高三数学二模卷
2024届上海市长宁区高三二模数学试题及答案
上海市长宁区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 1,2A , 1,3,B a ,若A B ,则a .2.不等式213x 的解集为.3.在41x的展开式中2的系数为.4.在5.若3a6.直线27.8.的取值9.10.的横11.出租车没有载客行驶的里程出租车空驶率出租车行驶的总里程.依据上述数据,小明建立了求解三辆车空驶率的模型,,,u f t s k a ,并求得甲、乙、丙的空驶率分别为23.26%、21.68%、%x ,则x.(精确到0.01)12.已知平面向量a 、b 、c满足:a b 2c ,若0c a c b ,则a b 的最小值为.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.设z C ,则“z z ”是“z R ”的().A 充分不必要条件;.B 必要不充分条件;.C 充要条件;.D 既不充分也不必要条件.14.已知直线a 、b 和平面 ,则下列判断中正确的是().A 若//a ,//b ,则//a b ;.B 若//a b ,//b ,则//a ;.C 若//a ,b ,则a b ;.D 若a b ,//b ,则a .15.某运动员8次射击比赛的成绩为:9.6,9.7,9.5,9.9,9.4,9.8,9.3,10.0.已知这组数据的第x百分位为m ,若从这组数据中任取一个数,这个数比m 大的概率为0.25,则x 的取值不可能是().A 65;.B 70;.C 75;.D 80.16.设数列 n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c ,则称数列n a p ..A .C 三、17.(1)(2) y g x 的值域.第18题图18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在长方体1111ABCD A B C D 中,2AB AD ,11AA .(1)求二面角1D AC D 的大小;(2)若点P 在直线11A C 上,求证:直线//BP 平面1D AC .19.(本题满分14分,第1小题满分6分,第2小题满分8分)盒子中装有大小和质地相同的6个红球和3个白球.(1)从盒子中随机抽取出1个球,观察其颜色后放回,并同时放入与其颜色相同的球3个,然后再从盒子随机取出1个球,求第二次取出的球是红球的概率;(2)从盒子中不放回地依次随机取出2个球,设2个球中红球的个数为X ,求X 的分布、期望和方差.已知椭圆22:163x y ,O 为坐标原点.(1)求 的离心率e ;(2)设点 1,0N ,点M 在 上,求MN 的最大值和最小值;(3)点 2,1T ,点P 在直线3x y 上,过点P 且与OT 平行的直线l 与 交于A 、B 两点.试探究:是否存在常数 ,使得2PA PB PT 恒成立?若存在,求出该常数的值;若不存在,请说明理由.设函数 y f x 的定义域为D ,若存在实数k ,使得对于任意x D ,都有 f x k ,则称函数 y f x 有上界,实数k 的最小值为函数 y f x 的上确界.记集合 0,n n f x M f x y x在区间上是严格增函数.(1)求函数21y x(26x )的上确界:(2)若 3212ln f x x hx x x M ,求h 的最大值;(3)设函数 y f x 的定义域为 0, .若 2f x M ,且 y f x 有上界,求证: 0f x ,且存在函数 y f x ,它的上确界为0.上海市长宁区2024届高三二模数学试卷-简答D 1B 12023学年第二学期高三数学教学质量调研试卷参考答案和评分标准一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.2; 2. 1,2 ;3.4;4.23; 5.1; 6.47.无关;8. 1,02,2;9.3 ;10.13;11.20.68;12.2二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)13.C ;14.C ;15.D ;16.B三、解答题(本大题共有5题,满分78分)17.(本题满分14分,第1小题满分6分,第2小题满分8分).解:(1)sin 26f x x.每空2分,解析式2分(2) 22sin sin sin sin sin cos 2g x x x x x x x1111cos 2sin 222242x x x,……..4分因为0,2x ,所以32,444x ,进而sin 242x,…….6分所以函数y g x的值域为12………8分18.(本题满分14分,第1小题满分6分,第2小题满分8分).解:(1)设BD 与AC 相交与E ,连接1D E 因为ABCD 为正方形,所以BD AC ,又因为1DD 平面ABCD ,所以DE AC ,…….2分所以1D ED 即为二面角1D AC D 的平面角,……..4分由已知DE 1tan D EDD1B1二面角1D AC D的大小为arctan2.……..6分(2)连接1BA、1BC因为11//BA CD,所以1//BA平面1D AC,…….2分因为11//BC AD,所以1//BC平面1D AC,……..4分所以平面11//BA C平面1D AC,………6分因为直线BP 平面11BA C,所以直线//BP平面1D AC.………8分方法二:以AB、AD、1AA为x y z、、轴,建立空间直角坐标系.则0,0,0A,2,0,0B,2,2,0C,10,2,1D,………2分因为点P在直线11A C上,所以可设,,1P a a,……..4分设平面1D AC的法向量为,,n x y z,由0n AC,1n AD,得220x y,20y z,所以可取1,1,2n,……..6分因为2,,1BP a a,所以0n BP,进而n BP,又因为BP不在平面1D AC上,所以直线//BP平面1D AC.…….8分19.(本题满分14分,第1小题满分6分,第2小题满分8分).解:(1)第一次取出红球的概率为23,取出白球的概率为13,…….2分第一次取出红球,第二次取出红球的概率为231342第一次取出白球,第二次取出红球的概率为111326……..4分所以第二次取出的球是红球的概率为112263………6分(2)2329C112CP X ,116329C C112CP X ,2629C5212CP X ,所以X的分布为01211512212,……….4分1154012122123E X……..6分2151342126E X ,所以 22131676918D XE X E X,…….8分20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分).解:(1)设 的半长轴长为a ,半焦距为c ,则a,c ,………2分所以2c e a.……..4分(2)设 ,M x y ,MN……2分因为x ……3分所以当2x时,MN ,……..4分当x 时,MN 取得最大值为1 .…….6分(3)设 ,3P a a , 11,A x y , 22,B x y ,则直线13:322l y x a,………2分2222PT a ,………3分11111,3,22a PA x a y a x a x,22221,3,22a PB x a y a x a x………4分将直线l 方程代入椭圆方程得 2222240x a x a 所以 1222x x a , 21224x x a ,……..5分21212125544PA PB x a x a x x a x x a 25224a ,……..6分得254PA PB PT ,所以存在54,使得2PA PB PT 恒成立.……..8分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分).x得 10f x ,0k ,……3分取21x x ,且2x,由21x x ,得212221f x f x x x①由2x,得 12222122f x f x k x x x ②①式与②式矛盾,所以假设不成立,即对于任意 0,x ,均有 0f x .……6分令 10f x x x,则 231f x y x x因为当0x 时,430y x,所以2f x y 在 0, 上严格增, 2y f x M。
2024届上海市徐汇区高三二模数学试题及答案
第12题图上海市徐汇区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合22A y y x ,集合2430B x x x ,那么A B .2.已知复数1iz i(i 为虚数单位),则z z .3.在ABC 中,1AC ,2C ,A,则ABC 的外接圆半径为.4.5.6.7.8.9.10.11.不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ,则OAP 面积的取值范围是.12.如图所示,已知ABC 满足8BC ,3AC AB ,P 为ABC 所在平面内一点.定义点集13,3P AP AB AC R D.若存在点0P D ,使得对任意P D ,满足0AP AP恒成立,则0AP的最大值为.第11题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.在下列函数中,值域为R 的偶函数是().A 13y x ;.B lg y x ;.C x x y e e ;.D 3cos y x x .14.为了研究y 关于x 的线性相关关系,收集了5组样本数据(见下表):.A ˆa.B 当x .C .D 15.).A 若 .B 若 .C .D 若16.三棱锥90 ,二面角P BC A 的大小为45 ,则对以下两个命题,判断正确的是()①三棱锥O ABC 的体积为83;②点P 形成的轨迹长度为..A ①②都是真命题;.B ①是真命题,②是假命题;.C ①是假命题,②是真命题;.D ①②都是假命题.第18题图三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数 y f x ,其中 122log 2xf x x .(1)求证: y f x 是奇函数;(2)若关于x 的方程 12log f x x k 在区间 3,4上有解,求实数k 的取值范围.18.如图,4,ABC 是底面圆O (1)(2)19.(本题满分14分,第1小题满分6分,第2小题满分8分)为了解中草药甲对某疾病的预防效果,研究人员随机调查了100名人员,调查数据如右表.(单位:个)(1)若规定显著性水平0.05 ,试分析中草药甲对预防此疾病是否有效;(2)已知中草药乙对该疾病的治疗有效率数据如下:对未服用过中草药甲的患者治疗有效率为12,对服用过中草药甲的患者治疗有效率为34.若用频率估计20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知椭圆224:13x y C ,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为左、右焦点,直线l 交椭圆C 于M 、N 两点(l 不过点2A ).(1)若Q 为椭圆C 上(除1A 、2A 外)任意一点,求直线1QA 和2QA 的斜率之积;(2)若112NF F M,求直线l 的方程;(3)若直线2MA 与直线2NA 的斜率分别是1k 、2k ,且1294k k,求证:直线l 过定点.21.(本题满分18分,第1小题满分4分,第2小题(i )满分6分,第2小题(ii )满分8分)已知各项均不为0的数列 n a 满足2211n n n n n a a a a a(n 是正整数),121a a ,定义函数111!nkn k y f x x k(0x ),e 是自然对数的底数.(1)求证:数列1n n a a是等差数列,并求数列 n a 的通项公式;(2)记函数 n y g x ,其中 1xn n g x e f x ;(i )证明:对任意0x , 3430g x f x f x ;(ii )数列 n b 满足12n n nb a ,设n T 为数列 n b 的前n 项和.数列 n T 的极限的严格定义为:若m 满足:当n m n T 的极限T .上海市徐汇区2024届高三二模数学试卷-简答参考答案及评分标准2024.4一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 3, 2.2 3.14.35.816.17.2108.79.76410.7211.12.3二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.B 14.D 15.C 16.A三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)【解】(1)证明:函数122log 2xy x 的定义域为 22D x x x 或,在D 中任取一个实数x ,都有x D ,并且1111222222()log log log ()222x x x f x f x x x x.因此,122log 2xy x 是奇函数.(2) 12()log f x x k 等价于22x x k x即24122x k x x x x在 3,4上有解.记4()12g x x x,因为()g x 在 3,4上为严格减函数,所以,max ()(3)2g x g ,min ()(4)1g x g ,故()g x 的值域为 1,2 ,因此,实数k 的取值范围为 1,2 .18.(本题满分14分,第1小题满分6分,第2小题满分8分)19.(本题满分14分,第1小题满分6分,第2小题满分8分)20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)【解】(1)在椭圆22:143x y C 中,左、右顶点分别为12(2,0)(2,0)A A 、,设点 000,(2)Q x y x ,则12202000220000312244344QA QA x y y y k k x x x x .(2)设 1122,,,M x y N x y ,由已知可得1(1,0) F ,122111(1,)(+1,)NF x y F M x y,,由112 NF FM 得2211(1,)2(+1,) x y x y ,化简得2121=322 x x y y 代入2222431 x y 可得22114(32)(32)1 x y ,联立2211431 x y 解得117=4=8x y 由112 NF FM 得直线l 过点1(1,0) F ,7(,4 N ,所以,所求直线方程为=(1)2y x.(3)设 3344,,,M x y N x y ,易知直线l 的斜率不为0,设其方程为x my t (2 t ),联立22143x my tx y ,可得2223463120m y mty t ,由2222364(34)(312)0m t m t ,得2234t m .由韦达定理,得234342263123434, mt t y y y y m m .1294k k ,34349224y y x x .可化为 343449220 y y my t my t ,整理即得 223434499(2)9(2)0 m y y m t y y t ,222223126499(2)9(2)03434t mt m m t t m m ,由20t ,进一步得2222(49)(2)183(2)03434m t m t t m m ,化简可得16160t ,解得1t ,直线MN 的方程为1x my ,恒过定点(1,0).21.(本题满分18分,第(1)小题满分4分,第(2)(i )满分6分,第(2)(ii )满分8分)(方法二)而对于任意0u ,只需22e n u 且4n 时,可得22222222222!123n n e e e u e n n u个…….故存在22max ,5e m u,当n m 时,恒有n T T u ,因而n T 的极限2T e .。
2024届上海市静安区高三二模数学试题及答案
上海市静安区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.中国国旗上所有颜色组成的集合为.2.已知i 是虚数单位,复数2z im i是纯虚数,则实数m 的值为.3.函数1lnxy 的定义域为. 4.5.N 闭区间6.2,6 内,7.8.①a 9.10.0,1,2i )个次品的概率如下:则各批产品通过检查的概率为.(精确到0.01)11.已知实数 0,6a ,记 f x x a.若函数 y f x 在区间 0,2上的最小值为2 ,则a 的值为.12.我们称右图的曲线为“爱心线”,其上的任意一点 ,P x y都满足方程2220x x y y .现将一边在x 轴上,另外两个顶点在爱心线上的矩形称为心吧.若已知点,2M到“爱心线”上任意一点的最小距离为d ,则用d 表示心吧面积的最大值为.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.函数2sin cos y x x (x R )的最小正周期为().A14.设).A // ;.C ,则// .15.设.A16.于任意的,a b Z ,方程x a b 与a y b 都有整数解;而实数集R 关于实数的乘法( )不构成群,因为方程01y 没有实数解.以下关于“群”的真命题有()①自然数集N 关于自然数的加法( )构成群;②有理数集Q 关于有理数的乘法( )构成群;③平面向量集关于向量的数量积( )构成群;④复数集C 关于复数的加法( )构成群..A 0个;.B 1个;.C 2个;.D 3个.第12题图第18题图三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分12分,第1小题满分6分,第2小题满分6分)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3a ,5b ,7c .(1)求角C 的大小;(2)求 sin A C 的值.18.(本题满分15分,第1小题满分5分,第2小题满分10分)某高中随机抽取100名学生,测得他们的身高(单位:cm ),按照区间 160,165, 165,170, 170,175,175,180, 180,185分组,得到样本身高的频率分布直方图(如下图所示).(1)求身高不低于170cm 的学生人数;(2)将身高在 170,175, 175,180, 180,185区间内的学生依次记为A 、B 、C 三个组,用分层抽样的方法从三个组中抽取6人.①求从这三个组分别抽取的学生人数;②若要从6名学生中抽取2人,求B 组中至少有1人被抽中的概率.第19题图1第19题图219.(本题满分15分,第1小题满分6分,第2小题满分9分)如图1所示,ABCD是水平放置的矩形,AB ,2BC .如图2所示,将ABD 沿矩形的对角线BD 向上翻折,使得平面ABD 平面BCD .(1)求四面体ABCD 的体积V ;(2)试判断与证明以下两个问题:①在平面BCD 上是否存在经过点C 的直线l ,使得l AD ?②在平面BCD 上是否存在经过点C 的直线l ,使得//l AD ?第20题图江南某公园内正在建造一座跨水拱桥.如平面图所示,现已经在地平面以上造好了一个外沿直径为20米的半圆形拱桥洞,地平面与拱桥洞外沿交于点A 与点B .现在准备以地平面上的点C 与点D 为起点建造上、下桥坡道,要求:①BD AC;②在拱桥洞左侧建造平面图为直线的坡道,坡度为1:(坡度为坡面的垂直高度和水平方向的距离的比);③在拱桥洞右侧建造平面图为圆弧的坡道;④在过桥的路面上骑车不颠簸.(1)请你设计一条过桥道路,画出大致的平面图,并用数学符号语言刻画与表达出来;(2)并按你的方案计算过桥道路的总长度;(精确到0.1米)(3)若整个过桥坡道的路面宽为10米,且铺设坡道全部使用混凝土.请设计出所铺设路面的相关几何体,提出一个实际问题,写出解决该问题的方案,并说明理由(如果需要,可通过假设的运算结果列式说明,不必计算).已知k R ,记 xxf x a k a (0a 且1a ).(1)当e a (e 是自然对数的底)时,试讨论函数 y f x 的单调性和最值;(2)试讨论函数 y f x 的奇偶性;(3)拓展与探究:①当k 在什么范围取值时,函数 y f x 的图像在x 轴上存在对称中心?请说明理由;②请提出函数 y f x 的一个新性质,并用数学符号语言表达出来.(不必证明)上海市静安区2024届高三二模数学试卷-简答)2211030,3032210100,03250040,030x x x x x x ;(2)63.9m ;(3)略.参考答案与评分标准一、1.{红,黄};2.21;3.)1,2( ;4.2;5.1360;6.5π3;7.1 ;8.②③④;9.5;10.0.91;11.3;12.225d .二、13.A ;14.C ;15.D .16.B .三、17.解:(1)由余弦定理,有212cos 222ab c b a C ,所以3π2 C …………………6分(2)解1:由正弦定理,有C c B b sin sin ,即.1435sin sin c C b B 所以B B C A sin )πsin()sin( .1435………………………6分解2:由正弦定理,有C cA a sin sin ,即.1433sin sin c C a A 所以.1413sin 1cos 2 A A 故,.1435sin cos cos sin )sin( C A C A C A ………………………6分解3:由余弦定理,有14132cos 222 bc a c b A ,所以.1433sin A 故,.1435sin cos cos sin )sin( C A C A C A ………………………6分18.解:(1)由频率分布直方图可知515(0.070.040.020.01)x ,所以1[150.14]0.065x .身高在170cm 以上的学生人数为100(0.0650.0450.025)60 (人).(2)A ,B ,C 三组的人数分别为30人,20人,10人.因此应该从A ,B ,C 三组中每组各抽取630360(人),620260 (人),610160(人).………………………4分设A 组的3位同学为1A ,2A ,3A ,B 组的2位同学为1B ,2B ,C 组的1位同学为1C ,则从6名学生中抽取2人有15种可能:12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,11(,)A C ,23(,)A A ,21(,)A B ,22(,)A B ,21(,)A C ,31(,)A B ,32(,)A B ,31(,)A C ,12(,)B B ,11(,)B C ,21(,)B C .其中B 组的2位学生至少有1人被抽中有9种可能:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,11(,)B C ,21(,)B C .所以B 组中至少有1人被抽中的概率为93155P.……………6分19.解:(1)过点A 作AE BD ,垂足为E .因为平面 ABD 平面BCD ,有AE 平面BCD,则AE ……………………4分所以11122332BCD V S AE△..........2分(2)①在平面BCD 上存在经过点C 的直线l ,使得AD l . (1)证明:过点C 作CF BD ,垂足为F .因为AE 平面BCD ,则DE 为AD 在平面BCD 内的投影.由三垂线定理,CF AD ,则存在l AD .…4分②在平面BCD 上不存在经过点C 的直线l ,使得AD l //…1证明:假设存在//l AD ,因为AD 不在平面BCD 内,则//AD 平面BCD ,与AD 平面BCD D 矛盾.…3分所以不存在//l AD .注:用异面直线判断定理证明给满分.20.解1:如图,以线段AB 的中点O 为坐标原点建立平面直角坐标系.…………………1分则,圆O 的方程为10022 y x ;由221tanC ,10 OE 得220 ,30 CO .过点C 作圆O 的切线DE ,切点为E ,直线CE 的斜率为221,其方程为)30(221x y .所以直线OE 的斜率为22 ,其方程为x y 22 ,将其代入10022 y x ,得点E 的坐标为3220,310.经过点D 作圆M 与圆O 切于点F (圆O 与y 轴的交点),设圆M 的半径为r ,则,222DM OM OD ,即222)10(30r r ,解得50 r .所以,圆M 的方程为22250)40( y x ,故,用函数表示过桥道路为:.300,402500,0310,100,31030),30(22122x x x x x x y ……………………3分BD(2)解1:由点E 的坐标为3220,310,得22arctan 2πEOF ,所以圆弧EF 的长为22arctan 2π10 3.398,……………………2分由点D 的坐标为 0,30,点M 的坐标为 40,0 ,得43arctan DMF ,所以圆弧FD 的长为43arctan 50 32.175,……………………2分故,过桥道路的总长度为 22022arctan 2π1043arctan 50 9.63 m .……2分解2:(1)如图建系…………………………………………………………1分作圆N 与x 轴相切于点D ,并和圆O 切于点G ,设圆M 的半径为r ,则,222ON DN OD ,即222)10(30 r r ,解得40 r .所以,圆N 的方程为22240)40()30( y x ,将直线OG 的方程代入10022 y x 得,点G 的坐标为6,8故,用函数表示过桥道路为:.306,)30(160040,6310,100,31030),30(22122x x x x x x y …………………3分(2)因为3220,310OE ,)8,6( OG ,则15283,cosOG OE OG OE ,即,15283arccos , OG OE .所以圆弧EG 的长为15283arccos10 9.833.……………………2分又由点G 的坐标为)8,6(,得34arctan 2π OND ,所以圆弧GD 的长为 34arctan 2π40 25.740.………………………2分故,过桥道路的总长度为 22015283arccos10 34arctan 2π40 63.9m . (2)分(3)设计让桥的侧面所在平面垂直于地平面,则桥拱左侧铺设的是以曲边形ACE 为底面,高为10米的柱体;桥拱右侧铺设的是以曲边形BDF (BDG )为底面,高为10米的柱体;……………………2分提问:铺设坡道共需要混凝土多少立方米?……………………2分方案1:AOE COE ACE S S S 扇形曲边形BOFDOM DMF BDF S S S S 扇形扇形曲边形 所以,铺设过桥路需要混凝土10(BOF DOM DMF AOC COD S S S S S 扇形扇形扇形 )3m .………2分方案2:AOE COE ACE S S S 扇形曲边形BOGDNG ODN BDG S S S S 扇形扇形曲边形 所以,铺设过桥路需要混凝土10(BOF DNG ODN AOC COD S S S S S 扇形扇形扇形 )3m .………2分注:1、用直线和圆的方程表示坡道给满分;2、在拱桥右边设计与圆拱相切,切点不在圆拱最高点的上凸圆弧坡道,若计算正确,可酌情给满分;3、在拱桥右边设计与圆拱相切,与水平线相交的下凸圆弧作为坡道,若计算正确,可酌情给满分.4、若学生在拱桥左边设计圆的割线段,建议各扣1分;5、在拱桥右边设计相交圆弧作为坡道,但计算正确,建议各扣1分.21.解:(1)xx k x f e e )(',当0 k 时,0)(' x f ,故函数)(x f y 在R 上为严格增函数;……………………1分函数)(x f y 在R 上无最值.……………………1分当0 k 时,令0)(' x f ,得k x ln 21,所以,当k x ln 21,时,0)(' x f ,函数)(x f y 在k ln 21,上为严格减函数;…1分当 ,ln 21k x 时,0)(' x f ,函数)(x f y 在,ln 21k 上为严格增函数.…………1分函数)(x f y 在R 上有最小值0,无最大值.……………………1分(2)因为“)(x f y 为偶函数” “对于任意的R x ,都有)()(x f x f ”对于任意的R x ,都有R x ,并且x x x x a k a a k a ; 对于任意的R x ,0))(1( x x a a k 1 k .故,1 k 是)(x f y 为偶函数的充要条件.……………………3分因为“)(x f y 为奇函数” “对于任意的R x ,都有)()(x f x f ”对于任意的R x ,都有R x ,并且x x x x a k a a k a ; 对于任意的R x ,0))(1( x x a a k 1 k .故,1 k 是)(x f y 为奇函数的充要条件.……………………3分当1 k 时,)(x f y 是非奇非偶函数.(3)①当0 k 时,函数)(x f y 有对称中心0),log(21k .即,当0 k 时,对于任意的R x ,都有R x ,并且))((log x k f a )(x f .………2分证明:当0 k 时,令0)( x f ,解得)(log 21k x a为函数)(x f y 的零点由xx a k a x f )(得,))((log x k f a ))((log )(log x k x k a a a k a xx a a k )(x f .……………………2分②答案1:当0 k 时,函数)(x f y 有对称轴k x a log 21.即,当0 k 时,对于任意的R x ,都有R x ,并且)(log x k f a )(x f .………………3分参考证明:当0 k 时,由xx a k a x f )(得,)(log x k f a )(log log x k xk a aa k a x x a a k )(x f .答案2:当1 k 时,)(x f y 的图像关于y 轴对称,即,对于任意的R x ,都有)()(x f x f .………………………………………………1分答案3:当0 k 时,函数)(x f y 的零点为)(log 21k x a,即.0)(log 21k f a …………1分答案4:表述函数)(x f y 的单调性和最值,并写出定义形式各给1分.。
2024届上海市松江区高三二模数学试题及答案
上海市松江区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.函数 lg 2y x 的定义域是.2.在复平面内,复数z 对应点的坐标是 1,2,则i z .3.4.已知点5.已知7x 6.7.8.9.已知1F 10.11.已知0 的取值范围是.12.某校高一数学兴趣小组一共有30名学生,学号分别为1,2,3,,30 ,老师要随机挑选三名学生参加某项活动,要求任意两人的学号之差绝对值大于等于5,则有种不同的选择方法.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.已知集合04A x x ,2,B x x n n Z ,则A B ().A 1,2;.B 2,4;.C 0,1,2;.D 0,2,4.14.某小区为了倡导居民对生活垃圾进行分类,对垃圾分类后处理垃圾x (千克)所需的费用y (角)的情况作了调研,并统计得到右表中几组对应数据,同时用最小二乘法得到y 关于x 的线性回归方程为0.70.4y x ,则下列说法错误的是().A 变量x 、y 之间呈正相关关系;.B 可以预测当8x 时,y 的值为6;.C 3.9m ;.D 由表格中数据知样本中心点为 3.5,2.85.15.已知某个三角形的三边长为a 、b 及c ,其中a b .若a 、b 是函数2y ax bx c 的两个零点,则a 的取值范围是().A 12.16.设n S ,2k N k ,则12S S ,2k N k ,则12S S .A .C 三、17.设 f x 为 .(1)(2), 32f A,求角C .18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在四棱锥P ABCD 中,底面ABCD 为菱形,PD 平面ABCD ,E 为PD 的中点.(1)设平面ABE 与直线PC 相交于点F ,求证://EF CD ;(2)若2AB ,60DAB ,PD ,求直线BE 与平面PAD 所成角的大小.19.现有甲、乙、,且每人能否闯(1)(2) E X ;(3)丙第20题图如图,椭圆22:12y x 的上、下焦点分别为1F 、2F ,过上焦点1F 与y 轴垂直的直线交椭圆于M 、N两点,动点P 、Q 分别在直线MN 与椭圆 上.(1)求线段MN 的长;(2)若线段PQ 的中点在x 轴上,求2F PQ 的面积;(3)是否存在以2F Q 、2F P 为邻边的矩形2F QEP ,使得点E 在椭圆 上?若存在,求出所有满足条件的点Q 的纵坐标;若不存在,请说明理由.已知函数 ln f x x x a (a 为常数),记 y f x x g x .(1)若函数 y g x 在1x 处的切线过原点,求实数a 的值.(2)对于正实数t ,求证: ln 2f x f t x f t t a ;(3)当1a 时,求证: e cos xg x x x.上海市松江区2024届高三二模数学试卷-简答1参考答案一、填空题1.(2,)2.2i3.0.24.1225.216.37.58.4910.(1,2)11.10,1212.1540二、选择题13.D14.C15.B16.C三、解答题17.解:(1)2()sin sin222f x x x x1cos 1=sin()2262x x x .……3分因为函数()y f x 图像的相邻两条对称轴之间的距离为 ,所以2 T ,即22,1T.所以1()sin(62f x x .……6分(2)由3()2f A,得13sin(),sin()16226A A .2(0,)3A A.……9分,由sin sin a b A B ,sin B,化简得sin 2 B 所以角4 B .……12分所以角23412C .……14分218.解:(1)因为底面ABCD 为菱形,所以//CD AB ,解法2:如图建系,由题可得:2AC BD ,则A, 0,1,0B , 0,1,0D , 0,1,P , 0,1,E ,……8分所以 0,2,BE , DA, 0,0,DP,设平面PAD 的法向量为 ,,z n x y,由00n DA n DP,得00y ,解得0y z,取1x ,可得平面PAD 的一个法向量为n.……12分设直线BE 与平面PAD 所成角的大小为090,x yzO3则1sin cos 22n BE n BE,解得30 ,所以,直线BE 与平面PAD 所成角的大小为30 .……14分19.解:(1)设“计划依次派出甲乙丙进行闯关,该小组比赛胜利”为事件A , 甲乙丙各自闯关成功的概率分别为134p ,223p ,312p ,每人能否闯关成功相互独立,解法1: 3323212311144343224P A解法2: P A 123111231(1)(1)(1)143224p p p .……4分(2)按甲在先,乙次之,丙最后的顺序派人,所需派出的人员数目X 的可能取值是1、2、3,11P X p , 1221P X p p , 12311P X p p ,所以X 的分布是: 11212123111p p p p p,……7分所以 1121212122(1)3(1)(1)23E X p p p p p p p p p .……10分(3)若先派丙,再派乙,最后派甲,所需派出的人员数目Y 的分布是: 33232123111p p p p p,则 323223E Y p p p p ,所以 121232322323E X E Y p p p p p p p p ,21313213220p p p p p p p p ……13分所以先派甲,再派乙,最后派丙时,派出的人员数目的数学期望较小.……14分4521.(1)因为 ln +g x x x ,所以 22'g x x x x ,所以 '11g a .……2分又因为 1ln11a g a ,所以 g x 在1x 处的切线方程为: 11y a x a .点 0,0O 代入切线方程可得12a .……4分(2)设函数 0h x f x f t x t ,ln ln +2h x x x t x t x a ,0x t .ln 1ln 1ln x h x x t x t x.……6分令 0h x ,得:2102x x t t x t t x t x . h x 在,2t t 上严格递增;在0,2t 上严格递减; h x 的最小值为2t h,即总有: 2t h x h .……8分而 ln +2ln 22222t t t t h f f t t a f t t a∴ ln 2f x f t x f t t a .……10分6(3)当1a 时,即证1e ln cos xx x x x,(0x )由于 cos 1,1x ,故e e cos 1x x x x x,只需证1e ln 1xx x x ,……12分令 1e ln 10xk x x x x x,只需证明 0k x .而 22211e e 111x x x x k x x x x x’,……14分因为0x ,所以1e 0x ,令 '0k x 得:01x ,令 '0k x 得:1x ,所以 k x 在1x 处取得极大值,也是最大值,……16分所以 max 12e<0k x k ,故 0k x 在 0,x 上恒成立,结论得证.……18分。
2024届上海市长宁区高三下学期二模数学试卷(解析版)
2024届长宁区二模2024.04.07一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知集合{}{}1,2,1,,3A B a ==,且A B ⊆,则=a ______.【答案】2【解析】【分析】根据集合自己的概念即可求解.【详解】∵{}{}1,2,1,,3A B a ==,且A B ⊆,∴集合A 里面的元素均可在集合B 里面找到,∴a =2.故答案为:22.不等式|21|3x -<的解集为________.【答案】{|12}x x -<<【解析】【分析】根据绝对值定义化简求解,即得结果.【详解】∵|21|3x -<3213x ⇔-<-<12x ⇔-<<,∴不等式|21|3x -<的解集为{|12}x x -<<.故答案为:{|12}x x -<<.【点睛】本题考查解含绝对值不等式,考查基本分析求解能力,属基础题.3.在41x x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为_______.【答案】4【解析】【分析】利用二项式定理的通项公式即可求解.【详解】由二项式定理可知,41x x ⎛⎫+ ⎪⎝⎭的展开式的通项为4421441C C rr r r r r T x x x --+⎛⎫== ⎪⎝⎭,令422r -=,解得1r =,所以12224C 4T x x ==,所以二项式41x x ⎛⎫+ ⎪⎝⎭的展开式中含2x 项的系数为4.故答案为:4.4.在ABC ∆中,内角A,B,C 所对的边分别为a,b,c,若222a b bc c =++,则A =_____________.【答案】120︒【解析】【分析】根据已知可化为余弦定理的形式,从而求出A 的余弦,进而求出A.【详解】由题意可知,2221cos 222b c a bc A bc bc +--===-,所以120A =︒.【点睛】本题主要考查了利用余弦定理公式求三角形的角,属于中档题.5.已知236a b ==,则11a b +=________.【答案】1【解析】【分析】首先利用指数和对数互化得到2log 6a =,3log 6b =,再利用换底公式即可得到答案.【详解】由236a b ==可知2log 6a =,3log 6b =,所以66611log 2log 3log 61a b+=+==.故答案为:16.直线230x y --=与直线350x y --=的夹角大小为_______.【答案】π4##45︒【解析】【分析】先由斜率的定义求出两直线的倾斜角,然后再利用两角差的正切展开式计算出夹角的正切值,最后求出结果.【详解】设直线230x y --=与直线350x y --=的倾斜角分别为,αβ,则1tan 2,tan 3αβ==,且[),0,παβ∈,所以αβ>,因为()12tan tan 3tan 121tan tan 13αβαβαβ---===++,所以π4αβ-=,即两条直线的夹角为π4,故答案为:π4.7.收集数据,利用22⨯列联表,分析学习成绩好与上课注意力集中是否有关时,提出的零假设为:学习成绩好与上课注意力集中_______(填:有关或无关)【答案】无关【解析】【分析】根据题意,由零假设的定义,即可得到结果.【详解】零假设等价于两个变量相互独立,所以此题中的零假设为:学习成绩好与上课注意力集中无关.故答案为:无关8.已知函数()y f x =是定义域为R 的奇函数,当0x >时,()2log f x x =,若()1f a >,则实数a 的取值范围为_______.【答案】{1|02a a -<<或}2a >【解析】【分析】由已知结合奇函数的定义可求出0x <及0x =时的函数解析式,然后结合对数函数性质即可求解不等式.【详解】因为函数()y f x =是定义域为R 的奇函数,所以()00f =,当0x >时,()2log f x x =,当0x <时,0x ->,所以()()()2log f x x f x -=-=-,所以()()2log f x x =--,若()1f a >,当0a >时,可得2log 1a >,解得2a >,当a<0时,可得()2log 1a -->,解得102a -<<,当0a =时,可得01>,显然不成立,故a 的取值范围为{1|02a a -<<或}2a >.故答案为:{1|02a a -<<或}2a >.9.用铁皮制作一个有底无盖的圆柱形容器,若该容器的容积为π立方米,则至少需要_______平方米铁皮【答案】3π【解析】【分析】由柱体的体积公式可得21r h ⋅=,再求出圆柱形容器的表面积,由基本不等式求解即可.【详解】设圆柱形容器的底面半径为r ,高为h ,所以圆柱形容器的体积为2ππV r h =⋅=,所以21r h ⋅=,所以圆柱形容器的表面积为:()22π2ππ3π3πS r rh r rh rh =+=++≥⋅,当且仅当2r rh =,又21r h ⋅=,即1r h ==时等号成立,故至少需要3π平方米铁皮.故答案为:3π.10.已知抛物线2Γ:4y x =的焦点为F ,准线为l ,点M 在Γ上,,30MN l NFM ⊥∠=︒,则点M 的横坐标为_______.【答案】13【解析】【分析】过点F 作FH NM ⊥于点H ,由抛物线定义以及三角函数可用含M 的横坐标M x 的式子表示,NM HM ,注意到()112MN MH NH +==--=,由此即可列方程求解.【详解】如图所示:过点F 作FH NM ⊥于点H ,显然抛物线2Γ:4y x =的焦点为()1,0F ,准线为:l =1x -,由抛物线定义有MF MN =,结合30NFM ∠=︒得180230120NMF ∠=︒-⨯︒=︒,而()11,cos 6012M M MF MN x MH MF x ==+=︒=+,所以()()111111223M M M MN MH x x x +=+++=--=⇔=.故答案为:13.11.甲、乙、丙三辆出租车2023年运营的相关数据如下表:甲乙丙接单量t (单)783182258338油费s (元)107150110264110376平均每单里程k (公里)151515平均每公里油费a (元)0.70.70.7出租车空驶率=出租车没有载客行驶的里程出租车行驶的总里程;依据以述数据,小明建立了求解三辆车的空驶率的模型(),,,u f s t k a =,并求得甲、乙、丙的空驶率分别为23.26%21.68%%x 、、,则x =_______(精确到0.01)【答案】20.68【解析】【分析】根据题意得到出租车空驶率的模型,检验甲、乙两辆出租车的空驶率,满足题意,从而利用该模型求得丙的空驶率,从而得解.【详解】依题意,因为出租车行驶的总里程为s a,出租车有载客时行驶的里程为tk ,所以出租车空驶率1s tk tka a u s s a -==-,对于甲,7831150.710.232623.26%107150⨯⨯-≈=,满足题意;对于乙,8225150.710.216821.68%110264⨯⨯-≈=,满足题意;所以上述模型满足要求,则丙的空驶率为8338150.7%10.206820.68%110376x ⨯⨯=-≈=,即20.68x =.故答案为:20.68.12.已知平面向量,,a b c 满足:2a b c === ,若()()0c a c b -⋅-= ,则a b - 的最小值为_______.【答案】2【解析】【分析】先利用()2214a b a b a b ⋅=+-- 和()()2240a b a b ++-= 证明228a b --≤ ,再解不等式得到22824a b --≤ ,从而有2a b -≥ ,再验证()3,1a = ,()3,1b =- ,()2,0c =时2a b -= ,即得到a b - 的最小值是2.【详解】由于()()()()()()()2222222211122444a b a b a b a b a b a b a b a b a b ⋅=++⋅-+-⋅=+--=+-- ,且()()()()()()222222222222101040a b a b a b a b a b a b a b ++-=++⋅++-⋅=+=+= ,故有()()0c a c b =-⋅- ()2c a b c a b =-+⋅+⋅ 2c a b c a b ≥-++⋅ 42a b a b =-++⋅ ()()()221424a b a b a b =-+++-- ()()21424024a b a b =-++-- ()2144024a b =-+--21142a b =--- ,所以228a b --≤ ,记228a b x --= ,则有x ≤,从而120x -≤≤或()21612x x ≤+,即120x -≤≤或824x ≤≤.总之有24x ≤,故22824a b --≤ ,即2a b -≥ .存在()3,1a = ,()3,1b =- ,()2,0c = 时条件满足,且此时2a b -= ,所以a b - 的最小值是2.故答案为:2.【点睛】关键点点睛:对于a b - 的最小值问题,我们先证明2a b -≥ ,再给出一个使得2a b -= 的例子,即可说明a b - 的最小值是2,论证不等关系和举例取到等号两个部分都是证明最小值的核心,缺一不可.二、选择题(13-14每小题4分,15-16每小题5分,共18分)13.设C z ∈,则“z z =”是“R z ∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】【分析】由充分条件和必要条件的定义结合复数的定义求解即可.【详解】设i z a b =+,则i z a b =-,由z z =可得0b =,所以R z a =∈,充分性成立,当R z ∈时,即z a =,则z a =,满足z z =,故“z z =”是“R z ∈”的充要条件.故选:C .14.已知直线,a b 和平面α,则下列判断中正确的是()A.若//,//a b αα,则//a bB.若//,//a b b α,则//a αC.若//,a b αα⊥,则a b⊥ D.若,//a b b α⊥,则a α⊥【答案】C【解析】【分析】利用空间线线线面的位置关系判断A 错误;举反例判断B 错误;利用线面平行的性质定理和线面垂直性质得到C 正确;由线面平行和线线垂直的性质判断D 错误.【详解】A :若//,//a b αα,则两直线平行或异面或相交,故A 错误;B :若//,//a b b α,当直线a 在平面α内时,则直线a 不平行于平面α,故B 错误;C :若//a α,设过a 的平面与α相交于c ,则//a c ,又因为b α⊥,c α⊂,所以b c ⊥,所以b a ⊥,所以a b ⊥ ,故C 正确;D :若,//a b b α⊥,则a α⊥或//a α或a α⊂,故D 错误;故选:C.15.某运动员8次射击比赛的成绩为:9.6、9.7、9.5、9.9、9.4、9.8、9.3、10.0;已知这组数据的第x 百分位为m ,若从这组数据中任取一个数,这个数比m 大的概率为0.25,则x 的取值不可能是()A.65B.70C.75D.80【答案】D【解析】【分析】先利用古典概型分析m 的取值范围,再利用百分位数的定义逐一分析各选项,从而得解.【详解】将该运动员8次射击比赛的成绩从小到大排列:9.3、9.4、9.5、9.6、9.7、9.8、9.9、10.0,因为从这组数据中任取一个数,这个数比m 大的概率为0.25,一共有8个数,所以比m 大的数有两个,则9.89.9m ≤<,对于A ,因为80.65 5.2⨯=,所以第65百分位为第6个数,即9.8,满足题意;对于B ,因为80.7 5.6⨯=,所以第70百分位为第6个数,即9.8,满足题意;对于C ,因为80.756⨯=,所以第75百分位为第6,7个数的平均数,即9.89.99.852+=,满足题意;对于D ,因为80.8 6.4⨯=,所以第80百分位为第7个数,即9.9,不满足题意.故选:D.16.设数列{}n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c =+,则称数列{}n a 具有性质p :①存在等差数列{}n a 具有性质p ;②不存在等比数列{}n a 具有性质p ;对于以上两个命题,下列判断正确的是()A.①真②真B.①真②假C.①假②真D.①假②假【答案】B【解析】【分析】直接构造21n a n =-和()11n n a -=-,说明存在等差数列{}n a 具有性质p ,且存在等比数列{}n a 具有性质p ,从而得到①真②假.【详解】一方面,对21n a n =-,知{}n a 是等差数列.而()211212n S n n n =⋅+-=,令1c =就有2211n n n a c ==-+=+,所以{}n a 具有性质p ,这表明存在等差数列{}n a 具有性质p ;另一方面,对()11n n a -=-,知{}n a 是等比数列.当n 为奇数时,1n a =;n 为偶数时,1n a =-.故当n 为奇数时,1n S =;n 为偶数时,0n S =.故当n为奇数时,2111n a ==+=+;n为偶数时,0111n a ==-+=+.这表明1n a =+恒成立,再令1c =就有n a c =+,所以{}n a 具有性质p ,这表明存在等比数列{}n a 具有性质p .综上,①正确,②错误,故B 正确.故选:B.【点睛】关键点点睛:构造21n a n =-和()11n n a -=-作为例子,直接判断命题的真假,是判断选项正确性的简单有效的方法.三、解答(共78分)17.某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx ∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x fx x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪ ⎪⎢⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;【答案】(1)补充表格见解析,()πsin 26f x x ⎛⎫=+⎪⎝⎭(2)10,2⎡⎤+⎢⎥⎢⎥⎣⎦【解析】【分析】(1)由表得ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解方程组即可得,ωϕ,进一步可据此完成表格;(2)由题意结合二倍角公式、诱导公式以及辅助角公式先化简()g x 的表达式,进一步通过整体换元法即可求解.【小问1详解】由题意ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解得π2,6ωϕ==,所以函数()y f x =的解析式为()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令π206x +=时,解得π12x =-,当5π12x =时,ππ2π,sin 2066x x ⎛⎫+=+= ⎪⎝⎭,将表中Δ处的数据补充完整如下表:x ωϕ+0π2π3π22πx π12-π65π122π311π12()sin x ωϕ+0101-0【小问2详解】若1,0ωϕ==,则()22πsin sin sin sin sin cos 2g x x x x x x x ⎛⎫=+-=+ ⎪⎝⎭1cos 212π1πsin 2sin 20,222422x x x x ⎛⎫-⎛⎫⎡⎤=+=-+∈⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭,因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以ππ3π2,444x⎡⎤-∈-⎢⎥⎣⎦,进而πsin 2,142x ⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦,所以函数()y g x =的值域为10,2⎡⎤+⎢⎢⎥⎣⎦.18.如图,在长方体1111ABCD A B C D -中,12,1AB AD AA ===;(1)求二面角1D AC D --的大小;(2)若点P 在直线11A C 上,求证:直线//BP 平面1D AC ;【答案】(1)6arccos 3(2)见解析【解析】【分析】(1)以A 为原点,建立空间直角坐标系,分别求得平面1ACD 和平面ACD 的一个法向量()1,1,2n =- 和()0,0,1m =,结合向量的夹角公式,即可求解.(2)设()11101A P A C λλ=≤≤ ,求出()2,2,1P λλ,则()22,2,1BP λλ=- ,再由0BP n ⋅=可证明直线//BP 平面1D AC .【小问1详解】以A 为坐标原点,建立如图所示的空间直角坐标系,所以()()()()0,0,0,0,2,0,2,0,0,2,2,0A D B C ,()()()()11110,0,1,0,2,1,2,0,1,2,2,1A D B C ,因为()()12,2,0,0,2,1AC AD ==,设平面1ACD 的法向量为(),,n x y z = ,则122020n AC x y n AD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1y =-,可得1,2x z ==,所以()1,1,2n =-,设平面ACD 的法向量为()0,0,1m =所以6cos ,361m nn m n m ⋅===⨯,所以二面角1D AC D --的大小为6arccos3.【小问2详解】设(),,P x y z ,则设()11101A P A C λλ=≤≤ ,()()111,,1,2,2,0A P x y z A C =-=,所以2,2,1x y z λλ===,所以()2,2,1P λλ,()22,2,1BP λλ=-平面1ACD 的法向量为()1,1,2n =-,22220BP n λλ⋅=--+=,因为BP ⊄平面1D AC ,所以直线//BP 平面1D AC .19.盒子中装有大小和质地相同的6个红球和3个白球;(1)从盒子中随机抽取出1个球,观察其颜色后放回,并同时放入与其颜色相同的球3个,然后再从盒子随机取出1个球,求第二次取出的球是红球的概率;(2)从盒子中不放回地依次随机取出2个球,设2个球中红球的个数为X ,求X 的分布、期望与方差;【答案】(1)23(2)分布见解析,期望()()47,318E X D X ==【解析】【分析】(1)由独立乘法公式、互斥加法公式即可运算求解古典概型概率;(2)X 的所有可能取值为0,1,2,它服从超几何分布,结合超几何分布概率的求法求得相应的概率进而可得X 的分布,结合期望、方差计算公式即可求解.【小问1详解】第一次取出红球的概率为23,取出白球的概率为13,第一次取出红球,第二次取出红球的概率为231342⨯=,第一次取出白球,第二次取出红球的概率为111326⨯=,所有第二次取出的球是红球的概率为112263+=;【小问2详解】X 的所有可能取值为0,1,2,()()()21123636222999C C C C 1150,12C 12C 2C 12P X P X P X =========,所以X 的分布为01211512212⎛⎫ ⎪ ⎪ ⎪⎝⎭,它的期望为()1154012122123E X =⨯+⨯+⨯=,它的方差为()22214145470121232312318D X ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.20.已知椭圆22Γ:1,63x y O +=为坐标原点;(1)求Γ的离心率e ;(2)设点()1,0N ,点M 在Γ上,求MN 的最大值和最小值;(3)点()2,1T ,点P 在直线3x y +=上,过点P 且与OT 平行的直线l 与Γ交于,A B 两点;试探究:是否存在常数λ,使得2PA PB PT λ⋅= 恒成立;若存在,求出该常数的值;若不存在,说明理由;【答案】(1)22(2)MN 的最大值为1+(3)54λ=【解析】【分析】(1)利用椭圆方程即可直接求得其离心率;(2)利用椭圆的几何性质,结合两点距离公式与二次函数的性质即可得解;(3)分别利用向量的模与线性运算的坐标表示求得2,,PT PA PB,再联立直线l 与椭圆方程得到1212,x x x x +关于a 的表达式,进而化简PA PB ⋅ 得到PA PB ⋅ 与2PT 的关系,由此得解.【小问1详解】设Γ的半长轴长为a ,半短轴长为b ,半焦距为c ,则a b ==,则c =22c e a ===.【小问2详解】依题意,设(,)M x y,则x ≤≤22163x y +=,故2232x y =-,则MN ==所以由二次函数的性质可知,当2x =时,MN取得最小值为,当x =时,MN1=+【小问3详解】设()()1122(,3),,,,P a a A x y B x y -,又()2,1T,易得12OT k =,则直线l 为()()132y a x a --=-,即13322y x a =+-,而()()22222312(2)PT a a a =-+--=- ,()111111131,3,33,2222a PA x a y a x a x a a x a x ⎛⎫⎛⎫=--+=-+--+=-- ⎪ ⎪⎝⎭⎝⎭ ,()222222131,3,33,2222a PB x a y a x a x a a x a x ⎛⎫⎛⎫=--+=-+--+=-- ⎪ ⎪⎝⎭⎝⎭ ,联立2213322163y x a x y ⎧=+-⎪⎪⎨⎪+=⎪⎩,消去y ,得222(2)3(2)40x a x a +-+--=则()222Δ4(2)43(2)48420a a a a ⎡⎤=--⨯--=--+>⎣⎦,得22a -<<+所以212122(2),3(2)4x x a x x a +=--=--,故()()()()121214PA PB x a x a x a x a ⋅=--+--()()()21212125544x a x a x x a x x a =--=-++()2253(2)4224a a a a =--+-+252(2)4a =-,所以25||||4PA PB PT ⋅= ,故存在54λ=,使得2||||PA PB PT λ⋅= 恒成立.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.设函数()y f x =的定义域为D ,若存在实数k ,使得对于任意x D ∈,都有()f x k ≤,则称函数()y f x =有上界,实数k 的最小值为函数()y f x =的上确界;记集合n M ={()()nf x f x y x =在区间()0,∞+上是严格增函数};(1)求函数2(26)1y x x =<<-的上确界;(2)若()3212ln f x x hx x x M =-+∈,求h 的最大值;(3)设函数()y f x =一定义域为()0,∞+;若()2f x M ∈,且()y f x =有上界,求证:()0f x <,且存在函数()y f x =,它的上确界为0;【答案】(1)2(2)4(3)证明见解析【解析】【分析】(1)由函数的单调性求出值域再根据题意可得;(2)求出()f x y x=的表达式,求导,再利用()nf x y x=在()0,∞+上严格递增得到导函数大于等于零恒成立,然后利用基本不等式求出最小值即可;(3)假设存在,由单调性可得()()102210f x f x xx>>,再取21x x >,且2x >可得()()212221f x f x x x >,推出①②互相矛盾,然后令()1,0f x x x=->,根据题意求出值域最后确定上确界即可.【小问1详解】因为函数21y x =-在区间()2,6上严格递减,所以函数2(26)1y x x =<<-的值域为2,25⎛⎫ ⎪⎝⎭,所以函数2(26)1y x x =<<-的上确界为2.【小问2详解】()22ln f x y x hx x x==-+,22,0y x h x x'=-+>,因为记集合n M ={()()nf x f x y x =在区间()0,∞+上是严格增函数},所以0y '≥恒成立,因为224x h h h x -+≥=-,当且仅当1x =时取等号,所以4h ≤,所以h 的最大值为4.【小问3详解】证明:因为函数()y f x =有上界,设()f x k ≤,假设存在()00,x ∈+∞,使得()00f x ≥,设10x x >,因为()2y f x M =∈,所以()2f x y x=在()0,∞+上严格递增,进而()()102210f x f x xx>>,得()10,0f x k >>,取21x x >,且2x >,由于21x x >,得到()()212221f x f x xx>,①由2x >,得()()12222122f x f x k x x x >≥,②显然①②两式矛盾,所以假设不成立,即对任意()0,x ∈+∞,均有()0f x <,令()1,0f x x x =->,则()231f x y x x==-,因为当0x >时,430y x'=>,所以()2f x y x=在()0,∞+上严格递增,()2y f x M =∈,因为()1,0f x x x=->的值域为(),0∞-,所以函数()1f x x=-的上确界为零.【点睛】关键点点睛:(1)第二问的关键是导函数大于等于零恒成立,用基本不等式求解;(2)第三问关键是根据不等式的结构能够想到取2x >,再得到()()12222122f x f x k x x x >≥与当21x x >,得到()()212221f x f x x x >矛盾.。
2024届上海市浦东新区高三二模数学试题及答案
上海市浦东新区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 0,1,2A ,集合23xB x ,则A B.2.若复数12z i (i 是虚数单位),则z z z .3.已知等差数列 n a 满足1612a a ,47a ,则3a.4.23x5.6.已知y7.比为6现从该年级所有选择体育类选修课的同学中任取一8.已知圆9.已知f 10.沿着上底面圆周运动半周时,11.为双曲线上一点,若122F MF ,3OM b,则双曲线的离心率为.12.正三棱锥S ABC 中,底面边长2AB ,侧棱3AS ,向量a 、b满足 a a AC a AB ,b b AC b AS,则a b 的最大值为.第10题图第15题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.“1a ”是“直线220ax y 与直线 110x a y 平行”的().A 充分非必要条件;.B 必要非充分条件;.C 充要条件;.D 既非充分又非必要条件.14.已知a R ,则下列结论不恒成立的是().A 114a a ;.B 12a a;.C 123a a ;.D 1sin 02sin a a.15.通过随机抽样,我们绘制了如图所示的某种商品每千克价格(单位:百元)与该商品消费者年需求量(单位:千克)的散点图.若去掉图中右下方的点A 后,下列说法正确的是().A “每千克价格”与“年需求量”这两个变量由负相关变为正相关;.B “每千克价格”与“年需求量”这两个变量的线性相关程度不变;.C “每千克价格”与“年需求量”这两个变量的线性相关系数变大;.D “每千克价格”与“年需求量”这两个变量的线性相关系数变小.16.设 10110mm m m f x a x a xa x a (0m a ,10m ,m Z ),记1n n f x f x (1,2,,1n m ),令有穷数列n b 为 n f x 零点的个数(1,2,,1n m ),则有以下两个结论:①存在 0f x ,使得n b 为常数列;②存在 0f x ,使得n b 为公差不为零的等差数列.那么().A ①正确,②错误;.B ①错误,②正确;.C ①②都正确;.D ①②都错误.第18题图三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数 y f x ,其中 sin f x x .(1)求42f x在 0,x 上的解;(2)已知2g x x f x f x f x,若关于x 的方程 12g x m 在0,2x时有解,求实数m 的取值范围.18.在四棱其中//AD BC ,2AD BC (1)(2)某商店随机抽取了当天100名客户的消费金额,并分组如下: 0,200, 200,400, 400,600,…,1000,2000(单位:元),得到如图所示的频率分布直方图.(1)800元;(2)人中随机抽取2人(3)次当天消费金额可已知椭圆22:12x C y ,点1F 、2F 分别为椭圆的左、右焦点.(1)若椭圆上点P 满足212PF F F ,求1PF 的值;(2)点A 为椭圆的右顶点,定点 ,0T t 在x 轴上,若点S 为椭圆上一动点,当ST 取得最小值时点S 恰与点A 重合,求实数t 的取值范围;(3)已知m 为常数,过点2F 且法向量为 1,m 的直线l 交椭圆于M 、N 两点,若椭圆C 上存在点R满足OR OM ON(,R ),求 的最大值.已知函数 y f x 及其导函数 'y f x 的定义域均为D .设0x D ,曲线 y f x 在点00,x f x 处的切线交x 轴于点 1,0x .当1n 时,设曲线 y f x 在点,n n x f x 处的切线交x 轴于点 1,0n x .依此类推,称得到的数列 n x 为函数 y f x 关于0x 的“N 数列”.(1)若 ln f x x , n x 是函数 y f x 关于01x e的“N 数列”,求1x 的值;(2)若 24f x x , n x 是函数 y f x 关于03x 的“N 数列”,记32log 2n n n x a x ,证明: n a 是等比数列,并求出其公比;(3)若 2xf x a x,则对任意给定的非零实数a ,是否存在00x ,使得函数 y f x 关于0x 的“N 数列” n x 为周期数列?若存在,求出所有满足条件的0x ;若不存在,请说明理由.上海市浦东新区2024届高三二模数学试卷-简答1答案一、填空题1.{2}.2.42 i .3.5. 4.270.5.0.3.6.425.7.0.18.8. .9. 1,2.10.2.11.2.12.4.二、选择题13.C 14.B 15.D 16.C三、解答题从而有ππ2π+43x k或π2π2π+43x k ,Z k 解得7π2π+12x k 或11π2π+12x k ,Z k 又 0,πx ,所以7π12x或11π12x .因此π4f x在 0,πx 上的解为7π12、11π12.2cos sin x x x1cos 2sin 222xx2π1sin 262x故1()2g x m在π0,2x时有解等价于πsin 26m x在π0,2x时有解.所以,EC ∥平面PAB .3(2)取AD 中点H ,过P 作 PG AB ,垂足为G ,连接GH由题,PA PD ,H 为AD 的中点,所以PH AD .又平面 PAD 底面ABCD ,平面PAD 平面ABCD AD ,且 PH 平面PAD ,因而PH 平面ABCD ,故PH AB ,PH GH .又PG AB ,故AB 平面PGH .得AB GH .又 PG AB ,所 PGH 就是二面角 P AB D 的平面角.经计算,在△PAD中,PH 在△ABH 中,3BH AB ,2AH,故122ABH S 又11322ABH S AB GH GH,得AB因而,在△PGH 中,3tan 2PH PGH GH所以二面角 P AB D 的大小3arctan 2.(法二)(1)取AD 中点O ,因为PA PD ,O 为AD 中点,所以PO AD .又平面 PAD 底面ABCD ,平面PAD 平面ABCD AD , PO 平面PAD ,所以PO ABCD 平面.取BC 中点M ,显然,OM OD .如图,以点O 为坐标原点,分别以射线OM 、OD 、OP 为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系.由题意得, E、 C,故 EC.又 P 、 0,2,0A、1,0B ,故 AP,AB.设平面PAB 的法向量 ,, n u v w,则有20v v 不妨取1u,则v 2 ,即1,n.经计算得0 n EC ,故 n EC.又EC 在平面PAB 外,所以EC ∥平面PAB .(2)由题(1)知,平面PAB的法向量11, n ,平面ABCD 的法向量 200,1 ,n,从而121212cos ,13n n n n n n,因此,二面角 P AB D的大小为.19.【解析】因为850840.7 ,所以应选择第二种促销方案.20.【解析】(1)由题得,2(1,0)F ,设点(1,)P P y ,代入椭圆方程,得212Py ,因而22PF.由12PF PF12PF .(2)设动点(,)S x y ,则22222222()212122x x ST x t y x tx t tx t 221(2)12x t t 由题,ST 取得最小值时点S 恰与点A 重合,即函数221(2)12y x t t在x 处取得最小值,又[x,因而2t2t.因此,实数t 的取值范围为[,)2.(3)设11(,)M x y ,22(,)N x y ,(,)R x y 由OR OM ON ,得1212x x x y y y ,又点R 在椭圆上,代入得221212()2()2x x y y ,化简得22222211221212(2)(2)2(2)2x y x y x x y y ,又点M 、N 在椭圆上,得221212222(2)2x x y y (*).由题,可设直线:(1)0l x my .联列直线与椭圆方程,得22122x my x y ,得22(2)210m y my .故12222m y y m,12212y y m 因而22121212122221222(1)(1)2(2)1222m m x x y y my my y y m m m m m .代入(*)式,得222222422m m ,因而22221222m m ,(等号当且仅当 时成立)即224m (等号当且仅当 时成立).所以, 的最大值为224m .21.【解析】(1)曲线ln y x 在点 00,ln x x 处的切线斜率为01x ,又1ln 1e故曲线ln y x 在点1,1e 处的切线方程为11y e x e,令0y ,得2x e.所以12x e.(2)由题, y f x 在n x 处的切线方程为n n n y f x f x x x 令0y ,可得 1n n n n f x x x f x ,即2142n n n x x x .故 21212222n n n n x x x x ,即12n n a a .又1136x,故13log 25a .因此 n a 是以3log 25为首项,2为公比的等比数列.(3)由题,222a x f x a x,故以0020,x x a x 为切点的切线方程为 200022200x a x y x x a x a x .令0y ,可得到301202x x x a.1当0a 时,函数 2xf x a x的大致图像如图所示:因为300202x x x a等价于20x a ,因此,当20x a 时,数列 n x 严格增;同理,当20x a 时,数列 n x 严格减.所以不存在0x 使得 n x 是周期数列.②当0a 时,函数 2xf x a x的大致图像如图所示:令10x x ,可得300202x x x a ,即20=3ax .依此类推,显然可得21x x ,…,-1n n x x .所以,当0x 时,数列 n x 为周期数列,且周期2T .下证唯一性:当203ax 时,322000000222000222<x x x x x x x a x a a x ;因此,数列 n x 严格减;当203ax 时, 202200222,12,x a x a x a ,所以320000220022>--x x x x x a x a ,因此数列 n x 严格增.综上,当0a 时,不存在0x ,使得 n x 为周期数列;当0a时,当且仅当03x a 时,函数 y f x 关于0x 的“N 数列” n x 为周期数列,且周期2T .。
陕西省西安市西北工业大学附属中学2025届高三上学期二模数学试卷(含答案)
陕西省西安市西北工业大学附属中学2025届高三上学期二模数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.|2+i 2+i 3|=( )A.2B. 2C. 3D. 42.已知集合A ={y∣y =x 2+1},B ={y∣y =x +1},则A ∩B =( )A. {y∣y ≥1}B. {0,1}C. {1,2}D. {(0,1),(1,2)}3.cos 2π12−cos 25π12=( )A. 12B.33C.22D.324.若向量a ,b ,c 都是单位向量,且a +b =c ,则a 与a−b 的夹角为( )A. π6B. π3C. 2π3D. 5π65.已知椭圆C:x 2m +y 2=1,则“m=2”是“椭圆C 的离心率为22”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.某商场举办购物抽奖活动,其中将抽到的各位数字之和为8的四位数称为“幸运数”(如2024是“幸运数”),并获得一定的奖品,则首位数字为2的“幸运数”共有( )A. 32个B. 28个C. 27个D. 24个7.已知正项等比数列{a n }的前n 项和为S n ,且满足a n S n =4n −2n2,设b n = 2log 2(S n +1),将数列{b n }中的整数项组成新的数列{c n },则c 2024=( )A. 2022B. 2023C. 4048D. 40468.已知可导函数f (x )的定义域为R ,f (x2−1)为奇函数,设g (x )是f (x )的导函数,若g (2x +1)为奇函数,且g (0)=12,则∑10k =1kg (2k )=( )A. 132B. −132C. 112D. −112二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.下列命题中正确的是( )A. 若样本数据x 1,x 2,⋯,x 20的样本方差为3,则数据2x 1+1,2x 2+1,⋯,2x 20+1的方差为7B. 经验回归方程为y =0.3−0.7x 时,变量x 和y 负相关C. 对于随机事件A 与B ,P(A)>0,P(B)>0,若P(A|B)=P(A),则事件A 与B 相互独立D. 若X ~B (7,12),则P (X =k )取最大值时k =410.已知抛物线C:y 2=2px(p >0)的焦点为F ,准线为l ,过F 的一条直线与C 交于A ,B 两点,若点M 在l 上运动,则( )A. 当|AM |=|AF |时,AM ⊥lB. 当|AM |=|AF |=|MF |时,|AF |=2|BF |C. 当MA ⊥MB 时,A ,M ,B 三点的纵坐标成等差数列D. 当MA ⊥MB 时,|AM |⋅|BM |≥2|AF |⋅|BF |11.如图,在四棱锥P−ABCD 中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD//BC ,AB =AD =CD =1,BC =PA =2,记四棱锥P−ABCD 的外接球为球O ,平面PAD 与平面PBC 的交线为l ,BC 的中点为E ,则( )A. l//BCB. AB ⊥PCC. 平面PDE ⊥平面PADD. l 被球O 截得的弦长为1三、填空题:本题共3小题,每小题5分,共15分。
顺义区2024届高三二模数学试题及答案
顺义区2024年高三第二次质量监测数学试卷本试卷共9页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合 题目要求的一项。
1. 设集合{}24U x x =∈≤Z ,{}1,2A =,则U C A = A.[2,0]−B.{}0C.{}2,1−−D.{}2,1,0−−2. 已知复数z 的共轭复数z 满足(1i)2i z +⋅=,则z z ⋅=B.1C.2D.43. 在5(21)x −的展开式中,4x 的系数为 A.80− B.40− C.40 D.804. 已知4log 2a =,e1()2b =,12πc =,则A.a b c >>B.b a c >>C.c b a >>D.c a b >>5. 已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,1lg lg lg 2n n n a a ++=,*n ∈N , 则9S = A.511 B.61 C.41 D.96. 已知抛物线2:4C y x =的焦点为F ,准线为l ,P 为C 上一点,直线PF 与l 相交于点Q ,与y 轴交于点M . 若F 为PQ 的中点,则||PM =A.4B.6C. D.87. 若函数1,0()0, 01,0x x f x x x x −<⎧⎪==⎨⎪+>⎩,则“120x x +>”是“12()()0f x f x +>”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8. 如图,正方体1111ABCD A B C D −中,P 是线段1BC 上的动点,有下列四个说法: ①存在点P ,使得1//D P 平面1A DB ;②对于任意点P ,四棱锥11P A ADD −体积为定值; ③存在点P ,使得1A P ⊥平面1C DB ; ④对于任意点P ,1A DP △都是锐角三角形, 其中,不正确...的是 A.①B.②C.③D.④9. 已知在平面内,圆22:1O x y +=,点P 为圆外一点,满足||2PO =,过点P 作圆O 的两条切线,切点分别为,A B . 若圆O 上存在异于,A B 的点M ,使得2(1)PM PA PB λλ=+−,则λ的值是A.23B.12C.14 D.12−10. 设1237,,,a a a a 是1,2,3,,7的一个排列. 且满足122367||||||a a a a a a −≥−≥≥−,则122367||||||a a a a a a −+−++−的最大值是A.23B.21C.20D.18第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
2024届上海市虹口区高三二模数学试题及答案
第10题图1第10题图2上海市虹口区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.若3sin 5x ,则cos 2x .2.已知一个球的表面积为36 ,则该球的体积为.3.过抛物线24y x 焦点的弦AB 的中点横坐标为2,则弦AB 的长度为.4.5.6.7.8.则lim n n S9.c a 的最大值为10.O ,将篮球且AB BC11.如图,在直四棱柱1111ABCD A B C D 中,底面ABCD 为菱形,且60BAD .若12AB AA ,点M 为棱1CC 的中点,点P 在1A B 上,则线段PA 、PM 的长度和的最小值为.第11题图12.已知关于x 的不等式 2ln 340x k x x k x 对任意 0,x 均成立,则实数k 的取值范围为.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.欧拉公式e cos sin i i把自然对数的底数e ,虚数单位i ,三角函数cos 和sin 联系在一起,被誉为“数学的天桥”.若复数z 满足32e 2i z i i,则z ().A 14.设 f x y g x 的.A 2x对称;.C 2 .15.②数据③已知.A 16.①对任意12,x x R ,都有 1212f x f x g x g x ;②若 g x 的值域为 ,m M , 1f m , 1f M ,则对任意x R 都有 f x g x .则下列判断正确的是().A ①②都是假命题;.B ①②都是真命题;.C ①是假命题,②是真命题;.D ①是真命题,②是假命题.第18题图三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知等差数列 n a 满足25a ,9672a a .(1)求 n a 的通项公式;(2)设数列 n b 前n 项和为n S ,且221n n n b a a ,若432m S ,求正整数m 的最小值.18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在三棱柱111ABC A B C 中,CA CB ,D 为AB 的中点,2CA CB ,13CC .(1)求证:1//AC 平面1B CD ;(2)若1CC 平面ABC ,点P 在棱1AA 上,且PD 平面1B CD ,求直线CP 与平面1B CD 所成角的正弦值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)某企业监控汽车零件的生产过程,现从汽车零件中随机抽取100件作为样本,测得质量差(零件质量与标准质量之差的绝对值)的样本数据如下表:(1)求样本质量差的平均数x ;假设零件的质量差 2~,X N,其中216,用x 作为 的近似值,求 5668P X 的值;(2)0.9973.20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知椭圆2222:1x y a b(0a b )的焦距为 0,1P 在椭圆 上,动直线l 与椭圆 相交于不同的两点A 、B ,且直线PA 、PB 的斜率之积为1.(1)求椭圆 的标准方程;(2)若直线PA 的法向量为 1,2n,求直线l 的方程;(3)是否存在直线l ,使得PAB 为直角三角形?若存在,求出直线l 的斜率;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)若函数 y f x 满足:对任意12,x x R ,120x x ,都有12120f x f x x x ,则称函数 y f x 具有性质P .(1)设 e xf x , 3g x x x ,分别判断 y f x 与 y g x 是否具有性质P ?并说明理由;(2)设 sin 2f x x a x 若函数 y f x 具有性质P ,求实数a 的取值范围;(3)已知函数 y f x 具有性质P ,且图像是一条连续曲线,若 y f x 在R 上是严格增函数,求证: y f x 是奇函数.上海市虹口区2024届高三二模数学试卷-简答(第18题图1)A 11参考答案和评分标准2024年4月一、填空题(本大题共12题,满分54分;第1-6题每题4分;第7-12题每题5分)1.7252.36π3.64.,226.1445.127.9.8.3112.1,1e二、选择题(本大题共4题,满分18分;第13-14题每题4分,第15-16题每题5分)13.A14.D15.C16.B三、解答题(本大题共5题,满分78分)17.(本题满分14分,第1小题6分,第2小题8分)解:(1)设等差数列 n a 的公差为d ,则由条件,得11155278a d a d a d , (3)分解得13a ,2d ,故 1121n a a n d n ……6分.(2)由(1)可得123n a n ,则228(1).1)(23)(2n n n b n ……8分所以18,n n b b 故数列 n b 是以116b 为首项、8为公差的等差数列,故168(1)4(3).2m m m T m m……11分因为432m T ,所以23108m m ,所以 1290m m ,所以9m 或12m .因为m 为正整数,所以m 的最小值是10……14分.18.(本题满分14分,第1小题6分,第2小题8分)证:(1)连接B 1C 与CB 1底相交于点E ,因四边形1BCC B 为平行四边形,所以点E 是B 1C ……2分的中点.又因D 为AB 的中点,故DE 为1BAC 的中位线,从而1.AC DE ∥……4分故由111B CD DE B D A C C 平面,平面,得(第18题图2)1AC ∥平面1B CD .……6分解:(2)由条件知1,,CA CB CC 两两垂直,故以点C 为坐标原点,直线1,,CA CB CC 分别为,,x y z :的坐标为点;则相关轴,建立空间直角坐标系1(0,0,0),(2,0,0),(0,2,0),(1,1,0),(2,0,3),C A B D A 11(0,2,3),(0,0,3).B C ……8分设点(2,0,t),P 的坐标为则1(1,1,t),(1,1,3),DP DB从而由1(1,1,t)(1,1,3)3t 20,DP DB 得2t .3所以点22(2,0,),(2,0,).33P CP 的坐标为故……10分设平面1B CD 的一个法向量为(,,),n则1(,,)(1,1,0)0,(,,)(0,2,3)230,n CD x y z x y n CB x y z y z即,2,3x y z y取3,y 得(3,3,2).n (12)分设直线CP 与平面1B CD 所成的角为,则222(2,0,)(3,3,2)3cos ,sin 2(3,3,2)(2,0,)3CP n (14)分19.(本题满分14分,第1小题6分,第2小题8分)解:(1)由条件得:样本平均数为54557216046632566360100x (2)分由22,,60,16,X N x 得:(5668)(6046024)P X P X ……4分()(22)P X P X0.68270.95450.8186.……6分解:(1)由条件知1,b c (2)分所以2224,a b c 于是椭圆 的方程为22 1.4x y ………4分(2)由条件知:直线PA 的斜率为12,方程为11,2y x 则由2211,214y x x y得,220,x x 所以 2.A x 从而(2,0).A ………6分由于1PA PB k k ,所以直线PB 的方程为21,y x 同理可得1615(,).1717B所以直线l 的斜率为150()5171662()17A Bk,………8分从而直线l 的方程为50(2),6y x 即55(56100).63y x x y或……10分(3)假设存在满足条件的直线l ,并设直线PA 的方程为1(0),y mx m 则由221,14y mx x y 得22(41)80,m x mx 以所2841A mx m.………12分由于1PA PB k k ,所以直线PB 的方程为11,y x m同理可得221881414()B m mx m m故直线l 的斜率为11(1)(1)A B A B A B A B A BA Bmx x mx x y y m m k x x x x x x222222222222222421818(()41(4)41441488(41)(4)))((4144411111(15333(1)m m m m m m m m m m m m m m m m m m m m m m m m m m mm m m 分当PAB 为直角三角形时,只有可能90,90,PAB PBA 或于是1.,m k k m或若1k m,由111(),3m mm可得m k 从而若k m ,由11(3m m m可得22m k 也有因此,直线l的斜率为2………18分21.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)解:(1)()y f x 不具有性质P .理由:取122,1x x ,有22112()()e e01f x f x x x (2)分()y g x 具有性质P .理由:对任意12,x x R ,120x x ,有23322212112221122121212()()1310124f x f x x x x x x x x x x x x x x x x (4).分(2)函数()y f x 具有性质P ,故对12,x x R ,120x x ,都有1212()()0f x f x x x ,而()y f x 是奇函数,故2112()()0f x f x x x ,即()y f x 是严格增函数, '12cos 20f x a x恒成立. (7)分若0a ,则 min '120f x a ,解得102a ;若0a ,则 '10f x 恒成立;若0a ,则 min '120f x a ,解得102a.综合上述,实数a 的取值范围为11,.22……10分证明:(3)因函数()y f x 的定义域为R ,要证明()y f x 是奇函数,只要证明:对任意实数0,x 000f x f x 即可.对任意实数0,x 设 0,f x c 则由()y f x 具有性质P 知:当00x x 时,000.f x f x x x ① (12)分设 0(),h x f x f x f x c 当000,x x x x 即时,由①得0()()0,f x f x 即0(,)x x 当时,()0.h x ② (14)分当000,x x x x 即时,由①得0()()0,f x f x 即0(,)x x 当时,()0.h x ③于是由曲线()y h x 的连续性,函数()y h x 在R 上存在零点,x 即0()()()0.h x f x f x ④……16分由函数()y f x 在R 上严格增,知:函数()y h x 在R 上严格增;所以由②知0,x x 由③知0;x x 故0.x x 故由④得:000()()()0,h x f x f x 即对任意对任意实数0,x 均有000f x f x ;因此,函数()y f x ……18分是奇函数.另证:(3)由()y f x 具有性质P ,知:当0x 时 00f x f ,当0x 时00f x f ,由零点存在定理知 000f f ,即 00f ……12分.下面用反证法证明()y f x 是奇函数.假设存在0x 使得 000f x f x ,不妨设00x ,则由()y f x 在R 上严格增,知000f x f f x .若 000f x f x ,则构造函数00()2f x f x F x f x,00000000(0)222f x f x f f x f f x F f,0000000()22f x f x f x f x F x f x,由零点存在定理知,存在0(),t x 0,使得()0F t ……14分,即000()2f x f x f t f x;而()y f x 在R 上严格增,同样由单调性知00000()()()()102f t f x f x f x t x t x ,从而有00000()()()()102f t f x f x f x t x t x ,与()y f x 具有性质P 矛盾.……16分若 000f x f x ,构造函数00()2f x f x G x f x,同理也可推出与()y f x 具有性质P 矛盾.综合上述,存在0x 使得 000f x f x 的假设不能成立,即对任意R x 都有0f x f x ,故()y f x 是奇函数.……18分。
2024北京昌平区高三二模数学试题及答案
2024北京昌平高三二模数 学本试卷共5页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{21,0,1,2,3,20A B x x x =-=->∣∣,则A B = ( )A .{}0,1,2B .{}1C .{}1,0,1,2-D .1,3-2.已知数列{}n a 满足122,4n n a a a +==,则数列{}n a 的前4项和等于( )A .16B .24C .30D .623.已知抛物线()220y px p =>的焦点和双曲线2213y x -=的右顶点重合,则p 的值为( )A .1B .2C .4D .64.在61x ⎫⎪⎭的展开式中,常数项为( )A .-15B .15C .30D .3605.若01,1a b c <<<>,则( )A .bac c<B .log log c c a b>C .sinsin c ca b>D .c c a b <6.若圆22860x x y y m ++-+=与x 轴,y 轴均有公共点,则实数m 的取值范围是( )A .(],9-∞B .(],16-∞C .[)9,25D .[)16,257.设,m n 是两条不同的直线,,αβ是两个不同的平面,且,//m ααβ⊂,则“n β⊥”是“n m ⊥”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.已知函数()()24,1,ln 1, 1.x x x f x x x ⎧-+≤⎪=⎨->⎪⎩若对任意的x 都有()f x ax ≥恒成立,则实数a 的取值范围是( )A .(],0-∞B .[]4,0-C .[]3,0-D .(],2-∞9.中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关,经验表明,某种绿茶用90℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生极佳口感在20℃室温下,茶水温度从90℃开始,经过t min 后的温度为y ℃,可选择函数()600.920 0ty t =⨯+≥来近似地刻画茶水温度随时间变化的规律,则在上述条件下,该种绿茶茶水达到最佳饮用口感时,需要放置的时间最接近的是( )(参考数据:lg20.30,lg30.48≈≈)A .2.5min B .4.5min C .6min D .8min10.已知数列n a 满足434121,1,n n n n a a a a --=-==,该数列的前n 项和为n S ,则下列论断中错误的是( )A .311a =B .20241a =-C .∃非零常数*,N T n ∀∈,使得n T n a a +=D .*n ∀∈N ,都有22n S =-第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知复数1iiz +=,则z z ⋅=______.12.已知ABC △中,34,2,cos 4a b c A ===-,则ABC S = ______.13.已知正方形ABCD 的边长为1,点P 满足()0AP AB λλ=> .当13λ=时,AC PD ⋅= ______;当λ=______.时,PC DP ⋅取得最大值.14.已知p :设函数()f x 在区间()0,+∞上的图象是一条连续不断的曲线,若()()120f f ⋅>,则()f x 在区间()1,2内无零点.能说明p 为假命题的一个函数的解析式是______.15.已知曲线:4,0G x x y y +=为坐标原点.给出下列四个结论:①曲线G 关于直线y x =成轴对称图形;②经过坐标原点0的直线l 与曲线G 有且仅有一个公共点;③直线:2l x y +=与曲线G 所围成的图形的面积为2π-;④设直线:2l kx γ=+,当()1,0k ∈-时,直线l 与曲线G 恰有三个公共点.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.本小题13分已知函数())cos 3cos f x xx x a =+-的图像经过点3,62π⎛⎫⎪⎝⎭.(I )求实数a 的值,并求()f x 的单调递减区间;(II )当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x m ≥恒成立,求实数m 的取值范围.17.本小题14分如图,在棱长均为2的四棱柱1111ABCD A B C D -中,点E 是1CC 的中点,BC 交平面1AD E 于点F .(I )求证:点F 为线段BC 的中点;(II )再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得四棱柱1111ABCD A B C D -存在且唯一确定.(i )求二面角1D AF B --的余弦值;(ii )求点1B 到平面1AD EF 的距离.条件①:1DD ⊥平面ABCD ;条件②:四边形ABCD 是正方形;条件③:平面11AA D D ⊥平面11CC D D .注:如果选择的条件不符合要求,则第II 问得0分;如果选择多组符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)某行业举行专业能力测试,该测试由,,A B C 三项组成,每项测试成绩分为合格和不合格,三项测试结果相互独立.当三项测试成绩均合格时,认定分为10分;当C 项测试成绩合格,且,A B 两项中恰有一项成绩合格时,认定分为5分;当C 项测试成绩不合格,且,A B 两项测试成绩都合格时,认定分为2分;其它测试成绩,认定分为0分.甲在参加该专业能力测试前进行了20次模拟测试,测试成绩合格的频数统计如下表:测试项ABC频数161510用频率估计概率.(I )试估计甲参加该专业能力A 项测试成绩合格的概率;(II )设X 表示甲获得的认定分,求X 的分布列和数学期望()E X ;(III )若乙参加该专业能力测试,三项测试成绩合格的概率均为23.试估计甲、乙两人获得认定分的大小,并说明理由.19.本小题15分已知椭圆()2222:10x y E a b a b +=>>的离心率为12,短轴长为(I )求椭圆E 的方程;(II )设,A B 是椭圆E 的左、右顶点,F 是椭圆E 的右焦点.过点F 的直线l 与椭圆E 相交于,M N两点(点M 在x 轴的上方),直线,AM BN 分别与y 轴交于点,P Q ,试判断OP OQ是否为定值?若是定值,求出这个定值;若不是定值,说明理由.20.(本小题15分)已知函数()e xaf x x =+.(I )求曲线()y f x =在点()()0,0f 处的切线方程;(II )求()f x 在区间[]0,1上的最小值;(III )若0a >,当0x >时,求证:()()ln ln f a x f a x ->+.21.本小题15分已知12:,,,N Q a a a 为有穷正整数数列,12N a a a ≤≤≤ ,且12N s a a a =+++ .从Q 中选取第1i 项,第2i 项, ,第m i 项()12m i i i <<< ,称数列1,i i i a a ,,m i a 为Q 的长度为m 的子列.规定:数列Q 的任意一项都是Q 的长度为1的子列.若对于任意的正整数t s ≤,数列Q 存在长度为m 的子列12,,,m t t t a a a ,使得12m t t t a a a t +++= ,则称数列Q 为全覆盖数列.(I )判断数列1,1,1,5和数列1,2,4,8是否为全覆盖数列;(II )在数列Q 中,若21s N ≤-,求证:当2n N ≤≤时,1211n n a n a a a -≤≤++++ ;(III )若数列Q 满足:11a =,且当2n N ≤≤时,1211n n a a a a -≤++++ ,求证:数列Q 为全覆盖数列.参考答案一、选择题共10小题,每小题4分,共40分。
新疆乌鲁木齐市2025届高考数学二模试卷含解析
新疆乌鲁木齐市2025届高考数学二模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,四面体ABCD 中,面ABD 和面BCD 都是等腰直角三角形,2AB =,2BAD CBD π∠=∠=,且二面角A BD C --的大小为23π,若四面体ABCD 的顶点都在球O 上,则球O 的表面积为( )A .223πB .283πC .2π D .23π 2.已知数列{}n a 对任意的*n N ∈有111(1)n n a a n n +=-++成立,若11a =,则10a 等于( )A .10110B .9110C .11111D .122113.已知函数()2cos (0)3f x x πωω⎛⎫=-> ⎪⎝⎭在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围( ) A .2,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .2,13⎡⎤⎢⎥⎣⎦D .(0,2]4.已知数列1a ,21a a ,32a a ,…,1n n a a -是首项为8,公比为12得等比数列,则3a 等于( )A .64B .32C .2D .45.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .625-B .627-C .63-D .962-7.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( )A .8B .4C .22D .68.复数2(1)i i +的模为( ). A .12B .1C .2D .229.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是,A B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为( )A .22122x y -=B .2213y x -=C .2213x y -=D .22144x y -=10.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<< B .{|e}A B x x =< C .{|0e}A B x x =<<D .{|1e}AB x x =-<<11.设全集U =R ,集合{}2A x x =<,{}230B x x x =-<,则()UA B =( )A .()0,3B .[)2,3C .()0,2D .()0,∞+12.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右两个焦点分别为1F ,2F ,若存在点P 满足1212::4:6:5PF PF F F =,则该双曲线的离心率为( )A .2B .52C .53D .5二、填空题:本题共4小题,每小题5分,共20分。
安徽省合肥市2024届高三下学期二模数学试卷含答案
2024年合肥市高三第二次教学质量检测数学(答案在最后)(考试时间:120分钟满分:150分)注意事项:1.答卷前,务必将自己的姓名和座位号填写在答题卡和试卷上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,务必擦净后再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}{}220,1A x x x B x x =-->=≥,则()UB A ⋂=ð()A.{}12x x ≤≤ B.{}12x x <≤ C.{}2x x > D.{}12x x ≤<【答案】A 【解析】【分析】解不等式得到A ,进而根据补集和交集求出答案.【详解】{}{2202A x x x x x =-->=>或}1x <-,{}12U A x x =-≤≤ð,故(){}{}{}12112U A B x x x x x x ⋂=-≤≤⋂≥=≤≤ð.故选:A 2.已知i2i z z-=+,则z =()A.12B.2C.1D.2【答案】B 【解析】【分析】由复数的运算和模长计算求出即可.【详解】i i i12i =1iz z z z -=-=+⇒--,所以()()()i 1i i 111i 1i 1i 222z ----===--+-,所以2z ==,故选:B.3.设,αβ是两个平面,,a b 是两条直线,则αβ∥的一个充分条件是()A.,,a b a b αβ∥∥∥B.,,a b a b αβ⊥⊥⊥C.,,a b a b αβ⊥⊥∥D.,,a b a αβ∥∥与b 相交【答案】C 【解析】【分析】通过举反例可判定ABD ,利用线面垂直的判定定理及面面平行的判定定理可判定C.【详解】选项A :当满足,,a b a b αβ∥∥∥时,,αβ可能相交,如图:用四边形ABCD 代表平面α,用四边形AEFD 代表平面β,故A 错误;选项B :当满足,,a b a b αβ⊥⊥⊥时,,αβ可能相交,如图:用四边形ABCD 代表平面α,用四边形AEFD 代表平面β,故B 错误;选项C :因为,a a b b αα⊥⇒⊥∥,又b β⊥,所以αβ∥,故,,a b a b αβ⊥⊥∥是αβ∥的一个充分条件,故C 正确;当满足,,a b a αβ∥∥与b 相交时,,αβ可能相交,如图:用四边形ABCD 代表平面α,用四边形AEFD 代表平面β,故D 错误;故选:C.4.甲、乙两名乒乓球运动员进行一场比赛,采用7局4胜制(先胜4局者胜,比赛结束).已知每局比赛甲获胜的概率均为12,则甲以4比2获胜的概率为()A.164B.332 C.532D.1564【答案】C 【解析】【分析】根据题意只需前5场甲赢3场,再利用独立事件的乘法公式求解.【详解】根据题意,甲运动员前5场内需要赢3场,第6场甲胜,则甲以4比2获胜的概率为33251115C ()()22232⋅⋅⨯=.故选:C .5.常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为12,T T .开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则12,T T 满足的关系式为()A.125125122T T -+= B.125125122T T +=C.22125125122log log T T -+= D.22125125122log log T T +=【答案】B 【解析】【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【详解】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:15121()2T ,乙的质量为:25121()2T ,由题意可得21151251251221111()()()2422T T T +=⋅=,所以125125122T T +=.故选:B .6.已知函数()22,113,1x x x f x x x ⎧-≤⎪=⎨-->⎪⎩,若关于x 的方程()()10f x f a --=至少有两个不同的实数根,则a 的取值范围是()A.(]),4-∞-+∞B.[]1,1-C.(-D.⎡-⎣【答案】D 【解析】【分析】作出函数的图象,由题意可得()y f x =的图象与(1)y f a =-至少有两个不同的交点,从而得1(1)1f a -≤-≤,结合图象可得115a ≤-≤,求解即可.【详解】因为222,12,1()2,131|3,14,3x x x x x x f x x x x x x x ⎧-≤⎧-≤⎪⎪==-<<⎨⎨--⎪⎩⎪-+≥⎩,作出函数的图象,如图所示:由此可知函数()y f x =在(,1)-∞和(3,)+∞上单调递减,在(1,3)上单调递增,且()1f 1=-,()3f 1=,又因为关于x 的方程()(1)0f x f a --=至少有两个不同的实数根,所以()(1)f x f a =-至少有两个不同的实数根,即()y f x =的图象与(1)y f a =-至少有两个不同的交点,所以1(1)1f a -≤-≤,又因为当1x ≤时,2()2f x x x =-,令221x x -=,可得1x =-;当3x ≥时,()4f x x =-,令41x -=-,解得5x =,又因为1(1)1f a -≤-≤,所以115a -≤-≤,解得4a -≤≤.故选:D .7.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知1112,1tan tan tan tan c A B A B=++=.则ABC 面积的最大值为()A.1B.1C.D.【答案】A 【解析】【分析】由题意及正切与正弦与余弦的关系,两角和的正弦公式及余弦公式可得角C 的大小,再由余弦定理及基本不等式可得ab 的最大值,进而求出该三角形的面积的最大值.【详解】因为1111tan tan tan tan A B A B++=,可得tan tan 1tan tan A B A B ++=,即sin sin sin sin 1cos cos cos cos A B A BA B A B++=,整理可得sin cos cos sin cos cos sin sin A B A B A B A B ++=,即sin()cos()A B A B +=-+,在三角形中sin()sin A B C +=,cos()cos A B C +=-,即sin cos C C =,()0,πC ∈,可得π4C =;由余弦定理可得222π2cos 24c b a ab ab =+-≥,当且仅当a b =时取等号,而2c =,所以2(2ab ≤=+,所以11sin 2(21222ABC S ab C =≤⨯+⨯= .即该三角形的面积的最大值为1.故选:A .8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点P 在双曲线左支上,线段2PF 交y 轴于点E ,且23PF PE = .设O 为坐标原点,点G 满足:213,0PO GO GF PF =⋅=,则双曲线C 的离心率为()A.12B.1C.1+D.2+【答案】D 【解析】【分析】设000(,)(0)P x y x <,根据题设条件得到02c x =-,22074c y =,再利用00(,)P x y 在椭圆上,得到42241240c a c a -+=,即可求出结果.【详解】如图,设000(,)(0)P x y x <,12(,0),(,0)F c F c -,则直线2PF 的方程为00()y y x c x c=--,令0x =,得到00cy y x c -=-,所以0(0,)cy E x c--,0200000(,),(,)cy PF c x y PE x y x c-=--=--- ,因为23PF PE = ,所以003c x x -=-,得到02cx =-,故0(,)2c P y -,又3PO GO = ,所以0(,)63y c G -,得到02107(,))263cG y c F PF y ==--- ,又210GF PF ⋅= ,所以22070123y c -+=,得到22074c y =①,又因为0(,)2c P y -在双曲线上,所以2202241c y a b -=②,又222b c a =-③,由①②③得到42241240c a c a -+=,所以421240e e -+=,解得26e =+或26e =-,又1e >,所以226(2e =+=+,得到2e =+,故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知圆22:1O x y +=,圆22:()(1)4,R C x a y a -+-=∈,则()A.两圆的圆心距OC 的最小值为1B.若圆O 与圆C 相切,则a =±C.若圆O 与圆C 恰有两条公切线,则a -<<D.若圆O 与圆C 相交,则公共弦长的最大值为2【答案】AD 【解析】【分析】根据两点的距离公式,算出两圆的圆心距1d ≥,从而判断出A 项的正误;根据两圆相切、相交的性质,列式算出a 的取值范围,判断出B,C 两项的正误;当圆O 的圆心在两圆的公共弦上时,公共弦长有最大值,从而判断出D 项的正误.【详解】根据题意,可得圆22:1O x y +=的圆心为(0,0)O ,半径1r =,圆22:()(1)4C x a y -+-=的圆心为(,1)C a ,半径2R =.对于A ,因为两圆的圆心距1d OC ==≥,所以A 项正确;对于B ,两圆内切时,圆心距||1d OC R r ==-=1=,解得0a =.两圆外切时,圆心距||3d OC R r ==+=3=,解得a =±.综上所述,若两圆相切,则0a =或a =±,故B 项不正确;对于C ,若圆O 与圆C 恰有两条公切线,则两圆相交,||(,)d OC R r R r =∈-+,(1,3),可得13<<,解得a -<<0a ≠,故C 项不正确;对于D ,若圆O 与圆C 相交,则当圆22:1O x y +=的圆心O 在公共弦上时,公共弦长等于22r =,达到最大值,因此,两圆相交时,公共弦长的最大值为2,故D 项正确.故选:AD .10.已知等比数列{}n a 的公比为q ,前n 项和为n S ,则()A.11n nS S qS +=+B.对任意*232,,,n n n n n n S S S S S ∈--N 成等比数列C.对任意*n ∈N ,都存在q ,使得23,2,3n n n S S S 成等差数列D.若10a <,则数列{}21n S -递增的充要条件是10q -<<【答案】ACD 【解析】【分析】对于A :分1q =,1q ≠两种情况计算可判断A ;对于B :1q =-可说明不成立判断B ;,分1q =,1q ≠两种情况计算可判断C ;根据2121211(1)n n n S S a q q -+--=+,若21{}n S -是递增数列,可求q 判断D.【详解】对于A :当1q =时,11(1)n S n a +=+,1111(1)n S qS a na n a +=+=+,故成立,当1q ≠时,1111)1n n a q S q ++-=-(,11111(1)(1)11n n n a q a q S qS a q q q+--+=+⨯=--,所以11+=+n n S a qS 成立,故A 正确;对于B :当1q =-时,20S =,所以232,,n n n n n S S S S S --不成等比数列,故B 错误;对于C :当1q =时,12131,24,39n n n S na S na S na ===,故23,2,3n n n S S S 不成等差数列,当1q ≠时,若存在q ,使23,2,3n n n S S S 成等差数列,则23223n n n S S S ⨯=+,则23111(1)(1)(1)43111n n n a q a q a q q q q---⨯=+⨯---,整理得24(1)13(1)n n n q q q +=+++,所以230n n q q -=,所以13nq =,所以对任意*N n ∈,都存在q ,使得23,2,3n n n S S S 成等差数列,故C 正确;对于D :2121212211(1)n n n n n S S a a a q q -+-+-=+=+,若21{}n S -是递增数列,则可得211(1)0n a q q-+>,因为10a <,所以21(1)0n q q -+<,可解得10q -<<,所以若10a <,则数列21{}n S -递增的充要条件是10q -<<,故D 正确.故选:ACD.11.已知函数()ππsin sin sin 66f x x x ⎛⎫=+-- ⎪⎝⎭,则()A.函数()f x 在π,π2⎡⎤⎢⎥⎣⎦上单调递减B.函数5π1122y f x ⎛⎫=++ ⎪⎝⎭为奇函数C.当ππ,22x ⎡⎤∈-⎢⎥⎣⎦时,函数()41y f x =+恰有两个零点D.设数列{}n a 是首项为π6,公差为π6的等差数列,则()2024120272i i f a ===-∑【答案】BCD 【解析】【分析】利用三角恒等变换化简()f x ,再利用正弦函数单调性奇偶性判断ABC ,利用裂项相消及累加求和判断D.【详解】易知7πππ1sinsin 123422224⎛⎫=+=+⋅= ⎪⎝⎭,同理π7πsincos 12124==,()ππsin sin sin66f x x x ⎛⎫=+-- ⎪⎝⎭211sin cos 222x x -=+-7π1sin 2122x ⎛⎫=+-⎪⎝⎭对A,π7π13π19π,π,,,2121212x x ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦()f x 先减后增,故A 错误;对B,5π1122y f x ⎛⎫=++ ⎪⎝⎭sin 2x =-为奇函数,故B 正确;对C,ππ,22x ⎡⎤∈-⎢⎥⎣⎦,7ππ13π,,121212t x ⎡⎤=+∈⎢⎥⎣⎦则sin t 在ππ,122⎛⎫ ⎪⎝⎭单调递增,在π13π,212⎛⎫⎪⎝⎭单调递减,即()f x 在ππ,212⎛⎫-- ⎪⎝⎭单调递增,在ππ,122⎛⎫- ⎪⎝⎭单调递减,又π12f ⎛⎫-= ⎪⎝⎭)12144-->-,ππ111sin 2412244244f -⎛⎫-=-==-- ⎪⎝⎭,故函数()41y f x =+恰有两个零点,故C 正确;对D ,易知π6n n a =,令()πsin sin 6g x x x ⎛⎫=+- ⎪⎝⎭,则()()12f x g x =-,()1ππsinsin 36g a =-,()2ππsin sin 23g a =-,……………………..()20242024ππ2023ππsin sin 6666g a ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,则()120242024ππππ13sin sin sin 337π666222i i g a =⎛⎫⎛⎫∑=+-=+-=-⎪ ⎪⎝⎭⎝⎭,故()()112024202412027202422i i i i f a g a ==∑==∑-⨯=-,故D 正确.故选:BCD.【点睛】关键点点睛:本题考查三角函数的性质及数列求和应用,关键是利用利用裂项相消及累加求和判断D.三、填空题:本题共3小题,每小题5分,共15分.12.在6x ⎛- ⎝的展开式中,3x 的系数为_________.【答案】15【解析】【分析】利用6x ⎛- ⎝的通项公式36216(1)C (06,N)r r r r T x r r -+=-≤≤∈,即可求出结果.【详解】因为6x ⎛- ⎝的展开式的通项公为3662166C ((1)C (06,N)rr r r r rr T x x r r --+==-≤≤∈,由3632r -=,得到2r =,所以3x 的系数为226(1)C 15-=,故答案为:15.13.抛物线2:4C y x =的焦点为F ,准线为,l A 为C 上一点,以点F 为圆心,以AF 为半径的圆与l 交于点,B D ,与x 轴交于点,M N ,若AB FM =,则AM = _________.【答案】【解析】【分析】首先得到抛物线的焦点坐标与准线方程,设准线与x 轴交于点E ,根据圆的性质及抛物线的定义可得ABF △为等边三角形,即可求出BF ,再在AFM △中利用余弦定理计算可得.【详解】抛物线2:4C y x =的焦点为()1,0F ,准线l :=1x -,设准线与x 轴交于点E ,则()1,0E -,依题意B 、D 均在y 轴的左侧,又AB FM =,所以M 也在y 轴的左侧且B 点在x 轴上方,又AD 为圆F 的直径,所以π2ABD ∠=,即AB BD ⊥,由抛物线的定义可知AB AF =,又BF AF =,所以ABF △为等边三角形,所以π3BAF AFB ∠=∠=,则π3BFM AFN ∠=∠=,所以4cos EF BF BFM==∠,所以4BF AF MF ===,2π3AFM ∠=,在AFM △中AM ===故答案为:14.已知实数,,x y z ,满足20y z +-=,则+++_________.【答案】+【解析】【分析】建立空间直角坐标系,将所求转化为距离和的最小值,利用几何关系求得最值.【详解】如图,设正方体的边长为2,建立如图所示的空间直角坐标系,设(),,P x y z 为空间任意一点,因为20y z +-=,则P 在平面11ABC D 所在的平面内运动,表示P 与点()10,0,0A 和点()12,0,0B 的距离之和,因为1A 关于平面11ABC D 的对称点为D ,故111PA PB DB +≥=,当且仅当P 为1DB 中点即P 为正方体中心时等号成立;表示P 与点()1,0,2M 和点()1,2,0N 的距离之和,则PM PN MN +≥=,当且仅当P 在MN 所在直线上时等号成立,++的最小值为+,当且仅当P 为正方体中心时等号成立故答案为:+【点睛】关键点点睛:本题考查空间中距离最值问题,关键是利用空间坐标系将所求转化为距离和,并注意等号成立条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,BAD M ∠=︒是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M ABC -的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)11.【解析】【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为2,进而由锥体体积公式求出答案;(2)证明出BO AD ⊥,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【小问1详解】如图所示,取AD 的中点O ,连接PO .因为PAD 是正三角形,所以PO AD ⊥.又因为平面PAD ⊥底面,ABCD PO ⊂平面PAD ,平面PAD ⋂平面ABCD AD =,所以PO ⊥平面ABCD ,且PO =.又因为M 是PC 的中点,M 到平面ABCD 的距离为2,12π22sin 23ABC S =⨯⨯⨯=△所以三棱锥M ABC -的体积为131322=.【小问2详解】连接,BO BD ,因为π3BAD ∠=,所以ABD △为等边三角形,所以BO AD ⊥,以O 为原点,,,OA OB OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则(()()(),1,0,0,0,,2,P A B C -,所以(()1,,,2,,,,2,0,02222M AM PB BC ⎛⎫⎛⎫-=-==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.设平面PBC 的法向量为(),,n x y z =,则00PB n BC n ⎧⋅=⎪⎨⋅=⎪⎩,即020x =-=⎪⎩,解得0x =,取1z =,则1y =,所以()0,1,1n =.设AM 与平面PBC 所成角为θ,则sin cos ,11AM n AM n AM nθ⋅===⋅.即AM 与平面PBC 所成角的正弦值为11.16.已知椭圆2222:1(0)x y Ca b a b+=>>的右焦点为F ,左顶点为A ,短轴长为,且经过点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过点F 的直线l (不与x 轴重合)与C 交于,P Q 两点,直线,AP AQ 与直线4x =的交点分别为,M N ,记直线,MF NF 的斜率分别为12,k k ,证明:12k k ⋅为定值.【答案】(1)22143x y+=;(2)证明见解析.【解析】【分析】(1)由题意得b =,将点3(1,)2代入椭圆的方程可求得2a 的值,进而可得椭圆的方程;(2)设:1l x ty =+,1(P x ,1)y ,2(Q x ,2)y ,联立直线l 和椭圆的方程,可得122634ty y t +=-+,122934y y t =-+,直线PA 的方程为11(2)2y y x x =++,令4x =,得116(4,)2y M x +,同理226(4,2y N x +,由斜率公式计算即可.【小问1详解】因为2b =,所以b =,再将点31,2⎛⎫ ⎪⎝⎭代入22213x y a +=得21314a +=,解得24a =,故椭圆C 的方程为22143x y +=;【小问2详解】由题意可设()()1122:1,,,,l x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩可得()2234690t y ty ++-=,易知0∆>恒成立,所以12122269,3434t y y y y t t +=-=-++,又因为()2,0A -,所以直线PA 的方程为()1122y y x x =++,令4x =,则1162=+y y x ,故1164,2y M x ⎛⎫ ⎪+⎝⎭,同理2264,2y N x ⎛⎫⎪+⎝⎭,从而()()111212126266,413333y x y y k k ty ty +===-++,故()()()212121222212121222363643419189333993434y y y y t k k t t ty ty t y y t y y t t -+====-+++++--+++为定值.17.树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为123,,,,n x x x x ,其平均数记为x ,方差记为21s ;把第二层样本记为123,,,,m y y y y ,其平均数记为y ,方差记为22s ;把总样本数据的平均数记为z ,方差记为2s .(1)证明:()(){}22222121x s n s z m y m n z s ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布()2,N μσ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为,,,A B C D 四个等级,试确定各等级的分数线(精确到1).附:()18,19P X μσμσ-≤≤+≈.【答案】(1)证明见解析;(2)平均数为96分,标准差为18分;(3)将114X ≥定为A 等级,96114X ≤<定为B 等级,7896X ≤<定为C 等级,78X <定为D 等级.【解析】【分析】(1)利用平均数及方差公式即可求解;(2)利用平均数及方差公式,结合标准差公式即可求解;(3)根据(2)的结论及正态分布的特点即可求解.【小问1详解】()()222111n mi i i i s x z y z m n ==⎡⎤=-+-⎢⎥+⎣⎦∑∑()()22111n mi i i i x x x z y y y z m n ==⎡⎤=-+-+-+-⎢⎥+⎣⎦∑∑()()()()2222111()2()()2()n mi i i i i i x x x z x x x z y y y z y y y z m n ==⎧⎫⎡⎤⎡⎤=-+-+--+-+-+--⎨⎬⎣⎦⎣⎦+⎩⎭∑∑()()()123112(2(2()0nni i n i i x x x z x z x x x z x x x x nx ==--=--=-++++-=⎡⎤⎣⎦∑∑ ,同理()12()0nii yy y z =--=⎡⎤⎣⎦∑.所以{}222221()(x y s n s x z m s y z m n ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦+.【小问2详解】将该班参加考试学生成绩的平均数记为z ,方差记为2s ,则()13010020909650z =⨯+⨯=,所以{}222130256(10096)20361(9096)32250s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦18≈,所以18s ≈.即该班参加考试学生成绩的平均数为96分,标准差约为18分.【小问3详解】由(2)知96,18μσ==,所以全年级学生的考试成绩X 服从正态分布()296,18N ,所以()()961896180.68,960.5P X P X -≤≤+≈≥=.()(7896)(96114)0.34,114(78)0.16P X P X P X P X ≤<=≤<≈≥=<≈.故可将114X ≥定为A 等级,96114X ≤<定为B 等级,7896X ≤<定为C 等级,78X <定为D 等级.18.已知曲线():e e xxC f x x =-在点()()1,1A f 处的切线为l .(1)求直线l 的方程;(2)证明:除点A 外,曲线C 在直线l 的下方;(3)设()()1212,f x f x t x x ==≠,求证:1221etx x t +<--.【答案】(1)e e y x =-+;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)求导,得到()()10,1e f f '==-,利用导数的几何意义写出切线方程;(2)令()e e e e xxg x x x =-+-+,二次求导得到函数单调性,结合特殊点函数值,得到所以()()10g x g ≥=,当且仅当1x =等号成立,得到证明;(3)求导得到()f x 的单调性,结合函数图象得到01t <<,不妨令120,01x x <<<,结合曲线C 在()1,0点的切线方程为()e e x x ϕ=-+,得到231etx x <=-+,转化为证明122x t <-,又111e e x x t x =-,只要证11112e 2e 2x xx x <--,令()2e 2e 2,0xxF x x x x =---<,求导得到函数单调性,结合特殊点函数值得到答案.【小问1详解】因为()e e xxf x x =-,所以()()()10,e ,1e xf f x x f =-''==-,所以直线l 的方程为:()e 1y x =--,即e ey x =-+【小问2详解】令()e e e e xxg x x x =-+-+,则()e e e e e e xxxxg x x x =--++=-+',令()()h x g x =',则()()1e xh x x +'=,由()0h x '>,解得1x >-,由()0h x '<,解得1x <-,所以()h x 在(),1∞--上单调递减,在()1,∞-+上单调递增,当x →-∞时,()()e,10h x h →-=,所以()g x 在(),1∞-上单调递减,在()1,∞+上单调递增,所以()()10g x g ≥=,当且仅当1x =等号成立,所以除切点()1,0之外,曲线C 在直线l 的下方.【小问3详解】由()e 0xf x x '=->,解得()0,e 0xx f x x <=-<',解得0x >,所以()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,()()max ()01,10f x f f ===,当x →-∞时,()0f x →.因为()()1212,f x f x t x x ==≠,则01t <<,不妨令120,01x x <<<.因为曲线C 在()1,0点的切线方程为()e e x x ϕ=-+,设点()3,x t 在切线上,有()3e 1t x =--,故31etx =-+,由(1)知()0,1x ∈时,()()x f x ϕ>,则()()()223x f x t x ϕϕ>==,即231etx x <=-+,要证:1221etx x t +<--,只要证:121121e et tx x x t +<+-<--,只要证:122x t <-,又111e e xxt x =-,只要证:11112e 2e 2x xx x <--,令()2e 2e 2,0xxF x x x x =---<,则()2e 1xF x x '=--,易证()F x '在(),1∞--上单调递增,在()1,0-上单调递减,所以()()2110eF x F ≤-=-'<',所以()F x 在(),0∞-上单调递减,所以()()00F x F >=成立,所以原命题成立.【点睛】关键点点睛:本题关键是利用函数在零点处的切线方程,得到31e t x =-+,且231etx x <=-+,从而只需证明122x t <-,再勾股函数进行求解.19.在数学中,广义距离是泛函分析中最基本的概念之一.对平面直角坐标系中两个点()111,P x y 和()222,P x y ,记1212121212max ,11tx x y y PP x x y y ⎧⎫--⎪⎪=⎨⎬+-+-⎪⎪⎩⎭,称12t PP 为点1P 与点2P 之间的“t -距离”,其中{}max ,p q 表示,p q 中较大者.(1)计算点()1,2P 和点()2,4Q 之间的“t -距离”;(2)设()000,P x y 是平面中一定点,0r >.我们把平面上到点0P 的“t -距离”为r 的所有点构成的集合叫做以点0P 为圆心,以r 为半径的“t -圆”.求以原点O 为圆心,以12为半径的“t -圆”的面积;(3)证明:对任意点()()()111222333131223,,,,,,t t t P x y P x y P x y PP PP P P ≤+.【答案】(1)23;(2)4;(3)证明见解析.【解析】【分析】(1)根据所给定义直接计算即可;(2)依题意可得1max ,112xy x y⎧⎫⎪⎪=⎨++⎪⎪⎩⎭,再分类讨论,从而确定“t -圆”的图形,即可求出其面积;(3)首先利用导数说明函数()()01tf t t t=≥+的单调性,结合绝对值三角不等式证明即可.【小问1详解】由定义知,1224122||max ,max ,112124233t PQ ⎧⎫--⎪⎪⎧⎫===⎨⎬⎨⎬+-+-⎩⎭⎪⎪⎩⎭;【小问2详解】设(),P x y 是以原点O 为圆心,以12为半径的t -圆上任一点,则1max ,112xy x y ⎧⎫⎪⎪=⎨⎬++⎪⎪⎩⎭.第21页/共21页若1112y x yx ≤=++,则11x y ⎧=⎪⎨≤⎪⎩;若1112xy x y ≤=++,则有11y x ⎧=⎪⎨≤⎪⎩.由此可知,以原点O 为圆心,以12为半径的“t -圆”的图形如下所示:则“t -圆”的面积为224⨯=.【小问3详解】考虑函数()()01t f t t t =≥+.因为()210(1)f t t ='>+,所以()f t 在[)0,∞+上单调递增.又131223x x x x x x -≤-+-,于是1312231223131223122312231111x x x x x x x x x x x x x x x x x x x x x x x x --+---≤=++-+-+-+-+-+-+-1223122311x x x x x x x x --≤++-+-,同理,131223131223111y y y y y y y y y y y y ---≤++-+-+-.不妨设1313131311y y x x y y x x --≤+-+-,则13122313131223111t x x x x x x PP x x x x x x ---=≤++-+-+-1212232312122323max ,max ,1111x x y y x x y y x x y y x x y y ⎧⎫⎧⎫----⎪⎪⎪⎪≤+⎨⎬⎨⎬+-+-+-+-⎪⎪⎪⎪⎩⎭⎩⎭1223t t PP P P =+.【点睛】关键点点睛:本题关键是理解“t -距离”的定义,再结合不等式及导数的知识解答.。
2024届上海市崇明区高三二模数学试题及答案
上海市崇明区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.若集合 2,0,1A ,10B x x x 或,则A B .2.不等式 10x x 的解为.3.已知向量 2,,1a , 2,1,4b ,若a b,则.4.若复数z 满足1iz i (i 为虚数单位),则z .5.6.7.若 8.BC 是母线.若直线9.10.11.的最小值是.12.222x y 的最大13.若a b ,0c ,则下列不等式成立的是().A a b c ;.B a b c c;.C a c b c ;.D 22ac bc .14.某单位有A 、B 两个部门,1月份进行服务满意度问卷调查,得到两部门服务满意度得分的频率分布条形图如图所示.设A 、B 两部门的服务满意度得分的第75百分位数分别为1n 、2n ,方差分别为21s 、22s ,则下列说法正确的是().A 12n n ,2212s s ;.B 12n n ,2212s s ;.C 12n n ,2212s s ;.D 12n n ,2212s s .15.设函数 sin 6f x x,若对于任意5,62,在区间 0,m 上总存在唯一确定的 ,使得0f f ,则m 的最小值为().A 6;.B 2;.C 76;.D .16.已知函数 y f x 的定义域为D ,12,x x D .命题p :若当 120f x f x 时,都有120x x ,则函数 y f x 是D 上的奇函数.命题q :若当.A p .C p 三、17.的中点.(1)(2)第17题图18.(本题满分14分,第1小题满分6分,第2小题满分8分)在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若CD 为CA 在CB方向上的投影向量,且满足2sin c B CD.(1)求cos C 的值;(2)若b,3cos a c B ,求ABC 的周长.19.如表所示.(1)95%(2)现(3)3人,求附:22n ad bc a b c d a c b d, 23.8410.05P≥.已知椭圆22:12x y ,A 为 的上顶点,P 、Q 是 上不同于点A 的两点.(1)求椭圆 的离心率;(2)若F 是椭圆 的右焦点,B 是椭圆下顶点,R 是直线AF 上一点.若ABR 有一个内角为3,求点R 的坐标;(3)作AH PQ ,垂足为H .若直线AP 与直线AQ 的斜率之和为2,是否存在x 轴上的点M ,使得MH为定值?若存在,请求出点M 的坐标,若不存在,请说明理由.已知 ln 1f x a x ax .(1)若1a ,求曲线 y f x 在点 1,2P 处的切线方程:(2)若函数 y f x 存在两个不同的极值点12,x x ,求证: 120f x f x ;(3)若1a , g x f x x ,数列 n a 满足 10,1a , 1n n a g a .求证:当2n 时,212n n n a a a .上海市崇明区2024届高三二模数学试卷-简答1参考答案及评分标准一、填空题1.{2,1} ;2.(0,1);3.8 ;4.1 i ;5.9;6.9;7.1;8.3;9.199;10.0.996;11.32;12.6.二、选择题13.D ;14.C ;15.B ;16.C.三、解答题17.解(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP=连结OB .因为AB =BC=2AC ,222AB BC AC ,所以△ABC 为等腰直角三角形,故OB ⊥AC ,OB =12AC =2.因为222OP OB PB ,所以OP OB .......................4分因为OP OB OP AC ,,OB AC O ,所以PO ⊥平面ABC .........................................................7分(2)方法一:作CH ⊥OM ,垂足为H .因为OP 平面ABC ,所以OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离...................4分由题意,OC=12AC =2,CM=3,∠ACB=45°.所以OM=3,CH =sin OC MC ACB OM=5.所以点C 到平面POM的距离为5........................................7分方法二:设C 到平面POM 的距离为h ,由(1)知PO 即为P 到平面COM 的距离,且PO OM ........................................1分又PO ,在OMC △中,22,4533OC CM BC ACB,则由余弦定理得3OM,.......................................1分因为C POM P COM V V ,即1133POM COM S h S PO △△,故2212COMPOMS POhS△△即点C到平面POM的距离为5...................................7分18.解(1)由题意,得cosCD b C,又2sinc B,所以2sin cosc B C,由正弦定理sin sinb cB C,得2sin sin cosC B B C,又sin0B,所以2sin C C,..................................4分因为C为锐角,所以2cos3C ...................................6分(2)由3cosa c B,得cos3aBc,由余弦定理得222cos2a c bBac,所以22223a cb aac c,得22233a c b①..............3分由由余弦定理得2222cos23a b cCab,得222333a b c②............................5分联立①②,解得a c,故ABC△的周长为a b c................8分19.解(1)假设H:患慢性气管炎与吸烟无关.22340(1204516015)6.58128060135205由2( 3.841)0.05P≥,而6.581 3.481,从而否定原假设,即有95%的把握认为患慢性气管炎与吸烟有关.....................................................4分(2)()()()||9()()32()()()||()P A BP B A P A B A BP AL B AP B A P A B P A B A BP A............................4分(3)按分层抽样,不吸烟者3人,吸烟者4人,....................................................1分X的可能值为0,1,2,3,其分布是012341812135353535....................................................5分所以4181219[]0123353535357E X ....................................................6分2320.解(1)由题意,1a c,所以离心率c e a分(2)由题意,(1,0)F ,(0,1)A ,所以直线AF 的方程为:1y x ,设00(,1)R x x 显然4BAR ...................................................................................2分①当3ABR时,00(0,2),(,2)BA BR x x,由1cos 2||||BA BR ABR BA BR,得:200660x x ,解得03x03x 分②当3ARB时,0000(,),(,2)RA x x RB x x ,由1cos 2||||BA BR ABR BA BR,得:2003620x x ,解得013x(舍去)或013x 综上所述,点R的坐标是(32或(1 .....................6分(3)假设存在定点(,0)M m 满足题意,当PQ 的斜率存在时,设直线PQ 的方程为y kx b ,1122(,),(,)P x y Q x y ,由2221x y y kx b得22212)4220k x kbx b (,由题意,2222164(12)(22)0k b k b ,即22210k b ①.2121222422,1212kb b x x x x k k,122121211212121211()()(1)()2AP AQ y y x kx b x x kx b x b x x k k k x x x x x x2(1)22222(1)1b kb k k b b ,所以1k b ,代入①,得:2430b b ,所以3b 或1b ,即存在直线PQ 使得直线AP与直线AQ 的斜率之和为2.....................................................................3分直线PQ 的方程为1y kx k ,直线AH 的方程为11y x k由111y kx k y x k,得:22221211k k x k k y k,即22222(,1)11k k k H k k .................5分所以2222222222(2)(21)()(1)1111k k k k m kMH m m k k k4所以当12m时,MH...........................................................7分当直线PQ 斜率不存在时,设00(,)P x y ,00(,)Q x y ,则0000112AP AQ y y k k x x ,01x ,此时(1,1)H,2MH满足题意.所以存在定点1(0)2,P ,使得MH为定值且定值为2..................8分21.解(1)当1a时,1'()1,'(1)3f x f x所以曲线()y f x 在点(1,2)P 处的切线方程为31y x .................4分(2)由'()0f x0aa x,令t 0t 原方程可化为:20at t a ①,则12t t ①的两个不同的根所以214010a a,解得102a .................3分所以121212()()(ln ln )()2f x f x a x x a x x 222212121212()ln()()222t t a t t a t t a a因为102a,所以12220a a,所以12()()0f x f x .......................6分(3)由题意,()ln 1g x x,所以1'()g x x当(0,1)x 时,'()0g x ,所以函数()y g x 在区间(0,1)上严格减,当(1,)x 时,'()0g x ,所以函数()y g x 在区间(1,) 上严格增,.................3分因为101a ,所以21()1a g a g ,32()(1)1a g a g ,以此类推,当2n 时,1()(1)1n n a g a g ,.................4分又213110'(242)21f x x x,所以函数()y f x 在区间(0,) 上严格减,当2n 时,()()(1)0n n n f a g a a f ,所以1n n a a ,.................7分所以1()()n n f a f a ,即211n n n n a a a a ,故212n n n a a a ...................................8分。
浙江省温州市2024届高三下学期二模数学试题含答案
温州市普通高中2024届高三第二次适应性考试数学试题卷(答案在最后)2024.3本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、准考证号填写在答题卷上.将条形码横贴在答题卷右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卷上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁,不要折叠、不要弄破.选择题部分(共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z C ∈,则“2R z ∈”是“R z ∈”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B 【解析】【分析】根据复数的概念及充分、必要条件的定义判定即可.【详解】易知2i R z z =⇒∈,所以不满足充分性,而2R R z z ∈⇒∈,满足必要性.故选:B2.已知集合{{,M x y N y y ====,则M N ⋂=()A.∅B.RC.MD.N【答案】D 【解析】【分析】根据题意,由集合交集的运算,即可得到结果.【详解】由题意可得,{[)1,M x y ∞===-+,{[)0,N y y ∞===+,则[)0,N M N ⋂=+∞=.故选:D3.在正三棱台111ABC A B C -中,下列结论正确的是()A.1111113ABC A B C A BB C V V --=B.1AA ⊥平面11AB CC.11A B B C ⊥D.1AA BC⊥【答案】D 【解析】【分析】对于A :求出体积,然后作差确定大小;对于BC :举例说明其错误;对于D :通过证明BC ⊥面1A ADP 来判断.【详解】设正三棱台111ABC A B C -上底面边长为a ,下底面边长为b ,a b <,高为h ,对于A :1112213444ABC A B C V h a b ab -⎛⎫=++ ⎪ ⎪⎝⎭三棱台,1112134A BB C V h a -=⋅,则1111112221334444ABC A B C A BB C V V h a b ab h a --⎛⎫-=++-⋅ ⎪ ⎪⎝⎭()22222222012121212121212h a b ab a a a h b a ab a ⎛⎫=++---=-+-> ⎪ ⎪⎝⎭,即1111113ABC A B C A BB C V V -->,A 错误;对于B :由正三棱台的结构特征易知11AA B ∠为钝角,所以1AA 与1AB 不垂直,所以1AA 与面11AB C 不垂直,B 错误;对于C :(反例)假设该棱台是由正四面体被其中截面所截后形成的棱台,则11120A B B ∠=,若2b a =,1BB a =,所以()()21111111111111A B B C A B B B B B BC A B B B A B BC B B B B BC⋅=+⋅+=⋅+⋅++⋅ 2222102a a a a =-+-≠,即1A B 与1B C 不垂直,C 错误;对于D :取BC 中点D ,11B C 中点P ,连接1,,AD DP A P ,则,BC AD BC PD ⊥⊥,且AD PD D =I ,,AD PD ⊂面ADP ,所以BC ⊥面ADP ,同理11B C ⊥面1A DP ,又11//BC B C ,所以BC ⊥面1A DP ,则面ADP 与面1A DP 是同一个面(过一点只有一个平面与已知直线垂直)所以BC ⊥面1A ADP ,又1A A ⊂面1A ADP ,所以1AA BC ⊥.故选:D.4.已知0.50.3sin0.5,3,log 0.5a b c ===,则,,a b c 的大小关系是()A.a b c <<B.a c b<< C.c a b<< D.c b a<<【答案】B 【解析】【分析】构造函数sin y x x =-,利用导数法求最值得sin x x <,从而有0.5a <,再利用函数0.3log y x =单调递减得0.51c <<,利用函数3x y =单调递增得1b >,即可比较大小.【详解】对π0,2x ⎛⎫∈ ⎪⎝⎭,因为sin y x x =-,则cos 10y x '=-<,即函数sin y x x =-在π0,2⎛⎫ ⎪⎝⎭单调递减,且0x =时,0y =,则sin 0x x -<,即sin x x <,所以sin0.50.5a =<,因为0.30.30.32log 0.5log 0.25log 0.31=>=且0.30.3log 0.5log 0.31<=,所以0.30.5log 0.51c <=<,又0.50331b =>=,所以a c b <<.故选:B5.在()()531x x --展开式中,x 的奇数次幂的项的系数和为()A.64-B.64C.32- D.32【答案】A 【解析】【分析】设()()523456012345631x x a a x a x a x a x a x a x --=++++++,利用赋值法计算可得.【详解】设()()523456012345631x x a a x a x a x a x a x a x --=++++++,令1x =可得01245630a a a a a a a +++++=+,令=1x -可得0123456128a a a a a a a -+-+-+=,所以1350128642a a a -++==-,即在()()531x x --展开式中,x 的奇数次幂的项的系数和为64-.故选:A6.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且{}n S 单调递增.若55a =,则d ∈()A.50,3⎡⎫⎪⎢⎣⎭B.100,7⎡⎫⎪⎢⎣⎭C.50,3⎛⎫ ⎪⎝⎭D.100,7⎛⎫⎪⎝⎭【答案】A 【解析】【分析】因为数列{}n S 为递增数列,所以{}n a 从第二项开始,各项均为正数,由此可求d 得取值范围.【详解】因为{}n a 为等差数列,且55a =,所以()55n a n d =+-,又数列{}n S 为递增数列,所以{}n a 从第二项开始,各项均为正数.由()25250a d =+->⇒53d <.因为0n a >()2n ≥恒成立,所以数列{}n a 为常数数列或递增数列,所以0d ≥.综上,50,3d ⎡⎫∈⎪⎢⎣⎭.故选:A7.若关于x 的方程22112x mx x mx mx +++-+=的整数根有且仅有两个,则实数m 的取值范围是()A.52,2⎡⎫⎪⎢⎣⎭B.52,2⎛⎫ ⎪⎝⎭C.55,22,22⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭D.55,22,22⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【答案】C 【解析】【分析】设2,1A mx B x ==+,利用绝对值三角不等式得||||2||B A B A A ++-≥,()()0A B B A +-≤时等号成立,进而有422(2)10x m x +-+≤且整数根有且仅有两个,对于22()(2)1f t t m t =+-+,应用二次函数性质及对称性有0∆≥且2224t x =<=,得(4)0f >,即可求参数范围.【详解】设2,1A mx B x ==+,则原方程为||||2||B A B A A ++-=,由||||||||||2||B A B A A B A B A B A B A ++-=++-≥++-=,当且仅当()()0A B A B +-≥,即()()0A B B A +-≤时等号成立,所以22222()()(1)()0A B B A B A x mx +-=-=+-≤,整理得422(2)10x m x +-+≤①,显然0x =不满足,令2t x =,即22(2)10t m t +-+=必有两根,且1210t t =>,故12,t t 为两个正根,所以2222(2)4(4)0m m m ∆=--=-≥,可得2m ≤-或2m ≥,对于22()(2)1f t t m t =+-+,有2(1)40f m =-≤,即21t x ==,即1x =±恒满足①,要使①中整数根有且仅有两个,则对应两个整数根必为1±,若整数根为12,x x 且12x x <,则12202x x -<<<<,即2222112224,24t x t x =<==<=,所以2(4)2540f m =->,得5522m -<<,综上,55,22,22m ⎛⎤⎡⎫∈--⋃ ⎪⎥⎢⎝⎦⎣⎭故选:C【点睛】关键点点睛:利用绝对值三角不等式的等号成立得到422(2)10x m x +-+≤,且整数根有且仅有两个为关键.8.已知定义在()0,1上的函数()()1,,1,m x m n f x n nx ⎧⎪=⎨⎪⎩是有理数是互质的正整数是无理数,则下列结论正确的是()A.()f x 的图象关于12x =对称 B.()f x 的图象关于11,22⎛⎫ ⎪⎝⎭对称C.()f x 在()0,1单调递增 D.()f x 有最小值【答案】A【解析】【分析】利用特殊值可排除B 、C ,利用函数的性质可确定A 、D.【详解】对于BC ,由题意可知:13122f f ⎫⎛⎫-=+=⎪ ⎪⎭⎝⎭,显然()f x 的图象不关于11,22⎛⎫⎪⎝⎭对称,而3122+<,故B 、C 错误;对于D ,若x 为有理数,则()1f x n=,显然n →+∞,函数无最小值,故D 错误;对于A ,若mx n =是有理数,即(),m n m n <互质,则,n m n -也互质,即1m n m f f n n n -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,若x 为无理数,则1x -也为无理数,即()()11f x f x =-=,所以()f x 的图象关于12x =对称,故A 正确.下证:,m n 互质,则,n m n -也互质.反证法:若,m n 互质,,n m n -不互质,不妨设,n m ka n kb -==,则(),m k b a n kb =-=,此时与假设矛盾,所以,n m n -也互质.故选:A【点睛】思路点睛:根据抽象函数的对称性结合互质的定义去判定A 、B ,而作为抽象函数可以适当选取特殊值验证选项,提高正确率.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,()3,4P -为其终边上一点,若角β的终边与角2α的终边关于直线y x =-对称,则()A.()3cos π5α+=B.()π2π22k k βα=++∈Z C.7tan 24β=D.角β的终边在第一象限【答案】ACD 【解析】【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点()3,4P -,所以:5OP =,所以4sin 5α=,3cos 5α=-,所以()3cos πcos 5αα+=-=,故A 对;又4324sin 22sin cos 25525ααα⎛⎫=⋅=⨯⨯-=- ⎪⎝⎭,2222347cos 2cos sin 5525ααα⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭,所以2α的终边与单位圆的交点坐标为:724,2525⎛⎫-- ⎪⎝⎭,因为角β的终边与角2α的终边关于直线y x =-对称,所以角β的终边与单位圆的交点为247,2525⎛⎫⎪⎝⎭,所以7tan 24β=,且β的终边在第一象限,故CD 正确;又因为终边在直线y x =-的角为:ππ,4k k -∈Z ,角2α的终边与角β的终边关于y x =-对称,所以2ππ24k αβ+=-⇒π2π22k βα=--()k ∈Z ,故B 错误.故选:ACD10.已知圆221:6C x y +=与圆222:20C x y x a ++-=相交于,A B 两点.若122C AB C AB S S =△△,则实数a的值可以是()A.10B.2C.223D.143【答案】BD 【解析】【分析】根据题意,由条件可得弦AB 所在的直线方程,然后将122C AB C AB S S =△△转化为圆心到直线AB 的距离关系,列出方程,代入计算,即可得到结果.【详解】由题意可得弦AB 所在的直线方程为12:260C C x a -+-=,因为圆221:6C x y +=,圆心()10,0C ,圆222:20C x y x a ++-=,圆心()21,0C -,设圆心()10,0C 与圆心()21,0C -到直线AB 的距离分别为12,d d ,因为122C AB C AB S S =△△,即1211222AB d AB d ⋅=⨯⋅,所以122d d =,又12d d ==,2=2320280a a -+=,即()()31420a a --=,解得2a =或143a =.故选:BD11.已知半径为r 球与棱长为1的正四面体的三个侧面同时相切,切点在三个侧面三角形的内部(包括边界),记球心到正四面体的四个顶点的距离之和为d ,则()A.r 有最大值,但无最小值B.r 最大时,球心在正四面体外C.r 最大时,d 同时取到最大值D.d 有最小值,但无最大值【答案】ABD 【解析】【分析】求出r 的取值范围可判断A ,B ;设1OO x =,根据题意得到d 关于x 的表达式,构造函数()3f x x =-+,对()f x 求导,得到()f x 的单调性和最值可判断C ,D.【详解】对于AB ,设球心为O ,正四面体为A BCD -,BCD △的中心为1O,则O 在1AO上,32AH ==,12333DO ==,球与平面ACD ,平面ABC ,平面ABD 相切,与平面ABC 相切于点2O,11336HO ==,163AO ==,因为2r OO =,在1Rt AO H中,111tan 4O H O AH AO ∠==,则1sin 31O AH ∠=所以在2Rt AOO △中,2212tan 4r OO AO O AH AO ==∠=,因为20,2AO ⎛∈ ⎝⎦,所以20,48r AO ⎛=∈ ⎝⎦,r 有最大值,但无最小值,故A 正确;当max 8r =,此时13sin 82r AO r O AH ===>∠,r 最大时,球心在正四面体外,故B 正确;对于CD ,设1OO x =,63AO x =-,OD ==,所以33d OA OD x =+=-+,令()3f x x =-+,令()10f x =-==',解得:612x =或612x =-(舍去),当0,12x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,()f x在0,12⎛⎫⎪ ⎪⎝⎭上单调递减,当123x ⎛⎫∈ ⎪ ⎪⎝⎭,时,()0f x '>,()f x在123⎛ ⎝⎭,上单调递减,所以当612x =时,()max f x =,所以d 有最小值,但无最大值,故D 正确,C 错误.故选:ABD.【点睛】关键点点睛:本题CD 选项解决的关键在于,假设1OO x =,将d 表示为关于x 的表达式,再利用导数即可得解.非选择题部分(共92分)三、填空题:本大题共3小题,每题5分,共15分.把答案填在题中的横线上.12.平面向量,a b满足()2,1a = ,a b,a b ⋅= ,则b = ______.【答案】【解析】【分析】根据题意,设向量(),b x y = ,由向量共线以及数量积的结果列出方程,即可得到b的坐标,从而得到结果.【详解】设向量(),b x y = ,由a b可得21x y =,又a b ⋅=,则2x y +=解得2105x =-,105y =-,则21010,55b ⎛=-- ⎝⎭ ,所以b ==13.如图,在等腰梯形ABCD 中,12AB BC CD AD ===,点E 是AD 的中点.现将ABE 沿BE 翻折到A BE ' ,将DCE △沿CE 翻折到D CE '△,使得二面角A BE C '--等于60︒,D CE B '--等于90︒,则直线A B '与平面D CE '所成角的余弦值等于______.【答案】8【解析】【分析】根据图象可得直线A B '与平面D CE '所成角的余弦值等于A BK ∠'的正弦值,设2AB a =,利用余弦定理求得相关线段的长度再进行计算即可.【详解】设2AB a =,取CE 的中点K ,连接,BK A K ',由题知平面BCE ⊥平面D CE ',平面BCE 平面D CE CE '=,又BK ⊂平面BCE ,BK CE ⊥所以BK ⊥平面D CE ',则直线A B '与平面D CE '所成角的余弦值等于A BK ∠'的正弦值,易求得3,3BK a A C a '==,2225cos 28EA EC A C A EC EA EC +-''⋅'=='∠,又2225cos 28EA EK A K A EC EA EK +-''⋅'=='∠,解得102A K a '=,22233cos 28A B BK A K A BK A B BK +-'⋅''=='∠,则23337sin 188A BK ⎛⎫∠=-= ⎪ ⎪'⎝⎭,所以直线A B '与平面D CE '所成角的余弦值等于378,故答案为:378.14.已知P ,F 分别是双曲线()22221,0x y a b a b -=>与抛物线()220y px p =>的公共点和公共焦点,直线PF 倾斜角为60 ,则双曲线的离心率为______.【答案】273+72+【解析】【分析】由题意2pc =,根据直线PF 倾斜角为60 得直线PF 的方程为)3y x c =-,联立24y cx =得P 点坐标,代入双曲线方程即可得离心率.【详解】因为F 为双曲线()22221,0x y a b a b-=>与抛物线()220y px p =>的公共焦点,所以2pc =,故24y cx =,因直线PF 倾斜角为60 ,故直线PF的斜率为k =,直线PF的方程为)y x c =-,联立24y cx =,得()234x c cx -=,即2231030x cx c -+=,得3x c =或13x c =,当3x c =时,2212y c =,代入22221x y a b-=得22229121c c a b -=,又因222b c a =-,ce a=,得4292210e e -+=,解得211479e ±=,又因1e >,得723e +=当13x c =时,2243y c =,代入22221x y a b -=得222214931c c a b -=,又因222b c a =-,ce a=,得422290e e -+=,解得211e =±,又因1e >,得2e =+故答案为:273+2.四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.记ABC 的内角,,A B C 所对的边分别为,,a b c,已知2sin c B =.(1)求C ;(2)若tan tan tan A B C =+,2a =,求ABC 的面积.【答案】(1)π4C =或3π4(2)43【解析】【分析】(1)根据正弦定理,边化角,结合三角形中角的取值范围,可得sin C ,从而确定角C .(2)根据条件求角求边,再结合三角形面积公式求面积.【小问1详解】由2sin c B =得2sin sin C B B =,而B 为三角形内角,故sin >0,得sin 2C =,而C 为三角形内角,∴π4C =或3π4【小问2详解】由()tan tan tan tan A B C B C =-+=+得tan tan tan tan 1tan tan B CB C B C+-=+-,又tan tan 0B C +≠,∴tan tan 2B C =,,故π,0,2B C ⎛⎫∈ ⎪⎝⎭,由(1)得tan 1C =,故tan 2B =,∴tan tan tan 3A B C =+=,而A 为三角形内角,∴310sin 10A =.又sin sin a cA C =即232=⇒3c =,又tan 2B =,而B为三角形内角,故sin B =114sin 222353S ac B ∴==⨯⨯=.16.已知直线y kx =与椭圆22:14xC y +=交于,A B 两点,P 是椭圆C 上一动点(不同于,A B ),记,,OP PA PB k k k 分别为直线,,OP PA PB 的斜率,且满足OP PA PB k k k k ⋅=⋅.(1)求点P 的坐标(用k 表示);(2)求OP AB ⋅的取值范围.【答案】16.(P或P (0k ≠);17.(4,5].【解析】【分析】(1)设出点,A P 的坐标,利用点差法求得14OP k k ⋅=-,再联立直线y kx =与椭圆方程求解即得.(2)利用(1)的结论求出||,||OP AB ,再借助基本不等式求出范围即可.【小问1详解】依题意,点A 、B 关于原点对称,设()()1122,,,A x y P x y ,则()11,B x y --,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得1212121214y y y y x x x x -+⋅=--+,于是14OP k k ⋅=-,由22440y kx x y =⎧⎨+-=⎩,整理得22(14)4k x +=,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩11x y ⎧=⎪⎪⎨⎪=⎪⎩,用14k -代替上述坐标中的k,得(P或P (0k ≠).【小问2详解】由(1)得,0k ≠,OP AB ⋅====221168816k k ++≥+=,当且仅当12k =±时取等号,显然2292511116168k k <+≤++,所以45OP AB <⋅≤,即OP AB ⋅的取值范围是(4,5].17.红旗淀粉厂2024年之前只生产食品淀粉,下表为年投入资金x (万元)与年收益y (万元)的8组数据:x1020304050607080y12.816.51920.921.521.92325.4(1)用ln y b x a =+模拟生产食品淀粉年收益y 与年投入资金x 的关系,求出回归方程;(2)为响应国家“加快调整产业结构”的号召,该企业又自主研发出一种药用淀粉,预计其收益为投入的10%.2024年该企业计划投入200万元用于生产两种淀粉,求年收益的最大值.(精确到0.1万元)附:①回归直线ˆˆˆu bv a =+中斜率和截距的最小二乘估计公式分别为:1221ˆni i i nii v unv u bvnv ==-⋅=-∑∑,ˆˆa u bv =-⋅②81ii y=∑81ln ii x=∑821ii x=∑()128ln i i x =∑81ln iii y x=∑1612920400109603③ln20.7,ln5 1.6≈≈【答案】(1)5ln 2ˆyx =+(2)36.5【解析】【分析】(1)利用回归直线的公式求ˆb和ˆa 的值,可得回归方程.(2)建立函数关系,利用导数分析函数单调性,求出函数的最大值.【小问1详解】()()()()88881111882222211ln 29161ln 8ln ln 860388888529ln 8ln ln 81098ˆln 8iii i ii iii i i i i i x yx yx yx ybx xx x ======-⋅-⋅-⨯⨯====⎛⎫---⨯ ⎪⎝⎭∑∑∑∑∑∑1ˆˆ6129ln 5288y ab x =-⋅=-⨯=∴回归方程为:5ln 2ˆyx =+【小问2详解】2024年设该企业投入食品淀粉生产x 万元,预计收益y (万元)()15ln 220010y x x =++-⋅,0200x ≤≤515001010x y x x-=-=>',得50x <∴其在()0,50上递增,()50,200上递减()()max 5ln5021552ln5ln217521.60.71736.5y =++=++≈⨯⨯++=18.数列{}{},n n a b 满足:{}n b 是等比数列,122,5b a ==,且()()*1122238N n n n n a b a b a b a b n ++⋅⋅⋅+=-+∈.(1)求,n n a b ;(2)求集合()(){}*0,2,Ni i A x x a x b i n i =--=≤∈中所有元素的和;(3)对数列{}n c ,若存在互不相等的正整数()12,,,2j k k k j ⋅⋅⋅≥,使得12j k k k c c c ++⋅⋅⋅+也是数列{}n c 中的项,则称数列{}n c 是“和稳定数列”.试分别判断数列{}{},n n a b 是否是“和稳定数列”.若是,求出所有j 的值;若不是,说明理由.【答案】(1)31n a n =-,2nn b =(2)()2log 61122212462433n n n n ⎡-+⎤⎢⎥+⎣⎦++--(3)数列{}n a 是“和稳定数列”,()*31,N j m m =+∈,数列{}nb 不是“和稳定数列”,理由见解析【解析】【分析】(1)根据已知及等比数列的定义求出{}n b 的通项公式,由已知和求通项可得{}n a 的通项公式,(2)根据等差数列及等比数列的求和公式可得结果(3)根据“和稳定数列”的定义可判定.【小问1详解】()1111238a b a b =-+ ,112,2b a =∴=又()11222223a b a b a b +=-,1122,2,5b a a =∴==,解得:24b =因为{}n b 是等比数列,所以{}n b 的公比212b q b ==,2n n b ∴=又当2n ≥时,()11221111238n n n n a b a b a b a b ----++⋅⋅⋅+=-+,作差得:()()112323n n n n n n a b a b a b --=---将2nn b =代入,化简:()()1233n n n a a a -=---,得:()132n n a a n --=≥{}n a ∴是公差3d =的等差数列,()1131n a a n d n ∴=+-=-【小问2详解】记集合A 的全体元素的和为S ,集合{}122,,,n M a a a =⋅⋅⋅的所有元素的和为()22261262n n n A n n -+==+,集合{}122,,,n N b b b =⋅⋅⋅的所有元素的和为()22122122212nn nB+-==--,集合M N ⋂的所有元素的和为T ,则有22n n S A B T =+-对于数列{}n b :当()*21N n k k =-∈时,()()2121*2123131N k k k bp p ---==-=-∈是数列{}n a 中的项当()*2Nn k k =∈时,()()*221223132N kk bb p p p -==-=-∈不是数列{}n a 中的项1321k T b b b -∴=++⋅⋅⋅+,其中()()21222212log 611log 61122k n k n b a n n k b a -+≤⎧---+⇒<≤⎨>⎩即()2log 6112n k ⎡⎤-+=⎢⎥⎣⎦(其中[]x 表示不超过实数x 的最大整数)()()()2log 61122142241411433n k k T ⎡-+⎤⎢⎣⎦⎛⎫- ⎪∴==-=--⎪⎝⎭()2log 61122212462433n n S n n ⎡-+⎤⎢⎥+⎣⎦∴=++--【小问3详解】①解:当()*3,Nj m m =∈时,12j k k k aa a ++⋅⋅⋅+是3的正整数倍,故一定不是数列{}n a 中的项;当()*31,Nj m m =-∈时,()121mod3j k k k aa a ++⋅⋅⋅=+,不是数列{}n a 中的项;当()*31,Nj m m =+∈时,()122mod3j k k k aa a +++= ,是数列{}n a 中的项;综上,数列{}n a 是“和稳定数列”,()*31,N j m m =+∈;②解:数列{}n b 不是“和稳定数列”,理由如下:不妨设:121j k k k ≤<<⋅⋅⋅<,则12j j k k k k b b b b ++⋅⋅⋅+>,且121112121222222j j j j j j kk k k k k k k b b b b b b b +++++⋅⋅⋅+≤++⋅⋅⋅+=++⋅⋅⋅+=-<=故12j k k k b b b ++⋅⋅⋅+不是数列{}n b 中的项.数列{}n b 不是“和稳定数列”.19.如图,对于曲线Γ,存在圆C满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆()()222x a y b r -+-=在点()00,A x y 处的二阶导数等于()230r b y -);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线2y x =在原点的曲率圆的方程;(2)求曲线1y x=的曲率半径的最小值;(3)若曲线e x y =在()11,ex x 和()()2212,e x x xx ≠处有相同的曲率半径,求证:12ln2x x +<-.【答案】(1)221124x y ⎛⎫+-= ⎪⎝⎭(2(3)证明见解析【解析】【分析】(1)设抛物线2y x =在原点的曲率圆的方程为()222x y b b +-=,求出导数、二阶导数,结合所给定义求出b 即可;(2)设曲线()y f x =在()00,x y 的曲率半径为r ,根据所给定义表示出r ,再由基本不等式计算可得;(3)依题意函数e x y =的图象在(),exx 处的曲率半径()322e1exxr +=,即242333eex x r -=+,从而得到112242423333e e e ex x x x --+=+,令1231e xt =,2232e xt =,即可得到()12121t t t t +=,再由基本不等式证明即可.【小问1详解】记()2f x x =,设抛物线2y x =在原点的曲率圆的方程为()222x y b b +-=,其中b为曲率半径.则()2f x x '=,()2f x ''=,故()()231200b f b b ===-'',232r b=,即12b =,所以抛物线2y x =在原点的曲率圆的方程为221124x y ⎛⎫+-= ⎪⎝⎭;【小问2详解】设曲线()y f x =在()00,x y 的曲率半径为r.则法一:()()()0002030x a f x y b r f x b y -⎧=-⎪-⎪⎨'''⎪=⎪-⎩,由()()22200x a y b r -+-=知,()()220201r f x y b ⎡⎤+='⎣⎦-,所以(){}()32201f x r f x ⎡⎤+='''⎣⎦,故曲线1y x=在点()00,x y 处的曲率半径3222030112x r x ⎧⎫⎛⎫⎪⎪-+⎨⎬⎪⎝⎭⎪⎪⎩⎭=,所以3340220220301111242x r x x x ⎛⎫+ ⎪⎛⎫⎝⎭==+≥ ⎪⎝⎭,则2212333020122r x x -⎛⎫=+≥ ⎪⎝⎭,则322020112r x x ⎛⎫=+≥ ⎪⎝⎭,当且仅当20201x x =,即201x=时取等号,故r ≥1y x=在点()1,1处的曲率半径r =法二:()0202330012x a x y b r x b y -⎧-=-⎪-⎪⎨⎪=⎪-⎩r =,所以23001323013022x ry b r x a x ⎧⋅⎪-=-⎪⎪⎨⎪-=-⎪⎪⎩,而()()4423322200022233022x r r r x a y b x ⋅=-+-=+⋅,所以2223302012r x x -⎛⎫=+ ⎪⎝⎭,解方程可得322020112r x x ⎛⎫=+ ⎪⎝⎭,则3220201124r x x ⎛⎫=+≥ ⎪⎝⎭,当且仅当20201x x =,即21x =时取等号,故r ≥1y x=在点()1,1处的曲率半径r =【小问3详解】法一:函数e x y =的图象在(),exx 处的曲率半径()322e1exxr +=,故242333e ex x r -=+,由题意知:112242423333eeeex x x x --+=+令12223312,e ex x t t ==,则有22121211t t t t +=+,所以22122111t t t t -=-,即()()12121212t t t t t t t t --+=,故()12121t t t t +=.因为12x x ≠,所以12t t ≠,所以()()123212121212122e x x t tt t t t t t +=+>⋅=,所以12ln2x x +<-.法二:函数e x y =的图象在(),exx 处的曲率半径()322e1exxr +=,有()3224222e1e 3e 3e exx x xxr -+==+++令122212,e e x x t t ==,则有22112212113333t t t t t t +++=+++,则()121212130t t t t t t ⎛⎫-++-= ⎪⎝⎭,故1212130t t t t ++-=,因为12x x ≠,所以12t t ≠,所以有12121211033t t t t t t =++->-,令t =,则21230t t+-<,即()3220231(1)21t t t t >+-=+-,故12t <,所以1212e x x t +==<,即12ln2x x +<-;法三:函数e x y =的图象在(),exx 处的曲率半径()322e1e xxr +=.故242333e ex x r =+设()4233e ex xg x =+,则()()4222333422e e e 2e 1333x x xx g x ---='=-,所以当1,ln22x ∞⎛⎫∈--⎪⎝⎭时()0g x '<,当1ln2,2x ∞⎛⎫∈-+ ⎪⎝⎭时()0g x '>,所以()g x 在1,ln22∞⎛⎫-- ⎪⎝⎭上单调递减,在1ln2,2∞⎛⎫-+ ⎪⎝⎭上单调递增,故有121ln22x x <-<,所以121,ln2,ln22x x ∞⎛⎫--∈--⎪⎝⎭,要证12ln2x x +<-,即证12ln2x x <--,即证()()()212ln2g x g x g x =>--将12ln2x x +<-,下证:当1ln2,2x ∞⎛⎫∈-+ ⎪⎝⎭时,有()()ln2g x g x >--,设函数()()()ln2G x g x g x =---(其中1ln22x >-),则()()()()21423332ln22e 1e 2e 03x x x G x g x g x --⎛⎫=+--=--⋅> ⎪'⎝⎭',故()G x 单调递增,()1ln202G x G ⎛⎫>-= ⎪⎝⎭,故()()22ln2g x g x >--,所以12ln2x x +<-.法四:函数e x y =的图象在(),exx 处的曲率半径()322e1exxr +=,有()3224222e 1e 3e 3e exx x x xr -+==+++,设()422e3e 3e xx x h x -=+++.则有()()()24222224e 6e 2e2ee12e1xx xxxxh x --=+-+'=-,所以当1,ln22x ∞⎛⎫∈--⎪⎝⎭时()0h x '<,当1ln2,2x ∞⎛⎫∈-+ ⎪⎝⎭时()0h x '>,故()h x 在1,ln 22∞⎛⎫-- ⎪⎝⎭上单调递减,在1ln 2,2∞⎛⎫-+ ⎪⎝⎭上单调递增.故有121ln22x x <-<,所以121,ln2,ln22x x ∞⎛⎫--∈--⎪⎝⎭,要证12ln2x x +<-,即证12ln2x x <--,即证()()()212ln2h x h x h x =>--.将12ln2x x +<-,下证:当1ln2,2x ∞⎛⎫∈-+ ⎪⎝⎭时,有()()ln2h x h x >--,设函数()()()ln2H x h x h x =---(其中1ln22x >-),则()()()()222411ln22e11e e 024xx x H x h x h x --''⎛⎫=+--=-++> ⎪⎝⎭',故()H x 单调递增,故()1ln202H x H ⎛⎫>-= ⎪⎝⎭,故()()22ln2h x h x >--,所以12ln2x x +<-.【点睛】方法点睛:极值点偏移法证明不等式,先求函数的导数,找到极值点,分析两根相等时两根的范围,根据范围以及函数值相等构造新的函数,研究新函数的单调性及最值,判断新函数小于或大于零恒成立,即可证明不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
是偶函数,要使在上是减函数在上是增函数,即只要满足在区间上是增函数在上是减函数.
令,当时;时,由于时,
是增函数记,故与在区间上有相同的增减性,当二次函数在区间上是增函数在上是减函数,其对称轴方程为.
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
3.第19题至第23题中右端所注的分数,表示考生正确做到这一步应得的该题分数.
4.给分或扣分均以1分为单位.
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.;2.;3.;4.;5.;6.;
7.(文、理);8.(文)4(理);9.;10.;11.(文)(理);12.;13.(文)(理);14.(文)②③⑤(理).②
19.(本题满分12分)本题共有2小题,第1小题满分5分,第2小题满分7分.
(文)解:(1)如图正四棱锥底面的边长是米,高是米
所以这个四棱锥冷水塔的容积是.
(2)如图,取底面边长的中点,连接,
答:制造这个水塔的侧面需要3.40平方米钢板.
(理)
19.(1)(理)解法一:建立坐标系如图
平面的一个法向量为
11.某中学在高一年级开设了门选修课,每名学生必须参加这门选修课中的一门,对于该年级的甲、乙、丙名学生,这名学生选择的选修课互不相同的概率是(结果用最简分数表示).
12.各项为正数的无穷等比数列的前项和为,若,则其公比的取值范围是.
13.已知两个不相等的平面向量,( )满足| |=2,且与-的夹角为120°,则| |的最大值是.
,过作的垂线设垂足为,∽
即
在中
所以二面角的大小为.
20.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.
解:(1)在△中,,
由
得,解得.
(2)∵∥,∴,
在△中,由正弦定理得,即
∴,又.
(文)记△的周长为,则
=
∴时,取得最大值为.
(理)解法一:记△的面积为,则,
∴时,取得最大值为.
是.
5.已知函数和函数的图像关于直线对称,则函数的解析式为.
6.已知双曲线的方程为,则此双曲线的焦点到渐近线的距离为.
7.函数的最小正周期.
8.若展开式中含项的系数等于含项系数的8倍,则正整数.
9.执行如图所示的程序框图,若输入的值是,则输出的值是.
10.已知圆锥底面半径与球的半径都是,如果圆锥的体积恰好也与球的体积相等,那么这个圆锥的母线长为.
18.已知集合,若对于任意,存在,使
得成立,则称集合是“集合”.给出下列4个集合:
①②
③④
其中所有“集合”的序号是……………………………………………………()
(A)②③.(B)③④.(C)①②④.(D)①③④.
三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
(文)解:(1)过原点,
得或
(2)(3)同理21
(理)解(1),所以,设
则,消去,得,…(2分)
解得,,所以的坐标为或
(2)由题意可知点到圆心的距离为…(6分)
(ⅰ)当时,点在圆上或圆外,,
又已知,,所以或
(ⅱ)当时,点在圆内,所以,
又已知,,即或
结论:当时,或;当时,或
(3)因为抛物线方程为,所以是它的焦点坐标,
14.给出30行30列的数表:,其特点是每行每列都构成等差数列,记数表主对角线上的数按顺序构成数列,存在正整数使成等差数列,试写出一组的值.
二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.
15.已知,,则的值等于………………………()
(2)由(1)可得
;
,,
所以,且.所以的最小值为
(3)由(1)当时,
当时,,,
所以对正整数都有.
由,,(且),只能是不小于3的奇数.
①当为偶数时,,
因为和都是大于1的正整数,
所以存在正整数,使得,,
,,所以且,相应的,即有,为“指数型和”;
②当为奇数时,,由于是个奇数之和,仍为奇数,又为正偶数,所以不成立,此时没有“指数型和”.
二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.
15.D;16.(文)B(理)A;17.B;18.(文)C(理)A
三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
因为,,
可知直线的一个方向向量为.
设直线与平面成角为,与所成角为,则
19(1)解法二:平面,即为在平面内的射影,故为直线与平面所成角,
在中,,
19(2)(理科)
解法一:建立坐标系如图.平面的一个法向量为
设平面的一个法向量为,因为,
所以,令,则
由图知二面角为锐二面角,故其大小为.
19(2)解法二:过作平面的垂线,垂足为,即为所求
(A).(B).(C).(D).
16.已知圆的极坐标方程为,则“”是“圆与极轴所在直线相切”的………………………………………………………………………………()
(A)充分不必要条件.(B)必要不充分条件.(C)充要条件.(D)既不充分又不必要条件.
17.若直线经过点,则…………………………()
(A).(B).(C).(D).
解法二:
即,又即
当且仅当时等号成立,
所以
∴时,取得最大值为.
21.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.
(文)解:(1)依题意,,,
由,得,
设,
∴;
(2)如图,由得,
依题意,,设,线段的中点,
则,,,
由,得,∴
(理)解:(1)是偶函数,
即,
又恒成立即
当时
当时,,
当时,,
(1)若是半径的中点,求线段的大小;
(2)设,求△面积的最大值及此时的值.
21.(本题满分14分)本题共有2小题,第1小题满分7分,第2小题满分7分.
已知函数.
(1)若是偶函数,在定义域上恒成立,求实数的取值范围;
(2)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.
2013年静安、杨浦、青浦宝山区高三二模卷(理科)
参考答案及评分标准2013.04
说明
1.本解答列出试题一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.
2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后续部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,但是原则上不应超出后面部分应给分数之半,如果有较严重的概念性错误,就不给分.
解法二:数列是正项递增等差数列,故数列的公比,设存在组成的数列是等比数列,则,即
因为所以必有因数,即可设,当数列的公比最小时,即,最小的公比.所以.
(3)由(2)可得从中抽出部分项组成的数列是等比数列,其中,那么的公比是,其中由解法二可得.
,
所以
(理)解:(1),,,当时,
=2,所以为等比数列.
,.
22.(本题满分16分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知点,、、是平面直角坐标系上的三点,且、、成等差数列,公差为,.
(1)若坐标为,,点在直线上时,求点的坐标;
(2)已知圆的方程是,过点的直线交圆于两点,是圆上另外一点,求实数的取值范围;
(3)若、、都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标.
高三,答题时间120分钟)
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.已知全集,集合,则.
2.若复数满足(是虚数单位),则.
3.已知直线的倾斜角大小是,则.
4.若关于的二元一次方程组有唯一一组解,则实数的取值范围
点的横坐标为,即
设,,则,,,
所以
直线的斜率,则线段的垂直平分线的斜率
则线段的垂直平分线的方程为
直线与轴的交点为定点
23.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)解:(1)令得,即;
又
(2)由和
,
所以数列是以2为首项,为公差的等差数列,所以.
解法一:数列是正项递增等差数列,故数列的公比,若,则由得,此时,由解得,所以,同理;若,则由得,此时组成等比数列,所以,,对任何正整数,只要取,即是数列的第项.最小的公比.所以.………(10分)
19.(本题满分12分)本题共有2小题,第1小题满分5分,第2小题满分7分.
在棱长为的正方体中,分别为的中点.
(1)求直线与平面所成角的大小;
(2)求二面角的大小.
20.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.
如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点.
23.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知数列的前项和为,且满足( ),,设,.
(1)求证:数列是等比数列;
(2)若≥,,求实数的最小值;
(3)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成(且)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.