离散数学应用实践
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《离散数学应用实践》
实验报告
课序号: 07
学号: 1143041254
姓名:姚发权
任课教师:陈瑜
评阅成绩:
评阅意见:
提交报告时间:2012年 12 月 27 日
实验五:判断图是否是树
(一)问题描述
编写一个程序,从控制台输入一个用邻接矩阵表示的图,程序实现判断该图是不是树,并从控制台输出判断结果。(二)实验准备
《离散数学》《数据结构》《Java程序设计语言》
开发环境:eclipse
编程语言:Java
(三)算法分析
该程序运用的是定理“T连通且m=n-1”“T连通且无圈”“连通且不含圈的图称为数”《离散数学》P226.
实验中,为图的每个的节点设置一个flag标志,标记每个节点是否被访问过,我用广度遍历从其中一个节点开始沿边遍历,如果图是连通的,那无论从哪个顶点开始遍历,每个顶点都会被访问过,既被访问过的节点数=图的节点数。这可以证明图是连通的;
接下来,计算出图的边数m;
继而可以判断m是否等于图的节点数n-1;
“T连通且m=n-1”“T连通且无圈”“连通且不含圈的图称为数”
最终证明图是树。
判断连通性,如图:
A a
B b
C c
D d
(1)(2)
图(1)中,图是连通的,无论从哪个节点遍历,都能把整个图遍历了,m=n-1;
图(2)中,图是不连通的,对其的遍历要么只遍历c,要么只遍历了abd,m!=n-1。
计算图的边数,如图
对图的邻接矩阵进行遍历,计算出边的数目m;
(四)程序源代码
import java.util.Scanner;
public class isTree {
private Integer[][] elems;//图的邻接矩阵表示
private Boolean[] flag;//对元素是否被访问进行标记private int vexNum;//图的顶点数
private class Queue//队列
{
private Integer[] qs;
private int capacity;
private int pFront=0;
private int pBack=0;
public Queue(int n)
{
capacity=n;
qs=new Integer[n];
}
public Integer QueueOut()
{
int a= (qs[pFront]).intValue();
pFront=(++pFront)%capacity;
return a;
}
public void QueueIn(int n)
{
pBack=(pBack++)%capacity;
qs[pBack]=new Integer(n);
}
public Boolean isEmpty()
{
return pBack==pFront;
}
}
public void SetElems(Integer[][]elems)
{
this.elems=elems;
}
public void SetThisElems(String s,int i)
{
for(int j=0;j { elems[i][j]=Integer.parseInt(""+s.charAt(j)); } } public void SetNum(int vexNum) { this.vexNum=vexNum; elems=new Integer[vexNum][vexNum]; flag=new Boolean[vexNum]; } public Integer[][] GetElems() { return this.elems; } public Boolean[] GetFlag() { return this.flag; } public int GetVexNum() { return this.vexNum; } public void BFSTraverse()//对图的广度遍历{ Queue qu=new Queue(this.vexNum); qu.QueueIn(0); while(!qu.isEmpty()) { //System.out.println("x"); int a=qu.QueueOut(); flag[a]=true; for(int i=0;i { if(flag[i]!=true&&elems[a][i]==1) { qu.QueueIn(i); } //System.out.println(i); } } } public int GetEdgeNum()//返回一个图的边数{ int num=0; for(int i=0;i { for(int j=0;j { if(this.elems[i][j]!=0)num++; }