全等三角形基础训练题(基础补习用)

合集下载

八年级数学—全等三角形判定一(SSS,SAS)(基础)巩固练习【名校试题+详细解答】

八年级数学—全等三角形判定一(SSS,SAS)(基础)巩固练习【名校试题+详细解答】

【巩固练习】一、选择题1. △ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( )A.△ABC ≌△'''A C BB. △ABC ≌△'''A B CC. △ABC ≌△'''C A BD. △ABC ≌△'''C B A2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. 下列判断正确的是( )A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC ⊥ACB.EC =ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC和△EFD中,AD=FC,AB=FE,当添加条件_______时,就可得△ABC≌△EFD(SSS)10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】B ;【解析】注意对应顶点写在相应的位置.2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】D ;4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】BC =ED ;10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】证明:在△ADC 与△BCD 中,,,,DC CD ADC BCD AD BC =⎧⎪∠=∠⎨⎪=⎩()...ADC BCD SAS ACD BDC OC OD ∠=∠=∴△≌△∴∴14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等;ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等;AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中D C BAAB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.。

最新人教版八年级数学上册第12章 全等三角形 基础训练题(合集)(含答案)

最新人教版八年级数学上册第12章 全等三角形 基础训练题(合集)(含答案)

最新人教版八年级数学上册基础训练题第十二章全等三角形12.1 全等三角形1.下列说法中,不正确的是()A.形状相同的两个图形是全等形B.大小不同的两个图形不是全等形C.形状、大小都相同的两个三角形是全等三角形D.能够完全重合的两个图形是全等形2.如图所示,△ABD△△BAC,B,C和A,D分别是对应顶点,如果AB=4 cm,BD=3 cm,AD=5 cm,那么BC的长是()A.5 cm B.4 cm C.3 cm D.无法确定3.如图所示,△ABC△△ADC,△ABC=70°,则△ADC的度数是()A.70° B.45° C.30° D.35°4.如图所示,若△ABC△△DBE,那么图中相等的角有()A.1对B.2对C.3对D.4对5.如图所示,若△ABC△△DEF,那么图中相等的线段有()A.1组B.2组C.3组D.4组6.(1)已知如图,△ABE△△ACD,△1=△2,△B=△C,指出其他的对应边和对应角.(2)由对应边找对应角,由对应角找对应边有什么规律?7.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC△△A′B′C′,则△A′B′C′中一定有一条边等于()A.7 cm B.2 cm或7 cm C.5 cm D.2 cm或5 cm8.下图所示是用七巧板拼成的一艘帆船,其中全等的三角形共有__________对.9.如图所示,△ADF△△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.10.下图是把4×4的正方形方格图形沿方格线分割成两个全等图形,请在下列三个4×4的正方形方格中,沿方格线分别画出三种不同的分法,把图形分割成两个全等图形。

11.如图,△ABC△△ADE,且△CAD=10°,△B=△D=25°,△EAB=120°,求△DFB和△DGB的度数.参考答案:1.A2.A3.A4.D5.D6.解:(1)AB与AC,AE与AD,BE与CD是对应边,△BAE与△CAD是对应角.(2)对应边所对的角是对应角,对应边所夹的角是对应角,对应角所对的边是对应边,对应角所夹的边是对应边.7.D8.29.解:AD与BC的关系是AD△BC.理由如下:因为△ADF△△CBE,所以△1=△2,△F=△E,点E,B,D,F在一条直线上,所以△3=△1+△F,△4=△2+△E,即△3=△4,所以AD△BC.10.解:如图.答案不唯一.11.解:△△ABC△△ADE,△11()(12010)5522DAE BAC EAB CAD∠=∠=∠-∠=︒-︒=︒.△△DFB=△FAB+△B=△FAC+△CAB+△B=10°+55°+25°=90°,△DGB=△DFB-△D=90°-25°=65°.第十二章全等三角形12.2 三角形全等的判定1.如图,在△ABC中,AB=AC,BE=CE,则直接利用“SSS”可判定() A.△ABD△△ACDB.△BDE△△CDEC.△ABE△△ACED.以上都不对2.如图,在△ABC和△DEF中,AB=DE,△B=△DEF,请你再补充一个条件,能直接运用“SAS”判定△ABC△△DEF,则这个条件是()A.△ACB=△DEFB.BE=CFC.AC=DFD.△A=△F3.如图,请看以下两个推理过程:△△△D=△B,△E=△C,DE=BC,△△ADE△△ABC(AAS);△△△DAE=△BAC,△E=△C,DE=BC,△△ADE△△ABC(AAS).则以下判断正确的(包括判定三角形全等的依据)是()A.△对△错B.△错△对C.△△都对D.△△都错4.如图是跷跷板的示意图,支柱OC与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,△OAC=20°,横板上下可转动的最大角(即△A′OA)是()A.80° B.60° C.40° D.20°5.如图,在△ABC中,D是BC边上的中点,△BDE=△CDF,请你添加一个条件,使DE=DF成立.你添加的条件是__________.(不再添加辅助线和字母)6.如图是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤DE,让其自然下垂,调整架身,使点A恰好在重锤线上,这时AD和BC的位置关系为__________.7.如图,AC△BD,垂足为点B,点E为BD上一点,BC=BE,△C=△AEB,AB=6 cm,则图中长度为6 cm的线段还有__________.8.如图,为了固定门框,木匠师傅把两根同样长的木条BE,CF两端分别固定在门框上,且AB=CD,则木条与门框围成的两个三角形(图中阴影部分)__________全等(填“一定”、“不一定”或“一定不”).9.如图,A,B,C三点在同一条直线上,△A=△C=90°,AB=CD,请添加一个适当的条件__________,使得△EAB△△BCD.10.在Rt△ABC中,△ACB=90°,BC=2 cm,CD△AB,在AC上取一点E,使EC=BC,过点E作EF△AC交CD的延长线于点F,若EF=5 cm,则AE=__________ cm.11.如图,D是△ABC的边AB上一点,E是AC的中点,过点C作CF△AB,交DE的延长线于点F.求证:AD=CF.12.如图,点F,B,E,C在同一直线上,并且BF=CE,△ABC=△DEF.能否由上面的已知条件证明△ABC△△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC△△DEF,并给出证明.提供的三个条件是:△AB=DE;△AC=DF;△AC△DF.13.如图,在△ABC中,AB=AC,DE是过点A的直线,BD△DE于点D,CE△DE于点E,AD=CE.(1)若BC在DE的同侧(如图△).求证:AB△AC.(2)若BC在DE的两侧(如图△),其他条件不变,(1)中的结论还成立吗?若成立,请予证明;若不成立请说明理由.参考答案 1-4 C 2.B 3.B 4.C5.AB =AC 或△B =△C 或△BED =△CFD 或△AED =△AFD. 6.垂直 7.BD 8.一定9.AE =CB(或EB =BD 或△EBD =90°或△E =△DBC 等) 10.311.证明:△E 是AC 的中点, △AE =CE. △CF△AB ,△△A =△ECF ,△ADE =△F. 在△ADE 与△CFE 中,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,△△ADE△△CFE(AAS). △AD =CF12.解:由前面的已知条件不能证明△ABC△△DEF.需要再添加条件△时: 证明: △BF =CE , △EF =BC ,△△ABC =△DEF ,AB =DE , △△ABC△△DEF(SAS). 添加条件△时,△AC△DF , △△ACB =△DFE , △△ABC△△DEF(ASA).13.(1)证明:△BD△DE ,CE△DE ,△△ADB =△CEA =90°,△BAD +△ABD =90° 在Rt△ADB 和Rt△CEA 中,AB AC AD EC =⎧⎨=⎩,,△Rt△ADB△Rt△CEA(HL) △△ABD =△CAE. △△BAD +△CAE =90°△△BAC =180°-(△BAD +△CAE)=90°, △AB△AC(2)解:仍有AB△AC 证明:△BD△DE ,CE△DE△△ADB =△CEA =90°,△BAD +△ABD =90° 在Rt△ADB 和Rt△CEA 中AB CA AD CE =⎧⎨=⎩,,△Rt△ADB△Rt△CEA(HL). △△ABD =△CAE. △△BAD +△CAE =90° △△BAC =90° △AB△AC.第十二章全等三角形12.3 角的平分线的性质1.作△AOB的平分线OC,合理的顺序是()△作射线OC;△以O为圆心,适当长为半径画弧,交OA于D,交OB于E;△分别以D,E为圆心,大于12DE的长为半径画弧,两弧在△AOB内交于点C.A.△△△ B.△△△ C.△△△ D.△△△2.三角形中到三边距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条内角平分线的交点3.如图,△1=△2,PD△OA,PE△OB,垂足分别为D,E,下列结论错误的是() A.PD=PEB.OD=OEC.△DPO=△EPOD.PD=OD4.如图,在△ABC中,△ACB=90°,BE平分△ABC,DE△AB于点D,如果AC=3 cm,那么AE+DE等于()A.2 cm B.3 cm C.4 cm D.5 cm5.△ABC中,△C=90°,点O为△ABC三条角平分线的交点,OD△BC于D,OE△AC 于E,OF△AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离为()A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5 cm6.如图所示,△AOB=60°,CD△OA于点D,CE△OB于点E,且CD=CE,则△DCO=__________.7.在△ABC中,△C=90°,AD平分△BAC交BC于D,若BC=32,且BD△CD=9△7,则D到AB的距离为__________.8.点O是△ABC内一点,且点O到三边的距离相等,△A=60°,则△BOC的度数为__________.9.如图,BN是△ABC的平分线,P在BN上,D,E分别在AB,BC上,△BDP+△BEP =180°,且△BDP,△BEP都不是直角.求证:PD=PE.10.如图,在△ABC中,△C=90°,AD平分△BAC,DE△AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB;(2)请你判断AE,AF与BE的大小关系,并说明理由.参考答案1.C2.D3.D4.B5.B6.60°7.148.120°9.证明:过点P 分别作PF△AB 于F ,PG△BC 于G , △BN 是△ABC 的平分线△PF =PG.又△△BDP +△BEP =180°,△PEG +△BEP =180°, △△BDP =△PEG.在△PFD 和△PGE 中,FDP GEP PFD PGE PF PG ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,△△PFD△△PGE(AAS),△PD =PE.10.(1)证明:△△C =90°△DC△AC△AD 平分△BAC ,DE△AB△DC =DE ,△DEB =△C =90°在Rt△DCF 与Rt△DEB 中,DF DB DC DE =⎧⎨=⎩,,△Rt△DCF△Rt△DEB(H L),△CF=EB.(2)解:AE=AF+BE.理由如下:△AD平分△BAC,△△CAD=△EAD,又△△C=△DEA=90°,△△ACD△△AED(AAS),△AC=AE,由(1)知BE=CF△AC=AF+CF=AF+BE,即A E=AF+BE.。

3.5全等三角形判定(基础题)

3.5全等三角形判定(基础题)

第一板块-认识三角形-三角形三线一、训练平台1.如图1所示,在△ABC中,∠BAC=80°,∠B=35°,AD平分∠BAC,则∠ADC的度数为()A.90° B.95° C.75° D.55°(1) (2) (3) (4)2.如图2所示,在△ABC中,∠ABC=40°,AD,CD•分别平分∠BAC,•∠ACB,•则∠ADC等于()A.110° B.100° C.190° D.120°3.如图3所示,D,E分别为△ABC的边AC,BC的中点,则下列说法中不正确的是()A.DE是△BDC的中线 B.图中∠C的对边是DE C.BD是△ABC的中线 D.AD=DC,BE=EC4.如图4所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()A.50° B.60° C.70° D.80°5.如图5所示,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,且CD,BE•交于一点P,若∠A=50°,则∠BPC的度数是()A.150° B.130° C.120° D.100°6.在如图6所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点(即正方形的格点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A.5个 B.4个 C.3个 D.2个(5) (6) (7)7.已知,如图7所示,在△ABC中,AD⊥BC于D,AE平分∠BAC,若∠B=28°,•∠DAE=16°,求∠C的度数.二、提高训练(9) (10) (11)1.如图9所示,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB的中线,•将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于_______.2.若一个三角形三条高线的交点在这个三角形的一个顶点上,•则这个三角形是__________三角形.3.如图10所示,△ABC中,BD=DE=EC,则AD,AE分别是________的中线.4.如图11所示,若∠ACB=90°,CD⊥AB于D,则AC边上的高是______,CD是____边上的高.5.已知△ABC中,AB=5cm,BC=8cm,若AD是BC边上的中线,则中线AD•的取值范围是________.第二板块-全等三角形1.重叠型(边):已知:如图,A、B、C、D在同一条直线上,AC=BD,AM=CN,BM=DN.求证:AM∥CN,BM∥DN。

全等三角形练习(基础证明题)

全等三角形练习(基础证明题)

全等三角形的判定训练1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。

2.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?3.已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?4.已知在四边形ABCD中,AB=CD,AD=CB,问AB∥CD吗?说明理由。

5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?6.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

AB CDFEA C DE FDCFEA BAB CADEB C1 2AD CEFB7.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?8.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。

9.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。

10.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。

11.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。

12.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

13.已知ED⊥AB,EF⊥BC,BD=EF,问BM=ME吗?说明理由。

ACDB1234A B C DE F1 2ACDB E FBA DFECMA BC D1 2DCFEA B14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。

16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。

18.已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。

A B C EH DACME F B D A B C E FD AB C ED F ADE AD E B C 1 23 419.已知AD⊥BC,BD=CD,问AB=AC吗?20.已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?21.已知AB=AC,∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。

专题12.23 三角形全等几何模型-“一线三直角”模型(专项练习)(基础篇)

专题12.23 三角形全等几何模型-“一线三直角”模型(专项练习)(基础篇)

C D E B A 专题12.23 三角形全等几何模型-“一线三直角”模型(专项练习)(基础篇)知识储备:1、模型一: 三垂直全等模型图一如图一,∠D=∠BCA=∠E=90°,BC=AC 。

结论:Rt △BDC ≌Rt △CEA2、拓展:模型二: 三等角全等模型图二如图二,∠D=∠BCA=∠E ,BC=AC 。

结论:△BEC ≌△CDA3、知识点补充:勾股定理0222=90.RT ABC C ∆∠如图三,在中,,三角形三边分边为a 、b 、c,则a +b =c图三一、单选题1.已知:如图所示,AC=CD ,∠B=∠E=90°,AC∠CD,则不正确的结论是( )A .∠1=∠2B .∠A=∠2C .∠ABC∠∠CED D .∠A 与∠D 互为余角2.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E ,2.5AD cm =, 1.7DE cm =,则BE 的长( ).A .0.8cmB .0.7cmC .0.6cmD .1cm3.如图,在等腰直角三角形ABC 中,90,8C AC ∠=︒=,F 为AB 边的中点,点D ,E 分别在,AC BC 边上运动,且保持AD CE =,连接,,DE DF EF .在此运动变化的过程中,下列结论:∠DEF 是等腰直角三角形;∠四边形CDFE 的面积保持不变;∠AD BE DE +>.其中正确的是( )A .∠∠∠B .∠C .∠D .∠∠二、填空题 4.如图,在等腰Rt∠ABC 中,∠C=90°,AC=7.点O 在BC 上,且CO=1,点M 是AC 上一动点,连接OM ,将线段OM 绕点O 逆时针旋转90°,得到线段OD ,要使点D 恰好落在AB 上,CM 的长度为__________.5.如图,90ACB ∠=︒,CA CB =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,3cm =AD ,1.8cm DE =,则BE =______cm .6.如图,()()4,0,0,6A B ,以B 点为直角顶点在第一象限作等腰直角ABC ∆,则C 点的坐标为_________7.如图,点A 在线段DE 上,AB ∠AC ,垂足为A ,且AB =AC ,BD ∠DE ,CE ∠DE ,垂足分别为D 、E ,若ED =12,BD =8,则CE 长为_____.8.如图,AC BC =,AE CD =,AE CE ⊥于点E ,BD CD ⊥于点D ,10AE =,4BD =,则DE 的长是_____.⊥于点F.若9.如图,直线a经过正方形ABCD的顶点A,已知BE a⊥于点E,DF aBE=,83DF=,则线段EF的长为______.10.如图,四边形ABCD中,∠ABC=∠ACD=90°,AC=CD,BC=4cm,则BCD的面积为_____cm2.11.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE∠DF,垂足为点O,∠AOD,则图中阴影部分的面积为_____.三、解答题12.如图:在∠ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF∠AE,垂足为F,过B作BD∠BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.13.如图1,在∠ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD∠MN于D,BE∠MN 于E.(1)说明∠ADC∠∠CEB;(2)说明AD+BE=DE;(3)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以说明.14.如图,已知A、B、D在同一条直线上,∠A=∠D=90°,AC=BD,∠1=∠2.求证:∠CBE 是等腰直角三角形.15.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD∠MN于点D,BE∠MN 于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.16.课间,小明拿着老师的等腰三角板玩,不小心掉在两墙之间,如图所示:(1)求证:∠ADC∠∠CEB;(2)已知DE=35cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相同)17.如图,在∠ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.18.如图,已知在CDE ∆中,12∠=∠,直线AB 经过点E ,DA AB ⊥,CB AB ⊥,垂足分别为A 、B ,AD BE =,求证:AE BC =.19.如图1.∠ABC 中,AG∠BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向∠ABC 作等腰Rt∠ABE 和等腰Rt∠ACF ,过点E ,F 作射线GA 的垂线,垂足分别为P ,Q .(1)求证:∠EPA∠∠AGB :(2)试探究EP 与FQ 之间的数量关系,并证明你的结论;(3)如图2.若连接EF 交GA 的延长线于H ,由(2)中的结论你能判断EH 与FH 的大小关系吗?并说明理由:(4)在(3)的条件下,若BC =10,AG =12.请直接写出S ∠AEF = .20.如图所示,90,C BE BA ∠=⊥,且,BE BA BD BC =⊥,延长CB 交DE 于点F ,且DF EF =.求证:2AC BF =.21.已知:在直角坐标系中,点()0,3B -,点()1,0C ,点A 在第二象限,,AC BC AC BC =⊥,求点A 的坐标.22.如图,已知:,,,,那么AC 与CE 有什么关系?写出你的猜想并说明理由.参考答案1.A【分析】由题意易得∠ACD=90°,则有∠1+∠2=90°,进而可证三角形全等,然后可排除选项.【详解】解:∠AC∠CD,∠∠ACD=90°,∠∠1+∠2=90°,∠∠B=∠E=90°,∠∠2+∠D=90°,∠∠1=∠D,∠AC=CD,∠∠ABC∠∠CED(AAS),故C正确,∠∠A=∠2,故B正确,∠∠A+∠D=90°,故D正确,∠A选项错误;故选A.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2.A【分析】证∠CEB和∠ADC全等,得到BE和CD相等,CE和AD相等,即可得到结论;【详解】解:∠BE∠CE,AD∠CE,∠∠E=∠ADC=90°,∠∠EBC+∠BCE=90°,∠∠BCE+∠ACD=90°,∠∠EBC=∠DCA,在∠CEB和∠ADC中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠CEB∠∠ADC∠BE=DC ,CE=AD∠AD=2.5cm ,DE=1.7cm ,∠CE=1.7cm ,∠DC=CE -DE=0.8cm ,∠BE=0.8cm ;故选:A .【点睛】本题考查垂直性质的运用,直角三角形的性质的运用,全等三角形的性质和判定,证明三角形全等是解题的关键.3.A【分析】连接CF ,利用SAS 可证ADF CEF ≌,从而得出,=∠=∠DF FE AFD CFE ,从而求出90EFD ∠=︒,即可判断∠;根据全等三角形的性质可得=ADF CEF SS ,从而得出四边形CDFE 的面积为12ABC S ,从而判断∠;延长DF 到G 使FG DF =,连接,EG BG ,证出AD BG =和DE EG =,最后根据三角形的三边关系即可判断∠.【详解】解:如图,连接CF .∠AC BC =,F 为AB 的中点,∠CF AB ⊥,12∠=∠=ACF BCF ACB . ∠90ACB ∠=︒,∠45∠=∠=∠=︒A ACF BCF ,∠CF AF =.又∠AD CE =,∠ADF CEF ≌.∠,=∠=∠DF FE AFD CFE ,∠90AFD CFD ∠+∠=︒,∠90∠+∠=︒CFE CFD ,∠90EFD ∠=︒,∠DEF 是等腰直角三角形.∠正确.∠ADF CEF ≌,∠=ADF CEF S S ,∠四边形CDFE 的面积为12+=+==CDF CEF CDF MDF AFC ABC SS S S S S . ∠11883222=⨯=⨯⨯=ABC S AC BC , ∠四边形CDFE 的面积为16,为定值.∠正确.延长DF 到G 使FG DF =,连接,EG BG .∠AF BF =,∠=∠AFD BFG ,DF FG =,∠ADF BCF ≌△△,∠AD BG =.∠90EFD ∠=︒,∠EF DF ⊥,∠DE EG =.在EBG 中,∠+>BG BE EG ,∠AD BE DE +>.∠正确.∠∠∠均正确,故选A .【点睛】此题考查的是全等三角形的判定及性质、等腰直角三角形的判定和三角形的三边关系,掌握构造全等三角形的方法是解决的关键.4.5【分析】如图,作辅助线;首先证明DOE OMC ∆≅∆,得到OC DE =,CM OE =;其次证明BE DE =,求出OE ,即可解决问题.【详解】解:如图,过点D 作DE OB ⊥于点E ;DEO DOM C ∠=∠=∠,DOE COM COM CMO ∴∠+∠=∠+∠,DOE OMC ∴∠=∠;由题意得:OD OM =;在DOE ∆与OMC ∆中,DOE OMC DEO OCM OD OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DOE OMC AAS ∴∆≅∆,1DE OC ∴==,CM OE =;ABC ∆为等腰直角三角形,45B ∴∠=︒,45BDE ∠=︒,1BE DE ∴==,7115OE =--=,5CM OE ∴==,故答案为5.【点睛】本题主要考查了旋转变换的性质、等腰直角三角形的性质、全等三角形的判定等几何知识点及其应用问题;解题的方法是作辅助线,构造全等三角形;解题的关键是灵活运用旋转变换的性质等几何知识点来分析、判断、推理或解答.5.1.2【分析】先根据等角的余角相等得出∠EBC =∠DCA ,再根据AAS 证明∠CEB ∠∠ADC ,然后利用全等三角形的性质并结合已知数据即可求得结果.【详解】解∠BE ∠CE ,AD ∠CE ,∠∠E =∠ADC =90°,∠∠EBC +∠BCE =90°.∠∠BCE +∠ACD =90°,∠∠EBC =∠DCA .在∠CEB 和∠ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠CEB ∠∠ADC (AAS),∠BE=DC ,CE=AD =3cm∠DC=CE −DE ,DE =1.8cm ,∠DC =3-1.8=1.2cm ,∠BE =1.2cm故答案为:1.2cm【点睛】本题考查了全等三角形的判定和性质,属于常考题型,难度不大,熟练掌握三角形全等的判定和方法是关键.6.()6,10【分析】过点C 作CD∠y 轴于点D ,由∠ABC 为等腰直角三角形即可得出∠ABC =90°、AB =BC ,通过角的计算即可得出∠ABO =∠BCD ,再结合∠CDB =∠BOA =90°即可利用AAS 证出∠ABO∠∠BCD ,由此即可得出BD 、CD 的长度,进而可得出点C 的坐标.【详解】解:过点C 作CD∠y 轴于点D ,如图所示.∠∠ABC 为等腰直角三角形,∠∠ABC =90°,AB =BC .∠CD∠BD ,BO∠AO ,∠∠CDB =∠BOA =90°.∠∠CBD+∠ABO =90°,∠CBD+∠BCD =90°,∠∠ABO =∠BCD .在∠ABO 和∠BCD 中,==90ABO BCD BOA CDB AB BC ∠=∠⎧⎪∠∠︒⎨⎪=⎩,∠∠ABO∠∠BCD (AAS ),∠BD =AO ,CD =BO ,∠A (4,0),B (0,6),∠BD =4,CD =6,∠点C 的坐标为()6,10,故答案为:()6,10.【点睛】本题结合等腰直角三角形和坐标点综合考查,关键在于辅助线的作法,过C 点作垂直于x 轴的垂线还是垂直于y 轴的垂线是解题关键.7.4【分析】根据已知条件及互余关系可证∠ABD ∠∠CAE ,得出BD =AE =8,AD =CE ,求出AD =4,即可得出答案.【详解】解:∠BD ∠DE ,CE ∠DE ,∠∠D =∠E =90°,∠ABD +∠BAD =90°,∠AB ∠AC ,∠∠BAD +∠EAC =90°,∠∠ABD =∠EAC ,在∠ABD和∠CAE中,D EAB CAABD EAC∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠ABD∠∠CAE(ASA),∠BD=AE=8,AD=CE,∠AD=ED﹣AE=12﹣8=4,∠CE=4故答案为:4.【点睛】本题考查了全等三角形的判定与性质、等角的余角相等.找到证明三角形全等的条件,证明三角形全等是解题的关键.8.6【分析】根据垂直的定义得到∠AEC=∠D=90°,根据全等三角形的性质即可得到结论.【详解】解:∠AE∠CE于点E,BD∠CD于点D,∠∠AEC=∠D=90°,在Rt∠AEC与Rt∠CDB中AC BC AE CD ⎧⎨⎩==,∠Rt∠AEC∠Rt∠CDB(HL),∠CE=BD=4,CD=AE=10,∠DE=CD−CE=10−4=6,故答案为:6.【点睛】本题考查了全等三角形的判定与性质,解答本题的关键是根据已知条件判定三角形的全等.9.11【分析】根据题意易得∠AEB∠∠DFA,则有BE=AF,DF=AE,进而问题可得解.【详解】解:∠四边形ABCD是正方形,∠AD=AB,∠DAB=90°,∠BE a ⊥,DF a ⊥,∠∠DFA=∠AEB=90°,∠∠FAD+∠ADF=90°,又∠∠FAD+∠BAE=90°,∠∠ADF=∠BAE ,∠∠AEB∠∠DFA ,∠3BE =,8DF =,∠BE=AF=3,DF=AE=8,∠EF=AF+AE=3+8=11;故答案为11.【点睛】本题主要考查全等三角形的判定与性质及正方形的性质,熟练掌握全等三角形的判定与性质及正方形的性质是解题的关键.10.8.【分析】作DH ∠BC ,证明ABC CHD ≌,根据全等三角形的性质得到DH =BC =4,根据三角形的面积公式计算,得到答案.【详解】解:过点D 作DH ∠BC ,交BC 的延长线于点H ,∠∠ABC =90°,∠∠BAC +∠ACB =90°,∠∠ACD =90°,∠∠HCD +∠ACB =90°,∠∠BAC =∠HCD ,在∠ABC 和∠CHD 中,BAC HCD ABC CHD AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC CHD ≌(AAS ),∠DH =BC =4,∠BCD 的面积=1144822BC DH =⨯⨯=(cm 2), 故答案为:8.【点睛】本题考查的是直角三角形的两锐角互余,三角形全等的判定与性质,三角形面积的计算,掌握以上知识是解题的关键.11【分析】先证得∠ADF ≅∠BAE ,再利用等量代换即可求得阴影部分的面积等于∠AOD 的面积.【详解】正方形ABCD 中,∠DAF=∠ABE=90︒,AD=AB ,∠AE∠DF ,∠∠DOA=∠DAF =90︒,∠∠DAO+∠ADF =∠DAO +∠FAO =90︒,∠∠ADF =∠FAO ,在∠ADF 和∠BAE 中, ADF FAO AD ABDAF ABE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ADF ≅∠BAE ,∠ADF BAE SS =, ∠ADF AOF BAE AOF S SS S -=-, ∠AOF SS ==阴影.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证得阴影部分的面积等于∠AOD 的面积是解题的关键.12.(1)见解析;(2)6【分析】(1)根据DB∠BC ,CF∠AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明∠DBC∠∠ECA ,即可得证;(2) 由(1)可得∠DBC∠∠ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案. 【详解】证明:(1)证明:∠DB∠BC ,CF∠AE ,∠∠DCB +∠D =∠DCB +∠AEC =90°.∠∠D =∠AEC .又∠∠DBC =∠ECA =90°,且BC =CA , 在∠DBC 和∠ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∠∠DBC∠∠ECA (AAS ).∠AE =CD ;(2) 由(1)可得∠DBC∠∠ECA∠CE=BD ,∠BC=AC=12cm AE 是BC 的中线, ∠162CE BC cm ==, ∠BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明∠DBC∠∠ECA 解题关键.13.(1)见详解;(2)见详解;(3)DE+BE=AD ,理由见详解【分析】(1)由题意易得∠ADC=∠CEB=90°,∠BCE=∠CAD ,进而问题可得证;(2)由(1)可得AD=CE ,BE=CD ,进而根据线段的数量关系可求证;(3)由题意易证∠ADC∠∠CEB,则有AD=CE,BE=CD,进而问题可求解.【详解】解:(1)∠AD∠MN,BE∠MN,∠∠ADC=∠CEB=90°,∠∠ACB=90°,∠∠DCA+∠BCE=90°,∠∠DCA+∠CAD=90°,∠∠BCE=∠CAD,∠AC=CB,∠∠BCE∠∠CAD(AAS);(2)由(1)得:∠BCE∠∠CAD,∠AD=CE,BE=CD,∠DE=DC+CE,∠DE=AD+BE;(3)AD=DE+BE,理由如下:∠AD∠MN,BE∠MN,∠∠ADC=∠CEB=90°,∠∠ACB=90°,∠∠DCA+∠BCE=90°,∠∠DCA+∠CAD=90°,∠∠BCE=∠CAD,∠AC=CB,∠∠BCE∠∠CAD(AAS),∠DC=BE,AD=CE,∠CE=CD+DE,∠AD=DE+BE.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的两个锐角互余,数量掌握全等三角形的性质与判定及直角三角形的两个锐角互余是解题的关键.14.见解析【分析】由题意易证∠ABC∠∠DEB ,则有BC=BE ,∠EBD=∠BCA ,进而问题可证.【详解】证明: 在∠ABC 和∠DEB 中,12A D AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABC∠∠DEB (AAS ),∠BC=EB ,∠∠1=∠2,∠2+∠DBE=90°,∠∠1+∠DBE=90°,∠∠CBE=180°﹣(∠1+∠DBE )=90°,∠∠BCE 是等腰直角三角形.【点睛】本题主要考查全等三角形的性质与判定、直角三角形的性质及等腰直角三角形的判定,熟练掌握全等三角形的性质与判定、直角三角形的性质及等腰直角三角形的判定是解题的关键.15.(1)见解析;(2)见解析;(3)DE =BE ﹣AD【分析】(1)由题意易得∠DAC+∠ACD =90°,则∠DAC =∠BCE ,进而可证∠ADC∠∠CEB ,然后根据全等三角形的性质可求解;(2)由题意易得∠CEB=∠ADC=90°,则可求∠CAD=∠BCE ,进而可证∠CAD∠∠BCE ,然后根据全等三角形的性质可求解;(3)根据题意可证∠CAD∠∠BCE ,然后根据全等三角形的性质可求解.【详解】(1)证明:∠AD∠MN ,BE∠MN ,∠∠ADC =∠CEB =90°,∠∠DAC+∠ACD =90°,∠∠ACB =90°,∠∠BCE+∠ACD =90°,∠∠DAC =∠BCE ,在∠ADC 和∠CEB ,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ADC∠∠CEB (AAS ),∠CD =BE ,AD =CE ,∠DE =CE+CD =AD+BE ;(2)证明:∠AD∠MN ,BE∠MN ,∠∠ADC =∠CEB =90°,∠∠DAC+∠ACD =90°,∠∠ACB =90°,∠∠BCE+∠ACD =90°,∠∠DAC =∠BCE ,∠AC=BC ,∠∠ADC∠∠CEB ,∠CD =BE ,AD =CE ,∠DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∠AD∠MN ,BE∠MN ,∠∠ADC =∠CEB =90°,∠∠DAC+∠ACD =90°,∠∠ACB =90°,∠∠BCE+∠ACD =90°,∠∠DAC =∠BCE ,∠AC=BC ,∠∠ADC∠∠CEB ,∠CD =BE ,AD =CE ,∠DE =BE ﹣AD .【点睛】本题主要考查全等三角形的性质与判定及直角三角形的两个锐角互余,熟练掌握全等三角形的性质与判定及直角三角形的两个锐角互余是解题的关键.16.(1)见详解;(2)砌墙砖块的厚度a 为5cm .【分析】(1)根据题意可得AC =BC ,∠ACB =90°,AD∠DE ,BE∠DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明∠ADC∠∠CEB 即可. (2)利用(1)中全等三角形的性质进行解答.【详解】(1)证明:由题意得:AC =BC ,∠ACB =90°,AD∠DE ,BE∠DE ,∠∠ADC =∠CEB =90°,∠∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∠∠BCE =∠DAC ,在∠ADC 和∠CEB 中ADC CEB DAC BCE AC BC ∠∠∠∠⎧⎪⎨⎪⎩===,∠∠ADC∠∠CEB (AAS );(2)解:由题意得:∠一块墙砖的厚度为a ,∠AD =4a ,BE =3a ,由(1)得:∠ADC∠∠CEB ,∠DC =BE =3a ,AD =CE =4a ,∠DC +CE =BE +AD =7a =35,∠a =5,答:砌墙砖块的厚度a 为5cm .【点睛】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件. 17.见解析【分析】根据题意易得Rt∠ACE∠Rt∠CBF ,则有∠EAC =∠BCF ,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt∠ACE 和Rt∠CBF 中,AC BC AE CF =⎧⎨=⎩, ∠Rt∠ACE∠Rt∠CBF (HL ),∠∠EAC =∠BCF ,∠∠EAC+∠ACE =90°,∠∠ACE+∠BCF =90°,∠∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.18.见解析【分析】根据HL 证明Rt∠DAE∠Rt∠EBC 即可求解.【详解】解:(1)证明:∠ DA∠AB ,CB∠AB ,∠ ∠A =∠B =90°又∠∠1=∠2∠DE =CE在Rt∠DAE 和Rt∠EBC 中,AE CE AD BE=⎧⎨=⎩ ∠Rt∠DAE∠Rt∠EBC (HL )∠AE =BC .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.19.(1)证明见解析;(2)结论:EP =FQ ,证明见解析;(3)结论:EH =FH ,理由见解析;(4)60.【分析】(1)根据等腰Rt∠ABE 的性质,求出∠EPA =∠EAB =∠AGB =90°,∠PEA =∠BAG ,根据AAS 推出∠EPA∠∠AGB .(2)根据全等三角形的性质推出EP =AG ,同理可得∠FQA∠∠AGC ,即可得出AG =FQ ,最后等量代换即可得出答案.(3)求出∠EPH =∠FQH =90°,根据AAS 推出∠EPH∠∠FQH ,即可得出EH 与FH 的大小关系.(4)根据全等三角形∠EPH∠∠FQH ,∠EPA∠∠AGB ,∠FQA∠∠AGC ,推出S ∠FQA =S ∠AGC ,S ∠FQH =S ∠EPH ,S ∠EPA =S ∠AGB ,即可求出S ∠AEF =S ∠ABC ,根据三角形面积公式求出即可.【详解】解:(1)如图1,∠∠EAB =90°,EP∠AG ,AG∠BC ,∠∠EPA =∠EAB =∠AGB =90°,∠∠PEA+∠EAP =90°,∠EAP+∠BAG =90°,∠∠PEA =∠BAG ,在∠EPA 和∠AGB 中,EPA BGA PEA BAG AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠EPA∠∠AGB (AAS ),(2)结论:EP =FQ ,证明:由(1)可得,∠EPA∠∠AGB ,∠EP =AG ,如图1,∠∠FAC =90°,FQ∠AG ,AG∠BC ,∠∠FQA =∠FAC =∠CGA =90°,∠∠FAQ+∠AFQ =90°,∠FAQ+∠GAC =90°,∠∠AFQ =∠GAC ,在∠QFA 和∠GAC 中,FQA CGA FAQ CAG AF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠QFA∠∠GAC (AAS ),∠AG =FQ ,∠EP =FQ ;(3)结论:EH =FH ,理由:如图,∠EP∠AG ,FQ∠AG ,∠∠EPH =∠FQH =90°,在∠EPH 和∠FQH 中,EHP FHQ EPH FQH EP FQ ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠EPH∠∠FQH (AAS ),∠EH =FH .(4))∠∠EPH∠∠FQH ,∠EPA∠∠AGB ,∠FQA∠∠AGC ,∠S ∠FQA =S ∠AGC ,S ∠FQH =S ∠EPH ,S ∠EPA =S ∠AGB ,∠S ∠AEF =S ∠EPA +S ∠FQA=S ∠AGB +S ∠AGC=S ∠ABC =12×BC×AG =12×10×12 =60故答案为:60.【点睛】本题属于三角形综合题,主要考查了全等三角形的性质和判定以及等腰直角三角形的性质的综合应用,解题时注意:全等三角形的对应边相等,对应角相等.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.20.详见解析【解析】【分析】延长BF 至G ,使FG BF =,连结EG ,得BFD GFE ∆∆≌,90DBF G ∠=∠=︒,BF=GF,再证ABC BEG ∆∆≌,得2AC BG BF ==.【详解】证明:延长BF 至G ,使FG BF =,连结EG ,在∠BDF 和∠GEF 中,BF=GF BFD=GFE DF=EF ⎧⎪∠∠⎨⎪⎩,∠BDF GEF ∆∆≌ ,∠90DBF G ∠=∠=︒,BF=GF ,∠BG=2BF ,∠BE∠BA ,∠∠C=∠G=90°,∠A=∠EBG ,在∠ABC 和∠BEG 中,C=G A=EBG AB=BE ∠∠⎧⎪∠∠⎨⎪⎩,∠ABC BEG ∆∆≌,∠AC=BG=2BF.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定与性质定理是解题的关键.21.点A 的坐标为()2,1-【解析】【分析】过点A 作AE x ⊥轴于点E ,先证出ACE CBO ∆∆≌,则CE=BO=3,1AE OC ==,根据点A 在第二象限即可得点A 的坐标.【详解】解:过点A 作AE x ⊥轴于点E ,∠在直角坐标系中,点()0,3B -,点()1,0C ,∠BO=3,OC=1,OC∠OB∠,AC BC AC BC =⊥∠OBC ECA ∠=∠ ,BOC CEA ∠=∠∠ACE CBO ∆∆≌,CE BO ∴==3,1AE OC ==,∠点A 在第二象限,∴点A 的坐标为()2,1-.故答案为点A 的坐标为()2,1-.【点睛】本题考查坐标与图形,全等三角形的判定与性质,解题的关键是通过作辅助线构建全等三角形,要注意第二象限点的坐标符号是(-,+).22.见解析【详解】通过证明两个三角形全等,可以证明两条对应线段相等.。

2022-2023学年八年级数学 全等三角形 暑假基础训练(含答案)

2022-2023学年八年级数学 全等三角形 暑假基础训练(含答案)

全等三角形一、选择题(本大题共10道小题)1. 如图,AB=DE,AC=DF,BC=EF,则∠D的度数为( )A.30°B.50°C.60°D.100°2. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件( )A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠43. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是( )A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去( )A.只带①B.只带②C.只带③D.带①和②5. 如图,若△ABC≌△DEF,且BE=5,CF=2,则BF的长为( )A.2 B.3C.1.5 D.56. 在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件不能判定Rt △ABC≌Rt△DEF的是( )A.AC=DF,∠B=∠E B.∠A=∠D,∠B=∠EC.AB=DE,AC=DF D.AB=DE,∠A=∠D7. 根据下列条件,能画出唯一的△ABC的是( )A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°8. 如图,AB =AC ,AD =AE ,BE =CD ,∠2=110°,∠BAE =60°,则下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠C =30°D .∠1=70°9. 如图,点A ,E ,B ,F 在同一直线上,在△ABC 和△FED 中,AC =FD ,BC =ED ,当利用“SSS ”来判定△ABC 和△FED 全等时,下面的4个条件中:①AE =FB ;②AB =FE ;③AE =BE ;④BF =BE ,可利用的是( )A .①或②B .②或③C .①或③D .①或④10. 如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D.若CD=4,AB=16,则△ABD的面积是( )A.14 B.32 C.42 D.56二、填空题(本大题共5道小题)11. 如图,已知AD=BC,AB=CD,若∠C=40°,则∠A=________°.12. 如图,PA⊥ON于点A,PB⊥OM于点B,且PA=PB.若∠MON =50°,∠OPC=30°,则∠PCA的大小为________.13. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD 与△ACD的面积之比是________.14. 如图,若AB=AC,BD=CD,∠A=80°,∠BDC=120°,则∠B =________°.15. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.三、解答题(本大题共4道小题)16. 如图,△ABC≌△EBD,则∠1与∠2相等吗?若相等,请证明;若不相等,请说明理由.17. 如图所示,AB=EA,AB∥DE,∠ECB=70°,∠D=110°.求证:△ABC≌△EAD.18. 如图,点E,F在AC上,DF=BE,AE=CF,∠AFD=∠CEB.求证:AD∥CB.19. 如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M,N.求证:PM=PN.独家原创2020-2021学年八年级数学上册第十二章全等三角形暑假基础训练-答案一、选择题(本大题共10道小题)1. 【答案】D [解析] 在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF.∴∠A =∠D.∵∠A =180°-∠B -∠C =100°,∴∠D =100°.2. 【答案】C [解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).3. 【答案】A4. 【答案】C [解析] 由“ASA ”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】C [解析] ∵△ABC ≌△DEF ,∴BC =EF. ∵BF =BC -CF ,CE =EF -CF ,∴BF =CE.∵BE =5,CF =2,∴BF +CE =BE -CF =3.∴BF =1.5.6. 【答案】B [解析] 选项A ,D 均可由“AAS ”判定Rt △ABC ≌Rt △DEF ,选项C 可由“HL ”判定Rt △ABC ≌Rt △DEF ,只有选项B 不能判定Rt △ABC ≌Rt △DEF.7. 【答案】C [解析] 对于选项A 来说,AB +BC<AC ,不能画出△ABC ;对于选项B 来说,可画出△ABC 为锐角三角形或者钝角三角形;对于选项C 来说,已知两边及其夹角,△ABC 是唯一的;对于选项D 来说,△ABC 的形状可确定,但大小不确定.8. 【答案】C [解析] ∵BE =CD , ∴BE -DE =CD -DE ,即BD =CE. 在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,BD =CE ,AD =AE , ∴△ABD ≌△ACE.由题意易证:△ABE ≌△ACD ,故A ,B 正确. 由△ABE ≌△ACD 可得∠B =∠C. ∵∠2=∠BAE +∠B ,∴∠B =∠2-∠BAE =110°-60°=50°. ∴∠C =∠B =50°. 故C 错误.∵△ABE ≌△ACD(已证),∴∠1=∠AED =180°-∠2=70°. 故D 正确.故选C.9. 【答案】A [解析] 由题意可得,要用“SSS ”判定△ABC 和△FED 全等,需要AB =FE ,若添加①AE =FB ,则可得AE +BE =FB +BE ,即AB =FE ,故①可以;若添加AB =FE ,则可直接用“SSS ”证明两三角形全等,故②可以;而③④都不可以.10. 【答案】B [解析] 如图,过点D 作DH ⊥AB 于点H. 由作法得AP 平分∠BAC.∵DC ⊥AC ,DH ⊥AB ,∴DH =DC =4. ∴S △ABD =12×16×4=32.二、填空题(本大题共5道小题) 11. 【答案】40 [解析] 如图,连接DB.在△ADB 和△CBD 中, ⎩⎪⎨⎪⎧AD =CB ,AB =CD ,DB =BD ,∴△ADB ≌△CBD(SSS). ∴∠A =∠C =40°.12. 【答案】55° [解析] ∵PA ⊥ON ,PB ⊥OM , ∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎨⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL). ∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.13. 【答案】4∶3 【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE =DF =h ,则S △ABD S △ACD=12AB ·h12AC ·h =43.14. 【答案】20 [解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△BAD ≌△CAD(SSS).∴∠BAD =∠CAD ,∠B =∠C.∵∠BDF =∠B +∠BAD ,∠CDF =∠C +∠CAD ,∴∠BDF +∠CDF =∠B +∠BAD +∠C +∠CAD ,即∠BDC =∠B +∠C +∠BAC.∵∠BAC =80°,∠BDC =120°,∴∠B =∠C =20°.15. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°.分两种情况:①当AP =BC =5时,在Rt △ABC 和Rt △QPA 中,⎩⎨⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL);②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎨⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.三、解答题(本大题共4道小题)16. 【答案】解:∠1=∠2.证明:∵△ABC ≌△EBD ,∴∠A =∠E.在△AOF 中,∠1=180°-∠A -∠AOF ,在△EOB 中,∠2=180°-∠E -∠BOE. 又∵∠AOF =∠BOE(对顶角相等), ∴∠1=∠2.17. 【答案】证明:由∠ECB =70°得∠ACB =110°. 又∵∠D =110°,∴∠ACB =∠D.∵AB ∥DE ,∴∠CAB =∠E.在△ABC 和△EAD 中,⎩⎪⎨⎪⎧∠ACB =∠D ,∠CAB =∠E ,AB =EA ,∴△ABC ≌△EAD(AAS).18. 【答案】证明:∵AE =CF ,∴AE -EF =CF -EF ,即AF =CE.在△ADF 和△CBE 中,⎩⎪⎨⎪⎧DF =BE ,∠AFD =∠CEB ,AF =CE ,∴△ADF ≌△CBE(SAS).∴∠A =∠C.∴AD ∥CB.19. 【答案】证明:∵BD 是∠ABC 的平分线, ∴∠ABD =∠CBD.在△ABD 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(SAS).∴∠ADB =∠CDB.∵点P 在BD 上,PM ⊥AD ,PN ⊥CD , ∴PM =PN.。

《常考题》初中八年级数学上册第十二章《全等三角形》基础练习(含答案解析)

《常考题》初中八年级数学上册第十二章《全等三角形》基础练习(含答案解析)

一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .64B解析:B【分析】 过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.2.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.3.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4C解析:C【分析】 过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质得:OE =OF =OD 然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.4.如图,AB是线段CD的垂直平分线,则图中全等三角形的对数有()A.2对B.3对C.4对D.5对B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD,BC=BD,OC=OD,然后根据”HL”可判断Rt△AOC≌Rt△AOD,Rt△BOC≌Rt△BOD;根据“SSS”可判断△ABC≌△ABD.【详解】解:∵AB是线段CD的垂直平分线,∴AC=AD,BC=BD,OC=OD,∴Rt△AOC≌Rt△AOD(HL),Rt△BOC≌Rt△BOD(HL),△ABC≌△ABD(SSS).故选:B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对C解析:C【分析】 根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.6.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm C解析:C【分析】 延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C . 【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .7.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A.4:3B.16:9C.3:4D.9:16A解析:A【分析】过点D作DE垂直于AB,DF垂直于AC,由AD为角BAC的平分线,根据角平分线定理得到DE=DF,再根据三角形的面积公式表示出△ABD与△ACD的面积之比,把DE=DF以及AB:AC的比值代入即可求出面积之比.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=4:3,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=4:3.故选:A.【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题.8.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG=⎧⎨=⎩ ∴ △BEG ≌△BEF ,∴BG=BF , 在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键; 9.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】 先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.10.如图所示,已知∠A=∠C,∠AFD=∠CEB,那么给出的条件不能得到△≌△是()ADF CBEA.∠B=∠D B.EB=DF C.AD=BC D.AE=CF A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS、SAS、AAS、ASA;【详解】A∵∠A=∠C,∠AFD=∠CEB,∠B=∠D,三个角相等,不能判定三角形全等,该选项不符合题意;B∵∠A=∠C,∠AFD=∠CEB,EB=DF,符合AAS的判定,该选项符合题意;C∵∠A=∠C,∠AFD=∠CEB,AD=BC,符合AAS的判定,该选项符合题意;D∵∠A=∠C,∠AFD=∠CEB,AE=CF,∴AF=CE,符合ASA的判定,该选项符合题意;故选:A.【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;二、填空题11.如图,△ABC≌△DEF,由图中提供的信息,可得∠D=__________°.【分析】先根据三角形的内角和定理求出∠A的度数再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=∴∠A=-∠B-∠C=∵△ABC≌△DEF∴∠D=∠A=故答案为:【点睛】此题考查全等三角解析:70【分析】先根据三角形的内角和定理求出∠A的度数,再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=180︒,∴∠A=180︒-∠B-∠C=180506070︒-︒-︒=︒,∵△ABC ≌△DEF ,∴∠D=∠A=70︒,故答案为:70︒【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,对应边相等,以及三角形的内角和定理.12.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中, A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.13.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .(1)(2)(3)(4)【分析】在△ABC 中AB=ACAD 是△ABC 的平分线可知直线AD 为△ABC 的对称轴再根据图形的对称性逐一判断【详解】解:(1)∵在中是的角平分线∴∵∴∴∴平分故(1)正确;(解析:(1)(2)(3)(4)【分析】在△ABC 中,AB=AC ,AD 是△ABC 的平分线,可知直线AD 为△ABC 的对称轴,再根据图形的对称性,逐一判断.【详解】解:(1)∵在ABC 中,AB AC =,AD 是ABC 的角平分线,∴BAD CAD ∠=∠.∵DE AB ⊥,DF AC ⊥,∴ADE 90BAD ∠∠=︒-,ADF 90CAD ∠∠=︒-,∴ADE ADF ∠∠=, ∴DA 平分EDF ∠,故(1)正确;(2)由(1)可知,ADE ADF ∠∠=,在AED 和AFD 中,EAD FAD,AD AD,ADE ADF,∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AED AFD ASA ≅,∴AE AF =,DE DF =,故(2)正确;(3)在AD 上取一点M ,连结BM ,CM .在ABM 和ACM 中,AB AC BAD CAD AM AM =⎧⎪∠=∠⎨⎪=⎩∴()ABM ACM SAS ≅,∴BM CM =,故(3)正确;(4)在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴()ABD ACD SAS ≅.∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°在ADE 和ADF 中,AED=AFD BAD CAD AD AD ∠∠⎧⎪∠=∠⎨⎪=⎩∴()ADE ADF AAS ≅. ∵ABD ACD ≅∴∠ABC=∠ACB ,BD=CD ,∵DE AB ⊥,DF AC ⊥,∴∠BED=∠CFD在BED 和CFD △中,EBD FCD BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED CFD AAS ≅,∴图中共有3对全等三角形,故(4)正确.故答案为:(1)(2)(3)(4).【点睛】本题考查了等腰三角形的性质,利用三角形全等是正确解答本题的关键.14.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;15.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SASASAAASSSS )即可得出答案【详解】解:添加条件:AB =AC 在△ABE 和△ACD 中∴△ABE ≌△A解析:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )即可得出答案.【详解】解:添加条件:AB =AC ,在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS );添加条件:∠B =∠C ,在△ABE 和△ACD 中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );添加条件:∠AEB =∠ADC ,在△ABE 和△ACD 中,AEB ADC AE ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ACD (ASA );故答案为:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB ⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.18.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).AB=DC (答案不唯一)【分析】因为和公共边BC根据全等证明方法即可求得【详解】当AB=DC 时根据全等证明方法SAS 可证故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件掌握五种解析:AB=DC (答案不唯一)【分析】因为ABC DCB ∠=∠和公共边BC ,根据全等证明方法即可求得.【详解】当AB=DC 时根据全等证明方法SAS 可证ACB DBC ≌故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件,掌握五种全等证明方法是解题的关键.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .解析:见解析.【分析】根据//AB DE 可知B DEF ∠=∠,又根据∠A=∠D ,BE=CF 可以判定ABC DEF △≌△,即可求证//AC DF ;【详解】∵//AB DE ,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△,∴ACB F ∠=∠,∴//AC DF .【点睛】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出ABC DEF △≌△,注意全等三角形的对应边相等;22.如图,已知点D ,E 分别在等边三角形ABC 的边BC ,CA 上,且BD CE =,连接AD ,BE 相交于点F ,AH BE ⊥于点H ,求FAH ∠的度数.解析:30【分析】根据条件可证明( SAS )ABD BCE ≅,得到BAD CBE ∠=∠,通过三角形的外角等于不相邻的两个内角和可知AFE ABF BAD ∠=∠+∠,最后推出60AFE ABC ︒∠=∠=,求出结果即可.【详解】解:∵ABC 是等边三角形,∴AB BC =,60ABD C ︒∠=∠=在ABD △和BCE 中,,AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴( SAS )ABD BCE ≅.∴BAD CBE ∠=∠.∵AFE ABF BAD ∠=∠+∠.∴60AFE ABF CBE ABC ︒∠=∠+∠=∠=∵AH BE ⊥于点H ,∴90AHF ︒∠=,9030FAH AFH ∴∠=︒-∠=︒.【点睛】本题主要考查全等三角形的判定以及性质,涉及三角形的外角,属于基础题,熟练掌握全等三角形的判定以及性质是解决本题的关键.23.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.解析:3【分析】根据同角的余角相等可得EBC DCA ∠=∠,根据“AAS”可证CEB △≌ADC ,可得9AD CE ==,即可求BE 的长.【详解】解:∵BE CE ⊥,AD CE ⊥,∴90E ADC ∠=∠=︒,∴90EBC BCE ∠+∠=︒.∵90BCE ACD ∠+∠=︒,∴EBC DCA ∠=∠.在CEB △和ADC 中,E ADC EBC ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CEB △≌ADC (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.解析:见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.如图,点B ,F ,C ,E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AB=DE .解析:见详解【分析】先根据条件求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可.【详解】∵FB =CE ,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FEACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.26.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.解析:见详解【分析】先证明∠AFB=∠DEC ,再根据ASA 证明∆AFB ≅∆DEC ,进而即可得到结论. 【详解】∵AFC DEB ∠=∠,∴∠AFB=∠DEC ,又∵A D ∠=∠,AF DE =,∴∆AFB ≅∆DEC (ASA ),∴BF=CE ,∴BF-EF= CE-EF ,∴BE CF =.【点睛】本题主要考查三角形全等的判定和性质定理,熟练掌握ASA 证明三角形全等,是解题的关键.27.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.28.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.解析:(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (2)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (3)连接EF ,延长AE 、BF 相交于点C ,然后与(2)同理可证.【详解】解:(1)EF =BE +DF ,证明如下: 在ABE 和ADG 中, DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF , 在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°,∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF=2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.。

第12章全等三角形 同步基础达标训练 2021-2022学年人教版八年级数学上册(含答案)

第12章全等三角形 同步基础达标训练  2021-2022学年人教版八年级数学上册(含答案)

2021-2022学年人教版八年级数学上册《第12章全等三角形》同步基础达标训练(附答案)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.60°B.100°C.120°D.135°2.根据下列已知条件,能唯一画出△ABC的是()A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.AB=5,BC=3D.∠A=60°,∠B=45°,BC=43.已知△ABC≌△DEF,且△ABC的周长为6,则△DEF的周长为()A.12B.10C.8D.64.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D.如果AC=10cm,那么AE+DE等于()A.6cm B.8cm C.10cm D.12cm5.如图,在△ABC中,AD平分∠BAC,且AE=AF,则可直接用“SAS”判断的是()A.△ABD≌△ACD B.△BDE≌△CDF C.△ADE≌△ADF D.△ABD≌△ABC 6.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A.SAS B.ASA C.AAS D.SSS7.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.厘米8.下列说法:①能够重合的两个图形一定是全等图形;②两个全等图形的面积一定相等;③两个面积相等的图形一定是全等图形;④两个周长相等的图形一定是全等图形.这些说法中正确的是()A.①②B.②③④C.①②④D.①②③④9.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD 全等.以下给出的条件适合的是()A.∠ABC=∠ABD B.∠BAC=∠BAD C.AC=AD D.AC=BC10.如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为()A.2B.3C.4D.511.如图,B、E、C、F四点在同一直线上,在△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列条件,仍不能证明△ABC≌△DEF的是()A.AC=DF B.∠A=∠D C.BE=CF D.AC∥DF12.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个13.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去14.如图,点P在BC上,AB⊥BC于点B,DC⊥BC于点C,△ABP≌△PCD,其中BP=CD,则下列结论中错误的是()A.∠APB=∠D B.∠A+∠CPD=90°C.AP=PD D.AB=PC15.如图,正方形ABCD被分割成2个长方形和1个正方形,要求图中阴影部分的面积,只要知道下列图形的面积是()A.长方形AEFD B.长方形BEGH C.正方形CFGH D.长方形BCFE 16.直角△ABC、△DEF如图放置,其中∠ACB=∠DFE=90°,AB=DE且AB⊥DE.若DF=a,BC=b,CF=c,则AE的长为()A.a+c B.b+c C.a+b﹣c D.a﹣b+c17.如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM的度数等于()A.10°B.20°C.30°D.40°18.在△ABC中,AB=5,AC=7,AD是BC边上的中线,则AD的取值范围是()A.0<AD<12B.1<AD<6C.0<AD<6D.2<AD<12 19.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个20.如图,AB=14,AC=6,AC⊥AB,BD⊥AB,垂足分别为A、B.点P从点A出发,以每秒2个单位的速度沿AB向点B运动;点Q从点B出发,以每秒a个单位的速度沿射线BD方向运动.点P、点Q同时出发,当以P、B、Q为顶点的三角形与△CAP全等时,a的值为()A.2B.3C.2或3D.2或21.如图是由6个边长相等的正方形组合成的图形,∠1+∠2+∠3=.22.如图,已知∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“SAS”为依据,还需添加的一个条件为.23.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥OB于点C,BD、AC都经过点E,则图中全等的三角形共有对.24.如图,△ABC≌△ADE,且AE∥BD,∠BAD=96°,则∠BAC度数的值为.25.如图,在△ABC和△EBD中,AB=EB,AC=ED,若再添加一个条件,则下列条件中能使得△ABC与△EBD全等的有.①BC=BD;②∠C=∠D;③∠A=∠E;④∠ABC=∠DBE=90°.26.如图,已知∠ABC=∠DEF,BE=CF,AB=DE,求证:AC=DF.27.完成下面的说理过程.已知:如图,OA=OB,AC=BC.试说明:∠AOC=∠BOC.解:在△AOC和△BOC中,因为OA=,AC=,OC=,所以≌(SSS),所以∠AOC=∠BOC().28.如图,AD=AC,∠1=∠2=40°,∠C=∠D,点E在线段BC上.(1)求证:△ABC≌△AED;(2)求∠AEC的度数.29.如图,AC与BD相交于点O,且OA=OC,OB=OD.(1)求证:AB∥CD;(2)直线EF过点O,分别交AB,CD于点E,F,试判断OE与OF是否相等,并说明理由.30.如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠ABC=65°,求∠CBD的度数.参考答案1.解:∵△ABC≌△A'B'C',∠C'=24°,∴∠C=∠C'=24°,∴∠B=180°﹣∠A﹣∠C=180°﹣36°﹣24°=120°,故选:C.2.解:A、当∠C=90°,AB=6,可根据全等三角形的判定方法判断三角形不唯一,所以A选项不符合题意;B、当AB=6,BC=3,∠A=30°,可根据全等三角形的判定方法判断三角形不唯一,所以B选项不符合题意;C、当AB=6,BC=3,可根据全等三角形的判定方法,判断三角形不唯一,所以C选项不符合题意;D、当∠A=60°,∠B=45°,BC=4,可根据全等三角形的判定方法判断三角形唯一,所以D选项符合题意.故选:D.3.解:∵△ABC≌△DEF,且△ABC的周长为6,∴△DEF的周长为6,故选:D.4.解:∵∠ACB=90°,∴EC⊥BC,又∵BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC,∵AC=10cm,∴AE+DE=AC=10cm,故选:C.5.解:∵AD平分∠BAC,∴∠EAD=∠F AD,在△ADE与△ADF中,,∴△ADE≌△ADF(SAS),故选:C.6.解:如图,由作图可知,OA=OB=CE=EF,BA=CF.在△AOB和△CEF中,,∴△AOB≌△CEF(SSS),故选:D.7.解:连接AB.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD=5厘米,∵EF=6厘米,∴圆柱形容器的壁厚是×(6﹣5)=(厘米),故选:D.8.解:①能够重合的两个图形一定是全等图形,说法正确;②两个全等图形的面积一定相等,说法正确;③全等的两个图形的面积相等,但两个面积相等的图形不一定是全等图形,说法错误;④全等的两个图形的周长相等,两个周长相等的图形不一定是全等图形,说法错误;故选:A.9.解:A.∵∠ABC=∠ABD,∠C=∠D=90°,AB=AB,∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;B.∵∠BAC=∠BAD,∠C=∠D=90°,AB=AB,∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;C.∵∠C=∠D=90°,AB=AB,AC=AD,∴Rt△ABC≌Rt△ABD(HL),故本选项符合题意;D.根据∠C=∠D=90°,AB=AB,AC=BC不能推出Rt△ABC≌Rt△ABD,故本选项不符合题意;故选:C.10.解:根据垂线段最短可知:当PM⊥OC时,PM最小,当PM⊥OC时,又∵OP平分∠AOC,PD⊥OA,PD=3,∴PM=PD=3,故选:B.11.解:∵AB=DE,∠B=∠DEF,若添加AC=DF,则两个三角形满足SSA,∴不一定全对,符合题意;若添加:∠A=∠D,则两个三角形ASA全等,不符合题意;若添加BE=CF,则BC=EF,则两个三角形SAS全等,不符合题意;若添加AC∥DF,则∠ACB=∠DFE,则两个三角形AAS全等,不符合题意;故选:A.12.解:如图满足条件的三角形如图所示,有5个.故选:C.13.解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.14.解:∵△ABP≌△PCD,∴∠APB=∠D,AP=PD,AB=PC,∠A=∠CPD,∴∠A+∠CPD=90°是错误的,故选:B.15.解:如图所示:在△GDF与△BGE中,,∴△GDF≌△BGE(SAS).∴S△GDF=S△BEG,则S阴影=S△EFB=S矩形BCFE.所以只要知道长方形BCFE的面积即可求得答案.故选:D.16.解:∵AB⊥DE,∴∠DGH=90°,∵∠DFE=90°,∴∠AFH=90°,∴∠AFH=∠DGH,∵∠DHG=∠AHF,∴∠A=∠D,在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF,BC=EF,∵DF=a,BC=b,CF=c,∴AE=AC+EF﹣CF=DF+BC﹣CF=a+b﹣c.故选:C.17.解:∵在△ABC中,∠A:∠ABC:∠ACB=3:5:10,∠A+∠ABC+∠ACB=180°,∴∠A=30°,∠BCA=100°,∠ABC=50°,∵△MNC≌△ABC,∴∠NCM=∠ACB=100°,∠N=∠ABC=50°,BC=NC,∴∠NBC=∠N=50°,∴∠BCN=180°﹣∠N﹣∠NBC=80°,∴∠BCM=∠ACB﹣∠BCN=100°﹣80°=20°,18.解:如图,延长中线AD到E,使DE=AD,∵AD是三角形的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS),∴AC=BE,∵AB=5,BE=AC=7,∴7﹣5<AE<7+5,即7﹣5<2AD<7+5,∴1<AD<6.故选:B.19.解:∵∠EAC=∠F AB,∴∠EAB=∠CAF,在△ABE和△ACF,,∴△ABE≌△ACF(AAS),∴∠B=∠C.AE=AF.由△AEB≌△AFC知:∠B=∠C,AC=AB;在△ACN和△ABM,,∴△ACN≌△ABM(ASA)(故④正确);由于条件不足,无法证得②CD=DN;综上所述,正确的结论是①③④,共有3个.故选:C.20.解:当△CAP≌△PBQ时,则AC=PB,AP=BQ,∵AC=6,AB=14,∴PB=6,AP=AB﹣AP=14﹣6=8,∴BQ=8,∴8÷a=8÷2,解得a=2;当△CAP≌△QBP时,则AC=BQ,AP=BP,.∵AC=6,AB=14,∴BQ=6,AP=BP=7,∴6÷a=7÷2,解得a=;由上可得a的值是2或,故选:D.21.解:如图,根据题意得DE=BC,EC=AB,GF=GC,∠DEC=∠ABC=∠FGC=90°,∴△CGF为等腰直角三角形,∴∠2=45°,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠1=∠DCE,∵∠DCE+∠3=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°.故答案为135°.22.解:还需添加的一个条件为BC=EF或BE=CF,理由如下:添加BC=EF时,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);添加BE=CF时,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:BC=EF或BE=CF.23.解:∵OE是∠AOB的平分线,BD⊥OA,AC⊥OB,∴ED=EC,在Rt△OED和△OEC中,,∴Rt△OED≌Rt△OEC(HL);∴OD=OC,在△AED和△BEC中,,∴△AED≌△BEC(ASA);∴AD=BC,∴OD+AD=OC+BC,即OA=OB,在△OAE和△OBE中,,∴△OAE≌△OBE(SAS),在△OAC和△OBD中,,∴△OAC≌△OBD(SAS).故答案为4.24.解:∵△ABC≌△ADE,∠BAD=96°,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB=×(180°﹣96°)=42°,∵AE∥BD,∴∠DAE=∠ADB=42°,∴∠BAC=∠DAE=42°,故答案为:42°.25.解:∵AB=EB,AC=ED,∴当BC=BD时,可根据“SSS”可证△ABC≌△EBD;当∠C=∠D时,无法证明△ABC≌△EBD;当∠A=∠E时,可根据“SAS”可证△ABC≌△EBD;当∠ABC=∠DBE=90°,可根据“HL”可证△ABC≌△EBD;故答案为①③④.26.证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.27.解:在△OAC和△OBC中,因为AO=OB,AC=BC,OC=OC,所以△AOC≌△BOC(SSS),所以∠AOC=∠BOC(全等三角形的对应角相等).故答案为OB;BC;OC;△AOC;△BOC;全等三角形的对应角相等.28.(1)证明:∵∠1=∠2=40°,∴∠1+∠CAE=∠2+∠CAE,即∠BAC=∠EAD,在△ABC和△AED中,,∴△ABC≌△AED(ASA);(2)解:由(1)得:△ABC≌△AED,∴AB=AE,∴∠B=∠AEB=(180°﹣∠1)=(180°﹣40°)=70°,∴∠AEC=∠1+∠B=40°+70°=110°.29.(1)证明:在△OAB与△OCD中,,∴△OAB≌△OCD(SAS),∴∠A=∠C,∴AB∥CD;(2)解:OE=OF,理由如下:由(1)知,△OAB≌△OCD,∴∠B=∠D,OB=OD,在△EOB与△FOD中,∴△EOB≌△FOD(ASA),∴OE=OF.30.解:∵CE⊥AB,BD⊥AC,∴△BCE和△CBD是直角三角形,在Rt△BCE和Rt△CBD中,,∴Rt△BCE≌Rt△CBD(HL),∴∠ABC=∠ACB,∵∠ABC=65°,∴∠ACB=65°,∴∠CBD=90°﹣∠ACB=25°。

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。

第2章全等三角形单元测试(基础卷)同步培优题典(解析版)

第2章全等三角形单元测试(基础卷)同步培优题典(解析版)

专题2.7第2章全等三角形单元测试(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•石台县期末)已知图中的两个三角形全等,则∠1等于()A.70°B.50°C.60°D.120°【分析】根据全等三角形的性质求出∠E,根据三角形内角和定理计算,得到答案.【解析】∵△ABC≌△DEF,∴∠E=∠B=70°,∴∠1=180°﹣50°﹣70°=60°,故选:C.2.(2019秋•正定县期末)如图,在△ABC和△DEF中,已知AB∥DE.AB=DE,要判定这两个三角形全等,还需要条件()A.∠A=∠D B.AF=FC C.BC=EF D.AF=DC【分析】根据平行线的性质得到∠A=∠D,然后根据全等三角形的判定方法对各选项进行判断.【解析】∵AB∥DE.∴∠A=∠D,∵AB=DE,∴当添加AF=CD,即AC=DF时,可根据“SAS”判断△ABC≌△DEF;当添加∠B=∠C时,可根据“ASA”判断△ABC≌△DEF;当添加∠BCA=∠EFD,可根据“AAS”判断△ABC≌△DEF.故选:D.3.(2019秋•巴南区期末)下列说法不正确的是()A.两边和它们的夹角分别相等的两个三角形全等B.两角分别相等且其中一组等角的对边相等的两个三角形全等C.底边和顶角分别相等的两个等腰三角形全等D.两边和其中一边的对角分别相等的两个三角形全等【分析】根据全等三角形的判定方法对A、B、D进行判断;根据等腰三角形的性质和全等三角形的判定方法对C进行判断.【解析】A、两边和它们的夹角分别相等的两个三角形全等,所以A选项的说法正确;B、两角分别相等且其中一组等角的对边相等的两个三角形全等,所以B选项的说法正确;C、底边和顶角分别相等的两个等腰三角形全等,所以C选项的说法正确;D、两边和其中一边的对角分别相等的两个三角形不一定全等,所以D选项的说法不正确.故选:D.4.(2019秋•滦州市期末)已知如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若∠MON=60°,OP=4,则PQ的最小值是()A.2B.3C.4D.不能确定【分析】作PQ′⊥OM于Q′,根据角平分线的定义得到∠POQ′=30°,根据直角三角形的性质求出PQ′,根据垂线段最短解答.【解析】作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=12OP=2,由垂线段最短可知,PQ的最小值是2,故选:A.5.(2020•武侯区校级模拟)已知:如图,∠ABC=∠EBD,BC=BD,增加一个条件使得△ABC≌△EBD,下列条件中错误的是()A.AC=ED B.BA=BE C.∠C=∠D D.∠A=∠E【分析】根据全等三角形的判定方法对各选项进行判断.【解析】∵∠ABC=∠EBD,BC=BD,∴当添加BA=BE时,可根据“SAS”判断△ABC≌△EBD;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△EBD;当添加∠A=∠E时,可根据“AAS”判断△ABC≌△EBD.故选:A.6.(2019秋•黔东南州期末)如图,AC,BD相交于点O,OB=OD.要使△AOB≌△COD,则下列添加的条件中错误的是()A.∠A=∠C B.∠B=∠D C.OA=OC D.AB=CD【分析】根据全等三角形的判定方法对各选项进行判断.【解析】∵∠AOB=∠COD,OB=OD,∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD;当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD;当添加OA=OC时,可根据“SAS”判断△AOB≌△COD.故选:D.7.(2019秋•海港区期末)如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形()A.1对B.2对C.3对D.4对【分析】利用“SSS”可判断△ABC≌△DCB,△ABD≌△DCA,则∠BAC=∠CDB,然后可根据“AAS”判断△ABE≌△DCE.【解析】∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS),△ABD≌△DCA(SSS),∴∠BAC=∠CDB,∵AB=CD,∠AEB=∠DEC,∴△ABE≌△DCE(AAS).故选:C.8.(2019秋•耒阳市期末)如图,AB=DE,∠A=∠D,添加以下条件,不能使△ABC≌△DEF的是()A.AC=DF B.BC=EF C.∠B=∠E D.∠C=∠F【分析】根据全等三角形的判定方法对各选项进行判断.【解析】∵AB=DE,∠A=∠D,∴当添加∠B=∠E时,可根据“ASA”判断△ABC≌△DEF;当添加∠C=∠F时,可根据“AAS”判断△ABC≌△DEF;当添加AC=DF时,可根据“SAS”判断△ABC≌△DEF.故选:B.9.(2019秋•确山县期末)下列选项所给条件能画出唯一△ABC的是()A.AC=3,AB=4,BC=8B.∠A=50°,∠B=30°,AB=2C.∠C=90°,AB=90D.AC=4,AB=5,∠B=60°【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解析】A、3+4=7<8,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据∠A=50°,∠B=30°,AB=2能画出唯一△ABC,故此选项正确;C、根据∠C=90°,AB=90不能画出唯一三角形,故本选项错误;D、根据AC=4,AB=5,∠B=60°不能画出唯一三角形,故本选项错误;故选:B.10.(2019秋•曹县期末)如图,AB,CD相交于点O,OA=OC,∠A=∠C,下列结论:(1)△AOD≌△COB;(2)AD=CB;(3)AB=CD.其中正确的个数为()A.0个B.1个C.2个D.3个【分析】先根据“ASA”可对(1)进行判断,然后根据全等三角形的性质可对(2)、(3)进行判断.【解析】∵OA=OC,∠A=∠C,而∠AOD=∠BOC,∴△AOD≌△COB(ASA),所以(1)正确;∴AD=BC,OD=OB,所以(2)正确;∵OA+OB=OC+OD,∴AB=CD,所以(3)正确.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•铜仁市模拟)如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC 成立,则这个条件是DE=BC.【分析】根据题目中的条件,可以得到∠DAE=∠BAC,AD=AB,再增加条件DE=BC,则△ADE≌△ABC不一定成立,从而可以解答本题.【解析】增加的条件为DE=BC,理由:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,∵AD=AB,DE=BC,∴△ADE≌△ABC不一定成立,故答案为:DE=BC.12.(2020春•海淀区校级期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8,CD=3,则△ABD的面积是12.【分析】作DE⊥AB于E,如图,根据角平分线的性质得DE=DC=3,然后根据三角形的面积公式计算S△ABD.【解析】作DE⊥AB于E,如图,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=DC=3,∴S△ABD=12×8×3=12.故答案为12.13.(2019秋•莱山区期末)如图,已知△ABC的周长是10cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=0.8cm,△ABC的面积为4cm2.【分析】连接OA,作OE⊥AB于点E,用OF⊥AC于点F,由角平分线的性质得OD=OE=OF,进而计算△OAB、△OAC、△OBC的面积和便可得结果.【解析】连接OA,作OE⊥AB于点E,用OF⊥AC于点F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=0.8cm,∴OD=OE=OF=0.8cm,∴S△ABC=S△OAB+S△OAC+S△OBC=12AB⋅OE+12AC⋅OF+12BC⋅OD=12(AB+AC+BC)⋅OD=12×10×0.8=4故答案为4.14.(2019秋•广丰区期末)平面上有三条直线两两相交且不共点,那么平面上到此三条直线距离相等的点的个数是4.【分析】根据角平分线性质的逆定理解答.【解析】到三条直线的距离相等的点应该有A、B、C、D共4个,故答案为:4.15.(2019秋•沙坪坝区期末)如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=40°.【分析】根据全等三角形的性质求出∠E,根据三角形内角和定理计算,得到答案.【解析】∵△ABC≌△DEF,∴∠E=∠B=120°,∴∠D=180°﹣∠E﹣∠F=40°,故答案为:40.16.(2019秋•温岭市期末)如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=68°.【分析】根据全等三角形的性质求解.【解析】∵图中的两个三角形全等,∴∠α=68°.故答案为68.17.(2019秋•盐都区期末)如图,△ABC≌△ADC,∠BCA=40°,∠B=80°,则∠BAD的度数为120°.【分析】根据全等三角形的性质即可得到结论.【解析】∵∠BCA=40°,∠B=80°,∴∠CAB=180°﹣40°﹣80°=60°,∵△ABC≌△ADC,∴∠DAC=∠BAC=60°,∴∠BAD=∠BAC+∠DAC=120°,故答案为:120°.18.(2019秋•怀柔区期末)如图,点A,B,D在同一条直线上,∠A=∠CBE=∠D=90o,请你只添加一个条件,使得△ABC≌△DEB.(1)你添加的条件是AB=DE或BC=BE或AC=DB.(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定△ABC与△DEB全等的理是AAS”或“ASA”.【分析】(1)(2)利用等角的余角相等得到∠C=∠DBE,然后根据“AAS”或“ASA”添加条件.【解析】(1)∵∠A=∠CBE=∠D=90o,∴∠C=∠DBE,当添加AB=DE或BC=BE,则可根据“AAS”判断△ABC≌△DEB;当添加AC=DB,则可根据“ASA”判断△ABC≌△DEB;(2)有(1)得判定△ABC与△DEB全等的理是“AAS”或“ASA”.故答案为AB=DE或BC=BE或AC=DB;AAS”或“ASA”.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2020•吉林)如图,在△ABC 中,AB >AC ,点D 在边AB 上,且BD =CA ,过点D 作DE ∥AC ,并截取DE =AB ,且点C ,E 在AB 同侧,连接BE .求证:△DEB ≌△ABC .【分析】由DE ∥AC ,根据平行线的性质得出∠EDB =∠A ,又BD =CA ,DE =AB ,利用SAS 即可证明△DEB ≌△ABC .【解答】证明:∵DE ∥AC ,∴∠EDB =∠A .在△DEB 与△ABC 中,{DE =AB ∠EDB =∠A BD =CA,∴△DEB ≌△ABC (SAS ).20.(2020春•朝阳区校级期末)已知:如图,点A 、E 、F 、C 在同一条直线上,AD ∥CB ,∠1=∠2,AE =CF .求证:△ADF ≌△CBE .【分析】先利用平行线的性质得到∠A =∠C ,再证明AF =CE ,然后根据“ASA ”可判断△ADF ≌△CBE .【解答】证明:∵AD ∥CB ,∴∠A =∠C ,∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE ,在△ADF 和△CBE 中{∠A =∠C AF =CE ∠1=∠2,∴△ADF ≌△CBE (ASA ).21.(2019春•南关区校级月考)如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°.(1)求AE 的长度;(2)求∠AED 的度数.【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解析】(1)∵△ABC ≌△DEB ,∴BE =BC =3,∴AE =AB ﹣BE =6﹣3=3;(2)∵△ABC ≌△DEB ,∴∠A =∠D =25°,∠DBE =∠C =55°,∴∠AED =∠DBE +∠D =25°+55°=80°.22.(2019秋•唐河县期中)求证:全等三角形的对应边中线相等.【分析】首先根据△ABC ≌△A 1B 1C 1,可得AB =A 1B 1,BC =B 1C 1,∠B =∠B 1,进而得到中线BD =B 1D 1,再证明△ABD ≌△A 1B 1D 1可得AD =A 1D 1.【解答】已知:如图,△ABC ≌△A 1B 1C 1,AD 、A 1D 1分别是对应边BC 、B 1C 1的中线,求证:AD =A 1D 1,证明:∵△ABC ≌△A 1B 1C 1,∴AB =A 1B 1,BC =B 1C 1,∠B =∠B 1,∵AD 、A 1D 1分别是对应边BC 、B 1C 1的中线,∴BD =12BC ,B 1D 1=12B 1C 1,∴BD =B 1D 1,在△ABD 和△A 1B 1D 1中,{AB =A 1B 1∠B =∠B 1DB =D 1B 1,∴△ABD ≌△A 1B 1D 1(SAS ),∴AD =A 1D 1.23.(2020•雁塔区校级三模)如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .【分析】先利用三角形外角性质证明∠ADE =∠B ,然后根据“AAS ”判断△ABC ≌△ADE .【解答】证明:∵∠ADC =∠1+∠B ,即∠ADE +∠2=∠1+∠B ,而∠1=∠2,∴∠ADE =∠B ,在△ABC 和△ADE 中,{∠C =∠E ∠B =∠ADE AB =AD,∴△ABC ≌△ADE (AAS ).24.(2019秋•广饶县期末)如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 间的距离:现在地上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到D ,使CD =AC ;连接BC 并延长到E ,使CE =CB ;连接DE 并测量出它的长度.(1)求证:DE =AB ;(2)如果DE 的长度是8m ,则AB 的长度是多少?【分析】(1)利用SAS 直接得出△CDE ≌△CAB ,进而得出答案;(2)利用(1)中所求得出AB 的长即可.【解答】(1)证明:在△CDE 和△CAB 中,{CD =CA ∠DCE =∠BCA CE =CB,∴△CDE ≌△CAB (SAS ),∴DE =AB ;(2)解:∵DE =AB ,DE =8m ,∴AB =8m .答:AB 的长度是8m .25.(2019春•安仁县期中)如图,点P 是∠MON 中一点,P A ⊥OM 于点A ,PB ⊥ON 于点B ,连接AB ,∠P AB =∠PBA .求证:OP 平分∠MON .【分析】先根据等腰三角形的判定得到P A =PB ,然后根据角平分线的性质定理的逆定理得到距离.【解答】证明:∵∠P AB =∠PBA ,∴P A =PB ,∵P A ⊥OM 于点A ,PB ⊥ON 于点B ,∴OP 平分∠MON .26.(2019秋•武清区期中)如图,点B ,C 分别在∠A 的两边上,点D 是∠A 内一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,且AB =AC ,DE =DF .求证:BD =CD .【分析】根据DE ⊥AB ,DF ⊥AC ,DE =DF ,可知∠CAD =∠BAD ,然后根据SAS 证明△ADC ≌△ADB 即可证明结论.【解答】证明:连接AD ,∵DE ⊥AB ,DF ⊥AC ,DE =DF ,∴∠BAD =∠CAD ,在△ABD 和△ACD 中{AB =AC ∠BAD =∠CAD AD =AD,∴△ABD ≌△ACD ,(SAS ),∴BD =CD .。

专题26 全等三角形的应用(基础)-【考前抓大题】冲刺2021年中考数学(解析版)

专题26 全等三角形的应用(基础)-【考前抓大题】冲刺2021年中考数学(解析版)

专题26 全等三角形的应用(基础)1.如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 间的距离:现在地上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到D ,使CD =AC ;连接BC 并延长到E ,使CE =CB ;连接DE 并测量出它的长度. (1)求证:DE =AB ;(2)如果DE 的长度是8m ,则AB 的长度是多少?【分析】(1)利用SAS 直接得出△CDE ≌△CAB ,进而得出答案; (2)利用(1)中所求得出AB 的长即可. 【解答】(1)证明:在△CDE 和△CAB 中, {CD =CA∠DCE =∠BCA CE =CB, ∴△CDE ≌△CAB (SAS ), ∴DE =AB ;(2)解:∵DE =AB ,DE =8m , ∴AB =8m .答:AB 的长度是8m .【点评】此题主要考查了全等三角形的应用,得出△CDE ≌△CAB 是解题关键.2.公路上,A ,B 两站相距25千米,C 、D 为两所学校,DA ⊥AB 于点A ,CB ⊥AB 于点B ,如图,已知DA =15千米,现在要在公路AB 上建一报亭H ,使得C 、D 两所学校到H 的距离相等,且∠DHC =90°,问:H 应建在距离A 站多远处?学校C 到公路的距离是多少千米?【分析】根据同角的余角相等求出∠D =∠CHB ,再利用“角角边”证明△ADH 和△BHC 全等,根据全等三角形对应边相等可得AD =BH ,AH =BC ,再根据AH =AB ﹣BH 计算即可得解. 【解答】解:∵∠DHC =90°, ∴∠AHD +∠CHB =90°, ∵DA ⊥AB ,∴∠D +∠AHD =90°, ∴∠D =∠CHB ,在△ADH 和△BHC 中,{∠D =∠CHB∠A =∠B =90°DH =CH ,∴△ADH ≌△BHC (AAS ), ∴AD =BH =15千米,AH =BC , ∵A ,B 两站相距25千米, ∴AB =25千米,∴AH =AB ﹣BH =25﹣15=10千米, ∴学校C 到公路的距离是10千米.答:H 应建在距离A 站10千米处,学校C 到公路的距离是10千米.【点评】本题考查了全等三角形的应用,全等三角形的性质,熟练掌握全等三角形的判定方法求出两三角形全等是解题的关键.3.如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接AC 并延长到点D ,使CD =CA .连接BC 并延长到点E ,使CE =CB .连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?【分析】利用“边角边”证明△ABC 和△DEC 全等,再根据全等三角形对应边相等解答. 【解答】解:量出DE 的长就等于AB 的长,理由如下: 在△ABC 和△DEC 中,{BC =CE∠ACB =∠DCE CA =CD ,∴△ABC ≌△DEC (SAS ), ∴AB =DE .【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,C 是路段AB 的中点,两人从C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D ,E 两地,DA ⊥AB ,EB ⊥AB ,D ,E 与路段AB 的距离相等吗?为什么?【分析】首先根据题意可知AC =CB ,DC =EC ,再根据HL 定理证明Rt △ACD ≌Rt △BCE ,可得到AD =BE .【解答】解:D ,E 与路段AB 的距离相等,理由:∵点C 是路段AB 的中点, ∴AC =CB ,∵两人从C 同时出发,以相同的速度分别沿两条直线行走, ∴DC =EC ,∵DA ⊥AB ,EB ⊥AB , ∴∠A =∠B =90°, 在Rt △ACD 和Rt △BCE 中 ∵{AC =CB CD =CE, ∴Rt △ACD ≌Rt △BCE (HL ), ∴AD =BE .【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是证明Rt △ACD ≌Rt △BCE . 5.如图所示,有两个长度相同的滑梯BC 和EF ,CA ⊥BF ,ED ⊥BF ,垂足分别为A ,D ,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等.问:两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么关系?【分析】由图可得,△ABC 与△DEF 均是直角三角形,由已知可根据HL 判定两三角形全等,再根据全等三角形的对应角相等,不难求解.【解答】解:∠ABC +∠DFE =90°,理由如下:由题意可得:△ABC 与△DEF 均是直角三角形,且BC =EF ,AC =DF . 在Rt △ABC 和Rt △DEF 中, {BC =EF AC =DF, ∴Rt △ABC ≌Rt △DEF (HL ), ∴∠ABC =∠DEF , ∵∠DEF +∠DFE =90°, ∴∠ABC +∠DFE =90°.【点评】此题考查了全等三角形的应用.做题时要注意找已知条件,根据已知选择方法得出全等三角形是解题关键.6.某广场是一个四边形区域ABCD ,现测得:AB =60m ,BC =80m ,且∠ABC =30°,∠DAC =60°,试求水池两旁B ,D 两点之间的距离.【分析】以AB 为边在△ABC 外侧作等边△ABE ,连接CE ,求出△EAC ≌△DAB 可得:BD =CE ,证明△EBC 是直角三角形,利用勾股定理求出CE 的长度,即可解答. 【解答】解:以AB 为边在△ABC 外侧作等边△ABE ,连接CE . ∵∠EAB =∠DAC =60°, ∴∠EAB +∠BAC =∠DAC +∠BAC , ∴∠EAC =∠DAB , 在△EAC 和△DAB 中, {AE =AB∠EAC =∠DAB AC =AD, ∴△EAC ≌△DAB (SAS ), ∴BD =CE ,∴∠EBC =60°+30°=90°, ∴△EBC 是直角三角形, ∵EB =60m BC =80m ,∴CE =√BE 2+BC 2=√602+802=100(m ). ∴水池两旁B 、D 两点之间的距离为100m .【点评】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟记性质与判定方法是解题的关键,难点在于(灵活运用)作出辅助线构造成等边三角形和直角三角形.7.如图,两只蚂蚁分别位于一个正方形相邻的两个顶点A ,B 上,它们分别沿AE ,BF 的路线向BC 和CD 爬行,如果AE 和BF 相互垂直,那么它们爬行的距离相等吗?【分析】根据题意得出△ABE ≌△BCF (SAS ),可得AE =BF ,进而得出答案. 【解答】解:在正方形ABCD 中,AB =BC ,∠ABC =∠BCD =90°, ∵∠CBF +∠ABO =90°, ∴∠EAB +∠ABO =90°, ∴∠CBF =∠EAB , 在△BFC 和△AEB 中 {∠BFC =∠AEB∠C =∠ABE AB =BC∴△BFC ≌△AEB (AAS ), ∴AE =BF .【点评】此题考查了全等三角形的判定与性质,根据题意得出∠CBF =∠EAB 是解题关键.8.如图,平面上的四边形ABCD 是一只“风筝”的骨架,其中AB =AD ,CB =CD ,某同学观察了这只“风筝”的骨架后,认为四边形ABCD 的两条对角线AC ,BD 垂直,垂足为E ,并且BE =ED ,你同意这位同学的判断吗?请说明理由.【分析】根据中垂线的判定定理:到线段两个端点距离相等的点在线段的中垂线上来判定. 【解答】解:正确;理由如下: ∵AB =AD ,∴点A 在BD 的垂直平分线上. ∵CB =CD ,∴点C 在BD 的垂直平分线上.∴AC 为BD 的垂直平分线,BE =DE ,AC ⊥BD .【点评】本题利用了中垂线的判定定理求解,关键是根据到线段两个端点距离相等的点在线段的中垂线上分析.9.有一张纸片的形状如图所示,其中已知∠1=∠2,纸片中的△ABC 和△ADC 是全等的,小红说:“只要给我一个量角器,我就能验证:这两个三角形是全等.”小明不相信,你知道小红是怎样做的吗?如果知道,请写出小红的验证过程.【分析】直接利用全等三角形的判定方法(AAS ),进而得出答案.【解答】解:只要量出∠B 与∠D 的度数,若两角度数相等,则△ABC 和△ADC 全等. 理由:在△ABC 和△ADC 中,∵{∠B =∠D∠1=∠2AC =AC,∴△ABC ≌△ADC (AAS ).【点评】此题主要考查了全等三角形的应用,熟练应用全等三角形的判定方法是解题关键.10.小红在课外活动时,不小心把老师用的三角形教具弄坏了一个角,如图①所示,她想用一块同样材料的薄板把它补上,想出以下办法:(1)先量出∠AED ,∠BDE 的度数,量出DE 的长;(2)在同样的材料上取D 1E 1=DE ,用量角器∠ME 1D 1=180°﹣∠AED ″,∠ND 1E 1=180°﹣∠BDE ,如图②所示,两射线E 1M ,D 1N 交于点C 1,剪下△C 1D 1E 1,将其与原三角形黏合就能把三角形教具修好,你认为这两种方法可行吗?道理是什么?【分析】利用全等三角形的判定定理ASA 证得△C 1D 1E 1≌△CDE 即可. 【解答】解:这个方法可行,理由如下:∵∠ME 1D 1=180°﹣∠AED ,∠ND 1E 1=180°﹣∠BDE , ∴∠ME 1D 1=∠CED ,∠ND 1E 1=∠CDE , ∴在△C 1D 1E 1与△CDE 中,{∠ME 1D 1=∠CEDD 1E 1=DE ∠ND 1E 1=∠CDE ,∴△C 1D 1E 1≌△CDE (ASA ), ∴该方法可行.【点评】本题考查了全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.11.如图,把一个长为10m 的梯子AB 斜靠在墙上,测得AM =8m ,BM =6m ,梯子沿墙下滑到CD 位置,测得∠ABM =∠DCM ,求梯子下滑的高度.【分析】由全等三角形的判定定理AAS 得到△ABM ≌△DCM ,则其对应边相等:BM =CM ,AM =DM ,故AC =DM ﹣BM =2m .【解答】解:∵在△ABM 与△DCM 中,{∠AMB =∠DMC∠ABM =∠DCM AB =DC ,∴△ABM ≌△DCM (AAS ), ∴BM =CM =6m ,AM =DM =8m , ∴AC =AM ﹣CM =2m . 即梯子下滑的高度是2m .【点评】本题考查了全等三角形的应用.解题时,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.12.如图所示,四边形ABCD 是一条河堤坝的横截面,AE =BF ,且AE ⊥CD ,BF ⊥CD ,垂足分别为E 、F ,AD =BC ,∠C 与∠D 是否相等?为什么?【分析】首先利用HL 定理证明Rt △ADE ≌Rt △BCF ,再根据全等三角形的性质可得∠C =∠D . 【解答】解:∠C =∠D , ∵AE ⊥CD ,BF ⊥CD , ∴∠AED =∠BFC =90°, 在Rt △ADE 和Rt △BCF 中, {AD =BC AE =BF, ∴Rt △ADE ≌Rt △BCF (HL ), ∴∠C =∠D .【点评】此题主要考查了全等三角形的应用,关键是掌握全等三角形的判定方法.13.如图,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD =2.5m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC =1.5m .点A 到地面的距离AE =1.5m ,当他从A 处摆动后的坐板记为A ′. (1)若A ′B ⊥AB 时,求A '到BD 的距离;(2)若A ′距地面最近时,求A '到地面的距离(结果精确到0.01,√13=3.606).【分析】(1)作A 'F ⊥BD ,垂足为F ,根据全等三角形的判定和性质解答即可; (2)根据全等三角形的性质解答即可.【解答】解:(1)如图2,作A 'F ⊥BD ,垂足为F . ∵AC ⊥BD ,∴∠ACB =∠A 'FB =90°; 在Rt △A 'FB 中,∠1+∠3=90°; 又∵A 'B ⊥AB , ∴∠1+∠2=90°, ∴∠2=∠3; 在△ACB 和△BF A '中, {∠ACB =∠A ′FB∠2=∠3AB =A′B,∴△ACB ≌△BF A '(AAS ); ∴A 'F =BC∵AC ∥DE 且CD ⊥AC ,AE ⊥DE , ∴CD =AE =1.5;∴BC =BD ﹣CD =2.5﹣1.5=1(m ), ∴A 'F =1(m ),即A '到BD 的距离是1m . (2)由(1)知:△ACB ≌△BF A ' ∴BF =AC =1.5m , 作A 'H ⊥DE ,垂足为H . ∵A 'F ∥DE , ∴A 'H =FD ,∴A 'H =BD ﹣BF =2.5﹣1.5=1(m ),即A '到地面的距离是2.5−√1.52−12≈2.5﹣1.8=0.7m .【点评】本题考查全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.14.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合. (1)求证:△ADC ≌△CEB ; (2)求两堵木墙之间的距离.【分析】(1)根据题意可得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明△ADC ≌△CEB 即可; (2)利用全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∴∠BCE =∠DAC在△ADC 和△CEB 中{∠ADC =∠CEB∠DAC =∠BCE AC =BC,∴△ADC ≌△CEB (AAS );(2)解:由题意得:AD =2×3=6cm ,BE =7×2=14cm , ∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm , ∴DE =DC +CE =20(cm ), 答:两堵木墙之间的距离为20cm .【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.15.某中学计划为新生配备如图1所示的折叠凳,图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长度相等,O 是它们的中点,为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为35cm ,由以上信息能求出CB 的长度吗?如果能,请求出CB 的长度;如果不能,请说明理由.【分析】根据中点定义求出OA =OB ,OC =OD ,然后利用“边角边”证明△AOD 和△BOC 全等,根据全等三角形对应边相等即可证明. 【解答】解:∵O 是AB 、CD 的中点, ∴OA =OB ,OC =OD , 在△AOD 和△BOC 中, {OA =OB∠AOD =∠BOC OC =OD, ∴△AOD ≌△BOC (SAS ), ∴CB =AD , ∵AD =35cm , ∴CB =35cm ,答:CB 的长度为35cm .【点评】本题考查了全等三角形的应用,证明得到三角形全等是解题的关键.16.如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打出,墙壁厚是35cm ,B 点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢?请你说出理由.【分析】利用“角边角”证明Rt △OAB 和Rt △OCD 全等,根据全等三角形对应边相等可得AB =DC ,从而得解.【解答】解:∵OC =35cm ,墙壁厚OA =35cm , ∴OC =OA , ∵墙体是垂直的,∴∠OAB =90°且CD ⊥OC , ∴∠OAB =∠OCD =90°,在Rt △OAB 和Rt △OCD 中,{∠OAB =∠OCD =90°OC =OA∠AOB =∠COD ,∴Rt △OAB ≌Rt △OCD (ASA ), ∴DC =AB , ∵DC =20cm , ∴AB =20cm ,∴钻头正好从B 点处打出.【点评】本题考查了全等三角形的应用,读懂题目信息确定出全等三角形是解题的关键. 17.课间,小明拿着老师的等腰直角三角板玩,不小心掉到两墙之间,如图AD ⊥DE ,BE ⊥DE . (1)求证:△ADC ≌△CEB ;(2)若三角板的一条直角边AC =25cm ,请你帮小明求出砌墙砖块的厚度a 的大小(每块砖的厚度相等).【分析】(1)根据题意可得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明△ADC ≌△CEB 即可. (2)利用(1)中全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∴∠BCE =∠DAC ,在△ADC 和△CEB 中,{∠ADC =∠CEB∠DAC =∠BCE AC =BC ,∴△ADC ≌△CEB (AAS );(2)解:∵一块墙砖的厚度为a ,∴AD =4a ,BE =3a ,由(1)得:△ADC ≌△CEB ,∴DC =BE =3a ,AD =CE =4a ,∴AC =√AD 2+CD 2=5a =25,∴a =5,答:砌墙砖块的厚度a 为5cm .【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.18.在测量一个小口圆形容器的壁厚时,小明用“X 型转动钳”按如图方法进行测量,其中OA =OD ,OB =OC ,只需测得AB =a ,EF =b ,就可以知道圆形容器的壁厚了.(1)请你利用所学习的数学知识说明AB =CD ;(2)求出圆形容器的壁厚.(用含有a ,b 的代数式表示)【分析】(1)连接AB ,只要证明△AOB ≌△DOC ,可得AB =CD ,即可解决问题;(2)利用(1)中所求即可得出圆形容器的壁厚.【解答】解:(1)连接AB .在△AOB 和△DOC 中,{OA =OD ∠AOB =∠DOC BO =OC,∴△AOB ≌△DOC (SAS ),∴AB =CD ;(2)∵EF =b ,AB =CD =a ,∴圆形容器的壁厚是12(b ﹣a ).【点评】本题考查全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.属于中考常考题型.19.某风景区改建中,需测量湖两岸游船码头A 、B 间的距离,于是工作人员在岸边A 、B 的垂线AF 上取两点E、D,使ED=AE.再过D点作出AF的垂线OD,并在OD上找一点C,使B、E、C在同一直线上,这时测得CD长就是AB的距离.请说明理由.【分析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【解答】证明:∵AB⊥AD,CD⊥AD∴∠A=∠CDE=90°又∵ED=AE,∠AEB=∠CED∴△ABE≌△CED(AAS)所以AB=CD.【点评】本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.20.如图所示,有两个长度相等的滑梯,左边滑梯BC的高AC与右边滑梯EF水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?【分析】已知Rt△ABC和Rt△DEF中,BC=EF,AC=DF,利用“HL”可判断两三角形全等,根据确定找对应角相等,根据直角三角形两锐角的互余关系,确定ABC与∠DFE的大小关系.【解答】证明:在Rt△ABC和Rt△DEF中,{BC=EF AC=DF∴Rt△ABC≌Rt△DEF(HL)∴∠ABC=∠DEF又∵∠DEF+∠DFE=90°∴∠ABC+∠DFE=90°即两滑梯的倾斜角∠ABC与∠DFE互余.【点评】本题考查了全等三角形的应用;确定两角的大小关系,通常可证明这两角所在的三角形全等,根据对应角相等进行判定.。

初二数学三角形全等判定证明题大题分类基础训练(含答案版)

初二数学三角形全等判定证明题大题分类基础训练(含答案版)

三角形全等判定证明题分类基础训练一:三角形判定--SAS1.(2020·泸县)如图,AB平分∠CAD,AC=AD.求证:BC=BD.【答案】证明:∵AB平分∠CAD,∴∠BAC=∠BAD.∵AC=AD,AB=AB,∴△ABC≌△ABD(SAS).∴BC=BD.2.(2020·白云模拟)如图,点,,,在一条直线上,,,. 求证:.【答案】证明: ∵.∴.即.∵,∴.又∵,∴,( )∴.3.(2020·无锡模拟)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.【答案】解:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,∴AE=FB.4.(2020·西安模拟)如图,点是线段的中点,且,求证:.【答案】证明:∵点是线段的中点,∴,∵,∴.在与中,∴,∴.5.(2020·泉港模拟)如图,A、E、F、C四点在一条直线上,且,,.求证:.【答案】证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AB//DE,∴∠A=∠DEC.在△ABF和△CDE中,∴△ABF≌△EDC(SAS),∴BF=DC.6.(2020·西安模拟)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.【答案】解:在△AED与△AEC中,∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;7.(2020·福清模拟)如图,△ABC中,点E,F分别在边CB及其延长线上,且CE=BF,DF∥AC,且DF=AC,连接DE,求证:∠A=∠D.【答案】证明:如图,∵CE=BF,∴CE+BE=BF+BE,即BC=EF.∵DF∥AC,∴∠C=∠F.在△ABC与△DEF中.∴△ABC≌△DEF(SAS).∴∠A=∠D.二:三角形判定--SSS8.(2020·云梦期中)如图,,,AC,BD交于点O,求证:.【答案】证明:如图,连接BC,在△BAC和△CDB中∴△BAC≌△CDB(SSS)∴∠ACB=∠DBC∴BO=CO(等角对等边)9.(2020·吉林模拟)如图,已知AB=DC,AC=BD,求证:∠B=∠C.【解析】【解答】证明:连结AD在△BAD和△CDA中∴△BAD≌△CDA(SSS)∴∠B=∠C(全等三角形对应角相等).10.(2020·铜仁模拟)已知:如图,AB=CD,BC=DA,求证:∠A=∠C.【答案】证明:∵AB=CD,BC=DA,BD=DB,∴△ABD≌△CDB(SSS),∴∠A=∠C.11.(2020九下·武汉月考)如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE.求证:∠C=∠F.【答案】证明:∵AD=BE,∴AD+DB=BE+DB,∴AB=DE,在△ACB与△DFE中,,∴△ACB≌△DFE(SSS),∴∠C=∠F.12.(2020八上·昆明期末)已知:如图,点A、B、C、D 在一条直线上,AC=DB,AE=DF,BE=CF.求证:△ABE≌△DCF.【答案】证明:∵AC=DB,∴AC−BC=DB−BC,即AB=DC,在△ABE和△DCF中,,∴△ABE≌△DCF(SSS).三:三角形判定--AAS13.(2020八上·苏州期末)如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.求证:△ABC≌△FDE.【答案】证明:,,,,即,在和中14.(2020·云南模拟)如图,点E,F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.【答案】解:∵BE=CF,∴BE+EF=CF+EF,∴BF=EC,在△ABF和△DCE中,∵,∴△ABF≌△DCE(AAS),∴∠AFB=∠DEC,∴OE=OF.15.(2019八上·孝感月考)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.【答案】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中∴△ADE≌△CFE(AAS),∴AD=CF=4,∵AB=6,∴DB=AB−AD=6−4=2.16.(2019八上·渝中期中)如图,已知∠1=∠2,AC=AD,∠B=∠E,求证:BC=ED【答案】证明:即在△ABC和△AED中△ABC △AED(AAS)∴CB=DE.17(2019八上·北京期中)如图,B、C、E、F 在同一直线上,AB∥CD,BF=CE,∠A=∠D.求证:△ABE≌△DCF【答案】证明:因为AB∥CD,所以∠B=∠C;又因为BF=CE,则BE=CF,在△ABE和△DCF中,∵,∴△ABE≌△DCF(AAS).18(2019八上·江津期中)如图,已知点B,C,F,E在同一直线上,∠1=∠2,BF=CE,AB∥DE.求证:△ABC≌△DEF.【答案】解:∵BF=CE,∴BF-FC=CE-CF,即BC=EF,∵AB∥DE,∴∠E=∠B,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).19.(2019八上·慈溪期中)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠H.求证:BC=DH.【答案】解:∵AD=BE,∴AD-BD=BE-BD,即AB=DE.∵AC∥EH,∴∠A=∠E,在△ABC和△EDH中,∴△ABC≌△EDH(AAS),∴BC=DH.四:三角形判定--ASA20.(2020八上·襄城期末)如图,D是AB上一点,DF交AC于点E, 试判断AE与CE 有怎样的数量关系?并证明你的结论.【答案】解:,理由如下:证明:,(两直线平行,内错角相等)又21.(2019八上·秀洲期中)已知:如图,点在上,点在上,和相交于点,,.求证:.【答案】证明:在与中,,,22(2019八上·融安期中)已知:如图,点E在AB上,点C在AD上,AB=AD,∠B=∠D。

三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。

初中数学三角形全等基础训练1含答案

初中数学三角形全等基础训练1含答案

三角形全等基础训练1一.选择题(共40小题)1.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE2.如图,已知AB=AC,AD=AE,若添加一个条件不能得到“△ABD≌△ACE”是()A.∠ABD=∠ACE B.BD=CE C.∠BAD=∠CAE D.∠BAC=∠DAE 3.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短5.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E6.如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件使△ABC≌△DEC,则添加的条件不能为()A.AB=DE B.∠B=∠E C.AC=DC D.∠A=∠D7.根据下列已知条件,能唯一画出△ABC的是()A.AB=5,BC=3,AC=8B.AB=4,BC=3,∠A=30°C.∠C=90°,AB=6D.∠A=60°,∠B=45°,AB=48.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1B.2C.3D.49.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF10.如图,AB与CD相交于点E,EA=EC,DE=BE,若使△AED≌△CEB,则()A.应补充条件∠A=∠C B.应补充条件∠B=∠DC.不用补充条件D.以上说法都不正确11.如图,BF=EC,∠B=∠E,请问添加下面哪个条件不能判断△ABC≌△DEF()A.∠A=∠D B.AB=ED C.DF∥AC D.AC=DF12.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB,CD两根木条),这样做是运用了三角形的()A.全等性B.灵活性C.稳定性D.对称性13.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BAC C.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC14.如图,点B在AE上,∠CAB=∠DAB,要通过“ASA”判定△ABC≌△ABD,可补充的一个条件是()A.∠CBA=∠DBA B.∠ACB=∠ADB C.AC=AD D.BC=BD15.下列说法:①全等图形的形状相同、大小相等;②有两边和一角对应相等的两个三角形全等;③一个锐角和一条直角边对应相等的两个直角三角形全等;④全等三角形的对应边上的中线相等;其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④16.如图,已知OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OBC=()A.95°B.120°C.50°D.105°17.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部18.如图,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形内角和180°19.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于()A.6cm B.8cm C.10cm D.4cm20.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC21.如图中的两个三角形全等的是()A.③④B.②③C.①②D.①④22.下列图形中具有稳定性的是()A.平行四边形B.三角形C.正方形D.长方形23.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC ≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE24.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.BC∥EF C.∠A=∠EDF D.AD=CF25.如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE 26.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c27.如图,已知∠1=∠2,则不一定能使△ABC≌△ABD的条件是()A.AC=AD B.BC=BD C.∠C=∠D D.∠3=∠4 28.如图所示,已知∠1=∠2,下列结论正确的是()A.AB∥DC B.AD∥BC C.AB=CB D.AD=CD29.如图,已知AE=CF,∠A=∠C,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠D=∠B B.AD=CB C.BE=DF D.∠AFD=∠CEB 30.在△ABC、△DEF中,已知AB=DE,BC=EF,那么添加下列条件后,仍然无法判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠C=∠F D.∠A=∠D=90°31.如图,已知MA∥NC,MB∥ND,且MB=ND,则△MAB≌△NCD的理由是()A.SSS B.SAS C.AAS D.ASA32.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD33.如图,A、B、C、D在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN 34.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD35.具备下列条件的两个三角形中,一定全等的是()A.有两边一角对应相等B.有两角一边分别相等C.三条边对应相等D.三个角对应相等36.下列条件中,不能判断△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠C=∠FC.AB=FE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF37.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°38.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL39.在△ABC和△A1B1C1中,已知∠C=∠A1,∠B=∠B1,要使这两个三角形全等,还需要条件()A.AB=A1B1B.AB=A1C1C.CA=A1C1D.∠A=∠C1 40.如图,∠BAC=∠DAC,若添加一个条件仍不能判断出△ABC≌△ADC的是()A.AB=AD B.BC=DC C.∠B=∠D D.∠ACB=∠ACD三角形全等基础训练1参考答案与试题解析一.选择题(共40小题)1.解:∵CE=BF,∴CE﹣EF=BF=EF,∴CF=BE,∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△CFD和Rt△BEA中,,∴Rt△CFD≌Rt△BEA(HL),∴∠C=∠B,∠D=∠A,∴CD∥AB,故A,B,D正确,∵∠C+∠D=90°,∴∠A+∠C=90°,故C错误,故选:C.2.解:AB=AC,AD=AE,A、若∠ABD=∠ACE,则符合“SSA”,不能判定△ABD≌△ACE,不恰当,故本选项正确;B、若BD=CE,则根据“SSS”,△ABD≌△ACE,恰当,故本选项错误;C、若∠BAD=∠CAE,则符合“SAS”,△ABD≌△ACE,恰当,故本选项错误;D、若∠BAC=∠DAE,则∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,符合“SAS”,△ABD≌△ACE,恰当,故本选项错误.故选:A.3.解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.4.解:根据三角形的稳定性可固定窗户.故选:A.5.解:∵∠1=∠2,∵∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,A、符合SAS定理,即能推出△ABC≌△ADE,故本选项错误;B、符合ASA定理,即能推出△ABC≌△ADE,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△ADE,故本选项正确;D、符合AAS定理,即能推出△ABC≌△ADE,故本选项错误;故选:C.6.解:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,A、根据BC=CE,AB=DE,∠ACB=∠DCE不能推出△ABC≌△DEC,故本选项正确;B、因为∠ACB=∠DCE,∠B=∠E,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;C、因为BC=CE,∠ACB=∠DCE,AC=CD,所以符合SAS定理,即能推出△ABC≌△DEC,故本选项错误;D、因为∠A=∠D,∠ACB=∠DCE,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;故选:A.7.解:(1)∵AB+BC=5+3=8=AC,∴不能画出△ABC;(2)已知AB、BC和BC的对角,不能画出△ABC;(3)已知一个角和一条边,不能画出△ABC;(4)已知两角和夹边,能画出△ABC;故选:D.8.解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE﹣CD=3﹣1=2,故选:B.9.解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.10.解:在△AED与△CEB中,∵,∴△AED≌△CEB(SAS).∴不用补充条件即可证明△AED≌△CEB.故选:C.11.解:A、添加∠A=∠D,可用AAS判定△ABC≌△DEF.B、添加AB=ED,可用SAS判定△ABC≌△DEF;C、添加DF∥AC,可证得∠C=∠F,用AAS判定△ABC≌△DEF;D、添加AC=DF,SSA不能判定△ABC≌△DEF.故选:D.12.解:这样做是运用了三角形的:稳定性.故选:C.13.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.14.解:在△ABC与△ABD中,,∴△ABC≌△ABD(ASA),故选:A.15.解:①全等图形的形状相同、大小相等;正确;②有两边和一角对应相等的两个三角形全等;错误,SSA不能判断全等;③一个锐角和一条直角边对应相等的两个直角三角形全等;正确;④全等三角形的对应边上的中线相等;正确;故选:B.16.解:∵在△OAD和△OBC中,,∴△OAD≌△OBC(SAS)∴∠OBC=∠OAD,∵∠OAD=180°﹣∠O﹣∠D=95°,∴∠OBC=95°,故选:A.17.解:A.三角形的三条中线交于一点,正确;B.锐角三角形的三条高都在三角形内部,错误;C.三角形一定具有稳定性,错误;D.三角形的角平分线一定在三角形的内部,错误;故选:A.18.解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故选:A.19.解:∵AB⊥BD,∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠DCE=90°∴∠DCE=∠BAC且∠B=∠D=90°,且AC=CE∴△ABC≌△CDE(AAS)∴CD=AB=5cm,DE=BC=3cm∴BD=BC+CD=8cm故选:B.20.解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.21.解:根据两边夹角对应相等的两个三角形全等,可知①②两个三角形全等,故选:C.22.解:三角形具有稳定性;故选:B.23.解:若AC=DF,且BC=EF,∠C=∠F,根据SAS可判定△ABC≌△DEF,若∠B=∠E,且BC=EF,∠C=∠F,根据ASA可判定△ABC≌△DEF若∠A=∠D,且BC=EF,∠C=∠F,根据AAS可判定△ABC≌△DEF若AB=DE,且BC=EF,∠C=∠F,不能判定两三角形全等故选:D.24.解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误;D、∵AD=CF,∴AD+DC=CF+DC,∵AB=DE,BC=EF,∴△ABC≌△DEF,正确.故选:D.25.解:两边和它们的夹角对应相等的两个三角形全等(SAS).∠B的两边是AB、BC,∠E的两边是DE、EF,而BC=BE+EC、EF=EC+CF,要使BC=EF,则BE=CF.故选:B.26.解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.27.解:A、∵∠1=∠2,AB为公共边,若AC=AD,则△ABC≌△ABD(SAS),故本选项错误;B、∵∠1=∠2,AB为公共边,若BC=BD,则不一定能使△ABC≌△ABD,故本选项正确;C、∵∠1=∠2,AB为公共边,若∠C=∠D,则△ABC≌△ABD(AAS),故本选项错误;D、∵∠1=∠2,AB为公共边,若∠3=∠4,则△ABC≌△ABD(ASA),故本选项错误;故选:B.28.解:∵∠1=∠2,∴AD∥BC,故选:B.29.解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、添加∠D=∠B可利用AAS判定△ADF≌△CBE,故此选项不合题意;B、添加AD=BC可利用SAS判定△ADF≌△CBE,故此选项不合题意;C、添加BE=DF不能判定△ADF≌△CBE,故此选项符合题意;D、添加∠AFD=∠CEB,可利用ASA判定△ADF≌△CBE,故此选项不合题意;故选:C.30.解:A、添加AC=DF可用SSS进行判定,故本选项错误;B、添加∠B=∠E可用SAS进行判定,故本选项错误;C、添加∠C=∠F不能判定△ABC≌△DEF,故本选项正确;D、添加∠A=∠D=90°,可用HL进行判定,故本选项错误;故选:C.31.解:由MA∥NC,MB∥ND可得,∠A=∠DCN,∠ABM=∠D,又∵MB=ND,∴此时的条件是两角一边,且角为一边的对角,符合AAS判定.故选:C.32.解:在△ABD与△ACD中,∵∠CAD=∠BAD,AD=AD,∴根据ASA只要证明∠ADC=∠ADB即可,∴可以添加∠BDE=∠CDE即可,故选:B.33.解:A、根据ASA可以判定△ABM≌△CDN;B、根据SAS可以判定△ABM≌△CDN;C、SSA无法判定三角形全等;D、根据AAS即可判定△ABM≌△CDN;故选:C.34.解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.35.解:A、有两边一角对应相等,不一定全等,故此选项错误;B、有两角一边分别相等,不一定全等,故此选项错误;C、三条边对应相等,一定全等,故此选项正确;D、三个角对应相等,不一定全等,故此选项错误;故选:C.36.解:当AB=DE,∠B=∠E,∠C=∠F时,根据AAS可得△ABC≌△DEF;当AC=DF,BC=EF,∠C=∠F时,根据SAS可得△ABC≌△DEF;当AB=FE,∠A=∠D,∠B=∠E时,不能判断△ABC≌△DEF,EF不是∠B与∠E的夹边;当AB=DE,BC=EF,AC=DF时,根据SSS可得△ABC≌△DEF;故选:C.37.解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.38.解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D.39.解:A、AB=A1B1不是对应边,不能证明这两个三角形全等,故此选项错误;B、AB=A1C1不是对应边,不能证明这两个三角形全等,故此选项错误;C、CA=A1C1是对应边,可用AAS证明两个三角形全等,故此选项正确;D、∠A=∠C1,不能证明这两个三角形全等,故此选项错误;故选:C.40.解:A、∵在△ABC和△ADC中,,∴△ABC≌△ADC(SAS);B、根据CB=CD,AC=AC,∠BAC=∠DAC,不能推出△BAC和△DAC全等,C、∵在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);D、∵在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);故选:B.。

山东潍坊一中八年级数学上册第十二章【全等三角形】基础练习(培优专题)

山东潍坊一中八年级数学上册第十二章【全等三角形】基础练习(培优专题)

一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能3.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .44.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB ,OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =5.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒6.如图,123,,l l l 是三条两两相交的公路,现需建一个仓库,要求仓库到三条公路距离相等,则仓库的可能地址有( )处.A .1B .2C .3D .47.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .408.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°9.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL10.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 11.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题12.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC的最小值为_________.13.如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为__cm/s.14.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则点A到直线CD的距离是_____.15.如图,ABC的三边AB、BC、CA长分别是10、15、20,三条角平分线交于O点,S S S等于__________.则::ABO BCO CAO16.已知点A、E、F、C在同一条直线l上,点B、D在直线l的异侧,若AB=CD,AE=CF,BF=DE,则AB与CD的位置关系是_______.P m m-,当m=____时,点P在二、四象限的角平分线上.17.已知点(2,1)18.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .19.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.20.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.21.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题22.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明.(1)____________;(2)____________.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.25.如图1,在平面内取一个定点O ,自O 引一条射线O x ,设M 是平面内一点,点O 与点M 的距离为m (m >0), 以射线O x 为始边,射线OM 为终边的∠x OM 的度数为x °(x≥0).那么我们规定用有序数对(m ,x °)表示点M 在平面内的位置,并记为M (m ,x °).例如,在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°).(1)如图3,如果点N 在平面内的位置记为N (6,35°),那么ON= ;xON ∠= °; (2)如图4,点A ,点B 在射线O x 上,点A ,B 在平面内的位置分别记为(a ,0°), (2a ,0°)点A,E,C在同一条直线上. 且OE=BC.用等式表示∠OEA与∠ACB之间的数量关系,并证明.一、选择题1.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°2.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对3.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 4.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 5.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N作OA,OB的垂线,交点为P.得到OP平分AOB∠的依据是()A.HL B.SSS C.SAS D.ASA6.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A.SSS B.SAS C.SSA D.AAS7.下列说法不正确的是()A.三边分别相等的两个三角形全等B.有两边及一角对应相等的两个三角形全等C.有两角及一边对应相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等8.如图,已知∠A=∠D, AM=DN,根据下列条件不能够判定△ABN≅△DCN的是()A.BM∥CN B.∠M=∠N C.BM=CN D.AB=CD9.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED=()A .134°B .124°C .114°D .104°10.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20°11.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题12.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.13.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.14.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .15.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.16.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)17.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.18.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.20.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).21.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题22.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.23.已知:如图,120AOB ∠=︒,过点O 作射线OP ,若OM 平分AOP ∠,ON 平分BOP ∠,AOP α∠=(1)如图1,补全图形,直接写出MON ∠=____________︒(2)如图2,若4BOM BON ∠=∠,求α的值.24.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B .求证:△ABC ≌△CDE .25.如图,BD //GE ,150AFG ∠=∠=︒,AQ 平分FAC ∠,交BD 的延长线于点Q ,交DE 于点H ,15Q ∠=︒,求CAQ ∠的度数.一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .13.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 4.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS5.已知如图,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD6.下列说法不正确的是()A.三边分别相等的两个三角形全等B.有两边及一角对应相等的两个三角形全等C.有两角及一边对应相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等7.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=2,△ABC的面积是()A.20 B.24 C.32 D.408.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④△≌△9.如图所示,已知∠A=∠C,∠AFD=∠CEB,那么给出的条件不能得到ADF CBE 是()A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF 10.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .411.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.13.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.14.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________15.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.16.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.17.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.18.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____19.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.20.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.21.如图,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是______.三、解答题22.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.23.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由; (2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 24.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.∠的角平分线,方法如下:(问题2)小明发现只利用直角三角板也可以作AOB=.步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM ON②分别过点M、N作OM、ON的垂线,交于点P.∠的平分线.③作射线OP,则OP为AOB∠的平分线.请根据小明的作法,求证OP为AOB25.如图,点D,E分别在AB和AC上,DE//BC,点F是AD上一点,FE的延长线交BC延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)求证:∠EGH>∠ADE;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.。

1.5三角形全等的判定(四)基础训练(含答案).doc

1.5三角形全等的判定(四)基础训练(含答案).doc

1.5 三角形全等的判定(四)1.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是(A)A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD(第1题)(第2题)2.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有(C)A. 1个B. 2个C. 3个D. 4个3.如图,P是∠AOB的平分线OC上的一点,PD⊥OA,PE⊥OB,垂足分别为D,E,延长DP交OB于点F,延长EP交OA于点G,则图中有__4__对全等三角形,它们分别是△FPE ≌△GPD,△OEP≌△ODP,△OPF≌△OPG,△ODF≌△OEG.(第3题)(第4题)4.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,你所添加的条件是∠BAC=∠DAC(答案不唯一)(只添一个即可).(第5题)5.如图,在△ABC 中,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,D ,E 为垂足.求证:DE +BE =CE .【解】 ∵AD ⊥CE ,BE ⊥CE , ∴∠ADC =∠CEB =90°. 又∵∠ACB =90°,∴∠ACD +∠BCE =∠BCE +∠CBE =90°, ∴∠ACD =∠CBE .在△ADC 和△CEB 中,∵⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠ACD =∠CBE ,AC =CB ,∴△ADC ≌△CEB (AAS ).∴CD =BE . ∴DE +BE =DE +CD =CE.(第6题)6.如图,已知点B ,E ,F ,C 在同一条直线上,∠A =∠D ,BE =CF ,且AB ∥C D.求证:AF ∥E D.【解】 ∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE . ∵AB ∥CD ,∴∠B =∠C.在△ABF 和△DCE 中,∵⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE (AAS ).∴∠AFB =∠DE C.∴AF ∥ED.(第7题)7.如图,在正方形ABCD 中,G 是BC 上任意一点,连结AG ,DE ⊥AG 于点E ,BF ∥DE 交AG 于点F ,探究线段DE ,BF ,EF 三者之间的数量关系,并说明理由.【解】 DE =BF +EF .理由如下: ∵四边形ABCD 是正方形, ∴AB =DA ,∠DAB =∠ABC =90°.∵DE ⊥AG 于点E ,BF ∥DE 交AG 于点F , ∴∠DEA =∠DEF =∠AFB =90°, ∴∠ADE +∠DAE =90°. ∵∠DAE +∠BAF =90°, ∴∠ADE =∠BAF . 在△ABF 和△DAE 中, ∵⎩⎪⎨⎪⎧∠BAF =∠ADE ,∠AFB =∠DEA ,AB =DA , ∴△ABF ≌△DAE (AAS ). ∴BF =AE ,AF =DE .∵AF =AE +EF ,∴DE =BF +EF.(第8题)8.如图,已知AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,按照图中所标注的数据,则图中阴影部分图形的面积S 等于(A )A. 50B. 62C. 65D. 68【解】 ∵EF ⊥AC ,BG ⊥AC ,∴∠EF A =∠AGB =90°,∠FEA +∠EAF =90°. ∵EA ⊥AB , ∴∠EAB =90°. ∴∠EAF +∠GAB =90°. ∴∠FEA =∠GA B. 又∵AE =BA , ∴△EF A ≌△AGB (AAS ). ∴AF =BG ,EF =AG . 同理,△BGC ≌△CHD , ∴GC =HD ,BG =CH .∴FH =F A +AG +GC +CH =3+6+4+3=16. ∴S =12×(6+4)×16-12×3×4×2-12×6×3×2=50.(第9题)9.如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为9,则BE =(B )A. 2B. 3C. 4D. 5(第9题解)【解】如解图,过点B作BF⊥DC,交DC的延长线于点F.∵∠CDA=90°,BE⊥AD,BF⊥CD,∴∠EBF=90°.又∵∠ABC=90°,∴∠ABE+∠EBC=∠CBF+∠EBC,∴∠ABE=∠CBF.∵BE⊥AD,BF⊥DF,∴∠AEB=∠CFB=90°.又∵AB=CB,∴△ABE≌△CBF(AAS).∴BE=BF.易知四边形BEDF为正方形,∴四边形ABCD的面积等于正方形BEDF的面积,即等于9,∴BE2=9,即BE=3.(第10题)10.如图,在△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为2,过点A作AE⊥l3于点E,求BE的长.【解】过点C作CF⊥l3于点F.∵l 1,l 2之间的距离为1,l 2,l 3之间的距离为2,AE ⊥l 3,CF ⊥l 3, ∴CF =3,∠AEB =∠BFC =90°. ∴∠EAB +∠ABE =90°. ∵∠ABC =90°, ∴∠ABE +∠FBC =90°. ∴∠EAB =∠FB C.在△AEB 和△BFC 中,∵⎩⎪⎨⎪⎧∠EAB =∠FBC ,∠AEB =∠BFC ,AB =BC ,∴△AEB ≌△BFC (AAS ). ∴BE =CF =3.(第11题)11.如图,在四边形ABCD 中,AB ∥DC ,BE ,CE 分别平分∠ABC ,∠BCD ,且点E 在AD 上.求证:BC =AB +C D.【解】 在BC 上截取BF =AB ,连结EF . ∵BE 平分∠ABC ,CE 平分∠BCD , ∴∠ABE =∠FBE ,∠DCE =∠FCE . 又∵BE =BE ,AB =FB , ∴△ABE ≌△FBE (SAS ). ∴∠A =∠BFE .∵AB ∥DC ,∴∠A +∠D =180°. ∵∠BFE +∠CFE =180°, ∴∠D =∠CFE .又∵∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(AAS).∴CD=CF.∴BC=BF+CF=AB+C D.12.如图,在直角三角形ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=F D.(第12题)【解】连结BF.∵F是∠BAC与∠ACB的平分线的交点,∴BF是∠ABC的平分线.又∵FM⊥AB,FN⊥BC,∴FM=FN,∠EMF=∠DNF=90°.∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠DAC=12∠BAC=15°,∴∠CDA=75°.易得∠ACE=45°,∴∠CEB=∠BAC+∠ACF=75°,即∠NDF=∠MEF=75°.在△DNF 和△EMF 中,∵⎩⎪⎨⎪⎧∠DNF =∠EMF ,∠NDF =∠MEF ,NF =MF ,∴△DNF ≌△EMF (AAS ).∴FE =F D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档