小学数学奥数测试题-容斥原理2015人教版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年小学奥数计数专题——容斥原理

1.某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?

2.某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.那么语文成绩得满分的有多少人? 3.50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,…,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?

4.在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:①标签号为2的倍数,奖2支铅笔;②标签号为3的倍数,奖3只铅笔;③标签号既是2的倍数,又是3的倍数可重复领奖;④其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?

5.有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?

6.东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的.现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?

7.有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍

412的倍数的卡片有15张.那么,这些

卡片一共有多少张?

8.在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?

9.五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.

10.如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.

11.四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.

12.图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没

13.如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?

14.甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?

15.甲、乙、丙都在读同一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?

参考答案

1.17

【解析】

有至少参加一个小组的同学有15+18-10=23人,所以有40-23=17人两个小组都不参加.

2.9

【解析】

有数学、语文至少有一门得满分的学生有45-29=16人.所以语文成绩得满分的有16-10+3=9人.

3.38

【解析】

在转过两次后,面向老师的同学分成两类:

第一类是标号既不是4的倍数,又不是6的倍数;第二类是标号既是4的倍数又是6的倍数.

1~50之间,4的倍数有⎥⎦⎤⎢⎣⎡450=12,6的倍数有⎥⎦

⎤⎢⎣⎡650=8,即是4的倍数又是6的倍数的数一定是12的倍数,所以有⎥⎦

⎤⎢⎣⎡1250=4. 于是,第一类同学有50-12-8+4=34人,第二类同学有4人,所以现在共有34+4=38名同学面向老师.

4.232

【解析】

1~100,2的倍数有⎥⎦⎤⎢⎣⎡2100=50个,3的倍数有⎥⎦

⎤⎢⎣⎡3100=33个,因为既是2的倍数,又是3的倍数的数一定是6的倍数,所以这样的数有⎥⎦

⎤⎢⎣⎡6100=16人. 于是,既不是2的倍数,又不是3的倍数的数在1~100中有100-50-33+16=33. 所以,游艺会为该项活动准备的奖品铅笔共有50×2+33×3+33×1=232支.

5.90

【解析】

我们只用先计算剪了多少刀,再加上1即为剪成的段数.

从一端开始,将绳上距离这个端点整数厘米数的点编号,并将距离长度作为编号.

有1~180,3的倍数有⎥⎦⎤⎢⎣⎡3180=60个,4的倍数有⎥⎦

⎤⎢⎣⎡4180=45个,而既是3的倍数,又是4的倍数的数一定是12的倍数,所以这样的数有⎥⎦

⎤⎢⎣⎡12180=15个. 注意到180厘米处的记号无法剪断,所以剪了(60-1)+(45-1)-(15-1)=89,所以绳子被剪成89+1=90段.

6.3

【解析】

将东河小学分成3个部分,六年级、五年级、其他年级,那么有五年级和其他年级共作画16幅,六年级和其他年级共作画15幅.而五、六年级共作画25幅,所以其他年级的画共有(16+15-25)÷2=3幅.

7.36

【解析】

设这些卡片共有x 张,那么标有3的倍数的卡片有32x 张,标有4的倍数的卡片有43x 张,而标有12的倍数的卡片既属于3的倍数又属于4的倍数. 所以有32x+4

3x -15=x ,解得x =36. 即这些卡片一共有36张.

8.686个

【解析】

1~1000之间,5的倍数有⎥⎦⎤⎢⎣⎡51000=200个,7的倍数有⎥⎦

⎤⎢⎣⎡71000=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有⎥⎦

⎤⎢⎣⎡351000=28个. 所以既不能被5除尽,又不能被7除尽的数有1000-200-142+28=686个.

9.62

【解析】

设参加自然兴趣小组的人组成集合A ,参加美术兴趣小组的人组成集合B ,参加语文兴趣小组的人组成集合C .

|A|=25,|B|=35,|C|=27,|B ∩C|=12,|A ∩B|=8,|A ∩C|=9,|A ∩B ∩C|=4,|A ∪B ∪C|=|A|+|B|+|C|-|A ∩B|-|A ∩C|-|B ∩C|+|A ∩B ∩C|.

所以,这个班中至少参加一项活动的人有25+35+27-12-8-9+4=62,而这个班每人至少参加一项.

即这个班有62人.

10.58

【解析】

设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .

|A|=|B|=|C|=30, |A ∩B|=6,|B ∩C|=8,|A ∩C|=5,|A ∪B ∪C|=73,

而|A ∪B ∪C|=|A|+|B|+|C|-|A ∩B|-|B ∩C|-|A ∩C|+|A ∩B ∩C|.

有73=30×3-6-8-5+|A ∩B ∩C|,即|A ∩B ∩C|=2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.

相关文档
最新文档