中考数学二次函数的综合复习含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二次函数真题与模拟题分类汇编(难题易错题)
1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
【答案】(1)抛物线解析式为y=﹣1
2
x2+2x+6;(2)当t=3时,△PAB的面积有最大值;
(3)点P(4,6).
【解析】
【分析】(1)利用待定系数法进行求解即可得;
(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,
设P(t,﹣1
2
t2+2t+6),则N(t,﹣t+6),由
S△PAB=S△PAN+S△PBN=1
2
PN•AG+
1
2
PN•BM=
1
2
PN•OB列出关于t的函数表达式,利用二次函数
的性质求解可得;
(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),
∴设抛物线解析式为y=a(x﹣6)(x+2),
将点A(0,6)代入,得:﹣12a=6,
解得:a=﹣1
2
,
所以抛物线解析式为y=﹣1
2
(x﹣6)(x+2)=﹣
1
2
x2+2x+6;
(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,
设直线AB 解析式为y=kx+b ,
将点A (0,6)、B (6,0)代入,得:
660b k b =⎧⎨+=⎩
, 解得:16k b =-⎧⎨=⎩
, 则直线AB 解析式为y=﹣x+6,
设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣
12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12
t 2+3t , ∴S △PAB =S △PAN +S △PBN
=12PN•AG+12
PN•BM =12PN•(AG+BM ) =
12
PN•OB =12×(﹣12
t 2+3t )×6 =﹣32
t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;
(3)如图2,
∵PH⊥OB于H,
∴∠DHB=∠AOB=90°,
∴DH∥AO,
∵OA=OB=6,
∴∠BDH=∠BAO=45°,
∵PE∥x轴、PD⊥x轴,
∴∠DPE=90°,
若△PDE为等腰直角三角形,
则∠EDP=45°,
∴∠EDP与∠BDH互为对顶角,即点E与点A重合,
则当y=6时,﹣1
2
x2+2x+6=6,
解得:x=0(舍)或x=4,
即点P(4,6).
【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
2.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由.
(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.
(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(1
4
,y1),D(
3
4
,y2)
都在二次函数图象上,试比较y1与y2的大小.
【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>
5;(3)①当0<b<1
2
时,y1>y2,②当b=
1
2
时,y1=y2,③当
1
2
<b<
4
5
时,y1<
y2.
【解析】
【分析】
(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;
(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;
(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【详解】
(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,
∴M的坐标是(b,4b+1),
把x=b代入y=4x+1,得y=4b+1,
∴点M在直线y=4x+1上;
(2)如图1,
直线y=mx+5交y轴于点B,
∴B点坐标为(0,5)又B在抛物线上,
∴5=﹣(0﹣b)2+4b+1=5,解得b=2,
二次函数的解析是为y=﹣(x﹣2)2+9,
当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,
∴A(5,0).
由图象,得
当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;
(3)如图2,
∵直线y=4x+1与直线AB交于点E,与y轴交于F,
A(5,0),B(0,5)得
直线AB的解析式为y=﹣x+5,
联立EF,AB得方程组
41
5 y x
y x
=+
⎧
⎨
=-+
⎩
,
解得
4
5
21
5
x
y
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
,
∴点E(4
5,
21
5
),F(0,1).
点M在△AOB内,
1<4b+1<21
5
,
∴0<b<4
5
.
当点C,D关于抛物线的对称轴对称时,b﹣1
4
=
3
4
﹣b,∴b=
1
2
,
且二次函数图象开口向下,顶点M在直线y=4x+1上,
综上:①当0<b<1
2
时,y1>y2,