染色体畸变
染色体畸变率多少是正常?充分了解很关键
染色体畸变率多少是正常?充分了解很关键
染色体在数目或形态结构上的异常成为畸变,其中体细胞和生殖细胞内的染色体都有可能发生这种变化,畸变的类型和产生的后果各不相同,最严重的胎儿会因此终止发育并死亡,有些幸存下来的新生儿也会先天自带缺陷。
染色体畸变率多少是正常?大家知道吗?
1、染色体畸变率有多高?
据统计数据显示,在流产胚胎中,染色体畸变的发生率高达50%;在新生儿中,这一比率约为每千名新生儿中有6例;在一般人群中,染色体畸变导致的染色体病发生率约为每千人中有5至10例;而在死产婴儿中,这一比率更是达到了每千名死产婴儿中有8例。
这些数据表明染色体畸变对妊娠结局及新生儿健康产生了显著影响。
那染色体畸变率多少是正常?一般来说,正常值的范围在0-3%,染色体检查报告单显示核型,性染色体表示性别和畸变率,其中小于3%的比率都是正常的。
2、染色体畸变率不同意味着什么?
染色体异常综合征或染色体病的发生常常归因于染色体畸变的存在,其实质是染色体或染色体节段上基因群的数量增减或位置的转移,如果我们想要提前观察到胎儿的染色体有无出现如上问题,可以通过产前筛查或检查进行诊断辨明。
香港中环专科可预约非入侵性的(敏儿安t21或nifty pro)进行dna抽血筛查,只有筛查不合格显示高风险,指明胎儿存在染色体高畸变率的风险,才需要考虑进行羊水穿刺这类入侵性的检查,现在通过中环专科官网或v信(tchchk)可在线咨询预约。
染色体畸变只有在做染色体检查时才会知道,孕妇在孕早中期即可安排这类检查去预知宝宝的健康,那染色体畸变率多少是正常?正常情况下,检测报告单上显示小于3%的都算无碍。
名词解释染色体畸变
名词解释染色体畸变嘿,你知道染色体畸变吗?这可不是什么简单的事儿呀!染色体畸变就好像一个原本好好的拼图突然变得七零八落或者多了几块少了几块。
比如说,正常的染色体就像是一个完整漂亮的房子,每一块都在它该在的位置,发挥着自己的作用。
(就像我们的家,每个房间都有它的功能一样。
)染色体畸变呢,可能会出现染色体的缺失,哎呀,那就像是房子少了一块砖头或者一扇窗户似的。
(就好像你最喜欢的玩具突然少了个零件。
)还有染色体的重复,这就像房子里多了一块多余的板子。
(好比你桌上莫名其妙多了一个杯子。
)还有染色体的倒位,这就好像把房子里的一部分给颠倒过来了。
(想象一下你的书桌突然上下颠倒了,多奇怪呀!)另外还有染色体的易位,就如同把这个房子的一部分挪到另一个房子上去了。
(好比把你卧室的床搬到客厅去了。
)染色体畸变可不是开玩笑的呀!这对生物体的影响那可大了去了。
它可能会导致各种各样的疾病呢!你想想,如果一个人的染色体出现了问题,那不就像一辆汽车的关键零件出了故障一样,能正常行驶吗?(就像你的自行车链子掉了,你还能骑得顺畅吗?)在生活中,我们也会遇到一些可能导致染色体畸变的情况呢。
比如辐射,那些看不见的射线可能就会悄悄改变染色体。
(就像一个隐藏的小怪兽在捣乱。
)还有一些化学物质,也可能会搞破坏。
(就像一个调皮的孩子在乱涂乱画。
)所以呀,我们得重视染色体畸变这个事儿。
我们要保护好自己,尽量避免接触那些可能导致它发生的因素。
不然,等真出了问题,那可就麻烦啦!总之,染色体畸变可不是小事,我们可得小心对待它!。
染色体畸变分类
染色体畸变分类
1. 染色体数目畸变,就好比你本来计划好只买一个蛋糕,结果却突然多了一个或者少了一个。
比如说唐氏综合征,就是多了一条 21 号染色体呀!患者会有特殊的面容和智力问题呢。
2. 染色体结构畸变中的缺失,这就好像一件完整的衣服突然少了一块布料,后果很严重呢!猫叫综合征就是 5 号染色体短臂缺失导致的,那可怜的“喵喵”叫声真让人心疼啊!
3. 染色体结构畸变中的重复,哎呀,这就像是一段话你不停地重复说,是不是很奇怪呀!果蝇的棒眼现象就是 X 染色体上的部分片段重复引起的哦。
4. 染色体结构畸变中的倒位,这不就像是你把东西颠倒过来放了嘛。
臂间倒位可能会造成一些生育方面的问题呢,得重视呀!
5. 染色体结构畸变中的易位,这就好像两个不同的东西换了位置呀!慢性粒细胞白血病好多就是因为染色体易位导致的,好可怕呀!
6. 染色体整倍性改变,哇塞,这就像你本来只有一份礼物,突然变成了好几份或者干脆没有了。
三倍体的受精卵往往很难发育成功呢!
7. 染色体非整倍性改变,这如同你原本拥有的东西多了一点或者少了一点。
单体型的个体往往会有很多缺陷呀!像特纳综合征就是性染色体少了一条呢。
我觉得染色体畸变真的是很神奇又很让人担心的事情,我们一定要好好了解它,这样才能更好地应对可能出现的问题呀!。
医学遗传学-人类染色体畸变
4q13
4q24
倒位(inversion,inv)
臂间倒位(pericentric inversion)
4p14
4q21
倒位(inversion,inv)
倒位(inversion,inv)
简式:46,XX,inv(1)(p22p34) 详式:46,XX,inv(1)(pter→p34 : : p22p34 : : p22→qter)
易位(translocation,t)
罗伯逊易位(robertsonian translocation)
3 、 倒位(inversion,inv):一条染色体发生两处断
裂, ,断裂片段旋转180后重新接上称为倒位.
倒位
a:臂内倒位染色体图解;b:臂间倒位染色体图解
倒位(inversion,inv)
6q22
11p15
5 、 双着丝粒染色体 (dicentric chromosome, dic)
是指两条染色体同 时各发生一次断裂后,
两个含有着丝粒的染色
体的断端相互连接,即 形成一条含有两个着丝 粒的染色体。
等臂染色体(isochromosome,i)
等臂染色体(isochromosome,i)
但有时会出现异常的重接,染色
体断裂后未在原位重接,亦即断片 移动位置后与其它片段相接或丢失, 结果导致染色体的结构畸变,又称 为染色体重排chromosome
rearrangement。
染色体结构畸变类型
缺失(deletion) 末端缺失、中间缺失 重复(duplication) 倒位(inversion)
(图示两条X染色体)
第一次有丝分裂
染色体畸变
染色体畸变概念:细胞中的染色体由于内外环境因素的影响,发生了数量和结构的改变称“染色体畸变”,包括数目畸变和结构畸变。
第一节、染色体畸变发生的原因一、化学因素:各种抗病毒类药物、激素、抗代谢药物、细胞毒素、抗菌素等,特别是一些抗肿瘤药物,保胎及预防妊娠反应的药物,均可引起染色体畸变产生畸胎;如抗痉挛药物苯妥英纳可引起人淋巴细胞多倍数数目增加;环磷酰胺、氮芥、白硝安(马利兰)、甲氨蝶呤、阿糖胞苷等抗癌药物可导致Chr畸变。
农药,特别是有机磷农药可导致畸变率增高。
工业毒物:如甲苯、苯、铝、砷、CS2等导致Chr畸变。
又如:食品添加剂、防腐剂、色素等也可导致染色体畸变。
二、物理因素:各种射线能引起双着丝粒染色体、并出现易位、缺失、断裂、核内复制等。
三、生物因素:1、由生物体产生的生物类毒素所致Chr畸变,也可有一定致癌作用。
如杂色曲毒素、黄曲毒素、棒曲毒素等。
2、病毒可引起缩主细胞Chr畸变,尤其是致癌病毒,主要是影响DNA代谢,如风疹病毒、乙肝病毒、流感、麻疹、疱疹、脊髓灰质炎等病毒。
四、遗传因素:Chr异常有家族倾向。
五、母亲年龄:1、女性初级卵母C的减数分裂是在胚胎三个月左右就已开始,5-6个月进入第一次减数分裂前期,出生前后才到达终变期,以后即停止,直到排卵前第一次减数分裂才完成。
2、第二次减数分裂必须在精子的穿入的刺激下才能完成,如果排出的卵子24小时内不能与精子相遇而受精,那么即行退化。
根据以上特点,为什么女性年龄越大,所生孩子先天性疾病的可能性就越大的原因(大于35岁)。
因为年龄越大,第一次减数分裂持续时间越长,受到各种因素影响的机会越多,在以后的减数分裂中容易产生染色体不分离而导致Chr数目异常或结构畸变,或者基因突变,引起基因病。
第二节、Chr数目异常及其产生的机制单倍体:精子、卵子,23条Chr数。
二倍体:受精卵和体C、46条、23对Chr数。
Chr数目的畸变:指体C的Chr数目(整组或整条)的增加或减少,称Chr数目的畸变。
染色体畸变生物效应
是非整倍体;整倍体是增加或减少整套的染色体, 非整倍体是增加或减少一条或几条染色体;
染色体畸变生物效应
6.1 染色体结构变异
➢染色体结构变异可分为四种类型。 ①缺失(deletion):失去了部分染色体片段; ②重复(duplication):增加部分染色体片段; ③倒位(inversion):染色体片段作180℃的颠倒再重 接在染色体上; ④易位(translocation):两条非同源染色体之间发 生部分片段的交换。
Deletion chromotids
3)、假显性(pesudo-dominance)
如果缺失的部分包括某些显性基因,那么同源 染色体上与这一缺失相对位置上的隐性基因就得以 表现,这一现象称为假显性。如果蝇的缺刻翅遗传。
红眼缺刻翅 +
N
X+XN
×
+ w+ 红眼正常 红眼正常
白眼正常翅 XwY
w
染色体畸变生物效应
➢同源三倍体在减数分裂前期或形成一个三价体, 或形成一个二价体和一个单价体,无论何种配对 方式,最后都是一条染色体走向一极,另两条走 向一极。
➢具有两条染色体的配子(2n)的概率是(1/2)n,具有 一条染色体的配子(n)的概率也是(1/2)n 。
➢三倍体所产生的绝大多数配子的染色体数目是在n 和2n之间,这些配子的染色体都是不平衡的。
6.3.1.1 二倍体和单倍体 ➢大多数真核生物是二倍体(diploid)。 ➢单倍体(haploid)含有配子染色体数目。由二倍体产
生的单倍体也称为一倍体(monoploid)。雄性蜜蜂、 黄蜂、蚁都是一倍体。 ➢单倍体一般可由无融合生殖产生,也可通过花粉 和花药培养来获得。 ➢单倍体植株矮小,生活力很弱,而且完全不育。 ➢单倍体通过染色体加倍,可获得纯合的二倍体。
2-染色体畸变
详式:
46,X,i(X)(pter→cen→pter)
※ 简式 ※
1、染色体总数
2、性染色体组成;
3、畸变类型的符号;
4、在括号内写明受累的染色体序号;
5、在接着的另一括号内以符号注明 受累染色体断裂点。
※ 详式 ※
1、染色体总数 2、性染色体组成; 3、畸变类型的符号; 4、在括号内写明受累的染色体序号; 5、在接着的另一括号内除了要描述 受累染色体断裂点 ,还要描述重排 染色体带的组成。
正位插入
倒位插入
︰
5q31 →5qter ; 5pter →5q31︰
2q21 →2qter )
︰
简式:
45,XX(XY),-14,21,+t(14;21) (p11;q11 ) 详式: 45,XX(XY), -14,21,+t(14;21)
(14qter→14p11︰ ︰21q11→2qter )
简式: 46,XX(XY),r(2)(p21q31 )
(1)简式:
(2)详式:
(二)染色体结构畸变
2、染色体结构畸变的类型:
(1)缺失(del):分末端缺失 和中间缺失 (2)倒位(inv):分臂内倒位和臂间倒位 (3)易位(t):分相互易位和罗伯逊易位 (4)插入(ins):分正位插入和倒位插入 (5)环状染色体(r): (6)双着丝染色体(dic): (7)等臂染色体(i)
第二节 染色体畸变
※ 染色体畸变的概念
在电离辐射、诱变剂等理化因素和 病毒等生物因子诱发下,染色体的数目 和结构发生了改变,从而导致生物体的 表型发生改变的过程,称为染色体畸变。
※ 染色体畸变的种类
染色体数目畸变 染色体结构畸变
(一)染色体数目畸变
染色体畸变
染色体畸变
畸变(chromosome aberrations or chromosome mutations) 第 一 节 畸 变 的 产 生 : 断 裂 愈 合 学 说 ( breakagereunion hypothesis) 新形成的断裂端的发展: 重建性愈合:没有畸变产生 非重建性愈合,不愈合:产生畸变 (1)缺失(deletion或deficiency) (2)重复 (duplication) (3)倒位(inversion) (4)易位(translocation)
异源多倍体(allopolyploids):通常育性正常
2 个二价体
1 个四价体
单价体 + 三价体 图 同源多倍体减数分裂时 4 条同源染色体可能的配对形式及分离
烟草2倍 体,4倍 体和8倍 体叶片表 皮细胞的 比较
2倍体和4倍体葡萄的比较
T.turgidum (2n=28)
AABB
7Ⅱ+7Ⅰ 14Ⅱ+7Ⅰ
臂内倒位:环 内的一次交换 产生后期的染 色体桥和无着
丝粒断片,分
裂后产生的配 子半数带有大
片断的缺失或
重复,这些配 子或受精后形
成的合子通常
不能存活。
臂间倒位:环内 的一次交换,导 致分裂后产生的 配子半数带有大
片断的缺失和重
复,这些配子或 形成的合子通常
不能存活。
需注意的是, 1. 倒位环内的偶数次交换,形成的配子既没 有缺失,也没有重复,重组子能正常存活; 2.倒位环附近区域由于不能很好联会,交换 率下降; 3. 由于雄果蝇减数分裂时不发生交换,倒位 杂合体的育性不受影响。
(二)遗传效应
假连锁现象 半不育 导致人类家族性染色体异常 位置效应: 例:易位导致癌基因( oncogene )的 活化
第06章讲染色体畸变
因此,缺失染色体主要是通过雌配子而遗 传.
❖ 致死或出现异常
在人类中,第5染色体短臂杂合缺 失称为猫叫综合症,最明显特征患儿 哭声轻,音调高,常发出咪咪声。通 常在婴儿期和幼儿期夭折。
❖ 假显性 (pseudodominance)
➢ 缺失环(deletion loop):中间缺 失杂合体在减数分裂同源染色 体配对时,出现特征性的环状 结构——缺失环
缺失的形成过程及其细胞学鉴定示意图
4. 缺失的遗传学效应
染色体的某一区段缺失了,其原载的基因 自然就丢失,不利于生物生长和发育的.
含缺失染色体的配子体一般是败育的,花 粉尤其如此,胚囊的耐性比花粉略强.
➢ 一对同源染色体存在相同的结构变异称为结构纯 合体,若仅其中一条染色体结构发生改变则称结 构杂合体
➢ 染色体结构变异能导致4种遗传效应 ① 染色体重排(chromosomal rearrangements) ② 核型的改变 ③ 形成新的连锁群 ④ 减少或增加染色体上的遗传物质
➢染色体结构变异的形成机制
染色体畸变可引发系列遗传学现象,如遗传疾病,如染色 体异常导致女性容易自然流产;接触X射线、化学物质、电子 辐射产品、烟酒等有害物质,可导致育龄期夫妇染色体损伤。
(载人航天)
人们亦可利用染色体畸变引发的遗传学效应进行遗传学研 究及创造新的物种类型。
5.1 染色体结构变异
➢ 染色体结构变异可分为四种类型:① 缺失 (deletion) ② 重复(duplication) ③ 倒位(inversion) ④ 易位(translocation)(染色体畸变可在显微镜下识别并加以 区分)
会配对时,出现环状突起
染色体畸变
第一节 染色体畸变
染色体的数目变化或结构改变统称为染色 体畸变(chromosomal aberration)。 不同的畸变类型、不同的细胞内以及不同 时期发生的畸变可能引起的后果不同。
在精子、卵子、受精卵或卵裂早期发生畸 变往往可导致流产、死胎或染色体病; 而体细胞中发生的染色体畸变则与肿瘤的 发生有关。
多倍体胎儿夭折的原因:
主要是胚胎细胞有丝 分裂时形成了三级或四 级纺锤体,染色体数目 不等地分散在三个或四 个赤道面上,导致分裂 后期及子细胞内染色体 不规则分布,最终导致 染色体数目异常,严重 地干扰了胚胎或胎儿的 正常发育而导致流产。
多倍体的形成机制: 三倍体发生的机制 双雄受精:可形成三种核型的受精卵; 双雌受精:可形成二种核型的受精卵。 四倍体发生的机制 核内复制(连续复制两次) 核内有丝分裂(核没有消失)
环状染色体(ring chromosome,r)
2p21
2q31
环状染色体(ring chromosome,r)
2p21
p21 q31
2q31
环状染色体(ring chromosome,r)
环状染色体(ring chromosome,r)
染色体结构畸变的种类
缺失 —— 部分单体型(partial monosomy)
1、非整倍体的类型
(1)单体型(monosomy) 少一条染色体导致某对染色体只有一条, 为某染色体单体型。 绝大多数单体型在胚胎早期流产。仅仅是 少数的 X单体型可以存活。 (2)三体型(trisomy) 多一条导致某对染色体成为三条,为某染 色体三体型。 多数的三体型早期流产,仅13三体、18三 体、21三体、22三体和X三体可以存活。
重复 —— 部分三体型(partial trisomy) 倒位(inversion) 易位(translocation) 环状染色体(ring chromosome) 等臂染色体(isochromosome)
染色体畸变(结构改变)
畸变风险,并提供生育建议和遗传监测。
生育建议
03
根据个体情况和遗传咨询结果,提供合适的生育建议,如选择
合适的生育年龄、避免近亲结婚等。
05 染色体畸变的研究意义
了解人类遗传信息的稳定性
染色体畸变是遗传信息不稳定性的表现,研究染色体畸变有助于深入了解人类遗 传信息的稳定性,探究遗传物质变异的原因和机制。
药物
某些药物如化疗药物、抗生素等,在 杀死或抑制病菌的同时,也可能对染 色体造成损伤,导致畸变。
化学物质
如苯、甲醛等,长期接触可能增加染 色体畸变的风险。
生物因素:某些病毒、细菌
病毒
某些病毒如巨细胞病毒、风疹病毒等,能够整合到宿主细胞的DNA中,引起染 色体畸变。
细菌
某些细菌如结核分枝杆菌、梅毒螺旋体等,在感染过程中可能引起染色体畸变。
感谢您的观看
染色体畸变可能对人类的健康和生存产生影响,研究染色体畸变有助于预测和预 防相关遗传性疾病的发生。
为遗传性疾病的预防和治疗提供依据
01
通过研究染色体畸变,可以深入 了解遗传性疾病的发病机制,为 遗传性疾病的预防和治疗提供科 学依据。
02
染色体畸变可能导致遗传性疾病 的发生,研究染色体畸变有助于 发现新的治疗方法和药物,提高 遗传性疾病的治疗效果。
染色体畸变(结构改变)
目录
• 染色体畸变的定义和类型 • 染色体畸变的形成原因 • 染色体畸变的影响 • 染色体畸变的检测与预防 • 染色体畸变的研究意义
01 染色体畸变的定义和类型
定义
染色体畸变是指染色体在结构上发生 的变化,包括染色体片段的增加或减 少、染色体内部或染色体之间的位置 颠倒、染色体片段的交换等。
遗传疾病风险的增加
08第九章 染色体畸变
三、生物因素
生物类毒素 某些生物体本身,如病毒
四、母亲年龄
越大,新生儿越容易出现畸变,≥35 环境因子在体内累积作用,与生殖细胞老化
及合子早期所处的宫内环境有关
第二节 染色体数目异常及其产生机制
染色体组:人体正常生殖细胞所包含的全部染色体
单倍体(n):只含一个染色体组的细胞或个体;如:
ter)
(八)插入
一条染色体的片段插入到另一染色体中 也是一种易位
三次断裂时,才会发生插入。
可以正向
也可以倒转180°,即反方向插入
发生在同源染色体间→重复+缺失
(一)染色体不分离
受精卵卵裂早期的有丝分裂时不分离
减数分裂时发生染色体不分离
(二)染色体丢失
减数分裂时发生染色体不分离 第二次减数分裂 姐妹染色单体不分离 配子:1/2为n 1/4为(n+1) 1/4为(n-1) 受精后: 二倍体 超二倍体 亚二倍体
第一次减数分裂 同源染色体不分离 配子:一半24条 (n+1) 一半22条 (n-1) 受精后:超二倍体 亚二倍体
→胚胎死亡而流产
or出生先天畸形
3. 插入易位(insertional translocation)
两条非同源染色体同时发生断裂,但只有
其中一条染色体的片段插入到另一条染色
体的非末端部位。
发生三次断裂,才会发生插入易位。
(五)环状染色体
简式:46, XX(XY),
r(2)(p21q31) 详式:46, XX(XY), r(2)(p21→q31)
合子:69,XXX;69,XXY
总 结
双雌受精或双雄受精 → 三倍体
染色体畸变
环状染色体 一条染色体的长、短臂同时发生了断裂,含有着丝粒的片段两断端发生重接,即形成环状染色体。如2号染色体的p21和q31分别发生了断裂,断点以远的片段丢失,含有着丝粒的中间片段两断端p21与q31相接形成环状染色体
产生机制主要有双雌受精、双雄受精、核内复制和核内有丝分裂等。
非整倍体改变
一个体细胞的染色体数目增加或减少了一条或数条,称非整倍体,这是临床上最常见的染色体畸变类型。发生非整倍体改变后,会产生亚二倍体、超二倍体等。
亚二倍体 当体细胞中染色体数目少了一条或数条时,称为亚二倍体
超二倍体 当体细胞中染色体数目多了一条或数条时,称为超二倍体。
重复(duplication)是一个染色体上某一片段增加了一份以上的现象,使这些片段的基因多了一份或几份。
倒位(inversion)是某一染色体发生两次断裂后,两断点之间的片段旋转180°后重接,造成染色体上基因顺序的重排。分为臂间倒位和臂内倒位:
易位(translocation)一条染色体的断片移接到另一条非同源染色体的臂上,这种结构畸变称为易位(translocation)。常见的易位方式有相互易位、罗伯逊易位和插入易位等。 ①相互易位是两条染色体同时发生断裂,断片交换位置后重接。形成两条衍生染色体。当相互易位仅涉及位置的改变而不造成染色体片段的增减时,则称为平衡易位。
染色体结构畸变产生的基础
染色体结构畸变的基础是断裂(breakage)及断裂后的重接(reunion)。
发生结构重排(rearrangement)的染色体称为衍生染色体。
染色体畸变
②缺体性 二倍体生物的体细胞缺失了某一对同源染色体的现象,即2n-2。缺体最早在燕麦中发现。缺体性个体一般也不能存活。但普通小麦等少数物种有人工保存的成套缺体性个体。在恶性染色体畸变
肿瘤细胞里也有缺体性细胞系。
③三体性 二倍体细胞的某同源染色体为三个的现象,即2n 1。三体的存在最初是在茄科植物曼陀罗中发现的。人类的唐氏综合征患者的核型式是47,XX或XY,21,即21号染色体比正常人多一个。克氏综合征患者的核型式是47,XXY,即性染色体X比正常人多一个。三体性个体一般都能存活。
同一染色体发生的臂间和臂内互换可以有6种方式,而不同染色体单体间的互换则根据配对的同源染色体
互换的类型、互换是否完全以及染色体的极性又可分为12种情况。除了简单的单体内互换和单体间互换外,有些畸变是由于在染色体和染色单体水平上发生多次互换而产生的,例如三相互换。这种畸变的产生是由于在一个等位点染色单体畸变和一个简单的染色单体断裂之间发生了一次互换,或者在两个以上染色单体之间发生数次复杂的单体间互换造成的。
染色体畸变实验步骤
染色体畸变实验步骤
染色体畸变实验步骤主要包括以下几个阶段:
1.筛选实验材料:选择稳定的、易于培养的细胞株或实验动物,以进行后续实验。
2.构建染色体畸变模型:
化学物质处理:选择合适的染色体分离剂,按照适宜浓度和处理时间进行处理,观察染色体在各个处理条件下的变化。
基因突变:选择目标基因进行突变,可以通过CRISPR-Cas9等技术实现基因的特定编辑。
3.染色体畸变的检测与分析:
染色体核型分析:采集细胞进行染色体制片并染色,通过显微镜观察染色体的形态和数量的变化。
FISH技术:通过探针与靶DNA结合后的荧光信号观察,检测染色体上的具体变化情况。
PCR技术:通过PCR扩增和鉴定、测序等方法,检测染色体上特定基因的变异或突变。
请注意,这些步骤可能会根据具体的实验设计和研究目标有所不同。
在进行染色体畸变实验时,需要严格遵守实验室安全规定,采取必要的防护措施,确保实验人员的安全。
此外,实验过程中需要注意实验条件的控制和数据的记录与分析,以获得准确的实验结果。
染色体畸变
染色体畸变
染色体畸变(chromosomal aberration)
染色体数目异常(numerical abnormality) 染色体结构畸变(structural aberration)
染色体畸变
染色体畸变的原因
自发畸变
自发产生或看不出明显诱因产生的染 色体畸变。
倒位环(inversion loop)
染色体结构畸变的种类
缺失 —— 部分单体型(partial monosomy)
重复 —— 部分三体型(partial trisomy) 倒位(inversion) 易位(translocation)
易位(translocation,t)
相互易位(reciprocal translocation)
易位(translocation,t)
罗伯逊易位(robertsonian translocation)
染色体结构畸变的种类
缺失 —— 部分单体型(partial monosomy)
重复 —— 部分三体型(partial trisomy) 倒位(inversion) 易位(translocation) 环状染色体(ring chromosome)
核内复制(endoreduplication)
染色体数目异常
整倍体(euploid)
三倍体(triploid):3n=69 四倍体(tetraploid):4n=92
形成原因
双雄受精(diandry)或双雌受精(digyny)
核内复制(endoreduplication)
三倍体(triploid):3n=69
染色体数目异常
第九章 遗传物质的改变-染色体畸变
缺失纯合体: 致死或半致死。 缺失杂合体: 缺失区段较长 时,生活力差、 配子(尤其是 花粉)败育或 竞争不过正常 配子;
影响缺失对生物个体危害程度 的因素:
– 缺失区段的大小; – 缺失区段所含基因的多少; – 缺失基因的重要程度; – 染色体倍性水平。
缺失区段较小 时,可能会造 成假显性现象 或其它异常现 象。
单倍体 (X):只含有一个染色 体组的生物体。
单元体 (n):特指有性繁殖 生物的配子体世代。
(二)染色体数目变异类型 1.整倍体(euploid)染色体数的变化是以染色
体组为单位的增减
2.非整倍体(aneuploid)染色体数的变化
是细胞核内的染色体数不是完整的倍数,通常 以二倍体(2n)染色体数作为标准,在这基础 上增减个别几个染色体,所以属于非整倍性改 变。
2. 缺失的细胞学效应 配对
缺失环
玉米缺失杂合体粗线期缺失环
果蝇唾腺染色体的缺失圈
3. 缺失的遗传学效应 影响个体的生活力 成活困难 性状丢失 性状异常 拟显性
缺失区段上基因丢失导致: – 基因所决定、控制的生物 功能丧失或异常; – 基因间相互作用关系破坏; – 基因排列位置关系改变。
倒位会改变基因间相邻关系������ 造成遗传性状 变异������ 种与种之间的差异常由多次倒位所形 成。 果蝇(n=4):不同倒位特点的种,分布在不 同地理区域; 百合(n=12):两个种(头巾百合、竹叶百合) 之间的分化是由M1、M2、S1、S2、S3、S4等6 个相同染色体发生臂内倒位形成的(两个种的 S5、S6、S7、S8、S9、S10染色体仍相同)。
重复的遗传效应
位置效应(position effect): 果蝇的棒眼遗传——是 重复造成表现型变异的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色体畸变目标导航 1.结合教材图4-4,举例说明染色体畸变是如何引起生物变异的,并列举生物变异的类型。
2.在阐明染色体组概念的基础上,进一步让学生理解二倍体、多倍体和单倍体的概念。
一、染色体畸变的含义和类型1.含义:生物细胞中染色体在数目和结构上发生的变化。
2.类型⎩⎪⎨⎪⎧染色体结构变异染色体数目变异二、 染色体结构变异 1.概念染色体发生断裂后,在断裂处发生错误连接而导致染色体结构不正常的变异。
2.类型(1)缺失:染色体断片的丢失,引起片段上所带基因也随之丢失。
如猫叫综合征; (2)重复:染色体上增加了某个相同片段。
如果蝇棒眼的形成; (3)易位:染色体的某一片段移接到另一非同源染色体上;(4)倒位:一个染色体上的某个片段的正常排列顺序发生180°颠倒。
3.结果使位于染色体上的基因的数目与排列顺序发生改变。
4.影响大多数的染色体结构变异性对生物体是不利的,甚至会导致生物体的死亡。
三、染色体数目变异 1.概念生物细胞中染色体数目的增加或减少。
2.类型⎩⎪⎨⎪⎧整倍体变异:体细胞的染色体数目以染色体组的形式成倍增加或减少。
如单倍体、多倍体等非整倍体变异:体细胞中个别染色体的增加或减少。
如先天愚型、人类的卵巢发育不全症3.染色体组二倍体生物的一个配子中的全部染色体。
判断正误:(1)染色体结构变异是染色体上的碱基发生缺失、重复、倒位、易位的过程。
( ) (2)染色体结构变异会导致基因的数目、排列顺序等发生改变。
( ) (3)染色体结构变异包括缺失、重复、倒位和易位等几种类型。
( )(4)染色体结构变异不改变染色体上的基因的数目或排列顺序,可在显微镜下观察到。
( ) (5)二倍体生物正常配子中的一组染色体是一个染色体组。
( )(6)由受精卵发育而来的个体,体细胞中含几个染色体组,就是几倍体。
( ) (7)单倍体一定只含一个染色体组。
( )答案 (1)× (2)√ (3)√ (4)× (5)√ (6)√ (7)×一、染色体结构变异1.染色体的缺失、重复、倒位与基因突变的区别(如下图所示)2.易位与交叉互换的比较观察分析下列图示,思考:1.易位与交叉互换的区别(1)图①过程发生在哪类染色体之间?属于哪类变异?答案发生在同源染色体的非姐妹染色单体之间;属于基因重组。
(2)图②过程中的两条染色体是同源染色体吗?属于哪类变异?答案不是,是非同源染色体;属于染色体结构变异中的易位。
2.染色体结构的变异和基因突变均导致遗传物质发生改变,试分析这两种变异的本质相同吗。
答案不相同。
染色体结构变异的本质是基因发生改变,而基因突变的本质是碱基对发生改变。
1.右图表示某生物细胞中两条染色体及其部分基因。
下列四种情况的产生不属于该细胞染色体结构变异的是( )。
A.①B.② C.③D.④问题导析(1) 染色体结构变异指的是染色体某一片段的缺失、增添、倒位和易位等;(2) ③是基因突变或是减数分裂四分体时期发生交叉互换所致。
答案 C一题多变下列变异中,不属于染色体结构变异的是( )。
A.染色体缺失了某一片段B.染色体增加了某一片段C.染色体中DNA的一个碱基发生了改变D.染色体某一片段位置颠倒了180°答案 C二、染色体数目变异1.对染色体组的理解(1)从本质上看,组成一个染色体组的所有染色体,互为非同源染色体,在一个染色体组中无同源染色体存在。
(2)从形式上看,一个染色体组中的所有染色体的形态、大小各不相同,做题时可通过观察各染色体的形态、大小来判断是否为一个染色体组。
(3)从功能上看,一个染色体组携带着一种生物生长发育的全部遗传信息。
(4)从物种类型看,每种生物一个染色体组的染色体数目、大小、形态都是一定的,不同种生物染色体组的数目、大小、形态不同。
2.二倍体、单倍体和多倍体的比较续表判断染色体组的数目下面甲是细胞染色体图,乙是细胞基因型:根据图示判断甲、乙生物细胞中染色体组的数目并说明判断依据。
(1)甲生物细胞内有几个染色体组?判断依据是什么? 答案 4个。
细胞内同一种形态的染色体有4条。
(2)乙生物细胞内有几个染色体组?判断依据是什么?答案 4个。
在乙的基因型中,控制同一性状的基因出现了4次。
(3)丙生物的体细胞含32条染色体,有8种形态,丙生物细胞中含有几个染色体组?写出计算的公式。
答案 4个。
计算公式为:染色体组的数目=染色体数/染色体形态数。
2.根据图中A ~H 所示的细胞图回答下列问题。
(1)细胞中含有一个染色体组的是________图。
(2)细胞中含有两个染色体组的是________图。
(3)细胞中含有三个染色体组的是________图,它________(一定,不一定)是三倍体。
(4)细胞中含有四个染色体组的是________图,它________(可能,不可能)是单倍体。
问题导析(1)在细胞内,形态相同的染色体有几条,就含有几个染色体组。
(2)在细胞内,含有几个同音字母,就是含有几个染色体组。
(3)确认是否为单倍体需看发育起点。
答案(1)D、G (2)C、H (3)A、B 不一定(4)E、F可能一题多变判断正误:(1)一个染色体组内的染色体其形态、大小和功能两两相同。
( )(2)体细胞中含有一个染色体组的生物是单倍体,含有两个染色体组的生物一定是二倍体。
( )(3)一个染色体组中不含同源染色体。
( )(4)体细胞含有两个染色体组的个体不一定是二倍体。
( )(5)单倍体不一定只含一个染色体组。
( )答案(1)×(2)×(3)√(4)√(5)√( )。
A.图甲是交叉互换,图乙是染色体易位B.交叉互换发生于同源染色体之间,染色体易位发生于非同源染色体之间C.交叉互换属于基因重组,染色体易位属于染色体结构变异D.交叉互换与染色体易位在显微镜下都观察不到答案 D解析图甲是非姐妹染色单体之间交叉互换,在四分体时期发生,属于基因重组;染色体易位指染色体的某一片段移接到另一条非同源染色体上引起的变异,属于染色体结构变异;交叉互换在显微镜下观察不到,而染色体易位在显微镜下能观察到。
2.下列关于单倍体的叙述,不正确的是( )。
B.单倍体的体细胞中只有一个染色体组,也称一倍体C.由二倍体的一个配子发育成的植株是单倍体D.体细胞中含有本物种配子染色体数目的个体答案 B解析单倍体是体细胞中含有本物种配子染色体数目的个体,其形成是由未受精的配子(精子或卵细胞)直接发育而来的。
因此A、C、D项都正确。
而B项,体细胞中只含一个染色体组的个体是二倍体生物的配子形成的单倍体。
此时,该单倍体也称一倍体。
但单倍体也可以是多倍体的配子发育而成,此时单倍体体细胞不止含一个染色体组。
3.如图所示的四个细胞中,属于二倍体生物精细胞的是( )。
答案 D解析二倍体生物精细胞中应只有一个染色体组,不含同源染色体,故排除A、B两项;精细胞中不含染色单体,故不会是C选项。
4.下图表示某些植物的体细胞,请根据下列条件判断:(1)肯定是单倍体的是________图,它是由________倍体的生殖细胞直接发育形成的。
(2)茎秆较粗壮但不能产生种子的是________图,判断的理由是_____________________________________________________________。
(3)如果都不是由生殖细胞直接发育形成,其中肯定是二倍体的是________图。
(4)如果C图中的植株是由某植物的卵细胞直接发育形成的,那么它是________倍体。
形成它的那个植物是________倍体,原来植物有性生殖形成种子时,发育中的胚乳细胞内含________个染色体组。
答案(1)D 二(2)A 含有三个染色体组,减数分裂时会发生联会紊乱而不能形成生殖细胞,不能产生种子(3)B、C (4)单四 6基础巩固1.基因突变和染色体畸变的一个重要的区别是( )。
A.基因突变在光学显微镜下看不见B.染色体畸变是定向的,而基因突变是不定向的C.基因突变是可以遗传的D.染色体变异是不能遗传的答案 A解析基因突变是基因内部的碱基种类、数量、排列次序的变化而引起的生物变异,属于分子水平的变化,光学显微镜下观察不到。
染色体的变化可在光学显微镜下直接观察到。
生物的变异是不定向的,基因突变和染色体变异其遗传物质均发生改变,都是可遗传的变异。
2.普通小麦是六倍体,有42条染色体,科学家们用花药离体培养培育出的小麦幼苗是( )。
A.三倍体、21条染色体B.单倍体、21条染色体C.三倍体、三个染色体组D.单倍体、一个染色体组答案 B解析花药中的花粉是经过减数分裂发育而成的,由其培育出的幼苗比普通小麦的染色体数减少了一半,含有三个染色体组,而体细胞中含有本物种配子染色体数目的个体叫单倍体。
3.双子叶植物大麻(2N=20)为雌雄异株,性别决定为XY型,若将其花药离体培养,再将幼苗用秋水仙素处理,所得植株的染色体组成应是( )。
A.18+XY B.18+YYC.9+X或9+Y D.18+XX或18+YY答案 D解析2N=20,性别决定为XY型的双子叶植物大麻产生的花药的染色体组成为9+X或9+Y,将其培育成的单倍体后再利用秋水仙素处理,诱导染色体加倍后,植株的染色体组成是18+XX或18+YY。
4.关于植物染色体变异的叙述,正确的是( )。
A.染色体组整倍性变化必然导致基因种类的增加B.染色体组非整倍性变化必然导致新基因的产生C.染色体片段的缺失和重复必然导致基因种类的变化D.染色体片段的倒位和易位必然导致基因排列顺序的变化答案 D解析染色体变异不会产生新基因,基因种类不会改变,但会改变基因的数量或排列顺序。
5.如图表示某种生物的部分染色体发生了两种变异的示意图,图中①和②,③和④互为同源染色体,图a和图b中的部分染色体转移造成的生物变异分别属于( )。
A.图a和图b均为染色体结构变异B.图a为基因重组,图b为染色体结构变异C.图a为染色体结构变异,图b为基因重组D.图a和图b均为基因重组答案 B解析图a显示同源染色体非姐妹染色单体间交叉互换,应属基因重组,而图b所示为③号染色体的某片段移到②号一非同源染色体上,此应属染色体结构变异。
6.如图是果蝇的染色体组成,请据图回答下面的问题:(1)这是________性果蝇。
(2)图中共有________个染色体组。
(3)图中有________对同源染色体,________对常染色体,________对等位基因。
1和3是________染色体,B和b是________基因,W和B是________基因。
在产生配子时,含VBw的配子占________。
(4)图示不能表示果蝇哪一类细胞中的染色体组成( )。
A.受精卵B.精原细胞C.体细胞D.卵原细胞答案(1)雌(2)2 (3)4 3 3 非同源等位非等位1/8 (4)B巩固提升7.果蝇的一条染色体上,正常基因的排列顺序为123-456789,“—”代表着丝粒,表中表示了由该正常染色体发生变异后基因顺序变化的情况。