值。

可以通过多元极限的定义和性质进行计算和推导。

2. 偏导数和全导数:偏导数是多元函数对于某个自变量的导数,全导数是多元函数所有自变量的偏导数的集合。

可以通过偏导数和全导数来分析多元函数的性质和曲线变化。

大一高数知识点总结归纳

大一高数知识点总结归纳

大一高数知识点总结归纳【大一高数知识点总结归纳】高等数学是大学阶段十分重要的一门基础学科,它涉及到许多重要的数学理论和方法。

在大一的学习过程中,我们接触到了许多高数的知识点,这些知识点对我们今后的学习和发展都具有重要的作用。

本文将对大一高数的知识进行总结归纳,以帮助我们更好地理解和掌握这些知识。

一、极限与连续1. 极限的概念与性质:极限的定义、左极限与右极限、无穷大与无穷小、极限运算的性质。

2. 连续函数与间断点:连续函数的定义、间断点的分类、间断点的性质。

3. 中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理。

二、导数与微分1. 导数的概念与性质:导数的定义、导数的几何意义、导数的运算法则。

2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等的导数。

3. 高阶导数与高阶微分:高阶导数的定义、高阶导数的计算、高阶微分的定义与计算。

4. 隐函数与参数方程求导:隐函数的导数与高阶导数、参数方程的导数与高阶导数。

三、积分与不定积分1. 不定积分的概念与性质:不定积分的定义、不定积分的运算法则。

2. 基本初等函数的不定积分:常数函数、幂函数、指数函数、对数函数、三角函数等的不定积分。

3. 定积分与定积分的计算:定积分的概念与性质、定积分的计算方法、变限积分。

4. 牛顿-莱布尼茨公式:微积分基本定理与牛顿-莱布尼茨公式。

四、微分方程与应用1. 微分方程的基本概念:微分方程的定义、常微分方程与偏微分方程。

2. 一阶常微分方程:可分离变量方程、一阶线性常微分方程。

3. 二阶常系数齐次线性微分方程:特征方程的求解、通解的求法。

4. 应用问题与数学模型:生物学、物理学、经济学等领域中的应用问题。

五、级数与幂级数1. 数列与级数:数列的极限、级数的定义与收敛性。

2. 常数项级数:等比级数与调和级数的性质与求和。

3. 幂级数与函数展开:幂级数的收敛半径、函数的幂级数展开。

4. 泰勒级数与麦克劳林级数:泰勒级数与麦克劳林级数的定义与求导。

高数下 知识点总结

高数下 知识点总结

高数下知识点总结高数是大学数学的重要组成部分,主要涉及函数、极限、微分和积分等内容。

下面是高数的一些重要知识点总结,包括基本概念、定理及其应用。

基本概念:1. 函数:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。

常见的函数有多项式函数、指数函数、对数函数等。

2. 极限:描述函数在某一点或无穷远处的趋势。

正式定义了极限的分析方法和计算方法。

3. 连续性:函数在某一区间上的连续性意味着在该区间上函数图像上不存在断点,且图像可以一笔画出。

4. 导数:描述函数在某一点的变化率,也可以理解为函数图像在该点的切线斜率。

常用于求函数的最值、凹凸性等问题。

5. 积分:描述函数在某一区间上的累积效应,可以从导数的逆过程理解。

常用于计算曲线下面积、求函数的平均值等。

定理与应用:1. 介值定理:若函数f(x)在区间[a,b]上连续,且f(a)和f(b)异号,则在(a,b)存在一点c,使得f(c)=0。

该定理的重要意义在于可以用来证明方程存在根的情况。

2. 零点定理:若函数f(x)在[a,b]上连续,且f(a)f(b)<0,则方程f(x)=0在区间(a,b)内至少有一个实数根。

该定理为介值定理的特殊情况,用于求解方程的根。

3. 极值定理:若函数f(x)在区间[a,b]上连续且可导,若在x=c 的邻域内f'(x)>0(或f'(x)<0),则f(x)在x=c处有极小值(或极大值)。

该定理为求函数的极值提供了判定条件。

4. 拉格朗日中值定理:对于在[a,b]上连续且可导的函数f(x),存在一个c在(a,b)内,使得f'(c) = (f(b)-f(a))/(b-a)。

该定理常用于证明不等式或计算函数的近似值。

5. 微分中值定理:若函数f(x)在[a,b]上连续且可导,存在一个c在(a,b)内,使得f'(c) = f(b)-f(a)/(b-a)。

该定理常用于求函数的导数值。

笔记整理大一高数知识点

笔记整理大一高数知识点

笔记整理大一高数知识点在大一的高等数学课程中,学生们需要掌握和理解许多重要的数学知识点。

为了帮助同学们更好地学习和记忆这些知识点,本文将对大一高数的重要知识进行整理和总结。

1. 极限与连续1.1 极限的定义与性质- 数列极限的定义- 函数极限的定义- 极限的性质(四则运算、复合函数)1.2 无穷大与无穷小- 无穷大的定义- 无穷小的定义- 无穷小的比较- 高阶无穷小1.3 连续性与间断点- 函数的连续性定义- 连续函数的性质- 间断点的分类和判断- 可导与连续的关系2. 导数与微分2.1 导数的概念与计算- 导数的定义- 导数的四则运算法则- 高阶导数与Leibniz公式2.2 常见函数的导数- 幂函数、指数函数、对数函数的导数 - 三角函数的导数- 反三角函数的导数- 复合函数的导数2.3 微分学的应用- 极值与最值问题- 弧长与曲率- 泰勒展开式3. 不定积分与定积分3.1 不定积分与原函数- 不定积分的定义- 基本积分公式- 积分方法与换元法3.2 定积分的概念与性质- 定积分的定义- 定积分的性质(线性性、区间可加性等) - 牛顿-莱布尼茨公式3.3 定积分的计算- 分部积分法- 曲线的长度与面积- 广义积分的收敛性4. 无穷级数4.1 无穷级数的定义与收敛性 - 无穷级数的定义- 收敛级数与发散级数的判断 - 收敛级数的性质4.2 常见的数项级数- 等比级数- 幂级数- 正项级数的审敛法4.3 函数项级数- 函数项级数的收敛性- 一致收敛性与点态收敛性 - 幂级数的收敛半径5. 多元函数微分学5.1 偏导数的定义与计算- 偏导数的定义- 偏导数的计算方法- 高阶偏导数5.2 全微分与导数- 全微分的定义- 导数的定义- 隐函数与显函数的导数5.3 多元函数的极值与条件极值- 多元函数的极值判断- 条件极值问题的求解通过对以上知识点的整理与总结,相信同学们可以更好地理解和记忆大一高等数学中的重要知识,为后续学习打下坚实的基础。

高数知识点总结(上册)

高数知识点总结(上册)

高数知识点总结(上册).doc 高等数学知识点总结(上册)第一章:函数、极限与连续性1.1 函数定义:变量之间的依赖关系。

性质:单调性、奇偶性、周期性、有界性。

1.2 极限定义:函数在某一点或无穷远处的趋势。

性质:唯一性、局部有界性、保号性。

1.3 无穷小与无穷大无穷小:当自变量趋于某一值时,函数值趋于零。

无穷大:函数值趋于无限。

1.4 连续性定义:在某点的极限值等于函数值。

性质:连续函数的四则运算结果仍连续。

第二章:导数与微分2.1 导数定义:函数在某一点的切线斜率。

几何意义:曲线在某点的瞬时速度。

2.2 基本导数公式幂函数、三角函数、指数函数、对数函数的导数。

2.3 高阶导数定义:导数的导数,用于描述函数的凹凸性。

2.4 微分定义:函数在某点的线性主部。

第三章:导数的应用3.1 切线与法线几何意义:曲线在某点的切线和法线方程。

3.2 单调性与极值单调性:导数的符号与函数的增减性。

极值:导数为零的点可能是极大值或极小值。

3.3 曲线的凹凸性与拐点凹凸性:二阶导数的符号。

拐点:凹凸性改变的点。

第四章:不定积分4.1 不定积分的概念定义:原函数,即导数等于给定函数的函数。

4.2 基本积分公式幂函数、三角函数、指数函数、对数函数的积分。

4.3 积分技巧换元积分法:凑微分法、代换法。

分部积分法:适用于积分中存在乘积形式的函数。

第五章:定积分5.1 定积分的概念定义:在区间上的积分,表示曲线与x轴围成的面积。

5.2 定积分的性质线性:可加性、可乘性。

区间可加性:积分区间的可加性。

5.3 定积分的计算数值计算:利用微积分基本定理计算定积分。

5.4 定积分的应用面积计算:曲线与x轴围成的面积。

物理意义:质量、功、平均值等。

第六章:多元函数微分学6.1 多元函数的极限与连续性定义:多元函数在某点的极限和连续性。

6.2 偏导数与全微分偏导数:多元函数对某一变量的局部变化率。

全微分:多元函数的微分。

6.3 多元函数的极值定义:多元函数在某点的最大值或最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数.极限和连续
第一节 函数
1. 决定函数的要素:对应法则和定义域
2. 基本初等函数:(六类)
(1) 常数函数(y=c );(2)幂函数(y=x a );
(3)指数函数(y=a x ,a>0,a ≠1);(4)对数函数(y=log a x ,a>0,a ≠1)
(5)三角函数;(6)反三角函数。

注:分段函数不是初等函数。

特例:y =√x 2是初等函数
3.构成复合函数的条件:内层函数的值域位于外层函数的定义域之内。

4.复合函数的分解技巧:对照基本初等函数的形式。

5.函数的几种简单性质:有界性,单调性,奇偶性,周期性。

第二节 极限
1.分析定义
∀&>0(任意小) ∃∂>0
当|x |>ð(或0<|x −x 0|<ð )时
总有 |f (x )−A |<&
称 lim x→∞f (x )=0 (或lim x→x0f (x )=A)
2.极限存在的充要条件
lim x→x0f (x )=A ↔lim x→x 0+f (x )=lim x→x 0
−f (x )=A 3.极限存在的判定准则
(1)夹逼定理
f 1(x )≤f(x)≪f 2(x) ,且 lim x→x0f 1(x )=A = lim x→x0f 2(x ) 所以lim x→x0f (x )=A
(2)单调有界准则
单调有界数列一定有极限。

4.无穷小量与无穷大量
,则称 时,f (x )为无穷小量 , 则称 时,f (x )为无穷大量 注:零是唯一的可作为无穷小的常数。

性质1 有限多个无穷小的代数和或乘积还是无穷小。

注:无限个无穷小量的代数和不一定是无穷小量
性质2 有界变量或常数与无穷小的乘积还是无穷小。

5. 定义 设 是同一极限过程中的无穷小, 则
若 则称 α 是β比高阶的无穷小,记作
若 则称α是比β 低阶的无穷小
∞=→)(lim 0x f x x )(或∞→→x x x 0
0)(lim 0=→x f x x )(或∞→→x x x 0
)(,)(x x ββαα==,
0)(≠x β且,0lim =βα);
(βαo =,lim ∞=βα,0lim ≠=C βα
若 则称 α 是β的同阶无穷小;
特别地,当c=1 时,则称α 是β的等价无穷小,记作
若 则称α是关于β 的 k 阶无穷小。

6.在求两个无穷小量之比的极限时,分子及分母都可以用各自的等价无穷小, 当x →0时,
sin x ~x , tan x~x , arc sin x ~x, 1−cos x~12x 2, √1+x n −1~1n
x, ln(1+x )~x
第二节 函数的连续性
1.f(x)在x 0处连续的充要条件: lim x→x 0+f (x )=f (x 0)=lim x→x 0
−f (x ) 2.函数的间断点
3.初等函数的连续性
性质1:连续函数的四则运算也连续。

性质2:连续函数的复合运算也连续。

对连续函数求极限时,极限符号和连续函数符号,可交换顺序。

4.闭区间连续函数的性质
(1)最值定理 (2)介值定理(零点定理)
);
(βαO =;
~βα,0lim ≠=C k βα。

相关文档
最新文档